新人教A版必修5高中数学等比数列性质学案
高中数学 第二章 数列 24 等比数列学案(无答案)新人教A版必修5 学案
2.4等比数列【学习目标】理解等比数列、等比中项的概念,能推导并掌握通项公式,能熟练运用通项公式和一些常用性质解决有关问题. 【重点难点】重点:等比数列的定义和通项公式及其应用.难点:等比数列的通项公式的应用.【学法指导】学习本节一定要认真阅读教材,运用从特殊到一般和类比等差数列的定义、通项公式的方法归纳等比数列的定义、通项公式. 一.课前预习阅读课本4852P P 页,弄清下列问题:1.等比数列的概念: .2.用数学式子表示等比数列的定义: {}n a 是等比数列,则*1()n na q n N a +=∈. 强调:(1)“从第二项起,每一项与它的前一项的比都等于同一个常数”,要防止在求公比 时,把相邻两项比的次序颠倒.(3)当公比q = 时,等比数列是常数列,该数列也是等差数列.(4)等比数列的每一项都不为 .3.等比数列的通项公式: . 4.等比中项的定义: . 5.快乐体验:(1)若等比数列155,45a a ==,求公比q ; (2)若等比数列12,33a q ==,求4a .(3)若等比数列3312,2a q ==,求1a ; (4)若等比数列的12,54,3,n a a q ===求n .(5)若4,9a b ==,求,a b 的等比中项.二.课堂学习与研讨例1.某种放射性物质不断变化为其他物质,每经过一年剩留量是原来的84%.这种物质的半衰期为多长?(精确到1年)(参考数据:lg 20.3010,lg0.840.0757,0.30100.0757 3.98==-÷≈)练习1.(教材53P 练习5)某人买了一辆价值13.5万元的新车,专家预测这种车每年按10%的速度折旧. (1)用一个式子表示*()n n N ∈年后这辆车的价值;(2)如果他打算用满4年时卖掉这辆车,他大概能得到多少钱?例2.等比数列的第3项和第4项分别是12和18,求它的第1项和第2项.练习2. 在等比数列{}n a 中,473,81,n a a a ==求.小结:3.等比中项:若,,a G b 成等比数列,则2G ab =. 三.课堂检测1.若a ,22a +,33a +成等比数列,则实数a 的为 .2.在等比数列中,(1)若已知2514,2a a ==-求n a . (2)若253618,9,1n a a a a a +=+==,求n .四.作业 1. P53A1 2. 在83和272之间插入3个数,使这五个数成等比数列,求这三数?3. 在等比数列{}n a 中,已知1910185,100,a a a a =⋅=求.2.5等比数列的前n 项和公式【学习目标】1.掌握等比数列的前n 项和公式11,1(1),11n n na q S a q q q =⎧⎪=-⎨⎪≠-⎩2.在等比数列{}n a 中,n n s n d a a 、、、、1五个量中“知三求二”.3.通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想和等价转化的思想. 【重点难点】重点:等比数列前n 项和公式的推导和运用.难点:等比数列前n 项和公式的推导. 【学法指导】学习本节时好好体会错位相减法求和的思路,分析等比数列的通项公式和前n 项和公式的特点,体会知三求二的方程思想. 一.课前预习 预习课本5557P P 页,回答下列问题:1.传说,很早以前,印度的一位宰相发明了国际象棋,当时的国王非常高兴,决定奖赏他,国王允许宰相提出任何要求,于是这位聪明的宰相便请国王在国际象棋棋盘的第一个格子里放入一颗麦粒,第二个格子里放入两颗麦粒,第三个……,就这样,依此类推,要求从第二个格子起,每个格子里的麦粒数是前一个格子里麦粒数的两倍,他请求国王给予他这些麦粒的总和。
2.等比数列-人教A版必修五教案
2. 等比数列-人教A版必修五教案一、教学目标1.能够通过示例理解等比数列的概念;2.能够熟练掌握等比数列的通项公式;3.能够计算等比数列中的任意一项;4.能够应用等比数列解决实际问题。
二、教学重点1.等比数列的概念;2.等比数列的通项公式;3.等比数列的应用。
三、教学难点等比数列的应用。
四、教学内容及方法1. 教学内容:1.等比数列的概念;2.等比数列的通项公式;3.等比数列的应用。
2. 教学方法:讲授、示范、练习、讨论。
五、教学步骤1. 导入新知识•引入等比数列的概念,并让学生思考:“如果已知一个数列是等比数列,那么我们可以如何快速地求出任意一项?”•展示等比数列的通项公式,并讲解每一个符号的含义。
2. 讲授等比数列的通项公式1.讲解等比数列的通项公式。
a n=a1q n−1–当q>1时,数列为递增等比数列;–当q<1时,数列为递减等比数列;–当q=1时,数列为常数数列。
2.示例练习。
3. 讲授等比数列的应用1.讲解等比数列在实际问题中的应用,如利润、利率、人口增长等方面的问题。
2.通过数学模型解决实际问题。
4. 小结对全文进行总结。
六、课堂练习与作业1.课堂练习:根据所给的等比数列的前两项和第n项,求出q和a n。
2.作业:完成教材相关习题。
七、教学反思本节课主要介绍等比数列的知识点及其应用,通过对等比数列的通项公式进行详细讲解,使学生能够熟练应用通项公式进行计算。
通过解决实际问题的实例,增强学生对等比数列的应用理解和兴趣。
教学效果较为良好,但在讲解题型方面,需要更多的例子来提高学习效果。
新人教A版必修5高中数学学案教案: (2.4.1 等比数列的概念及通项公式)
2.4 等比数列2.4.1 等比数列的概念及通项公式从容说课本节内容先由师生共同分析日常生活中的实际问题来引出等比数列的概念,再由教师引导学生与等差数列类比探索等比数列的通项公式,并将等比数列的通项公式与指数函数进行联系,体会等比数列与指数函数的关系,既让学生感受到等比数列是现实生活中大量存在的数列模型,也让学生经历了从实际问题抽象出数列模型的过程.教学中应充分利用信息和多媒体技术,给学生以较多的感受,激发学生学习的积极性和思维的主动性.准备丰富的阅读材料,为学生提供自主学习的可能,进而达到更好的理解和巩固课堂所学知识的目的.教学重点1.等比数列的概念;2.等比数列的通项公式.教学难点1.在具体问题中抽象出数列的模型和数列的等比关系;2.等比数列与指数函数的关系.教具准备多媒体课件、投影胶片、投影仪等三维目标一、知识与技能1.了解现实生活中存在着一类特殊的数列;2.理解等比数列的概念,探索并掌握等比数列的通项公式;3.能在具体的问题情境中,发现数列的等比关系,并能用有关的知识解决相应的实际问题;4.体会等比数列与指数函数的关系.二、过程与方法1.采用观察、思考、类比、归纳、探究、得出结论的方法进行教学;2.发挥学生的主体作用,作好探究性活动;3.密切联系实际,激发学生学习的积极性.三、情感态度与价值观1.通过生活中的大量实例,鼓励学生积极思考,激发学生对知识的探究精神和严肃认真的科学态度,培养学生的类比、归纳的能力;2.通过对有关实际问题的解决,体现数学与实际生活的密切联系,激发学生学习的兴趣.教学过程导入新课师现实生活中,有许多成倍增长的实例.如,将一张报纸对折、对折、再对折、…,对折了三次,手中的报纸的层数就成了8层,对折了5次就成了32层.你能举出类似的例子吗?生一粒种子繁殖出第二代120粒种子,用第二代的120粒种子可以繁殖出第三代120×120粒种子,用第三代的120×120粒种子可以繁殖出第四代120×120×120粒种子,…师非常好的一个例子!现实生活中,我们会遇到许多这类的事例.教师出示多媒体课件一:某种细胞分裂的模型.师 细胞分裂的个数也是与我们上述提出的问题类似的实例.细胞分裂有什么规律,将每次分裂后细胞的个数写成一个数列,你能写出这个数列吗?生 通过观察和画草图,发现细胞分裂的规律,并记录每次分裂所得到的细胞数,从而得到每次细胞分裂所得到的细胞数组成下面的数列:1,2,4,8,…①教师出示投影胶片1:“一尺之棰,日取其半,万世不竭.”师 这是《庄子·天下篇》中的一个论述,能解释这个论述的含义吗?生 思考、讨论,用现代语言叙述.师 (用现代语言叙述后)如果把“一尺之棰”看成单位“1”,那么得到的数列是什么样的呢?生 发现等比关系,写出一个无穷等比数列:1,21,41,81,161,… ② 教师出示投影胶片2:计算机病毒传播问题.一种计算机病毒,可以查找计算机中的地址簿,通过邮件进行传播.如果把病毒制造者发送病毒称为第一轮,邮件接收者发送病毒称为第二轮,依此类推.假设每一轮每一台计算机都感染20台计算机,那么在不重复的情况下,这种病毒感染的计算机数构成一个什么样的数列呢?师 (读题后)这种病毒每一轮传播的计算机数构成的数列是怎样的呢?引导学生发现“病毒制造者发送病毒称为第一轮”“每一轮感染20台计算机”中蕴涵的等比关系.生 发现等比关系,写出一个无穷等比数列:1,20,202,203,204,… ③教师出示多媒体课件二:银行存款利息问题.师 介绍“复利”的背景:“复利”是我国现行定期储蓄中的一种支付利息的方式,即把前一期的利息和本金加在一起算作本金,再计算下一期的利息,也就是通常说的“利滚利”.我国现行定期储蓄中的自动转存业务实际上就是按复利支付利息的.给出计算本利和的公式:本利和=本金×(1+本金)n ,这里n 为存期.生 列出5年内各年末的本利和,并说明计算过程.师 生合作讨论得出“时间”“年初本金”“年末本利和”三个量之间的对应关系,并写出:各年末本利和(单位:元)组成了下面数列:10 000×1.019 8,10 000×1.019 82,10 000×1.019 83,10 000×1.019 84,10 000×1.01985. ④师 回忆数列的等差关系和等差数列的定义,观察上面的数列①②③④,说说它们有什么共同特点?师 引导学生类比等差关系和等差数列的概念,发现等比关系.引入课题:板书课题 2.4等比数列的概念及通项公式推进新课[合作探究]师 从上面的数列①②③④中我们发现了它们的共同特点是:具有等比关系.如果我们将具有这样特点的数列称之为等比数列,那么你能给等比数列下一个什么样的定义呢? 生 回忆等差数列的定义,并进行类比,说出:一般地,如果把一个数列,从第2项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列. [教师精讲]师 同学们概括得很好,这就是等比数列(geometric seque n ce)的定义.有些书籍把等比数列的英文缩写记作G.P.(Geometric Progressio n ).我们今后也常用G.P.这个缩写表示等比数列.定义中的这个常数叫做等比数列的公比(commo n r a tio),公比通常用字母q 表示(q≠0).请同学们想一想,为什么q≠0呢?生 独立思考、合作交流、自主探究.师 假设q=0,数列的第二项就应该是0,那么作第一项后面的任一项与它的前一项的比时就出现什么了呢?生 分母为0了.师 对了,问题就出在这里了,所以,必须q≠0.师 那么,等比数列的首项能不能为0呢?生 等比数列的首项不能为0.师 是的,等比数列的首项和公比都不能为0,等比数列中的任一项都不会是0. [合作探究]师类比等差中项的概念,请同学们自己给出等比中项的概念.生 如果在a 与b 中间插入一个数G ,使a 、G 、b 成等比数列,那么G 叫做a 、b 的等比中项. 师 想一想,这时a 、b 的符号有什么特点呢?你能用a 、b 表示G 吗?生 一起探究,a 、b 是同号的G b a G ,G=±ab ,G 2=ab . 师 观察学生所得到的a 、b 、G 的关系式,并给予肯定.补充练习:与等差数列一样,等比数列也具有一定的对称性,对于等差数列来说,与数列中任一项等距离的两项之和等于该项的2倍,即a n -k +a n +k =2a n .对于等比数列来说,有什么类似的性质呢? 生 独立探究,得出:等比数列有类似的性质:a n -k ·a n +k =a n 2.[合作探究]探究:(1)一个数列a 1,a 2,a 3,…,a n ,…(a 1≠0)是等差数列,同时还能不能是等比数列呢?(2)写出两个首项为1的等比数列的前5项,比较这两个数列是否相同?写出两个公比为2的等比数列的前5项,比较这两个数列是否相同?(3)任一项a n 及公比q 相同,则这两个数列相同吗?(4)任意两项a m 、a n 相同,这两个数列相同吗?(5)若两个等比数列相同,需要什么条件?师 引导学生探究,并给出(1)的答案,(2)(3)(4)可留给学生回答.生 探究并分组讨论上述问题的解答办法,并交流(1)的解答.[教师精讲]概括总结对上述问题的探究,得出:(1)中,既是等差数列又是等比数列的数列是存在的,每一个非零常数列都是公差为0,公比为1的既是等差数列又是等比数列的数列.概括学生对(2)(3)(4)的解答.(2)中,首项为1,而公比不同的等比数列是不会相同的;公比为2,而首项不同的等比数列也是不会相同的.(3)中,是指两个数列中的任一对应项与公比都相同,可得出这两个数列相同;(4)中,是指两个数列中的任意两个对应项都相同,可以得出这两个数列相同;(5)中,结论是:若两个数列相同,需要“首项和公比都相同”.(探究的目的是为了说明首项和公比是决定一个等比数列的必要条件;为等比数列的通项公式的推导做准备) [合作探究]师 回顾等差数列的通项公式的推导过程,你能推导出等比数列的通项公式吗? 生 推导等比数列的通项公式. [方法引导]师 让学生与等差数列的推导过程类比,并引导学生采用不完全归纳法得出等比数列的通项公式.具体的,设等比数列{a n }首项为a 1,公比为q ,根据等比数列的定义,我们有: a 2=a 1q,a 3=a 2q=a 1q 2,…,a n =a n -1q=a 1q n -1,即a n =a 1q n -1.师 根据等比数列的定义,我们还可以写出q a a a a a a a a n n =====-1342312..., 进而有a n =a n -1q=a n -2q 2=a n -3q 3=…=a 1q n -1.亦得a n =a 1q n -1.师 观察一下上式,每一道式子里,项的下标与q 的指数,你能发现有什么共同的特征吗?生 把a n 看成a n q 0,那么,每一道式子里,项的下标与q 的指数的和都是n .师 非常正确,这里不仅给出了一个由a n 倒推到a n 与a 1,q 的关系,从而得出通项公式的过程,而且其中还蕴含了等比数列的基本性质,在后面我们研究等比数列的基本性质时将会再提到这组关系式.师 请同学们围绕根据等比数列的定义写出的式子 q a a a a a a a a n n =====-1342312...,再思考. 如果我们把上面的式子改写成q a a q a a q a a q a a n n ====-1342312,...,,,. 那么我们就有了n -1个等式,将这n -1个等式两边分别乘到一起(叠乘),得到的结果是11-=n n q a a ,于是,得a n =a 1q n -1. 师 这不又是一个推导等比数列通项公式的方法吗?师 在上述方法中,前两种方法采用的是不完全归纳法,严格的,还需给出证明.第三种方法没有涉及不完全归纳法,是一个完美的推导过程,不再需要证明.师 让学生说出公式中首项a 1和公比q 的限制条件.生 a 1,q 都不能为0. [知识拓展]师 前面实例中也有“细胞分裂”“计算机病毒传播”“复利计算”的练习和习题,那里是用什么方法解决问题的呢?教师出示多媒体课件三:前面实例中关于“细胞分裂”“计算机病毒传播”“复利计算”的练习或习题.某种储蓄按复利计算成本利息,若本金为a 元,每期利率为r ,设存期是x,本利和为y 元.(1)写出本利和y 随存期x 变化的函数关系式;(2)如果存入本金1 000元,每期利率为2.25%,试计算5期后的本利和.师 前面实例中关于“细胞分裂”“计算机病毒传播”“复利计算”的问题是用函数的知识和方法解决问题的.生 比较两种方法,思考它们的异同. [教师精讲]通过用不同的数学知识解决类似的数学问题,从中发现等比数列和指数函数可以联系起来.(1)在同一平面直角坐标系中,画出通项公式为a n =2 n -1的数列的图象和函数y=2x-1的图象,你发现了什么?(2)在同一平面直角坐标系中,画出通项公式为1)21(-=n n a 的数列的图象和函数y=(21)x-1的图象,你又发现了什么?生 借助信息技术或用描点作图画出上述两组图象,然后交流、讨论、归纳出二者之间的关系.师 出示多媒体课件四:借助信息技术作出的上述两组图象.观察它们之间的关系,得出结论:等比数列是特殊的指数函数,等比数列的图象是一些孤立的点.师 请同学们从定义、通项公式、与函数的联系3个角度类比等差数列与等比数列,并填充下列表格:等差数列 等比数列 定 义从第二项起,每一项与它前一项的差都是同一个常数 从第二项起,每一项与它前一项的比都是同一个常数 首项、公差(公比)取值有无限制没有任何限制 首项、公比都不能为0 通项公式a n =a 1+(n -1)d a n =a 1q n -1 相应图象的特点直线y=a 1+(x-1)d 上孤立的点 函数y=a 1q x-1图象上孤立的点[例题剖析]【例1】 某种放射性物质不断变化为其他物质,每经过一年,剩留的这种物质是原来的84%,这种物质的半衰期为多长(精确到1年)?师 从中能抽象出一个数列的模型,并且该数列具有等比关系.【例2】 根据右图中的框图,写出所打印数列的前5项,并建立数列的递推公式,这个数列是等比数列吗?师 将打印出来的数依次记为a 1(即A ),a 2,a 3,….可知a 1=1;a 2=a 1×21;a 3=a 2×21. 于是,可得递推公式⎪⎩⎪⎨⎧==-)1(21,111>n a a a n n . 由于211=-n n a a ,因此,这个数列是等比数列. 生 算出这个数列的各项,求出这个数列的通项公式.练习:1.一个等比数列的第3项和第4项分别是12和18,求它的第1项和第2项.师 启发、引导学生列方程求未知量.生 探究、交流、列式、求解.2.课本第59页练习第1、2题.课堂小结本节学习了如下内容:1.等比数列的定义.2.等比数列的通项公式.3.等比数列与指数函数的联系.布置作业课本第60页习题2.4 A 组第1、2题.板书设计等比数列的概念及通项公式1.等比数列的定义 实例剖析2.等比数列的通项公式 从三个角度类比等差数列表 例1练习:1.(学生板演) 例2。
高一数学人教A版必修5学案:2.4 第2课时 等比数列的性质 【含解析】
第2课时等比数列的性质学习目标核心素养1.掌握等比数列的性质及其应用.(重点)2.熟练掌握等比数列与等差数列的综合应用.(难点、易错点)3.能用递推公式求通项公式.(难点) 1.通过灵活设项求解等比数列问题以及等比数列性质的应用,培养数学运算素养.2.借助递推公式转化为等比数列求通项,培养逻辑推理及数学运算素养.1.推广的等比数列的通项公式{a n}是等比数列,首项为a1,公比为q,则a n=a1q n-1,a n=a m·q n-m(m,n∈N*).2.“子数列”性质对于无穷等比数列{a n},若将其前k项去掉,剩余各项仍为等比数列,首项为a k+1,公比为q;若取出所有的k的倍数项,组成的数列仍为等比数列,首项为a k,公比为q k.思考:如何推导a n=a m q n-m?[提示]由a na m=a1·q n-1a1·q m-1=q n-m,∴a n=a m·q n-m.3.等比数列项的运算性质在等比数列{a n}中,若m+n=p+q(m,n,p,q∈N*),则a m·a n=a p·a q.①特别地,当m+n=2k(m,n,k∈N*)时,a m·a n=a2k.②对有穷等比数列,与首末两项“等距离”的两项之积等于首末两项的积,即a1·a n=a2·a n-1=…=a k·a n-k+1=….4.两等比数列合成数列的性质若数列{a n},{b n}均为等比数列,c为不等于0的常数,则数列{ca n},{a2n},{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n 也为等比数列.思考:等比数列{a n }的前4项为1,2,4,8,下列判断正确的是 (1){3a n }是等比数列; (2){3+a n }是等比数列;(3)⎩⎨⎧⎭⎬⎫1a n 是等比数列; (4){a 2n }是等比数列.[提示] 由定义可判断出(1)(3)(4)正确.1.对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列 D .a 3,a 6,a 9成等比数列[答案] D2.等比数列{a n }中,a 1=3,q =2,则a 4= ,a n = . 24 3×2n -1 [a 4=a 1q 3=3×23=24,a n =a 1q n -1=3×2n -1.] 3.在等比数列{a n }中,a 5=4,a 7=6,则a 9= . 9 [因为a 7=a 5q 2,所以q 2=32. 所以a 9=a 5q 4=a 5(q 2)2=4×94=9.]4.在等比数列{a n }中,已知a 7a 12=5,则a 8a 9a 10a 11的值为 . 25 [因为a 7a 12=a 8a 11=a 9a 10=5,所以a 8a 9a 10a 11=25.]灵活设项求解等比数列【例1】 已知4个数成等比数列,其乘积为1,第2项与第3项之和为-32,则此4个数为 .8,-2,12,-18或-18,12,-2,8 [设此4个数为a ,aq ,aq 2,aq 3.则a 4q 6=1,aq (1+q )=-32,①所以a 2q 3=±1,当a 2q 3=1时,q >0,代入①式化简可得q 2-14q +1=0,此方程无解;当a 2q 3=-1时,q <0,代入①式化简可得q 2+174q +1=0,解得q =-4或q =-14.当q =-4时,a =-18; 当q =-14时,a =8.所以这4个数为8,-2,12,-18或-18,12,-2,8.]巧设等差数列、等比数列的方法(1)若三数成等差数列,常设成a -d ,a ,a +d .若三数成等比数列,常设成aq ,a ,aq 或a ,aq ,aq 2.(2)若四个数成等比数列,可设为aq ,a ,aq ,aq 2.若四个正数成等比数列,可设为a q 3,aq ,aq ,aq 3.[跟进训练]1.有四个实数,前三个数依次成等比数列,它们的积是-8,后三个数依次成等差数列,它们的积为-80,求出这四个数.[解] 由题意设此四个数为bq ,b ,bq ,a ,则有⎩⎨⎧b 3=-8,2bq =a +b ,ab 2q =-80,解得⎩⎨⎧a =10,b =-2,q =-2,或⎩⎪⎨⎪⎧a =-8,b =-2,q =52.所以这四个数为1,-2,4,10或-45,-2,-5,-8.等比数列的性质及应用【例2】 已知{a n }为等比数列. (1){a n }满足a 2a 4=12,求a 1a 23a 5;(2)若a n >0,a 2a 4+2a 3a 5+a 4a 6=25,求a 3+a 5;(3)若a n >0,a 5a 6=9,求log 3a 1+log 3a 2+…+log 3a 10的值.思路探究:利用等比数列的性质,若m +n =p +q ,则a m ·a n =a p ·a q 求解. [解] (1)等比数列{a n }中,因为a 2a 4=12,所以a 23=a 1a 5=a 2a 4=12,所以a 1a 23a 5=14.(2)由等比中项,化简条件得a 23+2a 3a 5+a 25=25,即(a 3+a 5)2=25,∵a n >0,∴a 3+a 5=5.(3)由等比数列的性质知a 5a 6=a 1a 10=a 2a 9=a 3a 8=a 4a 7=9, ∴log 3a 1+log 3a 2+…+log 3a 10 =log 3(a 1a 2…a 10)=log 3[(a 1a 10)(a 2a 9)(a 3a 8)(a 4a 7)(a 5a 6)] =log 395=10.有关等比数列的计算问题,基本方法是运用方程思想列出基本量a 1和q 的方程组,先解出a 1和q ,然后利用通项公式求解.但有时运算稍繁,而利用等比数列的性质解题,却简便快捷,为了发现性质,要充分发挥项的“下标”的指导作用.[跟进训练]2.(1)已知数列{a n }为等比数列,a 3=3,a 11=27,求a 7; (2)已知{a n }为等比数列,a 2·a 8=36,a 3+a 7=15,求公比q . [解] (1)法一:⎩⎨⎧a 1q 2=3,a 1q 10=27相除得q 8=9.所以q 4=3,所以a 7=a 3·q 4=9.法二:因为a 27=a 3a 11=81,所以a 7=±9, 又a 7=a 3q 4=3q 4>0,所以a 7=9.(2)因为a 2·a 8=36=a 3·a 7,而a 3+a 7=15, 所以a 3=3,a 7=12或a 3=12,a 7=3. 所以q 4=a 7a 3=4或14,所以q =±2或q =±22.由递推公式转化为等比数列求通项 [探究问题]1.如果数列{a n }满足a 1=1,a n +1=2a n +1(n ∈N *),你能判断出{a n }是等差数列,还是等比数列吗?[提示] 由等差数列与等比数列的递推关系,可知数列{a n }既不是等差数列,也不是等比数列.2.在探究1中,若将a n +1=2a n +1两边都加1,再观察等式的特点,你能构造出一个等比数列吗?[提示] 在a n +1=2a n +1两边都加1得a n +1+1=2(a n +1),显然数列{a n +1}是以a 1+1=2为首项,以q =2为公比的等比数列.3.在探究1中,若将a n +1=2a n +1改为a n +1=3a n +5,又应如何构造出一个等比数列?你能求出a n 吗?[提示] 先将a n +1=3a n +5变形为a n +1+x =3(a n +x ).将该式整理为a n +1=3a n +2x 与a n +1=3a n +5对比可知2x =5,即x =52;所以在a n +1=3a n +5两边都加52,可构造出等比数列⎩⎨⎧⎭⎬⎫a n +52.利用等比数列求出a n +52即可求出a n .【例3】 已知S n 是数列{a n }的前n 项和,且S n =2a n +n -4. (1)求a 1的值;(2)若b n =a n -1,试证明数列{b n }为等比数列. 思路探究:(1)由n =1代入S n =2a n +n -4求得;(2)先由S n =2a n +n -4,利用S n 和a n 的关系得{a n }的递推关系,然后构造出数列{a n -1}利用定义证明.[解] (1)因为S n =2a n +n -4,所以当n =1时,S 1=2a 1+1-4,解得a 1=3. (2)证明:因为S n =2a n +n -4, 所以当n ≥2时, S n -1=2a n -1+(n -1)-4,S n -S n -1=(2a n +n -4)-(2a n -1+n -5),即a n =2a n -1-1, 所以a n -1=2(a n -1-1), 又b n =a n -1,所以b n =2b n -1, 且b 1=a 1-1=2≠0,所以数列{b n }是以b 1=2为首项,2为公比的等比数列.1.将本例条件“S n =2a n +n -4”改为“a 1=1,S n +1=4a n +2”,“b n =a n -1”改为“b n =a n +1-2a n ”,试证明数列{b n }是等比数列,并求{b n }的通项公式.[证明] a n +2=S n +2-S n +1=4a n +1+2-4a n -2=4a n +1-4a n . b n +1b n =a n +2-2a n +1a n +1-2a n =(4a n +1-4a n )-2a n +1a n +1-2a n=2a n +1-4a na n +1-2a n=2.所以数列{b n }是公比为2的等比数列, 首项为a 2-2a 1.因为S 2=a 1+a 2=4a 1+2, 所以a 2=5,所以b 1=a 2-2a 1=3. 所以b n =3·2n -1.2.将本例条件“S n =2a n +n -4”改为“a 1=1,a 2n +1=2a 2n +a n a n +1”,试证明数列{a n }是等比数列,并求{a n }的通项公式.[解] 由已知得a 2n +1-a n a n +1-2a 2n =0,所以(a n +1-2a n )(a n +1+a n )=0. 所以a n +1-2a n =0或a n +1+a n =0,(1)当a n +1-2a n =0时,a n +1a n =2.又a 1=1,所以数列{a n }是首项为1,公比为2的等比数列.所以a n =2n -1.(2)当a n +1+a n =0时,a n +1a n =-1,又a 1=1,所以数列{a n }是首项为1,公比为-1的等比数列,所以a n =1×(-1)n -1=(-1)n -1. 综上:a n =2n -1或(-1)n -1.1.已知数列的前n 项和或前n 项和与通项的关系求通项,常用a n 与S n 的关系求解.2.由递推关系a n +1=Aa n +B (A ,B 为常数,且A ≠0,A ≠1)求a n 时,由待定系数法设a n +1+λ=A (a n +λ)可得λ=BA -1,这样就构造了等比数列{a n +λ}.1.解题时,应该首先考虑通式通法,而不是花费大量时间找简便方法. 2.所谓通式通法,指应用通项公式,前n 项和公式,等差中项,等比中项等列出方程(组),求出基本量.3.巧用等比数列的性质,减少计算量,这一点在解题中也非常重要.1.判断正误(1)有穷等比数列中,与首末两项“等距离”的两项之积等于首末两项的积.( ) (2)当q >1时,{a n }为递增数列. ( ) (3)当q =1时,{a n }为常数列. ( )[答案] (1)√ (2)× (3)√[提示] (2)当a 1>0且q >1时{a n }为递增数列,故(2)错.2.在正项等比数列{a n }中,3a 1,12a 3,2a 2成等差数列,则a 2 020-a 2 021a 2 018-a 2 019等于( )A .3或-1B .9或1C .1D .9D [由3a 1,12a 3,2a 2成等差数列可得a 3=3a 1+2a 2,即a 1q 2=3a 1+2a 1q , ∵a 1≠0,∴q 2-2q -3=0. 解得q =3或q =-1(舍). ∴a 2 020-a 2 021a 2 018-a 2 019=a 2 020(1-q )a 2 018(1-q )=a 2 020a 2 018=q 2=9.]3.在12和8之间插入3个数,使它们与这两个数依次构成等比数列,则这3个数的积为 .8 [设插入的3个数依次为a ,b ,c ,即12,a ,b ,c ,8成等比数列,由等比数列的性质可得b 2=ac =12×8=4,因为a 2=12b >0,∴b =2(舍负).所以这3个数的积为abc =4×2=8.]4.已知数列{a n }为等比数列.(1)若a 1+a 2+a 3=21,a 1a 2a 3=216,求a n ;(2)若a 3a 5=18,a 4a 8=72,求公比q .[解] (1)∵a 1a 2a 3=a 32=216,∴a 2=6,∴a 1a 3=36.又∵a 1+a 3=21-a 2=15,∴a 1,a 3是方程x 2-15x +36=0的两根3和12. 当a 1=3时,q =a 2a 1=2,a n =3·2n -1;当a 1=12时,q =12,a n =12·⎝ ⎛⎭⎪⎫12n -1. (2)∵a 4a 8=a 3q ·a 5q 3=a 3a 5q 4=18q 4=72,∴q 4=4,∴q =±2.。
人教A版高中数学必修五学等比数列学案新
高中数学必修五《2.4 等比数列》学案一、教学目标:1、通过具体实例抽象出等比数列模型,理解并掌握等比数列概念;2、类比等差中项的概念掌握等比中项的概念;3、理解等比数列的通项公式及推导,并能简单的应用公式。
二、教学过程:(一)自主探究:1、等比数列的概念:一般的, ,那么这个数列叫做等比数列,这个常数叫做等比数列的 ,公比通常用字母q 表示。
2. 符号表示:若()为常数q n q a a n n ,21≥=-,则称数列{}n a 为 ,q 为 ,且≠q 。
3、等比中项:若b G a ,,成等比数列,则G 叫做a 与b 的 ,此时a 与b (填同号或异号)。
4、等比数列的通项公式为: 。
5、等比数列的函数特征:预习自测:1. 已知下列数列是等比数列,请在括号内填上适当的数:①( ),3,27; ②3,( ),5; ③1,( ),( ),881. 2、等比数列211473,3,3,1,…中,983是这个数列的第 项.3、下列数列是否为等比数列,如果是,公比是多少?(1)1,1,1,1,1; (2)8,4,2,1,0; (3)161,81,41,21,1-- (4)432,,,x x x x 4、求出下列等比数列中的未知项:(1)8,,2a ; (2)21,,,4c b - 5、判断正误:①1,2,4,8,16是等比数列; ( ) ②数列 ,81,41,21,1是公比为2的等比数列; ( ) ③若cb b a =,则c b a ,,成等比数列; ( ) ④若()*1N n n a a n n ∈=+,则数列{}n a 成等比数列; ( ) 思考:如何证明一个数列是等比数列:(二)合作学习例1、一个等比数列的第3项和第4项分别是12和18,求它的第1项和第2项例2、三个数成等比,这三个数的和是7,这三个数的积是8,求这三个数。
例3、已知数列{}n a 的前n 项和n S =1(1)3n a -,*n N ∈,求证:数列{}n a 是等比数列。
人教A版高中数学必修五等比数列学案(1)
课本P51例4证明:设数列 的首项是 ,公比为 ; 的首项为 ,公比为 ,那么数列 的第n项与第n+1项分别为:
它是一个与n无关的常数,所以 是一个以q1q2为公比的等比数列
拓展探究:
对于例4中的等比数列{ }与{ },数列{ }也一定是等比数列吗?
探究:设数列{ }与{ }的公比分别为 ,令 ,则
4.既是等差又是等比数列的数列:非零常数列
Ⅱ.讲授新课
1.等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么称这个数G为a与b的等比中项.即G=± (a,b同号)
如果在a与b中间插入一个数G,使a,G,b成等比数列,则 ,
反之,若G =ab,则 ,即a,G,b成等比数列。∴a,G,b成等比数列 G =ab(a·b≠0)
,所以,数列{ }也一定是等,(1) 是否成立? 成立吗?为什么?
(2) 是否成立?你据此能得到什么结论?
是否成立?你又能得到什么结论?
结论:2.等比数列的性质:若m+n=p+k,则
在等比数列中,m+n=p+q, 有什么关系呢?
由定义得:
, 则
Ⅲ.课堂练习
课本P52-53的练习3、5
Ⅳ.课时小结
1、若m+n=p+q,
2、若 是项数相同的等比数列,则 、{ }也是等比数列
教学后记:
课题:2.4等比数列(2)第课时总序第个教案
课型:新授课编写时时间:年月日执行时间:年月日
教学目标:
知识与技能:灵活应用等比数列的定义及通项公式;深刻理解等比中项概念;熟悉等比数列的有关性质,并系统了解判断数列是否成等比数列的方法
过程与方法:通过自主探究、合作交流获得对等比数列的性质的认识。
高中数学 2.4等比数列学案 新人教A版必修5
第二章 数列2.4 等比数列(第1课时)学习目标1.掌握等比数列的定义,理解等比中项的概念; 2.掌握等比数列的通项公式及推导思路;3.能根据等比数列的定义判断或证明一个数列为等比数列. 要点精讲1.如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0)q ≠. 2.在数列{}n a 中,若对任意n N *∈,有1nn a q a -=(0,1)q n ≠>,则称数列{}n a 为等比数列;在数列{}n a 中,若对任意n N *∈,有11n n n na aa a +-=(1)n >,则数列{}n a 为等比数列. 3.由三个数,,a Gb 组成的等比数列可以看成最简单的等比数列.这时,G 叫做a 与b 的等比中项.G 为a 与b 的等比中项⇔,,a G b 组成等比数列⇔2(0,0)G ab ab G =>≠4.设等比数列{}n a 的首项是1a ,公比是q ,则通项公式11n n a a q -=.公式推导方法为归纳法.对于任意,n m N *∈,有n m n m a a q -=.范例分析例1.在等比数列{}n a 中,(1)218a =,48a =,求1a 与q ; (2)5115a a -=,426a a -=,求3a ; 例2.已知1是2a 与2b 的等比中项,又是1a 与1b 的等差中项,求22a ba b ++的值. 例3.正项等比数列{}n a 与等差数列{}n b 满足7711,b a b a ==且71a a ≠,则4a ,4b 的大小关系为( )A .4a 4b =B .4a 4b >C .4a 4b <D .不确定例4.在等差数列}{n a 中,公差0d ≠,且2a 是1a 和4a 的等比中项,已知1a ,3a ,123,,,n k k k k a a a a 成等比数列,求数列123,,,,n k k k k ⋅⋅⋅的通项n k .规律总结1.可以把等比数列{}n a 的问题归结为两个基本量1a 和q 的问题; 2.判定一个数列是不是等比数列,就是看1nn a a -(1)n >是不是一个与n 无关的常数. 3.等比数列与指数函数的关系:等比数列{}n a 的通项公式111(0)n n a a q a q -=≠,它的图象是分布在曲线1(0xa y q q q=⋅>且1)q ≠上的一些孤立的点.当10,1a q >>时,等比数列{}n a 是递增数列;当10,01a q <<<时,等比数列{}n a 是递增数列;当10,01a q ><<时,等比数列{}n a 是递减数列;当10,1a q <>时,等比数列{}n a 是递增数列;当0q <时,等比数列{}n a 是摆动数列;当1q =时,等比数列{}n a 是常数数列 基础训练 一、选择题1.在数列{}n a 中,对任意n N *∈,都有120n n a a +-=,则123422a a a a ++等于( )A .14 B .13 C .12D .1 2.已知等差数列{}n a 的公差为2,若431,,a a a 成等比数列, 则2a =( )A .4-B .6-C .8-D .10-3.已知a b c d ,,,成等比数列,且曲线223y x x =-+的顶点是()b c ,,则ad 等于( ) A .2- B .1 C .2 D .34.在△ABC 中,tan A 是以4-为第3项,4为第7项的等差数列的公差,tan B 是以31为第3项,9为第6项的等比数列的公比,则该三角形为 ( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形5.设等差数列{}n a 的公差d 不为0,19a d = 若k a 是1a 与2k a 的等比中项,则k =( )A .2B .4C .6D .8 二、填空题6.在等比数列{}n a 中,对任意n N *∈,都有12n n n a a a ++=+,则公比q =___ 。
高中数学 24 等比数列学案 新人教A版必修5 学案
2.4等比数列学案课内探究学案 (一 )学习目标 1.明确等比数列的定义;2.掌握等比数列的通项公式,会解决知道na ,1a ,q ,n 中的三个,求另一个的问题.教学重点1.等比数列概念的理解与掌握;2.等比数列的通项公式的推导及应用. 教学难点等差数列"等比"的理解、把握和应用. (二)学习过程 1、自主学习、合作探究1.等差数列的证明:①n n a AB =(0B ≠);②n n S a bq =+(0q ≠、1q ≠),0a b +=;③证明1n n a a +为常数(对于n a >适用);④证明212n n n a a a ++=⋅。
2.当引入公比q 辅助解题或q 作为参数时,注意考虑是否需要对1q =和1q ≠进行分类讨论。
3.证明数列是等比数列、不是等比数列,讨论数列是否等比数列,求解含参等比数列中的参数这四类问题同源。
4.注意巧用等比数列的主要性质,特别是m n p qa a a a =(m n p q +=+)和2m n p a a a =(2m n p +=)。
5. 三数成等比数列,一般可设为a q 、a 、aq ;四数成等比数列,一般可设为3a q 、aq 、aq 、3aq ;五数成等比数列,一般可设为2a q 、aq 、a 、aq 、2aq 。
2、精讲点拨 三、典型例题 例1 数列{}n a 为各项均为正数的等比数列,它的前n 项和为80,且前n 项中数值最大的项为54,它的前2n项和为6560,求首项1a 和公比q 。
解:若1q =,则应有22n nS S =,与题意不符合,故1q ≠。
依题意有:()()121180(1)116560(2)1n n a q q a q q ⎧-⎪=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⎪⎨-⎪=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⎪-⎩(2)(1)得21821nnq q -=-即282810n n q q -+= 得81n q =或1nq =(舍去),81n q ∴=。
高中数学新人教A版必修5学案2.4等比数列(第2课时)
2.4等比数列(第2)学目灵巧用等比数列的定及通公式; 深刻理解等比中的看法; 熟习等比数列的相关性, 并系认识判断数列是不是等比数列的方法. 通自主研究、合作沟通得等比数列性的 . 充足感觉数列是反应生活的模型, 领会数学是根源于生活, 并用于生活的 , 数学是丰富多彩的而不是乏味无味的, 提升学的趣.合作学一、 , 情第一回一下上一所学主要内容:1. 等比数列 : 假如一个数列从第 2 起 , 每一与它的前一的比等于同一常数, 那么个数列叫做等比数列 ,个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),即 :.2. 等比数列的通公式:.二、信息沟通 , 揭露律1.等比中 : 假如在 a 与 b 中插入一个数 G,使 a,G,b 成等比数列 , 那么 G叫做 a 与 b 的等比中 . 即 G=±(a,b 同号 ).假如在 a 与 b 中插入一个数G,使 a,G,b 成等比数列 ,, 反之 ,若 G2=ab, , 即 a,G,b 成等比数列 .(1)在等比数列 {a n} 中 , 能否有 =a n-1 a n+1(n ≥2)?(2)假如数列 {a n} 中 , 于随意的正整数n(n ≥2), 都有 =a n-1 a n+1, 那么 {a n} 必定是等比数列?剖析 :(1)由{a n}是等比数列,知,因此有=a n-1a n+1(n≥2);(2) 当数列0,0,0,0,⋯,仍有=a n-1a n+1,而等比数列的任一都是不零的, 因此不必定 ;若数列 {a n} 中的每一均不零, 且 =a n-1 a n+1(n ≥2,n ∈ N), 数列 {a n} 是等比数列 , 反之建立 .2.几个性(1) 已知 a ,a,a , ⋯,an 是公比q 的等比数列 , 新数列 a ,a, ⋯,a ,a1也是等比数列 ?123nn-12剖析 : 由等比数列的定可得 =⋯==q.因此 =⋯=, 由此能够看出a n,a n-1 , ⋯,a 2,a 1是从第 2 起 , 每一与它的前一的比都等于 , 因此是首, 公比的等比数列.(2) 已知无等比数列{a n} 的首a1, 公比 q.①挨次拿出数列{a n} 的全部奇数, 成一个新数列, 个数列是等比数列?假如是 ,它的首和公比分是多少?②数列 {ca n}( 此中常数c≠0) 是等比数列?假如是 , 它的首和公比分是多少?剖析 : ①由 =q, 得 a n+1=a n q,a3=a2q=a1q2, 因此 =q2;a 5=a4q=a3q2, 因此 =q2; 以此推 , 可得 ,=q 2, 因此数列 {a n } 的全部奇数成的数列是首, 公比的等比数列.②因 =⋯==q,因此数列 {ca n }(c ≠0) 是首ca1, 公比 q 的等比数列 .(3)已知数列 {a n} 是等比数列 .①=a3a7能否建立 ?=a1a9建立 ?②=a n-1 a n+1(n>1) 能否建立 ?③=a n-k a n+k (n>k>0) 能否建立 ?④在等比数列中,m+n=p+k,a m,a n,a p,a k有什么关系呢 ?剖析 : ① 数列 {a n} 的公比 q,a3=a1q2,a 5=a1q4,a7=a1q6,q 8 ,a 3a7=(a 1q2)(a 1q6)=q 8,因此 =a3a7, 同理 =a1a9.②=a n-1 a n+1(n>1) 建立 .③=a n-k a n+k (n>k>0) 建立 .④由等比数列定, 得 a m=a1q m-1,a n=a1q n-1 ,a p=a1q p-1 ,a k=a1q k-1 ,m+n-2,a ·a=q p+k-2a ·a=q, a a =a a .mn pk m np k: 若 m+n=p+k,.三、运用律 , 解决【例 1】等比数列 {a n} 中,(1)已知 a2=4,a 5=-, 求数列 {a n} 的通公式 ;(2)已知 a3a4a5=8, 求 a2a3a4a5a6的 .【例 2】假如数列 {a n},{b n}是数同样的等比数列, 那么 {a n·b n} 也是等比数列 .【例 3】设 a,b,c,d成等比数列,求证:(b-c)2+(c-a)2+(d-b)2=(a-d)2.【例 4】若 a,b,c成等差数列,且a+1,b,c与a,b,c+2都成等比数列, 求 b 的值 .四、变式训练 , 深入提升变式训练1: 等比数列 {a n} 中 , 若 a7·a12 =5, 则 a8·a9·a10·a11=.变式训练2: 等比数列 {a n} 中 , 若 a1+a2+a3=7,a 1·a2·a3=8, 则 a n=.变式训练3:已知数列{a n}为等比数列,且a n>0,a 2a4+2a3a5+a4a6=25,则a3+a5=.变式训练4: 三个数成等比数列, 它们的和为14, 它们的积为64, 求这三个数 .五、反省小结 , 看法提炼参照答案一、设计问题 , 创建情境1.=q(q ≠0)n-1(a 1·q≠0),a n-m2.a n=·q n=·q(a m·q≠0)二、信息沟通 , 揭露规律21. ? G=ab? G=±2.(1)a n(2)①a1q2(3)a m a n=a p a k(m,n,p,k∈ N*)三、运用规律 , 解决问题【例 1】解 :(1) ∵ a5=a2q5-2 , ∴ q=-.∴a n=a2q n-2 =4×.(2) ∵ a3a5=,a 3a4a5==8,∴a4=2.又∵ a2a6=a3a5=,∴a2a3a4a5 a6 ==32.【例 2】解 : 设数列 {a n} 的首项是 a1, 公比为 q1; 数列 {b n} 的首项为 b1, 公比为q2, 那么数列{a n·b} 的第 n 项与第 n+1 项分别为 a ··b ·与 a ··b ·, 即为 a b (q q )n-1n,与 a b ·(q q ) n11111112111212由于 =q q ,它是一个与n 没关的常数 , 因此 {a n·b n} 是一个以 a1b1为首项 , 以 q1q2为公比的等比数列.【例 3】证明 : 法一 : ∵a,b,c,d成等比数列,∴,∴b2=ac,c 2=bd,ad=bc,222222∴左侧 =b -2bc+c+c -2ac+a+d -2bd+b=2(b 2-ac)+2(c 2 -bd)+(a2-2bc+d2)=a2 -2ad+d 2=(a-d) 2=右侧 .证毕 .法二 : ∵ a,b,c,d成等比数列,设其公比为q,则 b=aq,c=aq 2,d=aq 3,∴左侧 =(aq-aq 2) 2+(aq 2-a) 2+(aq 3-aq) 2=a2 -2a 2q3+a2q6=(a-aq 3) 2,=(a-d) 2=右侧证毕 .【例 4】解 : 设 a,b,c分别为b-d,b,b+d,由已知b-d+1,b,b+d与b-d,b,b+d+2都成等比数列 , 有整理, 得因此 b+d=2b-2d, 即 b=3d,代入① , 得 9d2=(3d-d+1)(3d+d),9d2 =(2d+1) ·4d,解之 , 得 d=4 或 d=0( 舍 d=0),因此 b=12.四、变式训练 , 深入提升变式训练 1: 分析 : 由于 a7·a12=a8·a11=a9·a10, 又 a7·a12=5, 因此 a8·a9·a10·a11=5×5=25.答案 :25变式训练 2: 分析 : 由 a ·a·a=8得 =8, 于是 a =2 因此 a ·a=4, ①123213由 a1+a2+a3=7 得 a1+a3=5,②由①②解得当时 ,q==2,a n =2n-1 ,当时 ,q=,a n=4×=23-n .答案 :2 n-1或 23-n变式训练3: 分析 : 由于 a2a4=a3a3=,a 4a6=a5a5=,因此 a2a4+2a3a5+a4a6=+2a3a5+=(a 3+a5) 2=25.又 a n>0, 因此 a3 +a5=5.答案 :5变式训练4: 解 : 设这三个数为,a,aq,由题意解得于是所求的三个数为2,4,8或8,4,2.五、反省小结 , 看法提炼略。
高中数学(§2.4 等比数列)学案 新人教A版必修5 学案
§2.4等比数列(1)学习目标1理解等比数列的概念;探索并掌握等比数列的通项公式、性质;2. 能在具体的问题情境中,发现数列的等比关系,提高数学建模能力;3. 体会等比数列与指数函数的关系.教学重点等比数列的定义及通项公式教学难点灵活应用定义式及通项公式解决相关问题学习过程一、课前准备(预习教材P48 ~ P51,找出疑惑之处)复习1:等差数列的定义?复习2:等差数列的通项公式na=,等差数列的性质有:二、新课导学※学习探究观察:①1,2,4,8,16,…②1,12,14,18,116,…③1,20,220,320,420,…思考以上四个数列有什么共同特征?新知:1. 等比数列定义:一般地,如果一个数列从第项起,一项与它的一项的等于常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的,通常用字母表示(q≠0),即:1nnaa-=(q≠0)2. 等比数列的通项公式:21a a=;3211()a a q a q q a===;24311()a a q a q q a===;……∴11n na a q a-==⋅等式成立的条件3. 等比数列中任意两项na与ma的关系是:※典型例题例1 (1)一个等比数列的第9项是49,公比是-13,求它的第1项;(2)一个等比数列的第2项是10,第3项是20,求它的第1项与第4项.小结:关于等比数列的问题首先应想到它的通项公式11nna a q-=.例2 已知数列{na}中,lg35na n=+,试用定义证明数列{na}是等比数列.小结:要证明一个数列是等比数列,只需证明对于任意正整数n ,1n na a +是一个不为0的常数就行了. ※ 动手试试练1. 某种放射性物质不断变化为其他物质,每经过一年剩留的这种物质是原来的84%. 这种物质的半衰期为多长(精确到1年)?练2. 一个各项均正的等比数列,其每一项都等于它后面的相邻两项之和,则公比q =( ).三、总结提升※ 学习小结 1. 等比数列定义;2. 等比数列的通项公式和任意两项n a 与m a 的关系.※ 知识拓展在等比数列{}n a 中,⑴ 当10a >,q >1时,数列{}n a 是递增数列; ⑵ 当10a <,01q <<,数列{}n a 是递增数列; ⑶ 当10a >,01q <<时,数列{}n a 是递减数列; ⑷ 当10a <,q >1时,数列{}n a 是递减数列; ⑸ 当0q <时,数列{}n a 是摆动数列; ⑹ 当1q =时,数列{}n a 是常数列.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在{}n a 为等比数列,112a =,224a =,则3a =( ). A. 36 B. 48 C. 60 D. 722. 等比数列的首项为98,末项为13,公比为23,这个数列的项数n =( ).A. 3B. 4C. 5D. 63. 已知数列a ,a (1-a ),2(1)a a -,…是等比数列,则实数a 的取值范围是( ). A. a ≠1 B. a ≠0且a ≠1 C. a ≠0 D. a ≠0或a ≠14. 设1a ,2a ,3a ,4a 成等比数列,公比为2,则123422a a a a ++= .5. 在等比数列{}n a 中,4652a a a =-,则公比q = .在等比数列{}n a 中, ⑴ 427a =,q =-3,求7a ;⑵ 218a =,48a =,求1a 和q ;⑶ 44a =,76a =,求9a ;⑷ 514215,6a a a a -=-=,求3a .§2.4等比数列(2) 学习目标1.灵活应用等比数列的定义及通项公式;深刻理解等比中项概念;2. 熟悉等比数列的有关性质,并系统了解判断数列是否成等比数列的方法. 教学重点等比中项的理解与应用 教学难点灵活应用等比数列定义、通项公式、性质解决一些相关问题 学习过程 一、课前准备(预习教材P 51 ~ P 54,找出疑惑之处)复习1:等比数列的通项公式n a = = . 公比q 满足的条件是复习2:等差数列有何性质?二、新课导学 ※ 学习探究问题1:如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则2G bG ab G a G=⇒=⇒=新知1:等比中项定义如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么称这个数G 称为a 与b 的等比中项. 即G = (a ,b 同号).试试:数4和6的等比中项是 .问题2:1.在等比数列{n a }中,2537a a a =是否成立呢?2.211(1)nn n a a a n -+=>是否成立?你据此能得到什么结论?3.2(0)nn k n k a a a n k -+=>>是否成立?你又能得到什么结论?新知2:等比数列的性质在等比数列中,若m +n =p +q ,则m n p k a a a a =.试试:在等比数列{}n a ,已知19105,100a a a ==,那么18a = .※ 典型例题例1已知{},{}n n a b 是项数相同的等比数列,仿照下表中的例子填写表格,从中你能得出什么结论?证明你的结论. n n 否等比变式:项数相同等比数列{n a }与{n b },数列{nna b }也一定是等比数列吗?证明你的结论.小结:两个等比数列的积和商仍然是等比数列.例2在等比数列{n a }中,已知47512a a =-,且38124a a +=,公比为整数,求10a .变式:在等比数列{n a }中,已知7125a a =,则891011a a a a = .※ 动手试试练1. 一个直角三角形三边成等比数列,则( ).A. 三边之比为3:4:5B. 三边之比为1 3C.D.练2. 在7和56之间插入a 、b ,使7、a 、b 、56成等比数列,若插入c 、d ,使7、c 、d 、56成等差数列,求a +b +c +d 的值.三、总结提升 ※ 学习小结 1. 等比中项定义; 2. 等比数列的性质.※ 知识拓展公比为q 的等比数列{}n a 具有如下基本性质:1. 数列{||}n a ,2{}n a ,{}(0)n ca c ≠,*{}()nm a m N ∈,{}k n a 等,也为等比数列,公比分别为2||,,,,m k q q q q q . 若数列{}n b 为等比数列,则{}n n a b ,{}n nab 也等比.2. 若*m N ∈,则n m n m a a q -=. 当m =1时,便得到等比数列的通项公式.3. 若m n k l +=+,*,,,m n k l N ∈,则m n k l a a a a =.4. 若{}n a 各项为正,c >0,则{log }c n a 是一个以1log c a 为首项,log c q 为公差的等差数列. 若{}n b 是以d 为公差的等差数列,则{}n b c 是以1b c 为首项,d c 为公比的等比数列. 当一个数列既是等差数列又是等比数列时,这个数列是非零的常数列.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分:1. 在{}n a 为等比数列中,0n a >,224355216a a a a a ++=,那么35a a +=( ). A. ±4 B. 4 C. 2 D. 82. 若-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)=( ).A .8B .-8C .±8D .983. 若正数a ,b ,c 依次成公比大于1的等比数列,则当x >1时,log a x ,log b x ,log c x ( ) A.依次成等差数列 B.各项的倒数依次成等差数列 C.依次成等比数列 D.各项的倒数依次成等比数列4. 在两数1,16之间插入三个数,使它们成为等比数列,则中间数等于 .5. 在各项都为正数的等比数列{}n a 中,569a a =, 则log 31a + log 32a +…+ log 310a = .1. 在{}n a 为等比数列中,1964a a =,3720a a +=,求11a 的值.2. 已知等差数列{}n a 的公差d ≠0,且1a ,3a ,9a 成等比数列,求1392410a a a a a a ++++。
新人教A版必修5高中数学学案教案: (2.4.2 等比数列的基本性质及其应用)
2.4.2 等比数列的基本性质及其应用从容说课这节课师生将进一步探究等比数列的知识,以教材练习中提供的问题作为基本材料,认识等比数列的一些基本性质及内在的联系,理解并掌握一些常见结论,进一步能用来解决一些实际问题.通过一些问题的探究与解决,渗透重要的数学思想方法.如类比思想、归纳思想、数形结合思想、算法思想、方程思想以及一般到特殊的思想方法等.教学中以师生合作探究为主要形式,充分调动学生的学习积极性.教学重点 1.探究等比数列更多的性质;2.解决生活实际中的等比数列的问题.教学难点 渗透重要的数学思想.教具准备 多媒体课件、投影胶片、投影仪等三维目标 一、知识与技能1.了解等比数列更多的性质;2.能将学过的知识和思想方法运用于对等比数列性质的进一步思考和有关等比数列的实际问题的解决中;3.能在生活实际的问题情境中,抽象出等比数列关系,并能用有关的知识解决相应的实际问题. 二、过程与方法1.继续采用观察、思考、类比、归纳、探究、得出结论的方法进行教学;2.对生活实际中的问题采用合作交流的方法,发挥学生的主体作用,引导学生探究问题的解决方法,经历解决问题的全过程;3.当好学生学习的合作者的角色. 三、情感态度与价值观1.通过对等比数列更多性质的探究,培养学生的良好的思维品质和思维习惯,激发学生对知识的探究精神和严肃认真的科学态度,培养学生的类比、归纳的能力;2.通过生活实际中有关问题的分析和解决,培养学生认识社会、了解社会的意识,更多地知道数学的社会价值和应用价值.教学过程 导入新课师 教材中第59页练习第3题、第4题,请学生课外进行活动探究,现在请同学们把你们的探究结果展示一下.生 由学习小组汇报探究结果.师 对各组的汇报给予评价.师 出示多媒体幻灯片一:第3题、第4题详细解答:第3题解答:(1)将数列{a n }的前k 项去掉,剩余的数列为a k+1,a k+2,….令b i =a k+i ,i=1,2,…, 则数列a k+1,a k+2,…,可视为b 1,b 2,…. 因为q a a b b ik i k i i ==++++11 (i≥1),所以,{b n }是等比数列,即a k+1,a k+2,…是等比数列. (2){a n }中每隔10项取出一项组成的数列是a 1,a 11,a 21,…,则109101101121111......q a a a a a a k k =====-+ (k≥1). 所以数列a 1,a 11,a 21,…是以a 1为首项,q 10为公比的等比数列.猜想:在数列{a n }中每隔m(m 是一个正整数)取出一项,组成一个新数列,这个数列是以a 1为首项、q m 为公比的等比数列.◇本题可以让学生认识到,等比数列中下标为等差数列的子数列也构成等比数列,可以让学生再探究几种由原等比数列构成的新等比数列的方法.第4题解答:(1)设{a n }的公比是q ,则a 52=(a 1q 4)2=a 12q 8,而a 3·a 7=a 1q 2·a 1q 6=a 12q 8,所以a 52=a 3·a 7.同理,a 52=a 1·a 9.(2)用上面的方法不难证明a n 2=a n -1·a n +1(n >1).由此得出,a n 是a n -1和a n +1的等比中项,同理可证a n 2=a n -k ·a n +k (n >k >0).a n 是a n -k 和a n +k 的等比中项(n >k >0).师 和等差数列一样,等比数列中蕴涵着许多的性质,如果我们想知道的更多,就要对它作进一步的探究.推进新课[合作探究]师 出示投影胶片1例题1 (教材P 61B 组第3题)就任一等差数列{a n },计算a 7+a 10,a 8+a 9和a 10+a 40,a 20+a 30,你发现了什么一般规律,能把你发现的规律用一般化的推广吗?从等差数列和函数之间的联系的角度来分析这个问题.在等比数列中会有怎样的类似结论?师 注意题目中“就任一等差数列{a n }”,你打算用一个什么样的等差数列来计算? 生 用等差数列1,2,3,…师 很好,这个数列最便于计算,那么发现了什么样的一般规律呢?生 在等差数列{a n }中,若k+s=p+q(k,s,p,q∈N *),则a k +a s =a p +a q .师 题目要我们“从等差数列与函数之间的联系的角度来分析这个问题”,如何做? 生 思考、讨论、交流.师 出示多媒体课件一:等差数列与函数之间的联系.[教师精讲]师 从等差数列与函数之间的联系的角度来分析这个问题:由等差数列{a n }的图象,可以看出qs a a p k a a q s p k ==,, 根据等式的性质,有1=++=++q p s k a a a a q p s k .所以a k +a s =a p +a q .师 在等比数列中会有怎样的类似结论?生 猜想对于等比数列{a n },类似的性质为:k+s=p+t(k,s,p,t∈N *),则a k ·a s =a p ·a t .师 让学生给出上述猜想的证明.证明:设等比数列{a n }公比为q ,则有a k ·a s =a 1q k-1·a 1q s-1=a 12·q k+s-2,a p ·a t =a 1q p-1·a 1q t-1=a 12·q p+t-2.因为k+s=p+t,所以有a k ·a s =a p ·a t .师 指出:经过上述猜想和证明的过程,已经得到了等比数列的一个新的性质.即等比数列{a n }中,若k+s=p+t(k,s,p,t∈N *),则有a k ·a s =a p ·a t .师 下面有两个结论:(1)与首末两项等距离的两项之积等于首末两项的积;(2)与某一项距离相等的两项之积等于这一项的平方. 你能将这两个结论与上述性质联系起来吗?生 思考、列式、合作交流,得到:结论(1)就是上述性质中1+n =(1+t)+(n -t)时的情形;结论(2)就是上述性质中k+k=(k+t)+(k-t)时的情形.师 引导学生思考,得出上述联系,并给予肯定的评价.师 上述性质有着广泛的应用.师 出示投影胶片2:例题2例题2(1)在等比数列{a n }中,已知a 1=5,a 9a 10=100,求a 18;(2)在等比数列{b n }中,b 4=3,求该数列前七项之积;(3)在等比数列{a n }中,a 2=-2,a 5=54,求a 8.例题2 三个小题由师生合作交流完成,充分让学生思考,展示将问题与所学的性质联系到一起的思维过程. 解答:(1)在等比数列{a n }中,已知a 1=5,a 9a 10=100,求a 18.解:∵a 1a 18=a 9a 10,∴a 18=51001109=a a a =20. (2)在等比数列{b n }中,b 4=3,求该数列前七项之积.解:b 1b 2b 3b 4b 5b 6b 7=(b 1b 7)(b 2b 6)(b 3b 5)b 4.∵b 42=b 1b 7=b 2b 6=b 3b 5,∴前七项之积(32)3×3=37=2 187.(3)在等比数列{a n }中,a 2=-2,a 5=54,求a 8.解:.∵a 5是a 2与a 8的等比中项,∴542=a 8×(-2).∴a 8=-1 458.另解:a 8=a 5q 3=a 5·2545425-⨯=a a =-1 458. [合作探究]师 判断一个数列是否成等比数列的方法:1、定义法;2、中项法;3、通项公式法.例题3:已知{a n }{b n }是两个项数相同的等比数列,仿照下表中的例子填写表格.从中你能得出什么结论?证明你的结论.a nb n a n ·b n 判断{a n ·b n }是否是等比数列 例 n )32(3⨯ -5×2n -1 1)34(10-⨯-n 是自选1自选2师 请同学们自己完成上面的表.师 根据这个表格,我们可以得到什么样的结论?如何证明? 生 得到:如果{a n }、{b n }是两个项数相同的等比数列,那么{a n ·b n }也是等比数列. 证明如下: 设数列{a n }的公比是p ,{b n }公比是q ,那么数列{a n ·b n }的第n 项与第n +1项分别为a 1pn -1b 1q n -1与a 1p n b 1q n ,因为pq qb p a q b p a b a b a n n nn n n n n ==•--++11111111, 它是一个与n 无关的常数,所以{a n ·b n }是一个以pq 为公比的等比数列. [教师精讲]除了上面的证法外,我们还可以考虑如下证明思路:证法二:设数列{a n }的公比是p ,{b n }公比是q ,那么数列{a n ·b n }的第n 项、第n -1项与第n +1项(n >1,n ∈N *)分别为a 1p n -1b 1q n -1、a 1p n -2b 1q n -2与a 1p n b 1q n ,因为(a n b n )2=(a 1p n -1b 1q n -1)2=(a 1b 1)2(pq) 2(n -1),(a n -1·b n -1)(a n +1·b n +1)=(a 1p n -2b 1q n -2)(a 1p n b 1q n )=(a 1b 1)2(pq)2(n -1),即有(a n b n )2=(a n -1·b n -1)(a n +1·b n +1)(n >1,n ∈N *),所以{a n ·b n }是一个等比数列.师 根据对等比数列的认识,我们还可以直接对数列的通项公式考察: 证法三:设数列{a n }的公比是p ,{b n }公比是q ,那么数列{a n ·b n }的通项公式为 a n b n =a 1p n -1b 1q n -1=(a 1b 1)(pq) n -1,设c n =a n b n ,则c n =(a 1b 1)(pq) n -1,所以{a n ·b n }是一个等比数列.课堂小结本节学习了如下内容:1.等比数列的性质的探究.2.证明等比数列的常用方法.布置作业课本第60页习题2.4 A 组第3题、B 组第1题.板书设计等比数列的基本性质及其应用例1 例2 例3。
【高中教育】高中数学 2.4 等比数列第1课时学案 新人教A版必修5.doc
2.4 等比数列(第1课时)学习目标1.体会等比数列是用来刻画一类离散现象的重要数学模型,理解等比数列的概念.2.能根据定义判断一个数列是不是等比数列,明确一个数列是等比数列的限定条件;能够运用类比的思想方法得到等比数列的定义,会推导等比数列的通项公式.合作学习一、设计问题,创设情境1.复习等差数列的相关内容:定义:通项公式:an =a1+(n-1)d,(n∈N*).前n项和公式:Sn ==na1+d,(n∈N*).问题:等差数列只是数列的其中一种形式,现在来看这三个数列1,2,4,8,…;1,,…;-1,1,-1,1,…思考:这三个数列是等差数列吗?各个数列的各项之间有什么关系?二、信息交流,揭示规律与等差数列的概念相类比,可以给出这种数列的概念吗?是什么?1.定义:如果一个数列从第2项起, ,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0).2.数学表达式: .从等比数列的定义及其数学表达式中,可以看出什么?也就是这个公式在什么条件下成立?结论:等比数列各项均不为零,公比q≠0.3.通项公式:等比数列{an }的首项为a1,公比为q,a 2=a1q,a 3=a2q=a1q2,a 4=a3q=a2q2=a1q3,以此类推,可以得到an 用a1和q表示的数学表达式吗?归纳猜测得到: .三、运用规律,解决问题【例1】判断下列数列是否为等比数列:(1)1,1,1,1,1;(2)0,1,2,4,8;(3)1,-,-,….【例2】某种放射性物质不断变化为其他物质,每经过一年剩留的这种物质是原来的84%.这种物质的半衰期为多长(精确到1年)?【例3】(1)一个等比数列的第3项和第4项分别是12和18,求它的第1项和第2项;(2)一个等比数列的第9项是,公比是-,求它的第1项.四、变式训练,深化提高变式训练1:已知等比数列{an }中an+1>an,且a3+a7=3,a2·a8=2,则等于( )A. B. C. D.2变式训练2:已知等比数列{an }的公比为正数,且a3·a9=2,a2=1,则a1等于( )A. B. C. D.2变式训练3:在等比数列{an }中,a5=-16,a8=8,则a11等于( )A.-4B.±4C.-2D.±2五、反思小结,观点提炼参考答案一、设计问题,创设情境1.一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示.二、信息交流,揭示规律1.每一项与它的前一项的比等于同一常数2.=q(n∈N*)3.an =a1q n-1三、运用规律,解决问题【例1】解:(1)数列的首项为1,公比为1,所以是等比数列;(2)因为等比数列中的各项均不为零,所以不是等比数列;(3)数列的首项为1,公比为-,所以是等比数列.【例2】解:设这种物质最初的质量是1,经过n年,剩留量是an,那么:经过1年,剩留量为a1=1×0.84=0.84,经过2年,剩留量为a2=0.84a1=0.84×0.84=0.842,经过3年,剩留量为a3=0.84a2=0.84×0.842=0.843,……经过n年,剩留量为an =0.84an-1.因此an 构成一个等比数列{an},其中a1=0.84,q=0.84.设an=0.5,则0.84n=0.5两边取对数,得lg0.84n=lg0.5,于是nlg0.84=lg0.5,n=用计算器算得n≈4.答:这种物质的半衰期大约为4年.【例3】解:(1)设这个等比数列的第1项是a1,公比是q,那么两式相比得q=,代入其中一个方程,得a1=,因此,a2=a1q==8.(2)设这个等比数列的第1项是a1,公比是q,那么a9=a1q8,即=a1,解得a1=2916.四、变式训练,深化提高变式训练1:分析:在做这种题的时候,可以根据等比数列的定义,列出一个或多个等式来求解.由a2·a8=a3·a7,得解得因此=2.选D. 答案:D变式训练2:分析:设等比数列{an }的公比为q,由已知得a1q2·a1q8=2(a1q4)2,即q2=2,又因为等比数列{an }的公比为正数,所以q=,故a1=,选B.答案:B变式训练3:分析:设等比数列{an }的公比为q,由已知得a8=a5q3,即8=(-16)×q3,q3=-,所以a11=a8·q3=8×=-4.选A.答案:A五、反思小结,观点提炼略。
人教a版必修5学案:2.4等比数列(含答案)
2.4 等比数列自主学习知识梳理1.如果一个数列从第________项起,每一项与它的前一项的________都等于同一个常数,那么这个数列叫做等比数列.这个常数叫做等比数列的________,通常用字母q 表示(q ≠0).2.等比数列的通项公式:____________.3.等比中项的定义如果a 、G 、b 成等比数列,那么G 叫做a 与b 的________,且G =________.4.对于正整数m ,n ,p ,q ,若m +n =p +q ,则等比数列中a m ,a n ,a p ,a q 的关系是____________.5.证明一个数列是等比数列最基本的方法是定义,即________________(用数学式子表示).自主探究首项为a 1,公比为q 的等比数列在各条件下的单调性如下表:a 1 a 1>0 a 1<0q 范围 0<q <1 q =1 q >1 0<q <1 q =1q >1 {a n }的 单调性对点讲练知识点一 等比数列通项公式的应用例1 已知{a n }为等比数列,a 3=2,a 2+a 4=203,求{a n }的通项公式.总结 等比数列的通项公式a n =a 1q n -1中有四个量a 1,q ,n ,a n .已知其中三个量可求得第四个,简称“知三求一”.变式训练1 已知等比数列{a n },若a 1+a 2+a 3=7,a 1a 2a 3=8,求a n .知识点二 等比数列性质的应用例2 已知{a n }为等比数列.(1)若a n >0,a 2a 4+2a 3a 5+a 4a 6=25,求a 3+a 5;(2)若a n >0,a 5a 6=9,求log 3a 1+log 3a 2+…+log 3a 10的值.变式训练2 设{a n }是由正数组成的等比数列,公比q =2,且a 1·a 2·a 3·…·a 30=215,求a 2·a 5·a 8·…·a 29的值.知识点三 等比数列的判断与证明例3 已知数列{a n }的前n 项和为S n ,S n =13(a n -1) (n ∈N *). (1)求a 1,a 2;(2)求证:数列{a n }是等比数列.总结 利用等比数列的定义a n +1a n=q (q ≠0)是判定一个数列是否是等比数列的基本方法.变式训练3 设S n 为数列{a n }前n 项和,S n =kn 2+n ,n ∈N *,其中k 是常数.(1)求a 1及a n ;(2)若对于任意的m ∈N *,a m ,a 2m ,a 4m 成等比数列,求k 的值.1.等比数列的判断或证明(1)利用定义:a n +1a n =q (与n 无关的常数). (2)利用等比中项:a 2n +1=a n a n +2 (n ∈N *).2.如果证明数列不是等比数列,可以通过具有三个连续项不成等比数列来证明,即存在an 0,an 0+1,an 0+2,使a 2n 0+1≠an 0·an 0+2,也可以用反证法.3.等比数列{a n }的通项公式a n =a 1q n -1共涉及a n ,a 1,q ,n 四个量,已知其中三个量可求得第四个.课时作业一、选择题1.如果-1,a ,b ,c ,-9成等比数列,那么( )A .b =3,ac =9B .b =-3,ac =9C .b =3,ac =-9D .b =-3,ac =-92.在等比数列{a n }中,a n >0,且a 2=1-a 1,a 4=9-a 3,则a 4+a 5的值为( )A .16B .27C .36D .813.在由正数组成的等比数列{a n }中,若a 4a 5a 6=3,log 3a 1+log 3a 2+log 3a 8+log 3a 9的值为( )A.43B.34C .2D .4334.一个数分别加上20,50,100后得到的三数成等比数列,其公比为( )A.53B.43C.32D.125.已知数列{a n }是公差为2的等差数列,且a 1,a 2,a 5成等比数列,则a 2为( ) A .-2 B .-3 C .2 D .3题 号1 2 3 4 5 答 案二、填空题6.在等比数列{a n }中,a 1=1,a 5=16,则a 3=________.7.首项为3的等比数列的第n 项是48,第2n -3项是192,则n =________.8.一个直角三角形的三边成等比数列,则较小锐角的正弦值是________.三、解答题9.等比数列的前三项和为168,a 2-a 5=42,求a 5,a 7的等比中项.10.已知{a n }为等比数列,a 3=2,a 2+a 4=203,求{a n }的通项公式.§2.4 等比数列知识梳理1.2 比 公比2.a n =a 1q n -13.等比中项 ±ab4.a m ·a n =a p ·a q5.a n +1a n=q, (n ∈N *) 自主探究递减 常数列 递增 递增 常数列 递减对点讲练例1 解 设等比数列{a n }的公比为q ,则q ≠0.a 2=a 3q =2q,a 4=a 3q =2q , ∴2q +2q =203.解得q 1=13,q 2=3. 当q =13时,a 1=18,∴a n =18×⎝⎛⎭⎫13n -1=2×33-n . 当q =3时,a 1=29,∴a n =29×3n -1=2×3n -3. 综上,当q =13时,a n =2×33-n ; 当q =3时,a n =2×3n -3.变式训练1 解 由等比数列的定义知a 2=a 1q ,a 3=a 1q 2代入已知得,⎩⎪⎨⎪⎧ a 1+a 1q +a 1q 2=7,a 1·a 1q ·a 1q 2=8,⇒⎩⎪⎨⎪⎧a 1(1+q +q 2)=7,a 31q 3=8, ⇒⎩⎪⎨⎪⎧a 1(1+q +q 2)=7, ①a 1q =2, ② 将a 1=2q代入①得2q 2-5q +2=0,解得q =2或q =12. 由②得⎩⎪⎨⎪⎧ a 1=1,q =2;或⎩⎪⎨⎪⎧ a 1=4,q =12.当a 1=1,q =2时,a n =2n -1;当a 1=4,q =12时,a n =23-n . 例2 解 (1)a 2a 4+2a 3a 5+a 4a 6=a 23+2a 3a 5+a 25=(a 3+a 5)2=25,∵a n >0,∴a 3+a 5>0,∴a 3+a 5=5.(2)根据等比数列的性质a 5a 6=a 1a 10=a 2a 9=a 3a 8=a 4a 7=9.∴a 1a 2…a 9a 10=(a 5a 6)5=95.∴log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2…a 9a 10)=log 395=5log 39=10.变式训练2 解 ∵a 1·a 2·a 3·…·a 30=(a 1a 30)·(a 2a 29)·…·(a 15·a 16)=(a 1a 30)15=215, ∴a 1a 30=2.∴a 2·a 5·a 8·…·a 29=(a 2a 29)·(a 5a 26)·(a 8a 23)·(a 11a 20)·(a 14a 17)=(a 2a 29)5=(a 1a 30)5=25=32.例3 (1)解 由S 1=13(a 1-1), 得a 1=13(a 1-1), ∴a 1=-12.又S 2=13(a 2-1), 即a 1+a 2=13(a 2-1),得a 2=14. (2)证明 当n ≥2时,a n =S n -S n -1=13(a n -1)-13(a n -1-1), 得a n a n -1=-12,又a 2a 1=-12, 所以{a n }是首项为-12,公比为-12的等比数列. 变式训练3 解 (1)由S n =kn 2+n ,得a 1=S 1=k +1,a n =S n -S n -1=2kn -k +1(n ≥2).a 1=k +1也满足上式,所以a n =2kn -k +1,n ∈N *.(2)由a m ,a 2m ,a 4m 成等比数列,得(4mk -k +1)2=(2km -k +1)(8km -k +1), 将上式化简,得2km (k -1)=0,因为m ∈N *,所以m ≠0,故k =0或k =1.课时作业1.B [∵b 2=(-1)×(-9)=9且b 与首项-1同号,∴b =-3,且a ,c 必同号.]2.B [由已知a 1+a 2=1,a 3+a 4=9,∴q 2=9.∴q =3(q =-3舍),∴a 4+a 5=(a 3+a 4)q =27.]3.A [∵a 4a 6=a 25,∴a 4a 5a 6=a 35=3,得a 5=313. ∵a 1a 9=a 2a 8=a 25,∴log 3a 1+log 3a 2+log 3a 8+log 3a 9=log 3(a 1a 2a 8a 9)=log 3a 45=log 3343=43.] 4.A [设这个数为x ,则(50+x )2=(20+x )·(100+x ),解得x =25,∴这三个数为45,75,125,公比q 为7545=53.] 5.D [因为a 1,a 2,a 5成等比数列, 所以a 22=a 1·a 5, 即a 22=(a 2-2)·(a 2+6).解得a 2=3.]6.4解析 q 4=a 5a 1=16,∴q 2=4,a 3=a 1q 2=4. 7.5解析 设公比为q ,则⎩⎪⎨⎪⎧ 3q n -1=483q 2n -4=192⇒⎩⎪⎨⎪⎧ q n -1=16q 2n -4=64⇒q 2=4, 得q =±2.由(±2)n -1=16,得n =5. 8.5-12解析 设三边为a ,aq ,aq 2 (q >1), 则(aq 2)2=(aq )2+a 2,∴q 2=5+12. 较小锐角记为θ,则sin θ=1q 2=5-12. 9.解 由题意可列关系式:⎩⎪⎨⎪⎧a 1+a 1q +a 1q 2=168 ①a 1q (1-q )(1+q +q 2)=42 ② ②÷①得:q (1-q )=42168=14,∴q =12, ∴a 1=1681+12+⎝⎛⎭⎫122=168×47=96. 又∵a 6=a 1q 5=96×125=3, ∴a 5,a 7的等比中项为3.10.解 设等比数列{a n }的公比为q ,则q ≠0.a 2=a 3q =2q ,a 4=a 3q =2q , ∴2q +2q =203. 解得q 1=13,q 2=3. 当q =13时,a 1=18, ∴a n =18×⎝⎛⎭⎫13n -1=2×33-n . 当q =3时,a 1=29, ∴a n =29×3n -1=2×3n -3. 综上,当q =13时,a n =2×33-n ;当q=3时,a n=2×3n-3.。
等比数列的性质(新人教A必修五)
等比数列的性质
一、教学目标
知识与技能:理解等比数列的定义,熟练掌握等比数列的通项公式;探索并掌握等比数列的一些简单性质。
过程与方法:通过实例,理解等比数列的概念;探索并掌握等比数列的一些简单性质,提高数学建模能力。
情感态度与价值观:充分感受数列是反映现实生活的模型,体会数学是来源
于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣;
{}()+
⋅=⋅∈比,,,,n n m p q a m n p q a a a a n m p q N
在等数列中:若+=+,则
证明性质(2)
{}-+
=∈公比为q,则有
,(,)
n m
n n m
a a q
n m N a 在等比数列中,已知
例1、在等比数列{}n a 中,已知15a =,910100a a =,求18a 例2、在等比数列{}n a 中,352,8a a ==,求7a
例3、在等比数列{}n b 中,32b =,求该数列前五项之积 注意点:等比数列角标性质中要求等号两侧项数相同 (三)课堂练习。
人教A版高中数学必修五等比数列教案新(1)
等比数列(二)教学目的:在熟悉等比数列有关概念的基础上,要求学生进一步熟悉等比数列的有关性质,并系统了解判断一个数列是否成等比数列的方法。
教学过程:一、复习:1、等比数列的定义,通项公式,中项。
2、处理课本P128练习,重点是第三题。
二、等比数列的有关性质:1、与首末两项等距离的两项积等于首末两项的积。
与某一项距离相等的两项之积等于 这一项的平方。
2、若q p n m +=+,则q p n m a a a a =。
例一:1、在等比数列{}n a ,已知51=a ,100109=a a ,求18a 。
解:∵109181a a a a =,∴205100110918===a a a a 2、在等比数列{}n b 中,34=b ,求该数列前七项之积。
解:()()()45362717654321b b b b b b b b b b b b b b =∵53627124b b b b b b b ===,∴前七项之积()2187333732==⨯3、在等比数列{}n a 中,22-=a ,545=a ,求8a ,解:145825454255358-=-⨯=⋅==a a a q a a 另解:∵5a 是2a 与8a 的等比中项,∴25482-⨯=a∴14588-=a三、判断一个数列是否成GP 的方法:1、定义法,2、中项法,3、通项公式法 例二:已知无穷数列ΛΛΛΛ,10,10,10,1051525150-n ,求证:(1)这个数列成GP (2)这个数列中的任一项是它后面第五项的101, (3)这个数列的任意两项的积仍在这个数列中。
证:(1)5152511101010==---n n n n a a (常数)∴该数列成GP 。
(2)101101010154515===-+-+n n n n a a ,即:5101+=n n a a 。
(3)525151101010-+--==q p q p q p a a ,∵N q p ∈,,∴2≥+q p 。
高中数学 第二章 数列 2.4 等比数列 第二课时 等比数列的性质学案(含解析)新人教A版必修5-新
第二课时 等比数列的性质等比数列性质的应用[例1] (1)在等比数列{a n }中,若a 7+a 8+a 9+a 10=8,a 8a 9=-8,则1a 7+1a 8+1a 9+1a 10=________.(2)已知数列{a n }是等比数列,a 3+a 7=20,a 1a 9=64,求a 11的值.[解] (1)因为1a 7+1a 10=a 7+a 10a 7a 10,1a 8+1a 9=a 8+a 9a 8a 9,由等比数列的性质知a 7a 10=a 8a 9,所以1a 7+1a 8+1a 9+1a 10=a 7+a 8+a 9+a 10a 8a 9=158÷⎝ ⎛⎭⎪⎫-98=-53. (2)∵{a n }为等比数列, ∴a 1·a 9=a 3·a 7=64. 又∵a 3+a 7=20,∴a 3,a 7是方程t 2-20t +64=0的两个根. ∵t 1=4,t 2=16,∴a 3=4,a 7=16或a 3=16,a 7=4. ①当a 3=4,a 7=16时,a 7a 3=q 4=4,此时a 11=a 3q 8=4×42=64. ②当a 3=16,a 7=4时,a 7a 3=q 4=14,此时a 11=a 3q 8=16×⎝ ⎛⎭⎪⎫142=1. [答案] (1) -53[类题通法] 等比数列常用性质(1)若m +n =p +q (m ,n ,p ,q ∈N *), 则a m ·a n =a p ·a q .特例:若m +n =2p (m ,n ,p ∈N *),则a m ·a n =a 2p . (2)a n a m=qn -m(m ,n ∈N *).(3)在等比数列{a n }中,每隔k 项取出一项,取出的项,按原来顺序组成新数列,该数列仍然是等比数列.(4)数列{a n }为等比数列,则数列{λa n }(λ为不等于0的常数)和⎩⎨⎧⎭⎬⎫1a n 仍然成等比数列.[活学活用]1.在等比数列{a n }中,若a 2=2,a 6=12,则a 10=________. 解析:法一:设{a n }的公比为q ,则⎩⎪⎨⎪⎧a 1q =2,a 1q 5=12,解得q 4=6,∴a 10=a 1q 9=a 1q ·(q 4)2=2×36=72. 法二:∵{a n }是等比数列, ∴a 26=a 2·a 10,于是a 10=a 26a 2=1222=1442=72.答案:722.在等比数列{a n }中,若a 7=-2,则此数列的前13项之积等于________. 解析:由于{a n }是等比数列,∴a 1a 13=a 2a 12=a 3a 11=a 4a 10=a 5a 9=a 6a 8=a 27, ∴a 1a 2a 3…a 13=()a 276·a 7=a 137,而a 7=-2,∴a 1a 2a 3…a 13=(-2)13=-213. 答案:-213灵活设元求解等比数列[例2] 已知三个数成等比数列,它们的积为27,它们的平方和为91,求这三个数. [解] 法一:设三个数依次为a ,aq ,aq 2,由题意知⎩⎪⎨⎪⎧a ·aq ·aq 2=27,a 2+a 2q 2+a 2q 4=91,∴⎩⎪⎨⎪⎧aq 3=27,a 21+q 2+q 4=91,即⎩⎪⎨⎪⎧aq =3,a 21+q 2+q 4=91,解得q 21+q 2+q 4=991, 得9q 4-82q 2+9=0,即得q 2=9或q 2=19,∴q =±3或q =±13.若q =3,则a 1=1; 若q =-3,则a 1=-1; 若q =13,则a 1=9;若q =-13,则a 1=-9.故这三个数为1,3,9,或-1,3,-9,或9,3,1,或-9,3,-1. 法二:设这三个数分别为a q,a ,aq .⎩⎪⎨⎪⎧aq·a ·aq =27,a 2q 2+a 2+a 2q 2=91⇒⎩⎪⎨⎪⎧a =3,a 2⎝ ⎛⎭⎪⎫1q2+1+q 2=91,得9q 4-82q 2+9=0,即得q 2=19或q 2=9,∴q =±13或q =±3.故这三个数为1,3,9,或-1,3,-9,或9,3,1,或-9,3,-1. [类题通法]三个数或四个数成等比数列的设元技巧(1)若三个数成等比数列,可设三个数为a ,aq ,aq 2或a q,a ,aq .(2)若四个数成等比数列,可设为a ,aq ,aq 2,aq 3;若四个数均为正(负)数,可设为a q3,a q,aq ,aq 3. [活学活用]在2和20之间插入两个数,使前三个数成等比数列,后三个数成等差数列,则插入的两个数的和为( )A .-4或1712B .4或1712C .4D .1712解析:选B 设插入的第一个数为a ,则插入的另一个数为a 22.由a ,a 22,20成等差数列得2×a 22=a +20.∴a 2-a -20=0,解得a =-4或a =5. 当a =-4时,插入的两个数的和为a +a 22=4.当a =5时,插入的两个数的和为a +a 22=1712.等比数列的实际应用[例3] 年2月起,每月生产总值比上一个月增长m %,那么到2017年8月底该厂的生产总值为多少万元?[解] 设从2015年1月开始,第n 个月该厂的生产总值是a n 万元,则a n +1=a n +a n m %, ∴a n +1a n=1+m %. ∴数列{a n }是首项a 1=a ,公比q =1+m %的等比数列. ∴a n =a (1+m %)n -1.∴2016年8月底该厂的生产总值为a 20=a (1+m %)20-1=a (1+m %)19(万元).[类题通法]数列实际应用题常与现实生活和生产实际中的具体事件相联系,建立数学模型是解决这类问题的核心,常用的方法有:①构造等差、等比数列的模型,然后用数列的通项公式或求和公式解;②通过归纳得到结论,再用数列知识求解.[活学活用](安徽高考)如图,在等腰直角三角形ABC 中,斜边BC =2 2.过点 A 作BC 的垂线,垂足为A 1 ;过点 A 1作 AC 的垂线,垂足为 A 2;过点A 2 作A 1C 的垂线,垂足为A 3 ;…,依此类推.设BA =a 1 ,AA 1=a 2 , A 1A 2=a 3 ,…, A 5A 6=a 7 ,则 a 7=________.解析:法一:直接递推归纳:等腰直角三角形ABC 中,斜边BC =22, 所以AB =AC =a 1=2,AA 1=a 2=2,A 1A 2=a 3=1,…,A 5A 6=a 7=a 1×⎝⎛⎭⎪⎫226=14. 法二:求通项:等腰直角三角形ABC 中,斜边BC =22,所以AB =AC =a 1=2,AA 1=a 2=2,…,A n -1A n =a n +1=sin π4·a n =22a n =2×⎝ ⎛⎭⎪⎫22n,故a 7=2×⎝ ⎛⎭⎪⎫226=14. 答案:143.等差数列和等比数列的性质对比等差数列和等比数列从文字看,只是一字之差,但定义和性质相差甚远,下面对两类数列的性质作一比对,若等差数列{a n }的公差为d ,等比数列{b n }的公比为q .【性质1】 等差数列{a n },当d =0时,数列为常数列,当d >0时,数列为递增数列;当d <0时,数列为递减数列.等比数列{b n },当q >1,b 1>0或0<q <1,b 1<0时,数列{b n }是递增数列;当q >1,b 1<0或0<q <1,b 1>0时,数列{b n }是递减数列;当q =1时,数列{b n }是常数列.[例1] 设{a n }是首项大于零的等比数列,且a 1<a 2<a 3,则数列{a n }是________数列.(填“递增”“递减”或“摆动”)[解析] 设数列{a n }的公比为q (q ≠0),因为a 1<a 2<a 3,所以a 1<a 1q <a 1q 2,解得q >1,且a 1>0,所以数列{a n }是递增数列.[答案] 递增【性质2】 等差数列{a n }满足a n =a m +(n -m )·d (m ,n ∈N *),等比数列{b n }满足b n =b m ·q n -m (m ,n ∈N *).(当m =1时,上述式子为通项公式)[例2] 已知{a n }为等差数列,且a 3=-6,a 6=0,则{a n }的通项公式为________. [解析] ∵a 6=a 3+3d ,则0=-6+3d ,得d =2, ∴a n =a 3+(n -3)d =-6+(n -3)×2=2n -12. [答案] a n =2n -12【性质3】 若m +n =p +q (m ,n ,p ,q ∈N *),等差数列{a n }满足a m +a n =a p +a q ,特别地,若数列{a n }是有穷等差数列,则与首末两项等距离的两项之和都相等,且等于首末两项之和,即a 1+a n =a 2+a n -1=…=a i +1+a n -i =…(n ∈N *).等比数列{b n }满足b m b n =b p b q ,特别地,数列{b n }是有穷数列,则与首末两项等距离的两项的积相等,且等于首末两项之积,即b 1·b n =b 2·b n -1=b 3·b n -2=…=b m ·b n -m +1.[例3] (1)等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19的值是( ) A .55 B .95 C .100D .105(2)在等比数列{a n }中,若a 2·a 8=36,a 3+a 7=15,则公比q 值的个数可能为( ) A .1 B .2 C .3D .4[解析] (1)S 19=19a 1+a 192=19a 3+a 172=19×102=95.(2)∵a 2·a 8=a 3·a 7,∴由⎩⎪⎨⎪⎧a 3·a 7=36,a 3+a 7=15,解得a 3=3,a 7=12,或a 3=12,a 7=3. 若a 3=3,a 7=12,则有12=3×q 4, ∴q 4=4,∴q 2=2,q =± 2.若a 3=12,a 7=3,则有3=12×q 4, ∴q 4=14,q 2=12,q =±22.∴q 的值可能有4个. 答案:(1)B (2)D【性质4】 在等差(比)数列中,每隔k 项取出一项,按原来的顺序排列,所得新数列仍为等差(比)数列,公差为(k +1)d (公比为q k +1),若两个数列分别成等差(比)数列,则两数列对应项和(积)构成等差(比)数列.[例4] 在1和16之间插入三个正数a ,b ,c 使1,a ,b ,c,16成等比数列,求a +b +c 的值.[解] ∵1,a ,b ,c,16成等比数列, ∴1,b,16为等比数列.∴b =4.∴1,a ,b 也成等比数列,b ,c,16也成等比数列. ∴a =2,c =8.∴a +b +c =2+4+8=14.[随堂即时演练]1.将公比为q 的等比数列{a n }依次取相邻两项的乘积组成新的数列a 1a 2,a 2a 3,a 3a 4,….此数列( )A .是公比为q 的等比数列B .是公比为q 2的等比数列 C .是公比为q 3的等比数列 D .不一定是等比数列解析:选B 由于a n a n +1a n -1a n =a n a n -1·a n +1a n=q ·q =q 2,n ≥2且n ∈N *, ∴{a n a n +1}是以q 2为公比的等比数列,故选B.2.若1,a 1,a 2,4成等差数列;1,b 1,b 2,b 3,4成等比数列,则a 1-a 2b 2的值为( ) A .-12B.12 C .±12D.14解析:选A ∵1,a 1,a 2,4成等差数列,∴3(a 2-a 1)=4-1, ∴a 2-a 1=1.又∵1,b 1,b 2,b 3,4成等比数列,设其公比为q , 则b 22=1×4=4,且b 2=1×q 2>0, ∴b 2=2,∴a 1-a 2b 2=-a 2-a 1b 2=-12. 3.在等比数列{a n }中,a 888=3,a 891=81,则公比q =________. 解析:∵a 891=a 888q 891-888=a 888q 3,∴q 3=a 891a 888=813=27. ∴q =3. 答案:34.在等比数列{a n }中,各项都是正数,a 6a 10+a 3a 5=41,a 4a 8=4,则a 4+a 8=________. 解析:∵a 6a 10=a 28,a 3a 5=a 24, ∴a 24+a 28=41, 又a 4a 8=4,∴(a 4+a 8)2=a 24+a 28+2a 4a 8=41+8=49. ∵数列各项都是正数, ∴a 4+a 8=7. 答案:75.已知数列{a n }为等比数列.(1)若a 1+a 2+a 3=21,a 1a 2a 3=216,求a n ; (2)若a 3a 5=18,a 4a 8=72,求公比q . 解:(1)∵a 1a 2a 3=a 32=216,∴a 2=6, ∴a 1a 3=36.又∵a 1+a 3=21-a 2=15,∴a 1,a 3是方程x 2-15x +36=0的两根3和12. 当a 1=3时,q =a 2a 1=2,a n =3·2n -1;当a 1=12时,q =12,a n =12·⎝ ⎛⎭⎪⎫12n -1.(2)∵a 4a 8=a 3q ·a 5q 3=a 3a 5q 4=18q 4=72,∴q 4=4,∴q =± 2.[课时达标检测]一、选择题1.(重庆高考)对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列 D .a 3,a 6,a 9成等比数列解析:选D 由等比数列的性质得,a 3·a 9=a 26≠0, 因此a 3,a 6,a 9一定成等比数列,选D.2.已知等比数列{a n }中,a 4=7,a 6=21,则a 8的值为( ) A .35 B .63 C .21 3D .±21 3解析:选B ∵{a n }是等比数列, ∴a 4,a 6,a 8成等比数列, ∴a 26=a 4·a 8,即a 8=2127=63.3.在等比数列{a n }中,a 1=1,a 10=3,则a 2a 3a 4a 5a 6a 7a 8a 9等于( ) A .81 B .27327 C .3D .243解析:选A 因为数列{a n }是等比数列,且a 1=1,a 10=3,所以a 2a 3a 4a 5a 6a 7a 8a 9=(a 2a 9)·(a 3a 8)·(a 4a 7)·(a 5a 6)=(a 1a 10)4=34=81.故选A. 4.设数列{a n }为等比数列,则下面四个数列: ①{a 3n };②{pa n }(p 为非零常数);③{a n ·a n +1}; ④{a n +a n +1}.其中是等比数列的有( ) A .1个 B .2个 C .3个D .4个解析:选D ①∵a 3n +1a 3n =⎝ ⎛⎭⎪⎫a n +1a n 3=q 3,∴{a 3n}是等比数列;②∵pa n +1pa n =a n +1a n=q ,∴{pa n }是等比数列;③∵a n ·a n +1a n -1·a n =a n +1a n -1=q 2,∴{a n ·a n +1}是等比数列;④∵a n +a n +1a n -1+a n =q a n -1+a na n -1+a n=q ,∴{a n +a n +1}是等比数列.5.已知等比数列{a n }中,a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于( ) A .2 B .4 C .8D .16解析:选C 等比数列{a n }中,a 3a 11=a 27=4a 7,解得a 7=4,等差数列{b n }中,b 5+b 9=2b 7=2a 7=8.二、填空题6.公差不为零的等差数列{a n }中,2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8=________.解析:∵2a 3-a 27+2a 11=2(a 3+a 11)-a 27=4a 7-a 27=0, ∵b 7=a 7≠0, ∴b 7=a 7=4. ∴b 6b 8=b 27=16. 答案:167.画一个边长为2厘米的正方形,再以这个正方形的对角线为边画第2个正方形,以第2个正方形的对角线为边画第3个正方形,这样一共画了10个正方形,则第10个正方形的面积等于________平方厘米.解析:这10个正方形的边长构成以2为首项,2为公比的等比数列{a n }(1≤n ≤10,n ∈N *),则第10个正方形的面积S =a 210=22·29=211=2 048(平方厘米). 答案:2 0488.在等比数列{a n }中,a 7·a 11=6,a 4+a 14=5,则a 20a 10=________. 解析:∵{a n }是等比数列, ∴a 7·a 11=a 4·a 14=6, 又a 4+a 14=5, ∴⎩⎪⎨⎪⎧a 4=2,a 14=3或⎩⎪⎨⎪⎧a 4=3,a 14=2.∵a 14a 4=q 10,∴q 10=23或q 10=32. 而a 20a 10=q 10,∴a 20a 10=23或a 20a 10=32. 答案:23或32三、解答题9.在83和272之间插入三个数,使这五个数成等比数列,求插入的这三个数的乘积. 解:法一:设这个等比数列为{a n },公比为q ,则a 1=83,a 5=272=a 1q 4=83q 4, ∴q 4=8116,q 2=94. ∴a 2·a 3·a 4=a 1q ·a 1q 2·a 1q 3=a 31·q 6=⎝ ⎛⎭⎪⎫833×⎝ ⎛⎭⎪⎫943=63=216. 法二:设这个等比数列为{a n },公比为q ,则a 1=83, a 5=272,由题意知a 1,a 3,a 5也成等比数列且a 3>0,∴a 23=83×272=36,∴a 3=6, ∴a 2·a 3·a 4=a 23·a 3=a 33=216.10.始于2007年初的美国次贷危机,至2008年中期,已经演变为全球金融危机.受此影响,国际原油价格从2008年7月每桶最高的147美元开始大幅下跌,9月跌至每桶97美元.你能求出国际原油价格7月到9月之间平均每月下降的百分比吗?若按此计算,到什么时间跌至谷底(即每桶34美元)?解:设每月平均下降的百分比为x ,则每月的价格构成了等比数列{a n },记a 1=147(7月份价格),则8月份价格a 2=a 1(1-x )=147(1-x ),9月份价格a 3=a 2(1-x )=147(1-x )2.∴147(1-x )2=97,解得x ≈18.8%.设a n =34,则34=147·(1-18.8%)n -1,解得n =8.即从2008年7月算起第8个月,也就是2009年2月国际原油价格将跌至34美元每桶.11.从盛满a (a >1)升纯酒精的容器里倒出1升,然后添满水摇匀,再倒出1升混合溶液后又用水添满摇匀,如此继续下去,问:第n 次操作后溶液的浓度是多少?当a =2时,至少应倒几次后才能使酒精的浓度低于10%?解:设开始时溶液的浓度为1,操作一次后溶液浓度a 1=1-1a .设操作n 次后溶液的浓度为a n ,则操作(n +1)次后溶液的浓度为a n +1=a n ⎝ ⎛⎭⎪⎫1-1a . ∴{a n }是以a 1=1-1a 为首项,q =1-1a为公比的等比数列, ∴a n =a 1q n -1=⎝ ⎛⎭⎪⎫1-1a n , 即第n 次操作后酒精的浓度是⎝ ⎛⎭⎪⎫1-1a n . 当a =2时,由a n =⎝ ⎛⎭⎪⎫12n <110(n ∈N *),解得n ≥4. 故至少应操作4次后才能使酒精的浓度小于10%.12.有四个数,其中前三个数成等差数列,后三个数成等比数列,并且前后两数的和是16,中间两数的和是12.求这四个数.解:法一:设这四个数依次为a -d ,a ,a +d ,a +d 2a, 由条件得⎩⎪⎨⎪⎧ a -d +a +d 2a =16,a +a +d =12.解得⎩⎪⎨⎪⎧ a =4,d =4,或⎩⎪⎨⎪⎧ a =9,d =-6.所以当a =4,d =4时,所求四个数为0,4,8,16;当a =9,d =-6时,所求四个数为15,9,3,1.故所求四个数为0,4,8,16或15,9,3,1.法二:设这四个数依次为2a q -a ,a q,a ,aq (a ≠0), 由条件得⎩⎪⎨⎪⎧ 2a q -a +aq =16,a q +a =12.解得⎩⎪⎨⎪⎧ q =2,a =8,或⎩⎪⎨⎪⎧ q =13,a =3.所以当q =2,a =8时,所求四个数为0,4,8,16;当q =13,a =3时,所求四个数为15,9,3,1. 故所求四个数为0,4,8,16或15,9,3,1.法三:设这四个数依次为x ,y,12-y,16-x ,由已知得⎩⎪⎨⎪⎧ 2y =x +12-y ,12-y 2=y 16-x . 解得⎩⎪⎨⎪⎧ x =0,y =4,或⎩⎪⎨⎪⎧ x =15,y =9.故所求四个数为0,4,8,16或15,9,3,1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教A版必修5
课题:2.4等比数列2
学习目标:进一步熟练掌握等比数列的定义及通项公式
学习过程:
【学情调查情境导入】
1.情境:在等比数列 中,(1) 是否成立? 是否成立?(2) 是否成立?
2.问题:由情境你能得到 等比数列更一 般的结论 吗?
【问题展示合作探究】
1.若 为等比数列, ,则
则 .
4.在等比 数列 中 ,是否有 ( )?
5.在数列 中,对于任意的正整数 ( ),都有 ,
那么数列 一定是等比数列.
【知识梳理 归纳总结】
等比数列的性质
【预习指导新课链接】
等比数列的前n项和公式
2.若 为等比数列,则 .
例1.已知 为等比数列,且 ,该数列的各项都为 正数,求 的通项公式。
例3.已 知三 个数成等比数列,它ቤተ መጻሕፍቲ ባይዱ的积为27,它们的平方和为91,求这三个数。
【达标训练巩固提升】
A基础1.已知在等比数列中, , ,则 .
2.已知 是等比数列, , ,且公比为整数,则 .
B能力:3.已知 是等比数列且 , ,