柴油机燃油系统产品主要零部件的制造工艺

合集下载

第二章柴油机的结构和主要零部件1

第二章柴油机的结构和主要零部件1

第二章柴油机的结构和主要零部件1第二章柴油机的结构和主要零部件1柴油机是一种利用柴油燃料进行内燃机燃烧的发动机,具有高效率、高可靠性和长寿命等特点,广泛应用于各种车辆、船舶和发电等领域。

了解柴油机的结构和主要零部件对于掌握其工作原理和维护保养十分重要。

本文将详细介绍柴油机的结构和主要零部件。

一、柴油机的结构柴油机主要由缸体、缸盖、曲轴箱、气门机构、燃油系统和润滑系统等组成。

1.缸体和缸盖:缸体是柴油机的主体部分,用于承受气缸内部的高压力和高温。

缸盖则位于缸体的顶部,用于固定气缸盖垫片和气缸盖螺栓,并密封气缸。

2.曲轴箱:曲轴箱是柴油机的底部部分,用于安装和支撑曲轴、连杆和活塞等零件。

曲轴箱内还包括曲轴箱盖、曲轴、连杆轴承和主轴承等重要部件。

3.气门机构:气门机构用于控制进气门和排气门的开闭,调节柴油机的进排气过程。

气门机构包括进气门、排气门、气门座、气门杆和气门弹簧等零部件。

4.燃油系统:燃油系统用于将燃油喷入气缸进行燃烧,包括燃油箱、供油泵、喷油器、燃油滤清器和燃油管路等。

燃油系统的正常工作对于柴油机的性能和经济性具有重要影响。

5.润滑系统:润滑系统用于给柴油机各个零部件提供润滑油,减少摩擦和磨损,延长使用寿命。

润滑系统包括油箱、油泵、滤清器、油冷器和润滑管路等。

二、柴油机的主要零部件1.活塞和活塞环:活塞是柴油机中作用于气体的关键部件,通过活塞杆与连杆相连接,与曲轴形成往复运动。

活塞环用于密封活塞与气缸之间的空隙,减少燃气泄漏和机油进入气缸。

2.缸套:缸套是套在气缸内部的圆筒形零件,用于保护气缸内壁和提供活塞运动的密封和导向。

3.曲轴:曲轴是柴油机的动力输出轴,将活塞的往复运动转化为旋转运动。

曲轴通常由多个连杆连接片组成。

4.连杆:连杆将活塞与曲轴相连,将活塞的往复运动转化为曲轴的旋转运动。

5.气门:柴油机的气门用于控制进气和排气过程,包括进气门和排气门。

气门的开闭由于凸轮轴的驱动。

6.活塞销和连杆轴承:活塞销连接活塞和连杆,通过销孔固定。

柴油机各零部件介绍

柴油机各零部件介绍

柴油机各零部件介绍柴油机各零部件介绍1、飞轮飞轮的主要功用是储存作功冲程的能量,克服辅助冲程的阻力以保持曲轴旋转的均匀性,使内燃机工作平稳。

为此,它要能储存一定的能量,并在需要时放出。

2、飞轮壳飞轮壳安装于发动机与变速箱之间,外接曲轴箱、起动机、油底壳,内置飞轮总成,起到连接机体、防护和载体的作用。

3、飞轮齿圈飞轮外缘上压有一个齿圈,可与起动机的驱动齿轮啮合,把起动机的动力传递到曲轴的连接件,主要作用是实现起动机与曲轴之间动力传递,为发动机提供惯性。

4、飞轮螺栓飞轮螺栓的作用就是装配时产生足够的预紧力,使发动机在工作时飞轮与曲轴结合面间产生的摩擦力矩能够传递扭矩。

5、起动机内燃机借助于外力由静止状态过渡到能独立运转的过程,称为内燃机起动过程,简称为内燃机起动。

完成起动过程所需的装置,称为起动装置。

发动机的起动装置主要有:电力起动机、电磁啮合式起动机、减速起动机和永磁起动机、空气起动机等6、机油泵总成机油泵是润滑系中机油压力和流量的动力源。

它保证发动机润滑所需要的机油压力和流量。

机油泵的结构形式有齿轮式、转子式、叶片式和柱塞式。

常用的有齿轮式和转子式。

7、机油滤清器是用来滤清机油中的金属磨屑、机械杂质及机油本身氧化的产物,如各种有机酸、沥青质以及碳化物等,防止它们进入零件的摩擦表面而将零件拉毛、刮伤,使磨损加剧,以及防止润滑系通道堵塞而烧坏轴瓦等严重事故。

机油滤清器性能的好坏直接影响到内燃机的大修期限和使用寿命。

8、发电机功用:向用电设备供电,并向蓄电池充电,为了满足蓄电池充电的需求,车用发电机的输出电压必须是直流电。

内燃机上装有的发电机通常有并激直流发电机、硅整流发电机和永磁式交流发电机。

目前国内、外汽车上使用的发电机几乎都是硅整流交流发电机。

硅整流交流发电机是由转子、定子、整流器、端盖、风扇叶轮组成。

发电机产生的二相交流电通过整流器进行三相桥式全波整流后,转为直流电。

输出电压一般为28V。

9、水泵总成水泵的功用是对冷却水加压,保证其在冷却系中循环流动。

柴油机燃油系统综述

柴油机燃油系统综述

柴油机燃料供给与调节综述摘要:柴油机因其独有的优越性,在我国国民经济各领域应用广泛。

燃油喷射系统作为柴油机的核心部件,直接影响和决定了柴油机技术水平和换代升级,被誉为柴油机的心脏。

本文重点介绍柴油机燃料供给与调节系统的主要结构及工作原理,还介绍了柴油机燃料供给与调节系统的电子控制。

关键词:柴油机、燃料供给与调节、电控1 柴油机燃料供给与调节系统概述柴油机相比于蒸汽机热效率高,经济性好,机动性好,因而对传播有很大的适应性,自问世以后就很快被作为船舶的推进动力。

起初,柴油机用空气喷射燃料,燃料的雾化质量无法的得到保证,并且附属装置庞大笨重,只能用于固定作业。

上世纪初,开始用于船舶。

1905年,制成第一台二冲程船用柴油机。

1922年,德国工程师Robert Bosh 发明了许波泵,使柴油机的用途扩大到汽车、拖拉机等移动机械,许波泵的成功对提高和改善柴油机的性能及各项指标起到了决定性的作用。

20世纪中期增压及增压中冷技术的研发成功,使柴油机性能获得新的飞跃。

20世纪70年代开始,电子技术引入柴油机控制系统,又是柴油机的一次重大技术革命,把柴油机的性能指标提高到一个新的水平。

柴油机是在气缸内部形成混合气,即在活塞接近上止点时,燃料供给与调节系统将燃料以高压、在极短的时间内喷入气缸,实现燃油与空气的混合和燃烧。

因此,对燃料供给与调节系统,无论是在制造与调整精度,还是在与整机的参数匹配方面均有十分严格的要求,为了保证压燃式内燃机在动力性、经济性、排放与噪声等方面达到优良的性能,对其燃料供给与调节系统提出的要求有:(1)能产生足够高的喷油压力,确保雾化、混合气形成和燃烧;(2)对每一个内燃机运转工况,精确控制每循环喷入气缸的燃油量,且喷油量能随工况变化而自动变化。

在工况不变时,各循环之间的喷油且应当一致。

对多缸内燃机而言,各缸的喷油量应当相等;(3)在内燃机所运转的工况范围内,尽可能保持最佳的喷油时刻、喷油持续时间与喷油规律,以保证良好的燃烧并取得优良的综合性能;(4)保证柴油机安全可靠的工作,防止飞车现象发生。

柴油机的结构和主要零部件分解课件

柴油机的结构和主要零部件分解课件

03
燃烧室的设计需要综合考虑燃料喷射、混合气形成、燃烧速度和排放等多个因 素,以达到最佳的性能表现。
柴油机的维护与保
04

定期检查与保养项目
燃油系统检查
冷却系检查
确保燃油系统清洁,无堵塞和泄漏,定期 更换燃油滤清器。
检查冷却液是否清洁,冷却系统无泄漏, 定期更换冷却液。
润滑系统检查
空气滤清器检查
凸轮轴
通过与气门挺杆的配合,控制气门的开启和 关闭时间。
排气门
控制排气通道的开启和关闭,保证废气排出 。
空气滤清器
过滤进入气缸的空气中的杂质和灰尘,保证 空气质量。
燃油系统
燃油箱
储存燃油。
燃油滤清器
过滤燃油中的杂质和水分,保 证燃油质量。
喷油器
将燃油喷入燃烧室,与空气混 合后燃烧。
输油泵
将燃油从燃油箱输送到喷油器 ,保证燃油供应。
检查机油是否清洁,油位是否正常,定期 更换机油和机油滤清器。
定期清洁或更换空气滤清器,确保进气系 统畅通。
主要零部件的更换周期
01
燃油滤清器
每行驶10000-20000公里更换一次 。
机油滤清器
每行驶5000-10000公里更换一次。
03
02
空气滤清器
每行驶5000-10000公里清洁或更换 一次。
柴油机的结构和主要零 部件分解课件
目录
• 柴油机概述 • 柴油机的主要零部件 • 柴油机的结构特点 • 柴油机的维护与保养
柴油机概述
01
柴油机的定义与特点
总结词
柴油机是一种以柴油为燃料的内燃机, 具有高效率、大功率和低油耗等特点。
VS
详细描述

2 柴油机的结构和主要部件.

2 柴油机的结构和主要部件.

2.2 柴油机的主要部件及检修2.2.1柴油机的结构特点2.2.1.1现代船用柴油机的结构特点1.气缸尺寸采用长行程或超长行程 S/D对二冲程柴油机的换气品质影响较大,在弯流扫气的二冲程柴油机上,S/D过大则换气品质恶化,S/D较小则换气品质较好。

2.燃烧室部件普遍采用钻孔冷却结构现代超长行程柴油机燃烧室部件的热负荷和机械负荷已达到相当高的程度,成为限制柴油机继续提高增压度的主要因素。

为了合理解决这一技术难题,普遍采用了钻孔冷却结构,这是一种最佳的“薄壁强背”结构形式。

3.采用旋转式排气阀及液压式气阀传动机构旋转式排气阀可使排气阀在启闭时有微小的圆周运动,可保证气阀密封面磨损均匀、贴合严密,提高了排气阀的可靠性。

液压式气阀传动机构改变了沿用几十年的机械式气阀传动机构,延长了气阀机构的使用寿命、减轻了排气阀的噪声,成为现代直流换气柴油机广泛采用的气阀及气阀传动机构。

4.喷油泵采用可变喷油定时(VIT)机构小缸径柴油机的VIT机构采用曲线斜槽柱塞,其喷油定时与喷油量的关系是固定的;大缸径柴油机的VIT机构采用升降套筒法调节喷油定时,而喷油量的调节则采用旋转柱塞法,其喷油定时与喷油量的关系是可变的。

5.采用薄壁轴瓦超长行程柴油机的十字头轴承和曲柄销轴承均承受着巨大的单向冲击性负荷,为了提高它们的可靠性,广泛使用了薄壁轴瓦。

6.独立的气缸润滑系统气缸注油量随负荷自动调整,注油定时电子控制,以保证气缸套可靠的润滑。

7.曲轴上增设轴向减振器超长行程柴油机的发展使曲轴轴向刚度变弱,容易产生轴向振动。

因而现代超长行程柴油机常在曲轴前端增设轴向减振器,以有效地消减曲轴的轴向振动。

8.焊接曲轴焊接曲轴是把单位曲柄通过焊接而组成一个整体的焊接型曲轴。

这是现代曲轴制造工艺中的一项重要成就。

目前这种曲轴已在长冲程大型低速机中应用。

典型题目:1.下面对现代低速柴油机结构特点的叙述中,()不正确。

A.燃烧室部件钻孔冷却B.采用薄壁轴瓦C.曲轴上装轴向减振器D.采用铸造曲轴2. 采用()来提高现代船用柴油机的经济性已不可取。

柴油机燃油系统的主要部件及其功能

柴油机燃油系统的主要部件及其功能

柴油机燃油系统的主要部件及其功能
柴油机燃油系统是柴油机的核心部分,主要由以下几个重要部件构成。

一、燃油箱
燃油箱作为整个燃油系统的起点,其主要作用是储存燃油并为发动机
提供燃料。

一般来说,燃油箱内部还配备有燃油泵及其他辅助设备,
可以将燃油从燃油箱输送到燃油滤清器。

二、燃油滤清器
燃油滤清器的主要作用是对燃油进行过滤,将杂质、水分等不纯物质
去除,为燃油系统提供干净的燃料。

良好的燃油滤清器不仅可以保护
发动机,还可以延长燃油系统的使用寿命。

三、燃油泵
燃油泵是柴油机中最重要的元件之一,其主要功能是将燃油从燃油箱
中输送到高压喷油泵。

燃油泵种类各异,采用不同的工作方式和原理,但其基本作用都是相同的。

四、高压喷油泵
高压喷油泵是柴油机燃油系统中最核心的部件,其作用是将燃油加压
至房内高压喷油管中,精确地喷射到每个喷油嘴中,达到高效燃烧的
效果。

高压喷油泵的性能直接影响柴油机的动力输出、经济性和排放
性能。

五、喷油嘴
喷油嘴是燃油系统中另外一个重要的部件,其负责将高压喷油泵压制
的燃油通过喷油嘴喷入气缸内部,从而引起爆炸,推动汽缸运动。


油嘴的工作状态直接影响柴油机的性能表现,因此其寿命和性能指标
非常重要。

综上所述,柴油机燃油系统是一系列区别于汽油发动机燃油系统的重要部件群,它能为柴油机提供高效的动力输出、经济性和低污染排放性。

因此,发展先进、高性能的柴油机燃油系统,并对其各个组成部分进行科学优化,对于提高柴油机的性能和节能环保方面都具有重要意义。

大柴油发电机组机组组装生产工艺流程

大柴油发电机组机组组装生产工艺流程

大柴油发电机组机组组装生产工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!拥有可靠的、高效的发电设备是保障电力供应稳定的重要手段。

第二章柴油机的总体结构及主要零部件

第二章柴油机的总体结构及主要零部件

Pz
(2)气体力引起的机械应力
气缸盖 水冷面为拉应力 触火面为压应力
弯曲应力与缸盖底板半径的平方成正比, 与底板厚度的平方成反比
活塞 活塞顶板在最高燃烧压力作用下 产生很大的弯矩和弯曲应力 水冷面为拉应力 触火面为压应力
燃烧室部件中由气体压力而产生的机械应力 都和最高爆发压力成正比,与部件壁厚成反比
第二节 燃烧室部件
油 环
油环的结构、原理 单刃油环、双刃刮油环
飞溅润滑 做回转运动的曲柄销轴承 把润滑油甩到气缸壁上。
气环的泵油作用
第二节 燃烧室部件
承磨环
作用:专为十字头式活塞与气缸的磨合而设置
第二节 燃烧室部件
活塞杆填料函
作用 防止扫气空气和污油、污物漏入曲轴箱,以免加热和污染曲轴箱滑油,腐蚀曲轴与连杆等部件。 防止曲轴箱中的滑油进到扫气箱中,污染扫气空气
往复回转
活塞 (Piston)
连杆 (Connecting rod)
曲轴 (Crankshaft)
动力和辅助系统
起动系统 (Starting sys.)
燃油系统 (F.O sys)
润滑系统 (L.O sys)
冷却系统 (Cooling sys.)
操纵和控制系统
第一节 柴油机的概述
换气系统
曼/曼恩 B&W
气缸套穴蚀的主要原因:缸套振动
措施:在缸体上安装防腐蚀锌板,或水中加缓蚀剂和防锈油等。
第二节 燃烧室部件
气缸盖的构造
气缸盖的作用、工作条件及要求
气缸盖
气缸盖的类型
作用:组成燃烧室;安装各种阀件-喷油器、气缸起动阀、示功阀、安全阀、 排气阀(四冲程和直流扫气二冲程机)、进气阀(四冲程机);四冲程机布置进、排气道和气阀摇臂机构 工作条件:受螺栓预紧力和缸套支撑反力作用;工作中受燃气高温、高压作用, 冷却水腔受水腐蚀;结构复杂、金属分布 不均匀而产生的应力集中,尤其是阀孔之间的 狭窄区域(鼻梁区)最恶劣 要求:足够的强度和刚度;良好的冷却;可靠的气封和水封;气缸盖上各种阀件的拆装、维护方便;冷却水腔的水垢容易清除。

船用柴油机主要系统介绍-燃油-滑油-冷却

船用柴油机主要系统介绍-燃油-滑油-冷却
提高净化效果,沉淀柜中的重油应预热至50℃~60℃,并可酌情加入泥渣分散剂和疏水剂,以使油中悬浮杂质易于沉淀。沉淀柜应定期放水排污。
滤清由系统这的多个粗、细滤器来完成。
净化处理的核心环节是离心分离,其主要设备是离心分油机。关于离心分油机,将在第四节具体介绍。
3.雾化加热器和加热温度的控制
重油使用前的预热处理是保证柴油机正常运转的重要措施,通常采用分段预热的办法。
燃油经净化后,便可通过燃油供给系统送给船舶柴油机。近年来由于高粘度劣质燃油的使用,其预热温度大大提高。为避免在使用高(700mm2/s)重油时因预热温度过高而汽化,出现了一种加压式燃油系统。如图5-2所示,在日用燃油柜与燃油循环油路之间增设一台输送泵,保证柴油机喷油泵进口处的燃油压力为800kPa(循环泵出口压力为1Mpa),循环油路(回路)中压力为400kPa,防止燃油系统在高预热温度(如150℃)时发生汽化和空泡现象。
(4)发火性差。低质油CN值很低(一般为25左右)。滞燃期τi长,燃烧持续期长,
排气温度tr值偏高,且因燃烧不完全,其be和烟度均有所增加。
二、低质燃油的使用
1.使用低质燃油的意义
低质燃油的使用是船用柴油机发展中的一项重要技术成就。使用这种燃油可以大幅度降低船舶营运成本,同时可以合理使用石油资源。自70年代以来,由于柴油机燃油大幅度涨价,燃油费用支出约占船舶营运成本的50%,使船用柴油机使用低质燃油成为一项普遍采用的技术。目前,不但船用低速柴油主机使用低质燃油,而且船用中速柴油机(主机和发电柴油机)也使用低质燃油。
三、使用低质燃油时的管理技术要点
1.低质燃油的预处理
预处理指低质燃油进入喷油泵之前所进行的预热、净化、添加有关添加剂等技术措施。预处理的目的是改善低质燃油的贮存、驳运和使用性能,以满足柴油机工作的需要。

第2章 柴油机的总体结构及主要零部件

第2章 柴油机的总体结构及主要零部件

第二章 柴油机的总体结构及主要零部件因柴油机是一种往复式压缩发火的内燃机,所以其总体结构及主要零部件都是围绕完成此功能而设置的。

柴油机是推动船舶前进的根本动力设备,了解其结构组成及功能,做好维护管理工作是极其重要的。

统计表明,船用柴油机主要零部件发生的故障占柴油机故障总数的90%左右,而其中近一半的故障又集中发生在燃烧室部件上。

这些故障直接影响柴油机的技术性能指标,与航行安全密切相关。

第一节 柴油机的总体结构概述一、总体结构示意图,如图2-1所示。

二、柴油机的基本组成船用柴油机结构比较复杂,它由许多零件、机构和系统组成。

尽管各柴油机厂商制造的柴油机结构、型号各不相同,但他们在工作原理和总体结构上有很多共同之处。

柴油机主要由以下部件和系统组成:1.主要固定件柴油机的主要固定件由机座、机架、气缸体和气缸盖等组成。

中小型柴油机常将气缸空冷器机座曲轴 机架 十字头 缸套 活塞 活塞杆连杆大端轴承 图2-1 船用柴油机总体结构示意图体和机架做成一体称为机体,并用轻便的油底壳代替机座。

它们构成了柴油机的骨架,支撑着运动件和辅助系统。

2.主要运动件柴油机的主要运动件由活塞、连杆组件及曲轴组成,对于大型低速柴油机还有十字头组件。

活塞的顶部、气缸套的内壁以及气缸盖的底部共同组成了燃烧室空间,既保证了柴油机工作过程的顺利进行,又将活塞的往复运动通过连杆转变为曲轴的回转运动,从而将燃气推动活塞的动力通过曲轴以回转的方式向外传递。

3.动力和辅助系统(1)起动系统起动系统是借助于外力带动曲轴回转,并使其达到一定的转速,由活塞压缩气缸内气体使其具有足够的温度和压力,以实现柴油机的第一次发火燃烧,由静止转入工作状态。

柴油机起动的方式大致有两种:一种是借助于外力矩使曲轴转动起来,如人力手摇起动、电机起动和气马达起动等;另一种是借助于加在活塞上的外力推动活塞使曲轴旋转起来,如压缩空气起动。

目前远洋船舶上的柴油机起动系统普遍采用压缩空气起动系统,它由空气压缩机、主空气瓶、主起动阀、空气分配器、起动控制阀和气缸起动阀组成。

柴油机燃料供给系统

柴油机燃料供给系统

柴油机燃料供给系统柴油发动机是以柴油为燃料的发动机.本章重点研究的是柴油发动机的燃料供给系统,将对系统的组成、工作原理、主要零部件构造,常见故障诊断与排除、电控系统简介等几方面加以介绍。

第一节柴油机燃料供给系统的组成和工作原理学习目标1。

了解柴油机的功用和组成2。

掌握燃烧室的结构和特点一、柴油机燃料供给系统的组成1。

功用⑴完成燃料的储存、滤清和输送工作;⑵根据不同工况的要求以一定压力及喷油质量,将燃油定时定量的喷入燃烧室,与空气迅速形成良好的混合气并燃烧;⑶根据柴油机的负荷变化自动调节循环供油量,以保证柴油机的稳定运转,尤其是稳定怠速,限制超速;⑷将燃烧后的废气从气缸中导出并排入大气中。

2.组成如图7-1所示,柴油机燃料供给系由空气供给装置、燃油供给装置、混合气形成装置、废弃排出装置四部分组成.⑴空气供给装置:由空气滤清器、进气管道等组成,有的还有增压器;⑵燃油供给装置:由喷油泵、喷油器、调速器、柴油箱、输油泵、油水分离器、柴油滤清器、喷油提前器高、低压油管等辅助装置;⑶混合气形成装置:燃烧室;⑷废气排出装置:由排气管道及排气消声器组成。

图7-1柴油机燃料供给系统1一低压油管;2一柴油滤清器;3一喷油泵;4一输油泵;5一柴油箱;6一回油管;7一喷油器;8一高压油管当柴油机工作时,输油泵从燃油箱吸出柴油,经油水分离器除去柴油中的水分,再经柴油滤清器滤除柴油中的杂质,然后输入喷油泵。

在喷油泵内,柴油经过增压和计量之后,经高压油管供入喷油器,最后通过喷油器将柴油喷入燃烧室。

喷油泵前端装有喷油提前器,后端与调速器组成一体。

输油泵供给的多余柴油及喷油器顶部的回油均经回油管返回燃油箱。

3.燃烧室(1)定义:当活塞到达上止点时,气缸盖和活塞顶组成的密闭空间称为燃烧室。

(2)分类:分统一式燃烧室和分隔式燃烧室两大类。

统一式燃烧室由凹顶活塞顶部与气缸盖底部所包围的单一内腔,几乎全部容积都在活塞顶面上。

燃油自喷油器直接喷射到燃烧室中,借喷出油注的形状和燃烧室形状的匹配,以及燃烧室内空气涡流运动,迅速形成混合气。

柴油机的工作原理和组成

柴油机的工作原理和组成

柴油机的工作原理和组成柴油机是一种内燃机,它以柴油作为燃料进行燃烧,通过将燃料喷射到高温高压环境中使其自燃,从而释放能量并驱动发动机运转。

下面将介绍柴油机的工作原理和组成。

一、工作原理:1. 进气:柴油机的进气系统主要由进气口、滤清器、增压器、中冷器等部件组成。

在工作过程中,活塞向下运动、气缸放大、减小气压使空气进入进气道,并经过滤清器进行过滤,然后通过增压器和中冷器增压并冷却,最终进入气缸。

2. 压缩:活塞向上运动时,气缸缩小,气体被压缩。

柴油机的压缩比较高,通常在16:1到22:1之间,使燃料充分混合,并提高燃烧温度和压力。

3. 燃烧:燃料喷射系统通过喷油器将柴油喷入预燃室或气缸内,高温高压使燃油雾化,并与空气充分混合。

然后,在活塞达到顶点时,喷油器将柴油高压喷射进入压缩气体中,在这个高温高压环境中,柴油受热自燃,形成高温高压的气体。

4. 排气:随着活塞向下运动,排气门打开,废气在气缸内排出,然后通过排气管排出柴油机。

二、组成部分:1. 气缸:柴油机通常有多个气缸,每个气缸内都有活塞运动。

气缸通常由铸铁或铝合金制成,具有耐高温、耐高压的特点。

2. 曲轴连杆机构:曲轴与连杆机构是柴油机的动力传递装置,将活塞的上下运动转化为转动运动。

曲轴由整体钢锻件制成,具有良好的强度和刚性。

连杆由曲轴与活塞之间的连接杆组成,起到传递力和转动的作用。

3. 润滑系统:柴油机的润滑系统主要包括油底壳、曲轴箱、曲轴、连杆、活塞、气缸等部分。

润滑系统通过提供润滑油,减少零部件之间的摩擦,降低磨损。

同时,还能冷却发动机,清除异物和有害残留物。

4. 燃油系统:柴油机的燃油系统主要由燃油箱、滤清器、燃油泵、喷油器等组成。

燃油泵将柴油从燃油箱中抽取,通过滤清器进行过滤,然后将燃油喷射到气缸中。

喷油器将燃油雾化和喷射时间控制在适当范围内,以实现高效燃烧。

5. 冷却系统:柴油机的冷却系统主要由水泵、水箱、散热器等组成。

冷却系统通过将冷却液循环引流,吸热并冷却发动机。

一、柴油机工作原理及特点

一、柴油机工作原理及特点
气门间隙调整原则——气门在完全关闭的情况下,才能调整气门间隙 即挺柱(或摇臂)必须落在凸轮的基圆上才可调整。
气门间隙调整方法——两遍法 生产实践中,普遍地采用两遍法调整气门间隙,即第一缸压缩终了上 止点时,调整所有气门的半数,再摇转曲轴一周,便可调整其余半数 气门。 首先确定一缸的压缩上止点:
电火花点燃混合气
有点火系
无喷油器
柴油机
进入气缸的是纯空气 高温气体加热柴油燃烧
无点火系 有喷油器
燃料的理化性能决定了汽油机是点燃,柴油机是压燃。
柴油机和汽油机区别
• 燃料特性:
– 柴油:粘度大、挥发性差、自燃性好 – 汽油:粘度小、挥发性好、燃点相对于柴油高
• 燃油供给系统:
– 柴油机:传统的为燃油喷射系统,又称为泵→管→嘴系 统。
柴油机的工作原理简述
●压缩行程
活塞从下止点向 上运动,这时,进气 门和排气门均关闭, 吸入气缸内的空气受 到活塞的压缩,压力 提高,温度也随之升 高。
柴油机的工作原理简述
●做功行程
当活塞压缩到上止 点,喷油器向燃烧室喷 入雾状柴油,油雾与压 缩空气充分混合,形成 高温高压的燃气,并开 始自行着火燃烧,混合 汽膨胀做功,推动活塞 向下运动,从而推动曲 轴转动,对外输出功。
善程度,可以达到更好的燃烧效果,是增压中冷 技术、电控技术更好应用的基础。
排气门
排气门摇臂
气门下沉量与气门间隙
0.40 ~ 0.45 排气门间隙
0.9 ~ 1.2 气门下沉量
进气门
进气门摇臂
0.35 ~ 0.4 进气门间隙
0.9 ~ 1.2 气门下沉量
气门间隙
为什么要预留气门间隙? 在冷态时无间隙或间隙过小,则在热态时,气门及其传动件的受热膨胀势

简述燃油系统组成及工作原理

简述燃油系统组成及工作原理

简述燃油系统组成及工作原理燃油系统是指将燃油从油箱输送到发动机燃烧室,以提供燃料供应的系统。

它是现代内燃机车辆的重要组成部分之一,起着供应燃料、调节燃料喷射、提供混合气等功能。

燃油系统的主要组成部分包括燃油箱、燃油泵、燃油滤清器、喷油嘴(喷油器)、调节器和油路管道等。

燃油系统的工作原理是将燃油从燃油箱中输送到发动机燃烧室。

燃油箱是存储燃油的容器,通常位于车辆的底部,燃油泵通过吸入燃油箱中的燃油,将其压力提高后送到发动机。

燃油泵通常由电动机驱动,通过旋转的叶片来产生压力,以便将燃油推送到燃料系统中的其他部件。

在燃油系统中,燃油滤清器起着过滤燃油中的杂质和沉积物的作用。

它通常位于燃油泵和喷油嘴之间,以保护喷油嘴免受污染。

燃油滤清器通常采用纸质或金属网过滤材料,可以阻止颗粒物和污垢进入喷油嘴,从而保持燃油系统的正常运行。

喷油嘴是燃油系统中的一个重要组成部分,它负责将燃油喷射到发动机燃烧室中。

喷油嘴通常由电磁阀和喷油嘴嘴管组成。

当电磁阀开启时,燃油通过喷油嘴嘴管喷射到燃烧室中,形成细小的雾状燃油颗粒,以便更好地与空气混合,从而实现有效的燃烧。

调节器是燃油系统中的一个重要部件,它负责调节燃料的供应量。

调节器通常由压力调节器和流量调节器组成。

压力调节器通过控制燃油泵的输出压力来调节燃料的供应量,以满足发动机的需求。

流量调节器则通过控制喷油嘴的喷油量来调节燃料的供应量,以达到最佳的燃烧效果。

除了以上主要组成部分,燃油系统还包括油路管道和连接件等辅助部件。

油路管道负责将燃油从燃油泵输送到喷油嘴,并将燃油系统中的各个部件连接起来。

连接件则用于连接燃油系统中的各个部件,以确保燃油的流动畅通。

总结起来,燃油系统是将燃油从燃油箱输送到发动机燃烧室的系统,其工作原理是通过燃油泵将燃油压力提高后送到喷油嘴,然后喷射到发动机燃烧室中,形成雾状燃油颗粒与空气混合,以实现有效的燃烧。

燃油系统的组成部分包括燃油箱、燃油泵、燃油滤清器、喷油嘴、调节器和油路管道等。

柴油机燃油系统

柴油机燃油系统

图7-17 柱塞偶件
柱塞在柱塞套中作往复运动。
其上部圆柱面开有斜切槽,并通过 柱塞中心油道或直槽与柱塞顶相通(见 图7-17)。
柱塞下部加工有榫舌,有的是压配 调节臂,用于进行供油量调节。
图7-18 柱塞切槽
(2)出油阀偶件
出油阀偶件包括出油阀2和出油阀 座1(见图7-19),它是一个单向阀。
(2)泵—喷嘴系统
泵—喷嘴系统是将喷油泵与喷油器 结合成一个整体,每个气缸都有一个对 应的泵—喷嘴,它装在气缸盖上,由发 动机凸轮轴经推杆摇臂机构驱动。
其下部为伸入燃烧室的喷油器。
由于取消了连接喷油泵和喷油嘴的
高压油管,可避免管内压力波动和燃油 弹性压缩对喷油过程的不良影响。
(3)PT式喷油系统
泵油机构主要由柱塞偶件(柱塞7和 柱塞套5)、出油阀偶件(出油阀3和出油 阀座4)、出油阀弹簧2、柱塞弹簧11等组 成。
(1)柱塞偶件
柱塞偶件由柱塞和柱塞套组成(见图 7-17),两者配合间隙极小,为0.001 8~ 0.003mm,需经精密磨削加工后再经选配 研磨而成,故称它们为偶件。
柱塞套被压紧在泵体上,在其上部开 有进回油孔。
(2)涡流式燃烧室
涡流式燃烧室由涡流室和主燃烧室 组成。
涡流室位于气缸盖上,呈球形或倒 钟形,占总压缩容积的50%~80%,有 切向通道与主燃烧室相通(见图7-8)。
图7-8 涡流式燃烧室
喷入涡流室的燃油大部分在涡流室内
燃烧,未燃部分在做功行程初期与高压燃 气一起通过切向孔道喷入主燃烧室,进一 步与空气混合而燃烧。
图7-10 孔式喷油嘴类型
(2)轴针式喷油器
轴针式喷油器的特点是喷油器偶件 中的针阀伸出喷孔(见图7-11),喷孔 一般只有一个,直径也较大,可达1~ 3mm。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

柴油机燃油系统产品主要零部件的制造工艺柴油机燃油系统产品主要零部件的制造工艺一.概述:柴油机燃油系统主要零部件包括喷油泵,喷油器总成,喷油嘴,柱塞偶件,出油阀偶件等精密零部件。

其制造过程,包括铸造,锻造,冲压,冷挤压和金属切削加工等热处理前的软加工成形技术。

热处理后还要经过磨、珩、研以及电火花、电解等加工方法进行精加工,完成了零件的加工之后,还要按规定的程序进行装配和性能试验。

合格后才能作为成品出厂。

因此如何制定合理的工艺过程,采用先进加工设备(当然根据具体条件),成为机械工艺工程师的重要任务。

我国油泵油嘴厂数量多而分散,不少工厂采用通用设备,工序分散,手工操作多,生产方式也落后,产品质量不稳定。

改革开放以来国内部分厂家投入大量资金,引进了许多国外先进设备,在关键工序上把好质量关,引进了部分的先进制造技术,如瑞士Mikron的DR-12喷油嘴体内腔成型组合机床,瑞典UV A中孔座面磨床,Stude配磨磨床和A型泵、Pw泵、S系列喷油嘴加工技术等一批先进加工设备和技术。

引进了世界最大的燃油喷射系统制造商BOSCH公司的生产制造技术。

使国内的柴油机燃油系统产品的制造技术有了很大的提高,产品质量有明显的改善,但总体技术与国外还有较大差别。

表二:柱塞偶件的主要技术要求零件名称偏差名称精度mm 粗糙度μm 柱塞 1.圆柱工作表面圆度0.0005 0.042.圆柱工作表面的轴线直线度0.0013.圆柱工作表面的素线平行度20:0.00064.控制斜槽的线轮廓度0.04柱塞套 1.内圆柱工作表面圆度0.0005 0.042.内圆柱工作表面的轴线直线度0.0013.内圆柱工作表面的素线平行度20:0.00064.密封端面的平面度0.0009 0.16偶件配合表面密封值>φ6.5~φ8.5 11~26秒19.60±0.245 Mpa配合表面密封值>φ8.5~φ12 9~22秒等压试验表三:出油阀偶件的主要技术指标(略)2.2精密偶件的材料及热处理;2.21精密偶件的材料选择;精密偶件的材料除了要求热处理后应具有较高的硬度和耐磨性,有较高的抗回火性和尺寸稳定性,有较好的抗腐蚀能力和接触疲劳强度,以及小的线膨胀系数外,还应具有良好的机械加工性能。

〈1〉喷油嘴偶件的常用材料;轴针式喷油嘴偶件较多的采用GCr15,热处理后硬度为HRC60~64。

长型孔式喷油嘴偶件的针阀体则采用合金渗碳钢,针阀为高速钢。

针阀体材料有18Cr2Ni4WA,25SiCrMoV,18CrNi2,20CrMoS,20CrNi,GCr15等。

大功率柴油机喷油嘴的针阀体采用27SiMn2MoV合金渗碳钢或38CrMoAl氮化钢等材料。

采用合金渗碳钢热处理的针阀体,其渗碳层深度为0.4~0.9mm,硬度≥HRC57,采用38CrMoAl氮化钢热处理的针阀体,其渗碳层深度为0.3~0.4mm,硬度HV≥950。

针阀采用高速钢W18Cr4V,W6Mo5Cr4V2制造,其硬度为HRC62~65。

〈2〉柱塞偶件大多采用GCr15,其硬度为HRC60~64,也有用CrWMn或20CrMo等材料的。

〈3〉出油阀偶件的材料和技术要求:出油阀偶件以采用GCr15为多,也有用20CrMo,CrWMn的,其硬度为HRC60~63,当采用20CrMo时硬度≥HRC58,当偶件承受较大冲击载荷时,常采用38CrMoAl或27SiMn2MoV等材料。

2.2.2精密偶件的热处理:1.轴承钢;a:氰盐炉加热淬火:简单,防脱碳,极毒,污染。

b:气体保护气氛加热淬火:(氨分解,滴注式两种)节能,减轻劳动强度,生态保护好,推广应用。

氨分解气的成分:NH3650℃H2(75%)+N2(25%)滴注式有直接滴注和间接滴注两种。

直接滴注是1:2丙酮和乙醇直接滴入加热炉内分解。

间接滴注是甲醛和乙醇3:7混合滴入裂解炉内900℃分解,推杆炉,多用炉推杆炉操作:加热850℃-10℃(推料10分钟)---冷却160—190℃(10#机械油<80℃检验---冷处理60℃(1小时)---回火190℃±10℃(4小时)-130±10℃c:井式渗碳炉加热淬火2. 渗碳钢:a :18Cr2NiWA 针阀体的固体渗碳:一般用箱式炉式井式渗碳炉中孔塞碳棒---装罐---渗碳炉880—900℃(5-5.5小时)出炉室冷---检查渗碳层深度---开罐筛碳---冷处理-60℃(60—90分)---清洗---回火160℃±10℃(4小时)b :20CrMoS 针阀体的固体渗碳3. 38CrMoAl 针阀体的气体氮化氮化前调质处理,硬度为HRC31~35,再做半精加工,再氮化。

可用改造的井式炉,NH 3的分解率为18~40%出炉炉冷却至小时氮化排气零件装炉℃℃℃18035525—180— 4. 高速钢的热处理a :W18Cr4V 高速钢的盐溶处理;b :W18Cr4V 高速钢的真空热处理;真空炉:第一次预热550℃~600℃→保温t 1=30+(1.5~2)D ; 第二次预热850℃~900℃→保温t 2=30+(1.5~2)D ; 第三次预热1260℃~1280℃→保温t 1=20+(0.25~0.5)D ; 预冷至1000℃进入油淬火。

三:精密偶件的加工工艺及制造技术(喷油嘴偶件)〔一〕针阀偶件的热处理前软加工:1.针阀的软加工:针阀的毛坯加工如图1:针阀毛坯图针阀毛坯加工——单轴自动车、数控车床,也可用专用设备加工。

图2是数控车床加工针阀简图加工结果:切削表面对导向表面的跳动应不大于0.08mm,并为热处理后的硬加工留有0.3~0.5mm的余量。

毛坯在经过检验之后入库进行热处理。

2.针阀体的软加工:针阀体毛坯如图3:针阀毛坯加工——多轴自动车、数控车床图4六角车加工简图,图5组合机床加工过程针阀体的软加工:a:枪孔钻床打二级中孔,二级中孔同轴度0.02mm,对外圆跳动0.04mmb:数控车床(六角车床)→麻花钻→粗铰→精铰(或硬质合金双级铰刀)对外园跳动0.08mm,二级中孔同轴度0.04mm。

c:以二级中孔为基准加工;——座面→压力室座面用冷挤压,如图6,(可保证0.006mm跳动)压力室以二级中孔定位钻加工(可保证压力室对中孔跳动0.08mm)盛油槽加工有电解成型和机械刀挖,如图7定位孔和进油孔可用组合机床加工,也可用台钻和钻模加工。

钻喷孔、球头要精车或粗磨,为保证球头壁厚公差,加工时要以压力室低部定长,喷孔可用喷孔钻床加工。

图9针阀体软加工工艺过程,图10喷孔钻床(510.0~07.0414.0~10.0317.0~15.0欧欧欧)流量检测和喷孔角度检测 图11流量试验台〔二〕 精密偶件的硬加工:精密偶件零件的硬加工,指热处理之后的切削加工,其加工质量决定了精密偶件的产品质量,由于精密偶件的加工精度很高,所以在硬加工过程中往往要经过多次粗精磨削和珩磨等工序,逐次提高加工精度,才能达到图纸要求。

为了减少磨削过程中的磨削应力,在精磨之前要进行第二次时效,为保证零件材质,要对零件100%作磁性探伤,经磁性探伤后要进行退磁,保证零件的剩磁不超过5高斯。

1. 针阀偶件的硬加工:图12是针阀体硬加工主要工艺过程a :经热处理后零件,去压力室毛刺,清洗。

b :磨工艺角,纠正热处理变形,减小座面磨削余量,跳动<0.02mm ,加工方法如图13,磨工艺角示意图。

c :磨两级外圆及球头。

以中孔孔口和座面量规尺寸φ3mm 定位。

成型砂轮磨削全部外表面:精度高,效率高,定位以中孔孔口和座面φ3mm 定位。

可达到外圆对中孔跳动<0.02mm ,球头壁厚差<±0.05mm,易保证球心位置。

图14成型砂轮磨削。

d:磨大端面。

平面度0.0009mm Ra0.09mme:去喷孔毛刺及测流量,流量散差±3%。

图15液体挤压研磨机床f:磨中孔座面图16 UV A80中孔座面磨床,图17磨中孔座面的夹持方法图18 W042中孔座面磨床,图19小风磨UV A80中孔座面磨床可达到:中孔:圆度0.0005mm,素线平行度<0.001mm,粗糙度Ra0.1μm 座面:圆度0.0008mm,对中孔跳动≤0.003mm,粗糙度Ra0.2μm,座面角度分差±10′。

g:研磨中孔:主要用于改善中孔的表面粗糙度,使粗糙度达到Ra0.05μm(对于W042,小风磨加工的中孔最好用珩磨)。

h:研磨面:(研磨面主要是用以改善表面粗糙度)。

i:研大端面:(超精磨大端面)使大端面平面度达到0.0006mm,Ra0.05mm。

图20(TLHS)2.针阀的硬加工:a:针阀热处理后的硬加工,通常工作大外圆用无芯磨床磨削。

图21针阀成型无芯磨床加工示意图。

也可用外圆磨床来加工。

此时应以工作大外圆做定位基准,支承在V型夹具上,由压轮带动工件旋转完成磨削加工,这就要求工作大外圆有极高的精度,以保证座面和各级外圆的加工精度和同轴度。

图21的加工结果工作外圆可达到圆度0.002mm的精度。

b:磨尾杆。

可用4-001用大外圆和前尖定位。

c:通磨外圆:使用M80高精度无芯磨床,使大外圆度提高到0.0008mm,切削余量至0.02mm,素线平行度≤0.015mm。

d:磨针尖:以提高精度的大外圆进一步磨针尖,使针尖圆度达到0.0008μm。

e:磨45°,通常用J4-012斜切磨床。

f:精磨外圆:使用高精度无芯磨床,使大外圆圆度提高到0.0005μm,素线平行度≤0.001mm,Ra0.1μm。

g:无芯研磨外圆:无芯研磨机h:粗研外圆:双盘研磨机i:精磨尾杆:J4-012斜切磨床j:精磨45°,Studev S21 圆度≤0.0003μm,粗糙度Ra0.08μm 图21 Studev S21 磨床k:精磨座面:Studev S21 圆度≤0.0003μm,粗糙度Ra0.08μm l:精研外圆:双盘研磨机精研大外圆,Ra0.05μm。

3.精密偶件的配付和性能试验:加工好的单件成品需要装配成偶件,叫插配。

精密偶件的插配配付有相当严格的要求,在相关的国家标准中都有明确的规定。

由于在大量的生产过程中精密零件的加工精度还不能实现100%的配付成功,因此配付过程中还需要采取各种措施来提高配付合格率,偶件要100%进行试验合格才能出厂。

喷油嘴偶件的配付和试验检查:机械部标准JB/T7297-2004柴油机喷油嘴偶件性能要求中规定,针阀在针阀体内应具有良好的滑动性,两个工作表面间应具有一定的径向间隙;径向间隙以油压法试验的径部密封值评定。

试验用油为20℃时,运动粘度10.2~10.7cat的混合油;对喷雾质量的要求是,喷出的燃油应成雾化状,不应有油粒飞溅。

喷油开始前和终了后喷孔口不允许有渗油现象。

相关文档
最新文档