(完整版)初一数学合并同类项练习题和答案

合集下载

七年级数学合并同类项水平测试题和答案

七年级数学合并同类项水平测试题和答案

七年级数学合并同类项水平测试题和答案一、认认真真,沉着应战!(每小题3分,共18分)1、x的与y的和用代数式可以表示为()A、(x+y)B、x+ +yC、x+ yD、 x+y2、下列结论中正确的是()A、整式是多项式B、不是多项式就不是整式C、多项式是整式D、整式是等式3、对单项式—xy2,下列说法正确的是()A、系数是0,次数是2B、系数是1,次数是2C、系数是—1,次数是2D、系数是—1,次数是34、如果一个多项式的次数是3次,那么这个多项式中任何一项的次数()A、都等于3B、都小于3C、都不小于3D、都不大于35、下列各组式子中不是同类项的是()A、3x2y与—3yx2B、3x2y与—2y2xC、—2021与2021D、5xy与3yx6、若P是三次多项式,Q也是三次多项式,则P+Q一定是()A、三次多项式B、六次多项式C、不高于三次的多项式或单项式D、单项式7、下面合并结果正确的是()A、4xy—3xy=xyB、—5a2b+5ab2=0C、—3a2+2a3=—a5D、a2—2a2b=—2b8、在计算如图所示图形的`面积时,下面哪一个式子是不正确的结果()A、ab+deB、af+cdC、af+edD、fe—bc二、仔仔细细,记录自信!(每空3分,共39分)1、单项式的系数为________,次数为________、2、多项式3x4—2x3y2—4y2+x—y+7是___次___项式,常数项是______,最高次项为_____,最高次项的系数为____、3、下列代数式① ②3a2+b ③—4 ④ ⑤ ⑥2 a ⑦x ⑧ ⑨150—m 其中是单项式的为____________,是多项式的为___________,是整式的为____________、4、多项式xy2—9xy+5x2y—25的二次项系数是____。

5、已知 x3m—1y3 与 x5y2n—1是同类项,则5m+3n=________、6、如果A=x3—2x2+1,B=2x2—3x—1,则B+A=_________、7、下列式子2a+3,4a+6,8a+12,16a+24后面将出现哪一个式子_________8、若a0,ab0,则 + 的值是_______、三、平心静气,展示智慧!(共28分、第1题8分,2、3题各式各10分)1、当x= 时,求—5+x2—5x—x2+3x+4的值、2、已知 +(y+2)2=0,求 x3y2— xy+ x3y2— xy—x3y—5的值、3、小红和父母三人准备参加旅行团外出旅游,甲旅行社告示知:父母全票,女儿按5折优惠乙旅行社告知:家庭旅游可按团体票计价,即每人均按全价的8折收费、若这两家旅行社每人的原票价相同,服务质量也相同,你认为他们应该选哪家旅行社才使票价较为便宜?并请你说明理由、4、一根绳子弯曲成如图(1)所示的形状,当用剪刀像如图(2)所示那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像如图(3)所示那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段、若用剪刀在虚线a、b之间把绳子再剪(n—2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是多少?四、拓广探索,游刃有余!(本题15分)观察下列单项式:—x,2x2,—3x3,4x4,,—19x19,20x20,,你能写出第n个单项式吗?并写出第2001个单项式。

初一数学合并同类项试题

初一数学合并同类项试题

初一数学合并同类项试题1.代数式-2x+3y2+5x中,同类项是和 .【答案】-2x,5x【解析】本题考查了同类项的定义根据同类项的定义:所含字母相同,相同字母的指数相同,即可得出答案.根据同类项的定义:代数式-2x+3y2+5x中,同类项是-2x和5x.思路拓展:解答本题的关键是掌握好同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同。

2.下列各组代数式中,属于同类项的是()A.2x2y与2xy2B.x y与-x yC.2x与2xy D.2x2与2y2【答案】B【解析】本题考查了同类项的定义根据同类项的定义:所含字母相同,相同字母的指数相同,依次分析各项即可得出答案.A、2x2y与2xy2字母的指数不同,不是同类项;B、x y与-x y是同类项;C、2x与2xy字母不同,不是同类项;D、2x2与2y2字母不同,不是同类项;故选B.思路拓展:解答本题的关键是掌握好同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同。

3.已知25x6y和5x2m y是同类项,m的值为()A.2B.3C.4D.2或3【答案】B【解析】本题考查了合并同类项根据同类项的定义:所含字母相同,相同字母的指数相同,即可得出答案.由题意得,2m=6,m=3,故选B.思路拓展:解答本题的关键是掌握好同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同。

4.合并同类项5x2y-2x2y的结果是()A.3B.3xy2C.3x2y D.-3x2y【答案】C【解析】本题考查的是合并同类项先根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,即可得到结果。

2a2b-3a-3a2b+2a=2a2b-3a2b-3a+2a=-a2b-a,5x2y-2x2y =(5-2)x2y=3x2y,故选C.思路拓展:解答本题的关键是掌握好合并同类项时把系数相加减,字母与字母的指数不变.5.求代数式的值:6x+2x2-3x+x2+1,其中x=3【答案】原式=3x+3x2+1="37"【解析】本题考查的是合并同类项,代数式求值先根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变,再代入求值即可。

初一合并同类项练习题汇总带答案

初一合并同类项练习题汇总带答案

初一合并同类项练习题汇总带答案在初一数学的学习中,合并同类项是一个重要的知识点。

为了帮助同学们更好地掌握这一内容,下面为大家汇总了一些相关的练习题,并附上详细的答案解析。

一、基础练习题1、 3x + 2x =答案:5x解析:3 个 x 加上 2 个 x 等于 5 个 x。

2、 5y 3y =答案:2y解析:5 个 y 减去 3 个 y 等于 2 个 y。

3、 2a + 3a 5a =答案:0解析:2 个 a 加上 3 个 a 等于 5 个 a,再减去 5 个 a 就等于 0。

4、 4b 2b + 3b =答案:5b解析:4 个 b 减去 2 个 b 等于 2 个 b,再加上 3 个 b 就等于 5 个 b。

5、 6x²+ 3x²=答案:9x²解析:6 个 x²加上 3 个 x²等于 9 个 x²。

6、 8y² 5y²=答案:3y²解析:8 个 y²减去 5 个 y²等于 3 个 y²。

7、 5a²+ 2a 3a²=答案:2a²+ 2a解析:5 个 a²减去 3 个 a²等于 2 个 a²,再加上 2 个 a 不变。

8、 7b² 4b²+ 5b =答案:3b²+ 5b解析:7 个 b²减去 4 个 b²等于 3 个 b²,5 个 b 不变。

二、提高练习题1、 3x²+ 2xy 5x²+ 4xy =答案:-2x²+ 6xy解析:3 个 x²减去 5 个 x²等于-2 个 x²,2 个 xy 加上 4 个 xy 等于 6 个 xy 。

2、 5y² 3y + 2y²+ 5y =答案:7y²+ 2y解析:5 个 y²加上 2 个 y²等于 7 个 y²,-3 个 y 加上 5 个 y 等于 2 个 y 。

七年级数学上册《合并同类项》练习题

七年级数学上册《合并同类项》练习题

《合并同类项》练习一一、选择题1 .下列各组中,不是同类项的是A 、3和0B 、2222R R ππ与C 、xy 与2pxyD 、11113+--+-n n n n x y y x 与 2 .下列各对单项式中,不是同类项的是( )A.0与31 B.23n m x y +-与22m n y x + C.213x y 与225yx D.20.4a b 与20.3ab 3 .如果23321133a b x y x y +--与是同类项,那么a___、b ______4 .下列各组中的两项不属于同类项的是 ( )A.233m n 和23m n -B.5xy 和5xyC.-1和14D.2a 和3x 5 .已知代数式y x 2+的值是3,则代数式142++y x 的值是A.1B.4C. 7D.不能确定6.一个两位数是a ,还有一个三位数是b ,如果把这个两位数放在这个三位数的前面,组成一个五位数,则这个五位数的表示方法是 ( )b a +10 B.b a +100 C.b a +1000 D.b a +二、填空题7.写出322x y -的一个同类项_______________________.8.单项式113a b a x y +--与345y x 是同类项,则a b -的值为_________。 9.已知622x y 和313m n x y -是同类项,则29517m mn --的值是_____________. 10.某公司员工,月工资由m 元增长了10%后达到_______元。11.判断下列单项式是同类项的是 .(1) 3x 与5x (2) 3a 与2a 2 (3) 5xy 2与2xy 2(4) -1与6 (5) 3a 与2ab (6) x 与2三、用不同的标识分别标出下列多项式的同类项(1)3x-4y-2x+y (2)5ab -4a ²b ² +3ab ² -3ab -ab ² +6a ²b ²同类项练习二1填空:若 571b a m 与n b a 3109-是同类项,则m= ; n= . 如果23k x y x y -与是同类项,那么k = .如果3423x y a b a b -与是同类项,那么x = . y = .2、判断题:(对的画“√”,错的画“×”)(1)-41ab 与0.25ba 不是同类项;( )(2)y x 232与232xy -是同类项;( )(3)2mn 与2m 不是同类项;( ) (4)n n y y 3121与是同类项;( ) (5)23与32不是同类项;( ) (6)在多项式中,如果两项所含字母相同,并且次数也相同,那么这两项是同类项.( )3.单项式52a 2与5n a n 是同类项,则n 等于 ( )(A )2 (B )3 (C )2或3 (D )不确定4.已知4x 5y 2与-3x 3m y 2是同类项,则代数式12m -24的值是( )(A )-3 (B )-5 (C )-4 (D )-65、如果123237x y a b a b +-与是同类项,那么x = . y = . 如果232634k x y x y -与是同类项,那么k = .如果k y x 23与2x -是同类项,那么k = .如果-3x 2y 3k 与4x 2y 6是同类项,则k = .如果47b a x 和y b a 597-是同类项,则x y 53-的值是__________________. 6.在9)62(22++-+b ab k a 中,不含ab 项,则k=7.若22+k k y x 与n y x 23的和未5n y x 2,则k= ,n=8. 若-3x m-1y 4与2n 2y x 31+是同类项,求m,n.。

合并同类项50题(有答案)

合并同类项50题(有答案)

合并同类项50题(有答案)题目1:合并同类项:3x + 2x - 5x解答:3x + 2x - 5x = (3 + 2 - 5)x = 0x = 0题目2:合并同类项:4y + 7y - 2y解答:4y + 7y - 2y = (4 + 7 - 2)y = 9y题目3:合并同类项:2a^2 + 5a^2 - 3a^2解答:2a^2 + 5a^2 - 3a^2 = (2 + 5 - 3)a^2 = 4a^2题目4:合并同类项:6x^2y - 3x^2y + 2x^2y解答:6x^2y - 3x^2y + 2x^2y = (6 - 3 + 2)x^2y = 5x^2y题目5:合并同类项:8xy^2 - 2xy^2 + 3xy^2解答:8xy^2 - 2xy^2 + 3xy^2 = (8 - 2 + 3)xy^2 = 9xy^2题目6:合并同类项:-5a^3b + 2a^3b - 4a^3b解答:-5a^3b + 2a^3b - 4a^3b = (-5 + 2 - 4)a^3b = -7a^3b 题目7:合并同类项:3x^2 - 2x^2 + 6x^2解答:3x^2 - 2x^2 + 6x^2 = (3 - 2 + 6)x^2 = 7x^2题目8:合并同类项:4xy - 3xy + 5xy解答:4xy - 3xy + 5xy = (4 - 3 + 5)xy = 6xy题目9:合并同类项:7a^2b^2 - 2a^2b^2 + 3a^2b^2解答:7a^2b^2 - 2a^2b^2 + 3a^2b^2 = (7 - 2 + 3)a^2b^2 =8a^2b^2题目10:合并同类项:-6x^3y^2 + 4x^3y^2 - 2x^3y^2解答:-6x^3y^2 + 4x^3y^2 - 2x^3y^2 = (-6 + 4 - 2)x^3y^2 = -4x^3y^2题目11:合并同类项:3a + 2a - 4a + 5a解答:3a + 2a - 4a + 5a = (3 + 2 - 4 + 5)a = 6a题目12:合并同类项:-2b - 3b + 7b - 4b解答:-2b - 3b + 7b - 4b = (-2 - 3 + 7 - 4)b = -2b题目13:合并同类项:5x^2 + 6x^2 - 3x^2 + 2x^2解答:5x^2 + 6x^2 - 3x^2 + 2x^2 = (5 + 6 - 3 + 2)x^2 =10x^2题目14:合并同类项:8xy - 2xy + 3xy - 6xy解答:8xy - 2xy + 3xy - 6xy = (8 - 2 + 3 - 6)xy = 3xy题目15:合并同类项:-3a^2b + 2a^2b - 4a^2b + 6a^2b解答:-3a^2b + 2a^2b - 4a^2b + 6a^2b = (-3 + 2 - 4 + 6)a^2b = 1a^2b = ab解答:5x^3 - 3x^3 + 2x^3 - 6x^3 = (5 - 3 + 2 - 6)x^3 = -2x^3题目17:合并同类项:4y^2 - 2y^2 + 7y^2 - 3y^2解答:4y^2 - 2y^2 + 7y^2 - 3y^2 = (4 - 2 + 7 - 3)y^2 = 6y^2题目18:合并同类项:-6a^3 + 2a^3 - 4a^3 + 5a^3解答:-6a^3 + 2a^3 - 4a^3 + 5a^3 = (-6 + 2 - 4 + 5)a^3 = -3a^3题目19:合并同类项:3x^2y - 2x^2y + 5x^2y - 4x^2y解答:3x^2y - 2x^2y + 5x^2y - 4x^2y = (3 - 2 + 5 - 4)x^2y = 2x^2y题目20:合并同类项:7xy^2 - 3xy^2 + 4xy^2 - 2xy^2解答:7xy^2 - 3xy^2 + 4xy^2 - 2xy^2 = (7 - 3 + 4 - 2)xy^2 = 6xy^2题目21:合并同类项:-5a^2b + 2a^2b - 4a^2b + 3a^2b解答:-5a^2b + 2a^2b - 4a^2b + 3a^2b = (-5 + 2 - 4 + 3)a^2b = -4a^2b题目22:合并同类项:3x^3 - 2x^3 + 6x^3 - 4x^3解答:3x^3 - 2x^3 + 6x^3 - 4x^3 = (3 - 2 + 6 - 4)x^3 = 3x^3解答:4y^2 - 3y^2 + 7y^2 - 2y^2 = (4 - 3 + 7 - 2)y^2 = 6y^2题目24:合并同类项:-6a^3 + 2a^3 - 4a^3 + 5a^3解答:-6a^3 + 2a^3 - 4a^3 + 5a^3 = (-6 + 2 - 4 + 5)a^3 = -3a^3题目25:合并同类项:3x^2y - 2x^2y + 5x^2y - 4x^2y解答:3x^2y - 2x^2y + 5x^2y - 4x^2y = (3 - 2 + 5 - 4)x^2y = 2x^2y题目26:合并同类项:7xy^2 - 3xy^2 + 4xy^2 - 2xy^2解答:7xy^2 - 3xy^2 + 4xy^2 - 2xy^2 = (7 - 3 + 4 - 2)xy^2 = 6xy^2题目27:合并同类项:-5a^2b + 2a^2b - 4a^2b + 3a^2b解答:-5a^2b + 2a^2b - 4a^2b + 3a^2b = (-5。

七上计算:合并同类项50题(含答案)

七上计算:合并同类项50题(含答案)

合并同类项50题(一)1.5279a b a b --++ 2.223462x y y x -++.3.22753268x x x x --+-+4.12523a b a b ++-.5.22221350.7544ab a b a b ab --+6.322383649a a b a b a -+-7.223254xy y xy y --+-8.22676598a a a a +----9.222243224a b ab a b ab ++-+-.10.2223465x x x x -+--11.22223x xy x xy --+ 12.2267946a b a b +-+-+13.722a b a b +--. 14.222233224y x xy x y +---.15.2222324332x xy y xy y x +--+-16.22224335ab a b ab a b -+-17.22223567x y xy xy x y -+-18.2274233a a a a +-++19.3245a a --+.20.3233354229x x x x x x -+--+++-21.22222317326mn n m mn n m --+ 22.2332572x y x x x y -+--+23.2213(24)2(5)2x x x x ---+-+-. 24.2212(2)(612)102x y x y ---+.25.2(53)3(3)a a b a b +---26.23(2)m n --27.13(2)2(4)20092x y x y ---++.28.()(43)(53)a b a b c a b c --+---+-.29.222294(23)4m m mn n n --++.30.222212()(3)2x y x x x y +--.31.22225(3)(3)a b ab ab a b --+ 32.221[7(43)3]2x x x x ----33.22(24)(51)a a a a -+--- 34.22(4)8m mn n n ---.35.2242(231)a b ab a b ab +-+-36.116(1)(21)23x x +--37.[5(2)2]x y x z y --+-38.224(32)(21)x x x x +-+--.39.3(34)x -+40.22(212)(1)a a a a -+--+41.43[3(42)8]x x x ---+ 42.223(2)2(3)a b b a b b +--43.2()2()a a b a b ++-+ 44.22222(3)(5)1a b ab ab a b --++45.32234(3)(25)a b b a --+-+46.3(1)(5)x x ---47.22213(54)62a a a a a -+-+48.22(621)2(342)a a a a +---+49.223(2)2(3)a ab ab b ---+50.已知23A x =-,21312B x x =--,求2A B -的值.合并同类项50题(一)参考答案与试题解析1.计算:5279a b a b --++【解答】解:5279a b a b --++(57)(29)a a b b =-++-+27a b =+.2.化简:223462x y y x -++.【解答】解:原式223462x y y x =-++22(32)(46)x x y y =++-+252x y =+.3.22753268x x x x --+-+【解答】解:原式235x x =-+.4.12523a b a b ++-. 【解答】解:原式12(5)()23a ab b =++- 11123a b =+. 5.22221350.7544ab a b a b ab --+ 【解答】解:原式222213(0.75)(5)44ab ab a b a b =+-+ 22234ab a b =- 6.322383649a ab a b a -+- 【解答】解:322383649a ab a b a -+- 33228(3)(64)9a a ab a b =-+-+ 321929a ab =-. 7.化简:223254xy y xy y --+-【解答】解:223254xy y xy y --+-22(35)(24)xy xy y y =-+-+226xy y =-.8.化简:22676598a a a a +----【解答】解:原式22(65)(79)(68)a a a a =-+--+2214a a =-+-.9.合并同类项:222243224a b ab a b ab ++-+-.【解答】解:222243224a b ab a b ab ++-+-2222(42)(34)(2)a a b b ab ab =-+++-2227a b ab =++.10.合并同类项:2223465x x x x -+--【解答】解:原式22(24)(36)5x x x x =++---2695x x =--.11.化简:22223x xy x xy --+【解答】解:原式22223x x xy xy =--+22(2)(23)x x xy xy =-+-+2x xy =-+.12.2267946a b a b +-+-+【解答】解:原式22(64)(7)(96)a a b b =++-+-+21063a b =+-.13.化简:722a b a b +--.【解答】解:722a b a b +--(72)(12)a b =-+-5a b =-.14.合并同类项:222233224y x xy x y +---.【解答】解:原式22(32)2(34)x xy y =--+-222x xy y =--15.2222324332x xy y xy y x +--+-【解答】解:原式2222(32)(23)(43)x xy y x xy y =-+-+-+=--. 16.22224335ab a b ab a b -+-【解答】解:原式22224335ab ab a b a b =+--2278ab a b =-.17.化简:22223567x y xy xy x y -+-【解答】解:原式2222(37)(65)4x y xy x y xy =-+-=-+.18.2274233a a a a +-++【解答】解:原式22(72)(43)3a a a a =-+++2573a a =++.19.计算;3245a a --+.【解答】解:3245a a --+(34)(25)a a =-+-+3a =-+.20.3233354229x x x x x x -+--+++-【解答】解:3233354229x x x x x x -+--+++-3332(32)5(2)(49)x x x x x x =-++++-+--2513x x =+-.21.22222317326mn n m mn n m --+ 【解答】解:原式22317(1)326mn =--+ 283mn =-. 22.2332572x y x x x y -+--+【解答】解:233223572322x y x x x y x y x -+--+=--.23.去括号,合并同类项:2213(24)2(5)2x x x x ---+-+-.【解答】解:原式2223612210151611x x x x x x =-++-+-=-++.24.先去括号,再合并同类项:2212(2)(612)102x y x y ---+. 【解答】解:2212(2)(612)102x y x y ---+ 22243610x y x y =--++2210x y =-++.25.去括号,合并同类项:2(53)3(3)a a b a b +---【解答】解:2(53)3(3)a a b a b +---10639a a b a b =+--+83a b =+.26.化简:23(2)m n --【解答】解:原式236m n =-+.27.去括号,并合并同类项:13(2)2(4)20092x y x y ---++. 【解答】解:13(2)2(4)2009638200914220092x y x y x y x y x y ---++=-+--+=-++. 28.去括号,合并同类项:()(43)(53)a b a b c a b c --+---+-.【解答】解:原式435325a b a b c a b c a b =-++----+=--.29.计算:222294(23)4m m mn n n --++.【解答】解:原式2222981244m m mn n n =-+-+212m mn =+.30.化简:222212()(3)2x y x x x y +--. 【解答】解:原式222223x y x x x y =+-+2232x y x =-.31.化简:22225(3)(3)a b ab ab a b --+【解答】解:原式22221553a b ab ab a b =---22126a b ab =-.32.计算:221[7(43)3]2x x x x ----【解答】解:原式2217(43)32x x x x =-+-+ 22174332x x x x =-+-+ 27332x x =--. 33.计算:22(24)(51)a a a a -+---【解答】解:原式222451a a a a =-+-++, 2653a a =-++.34.化简:22(4)8m mn n n ---.【解答】解:原式2288m mn n n =-+- 22m mn =-.35.计算:2242(231)a b ab a b ab +-+-.【解答】解:原式224462a b ab a b ab =+--+ 52ab =-+.36.116(1)(21)23x x +-- 【解答】解:原式213633x x =+-+ 71933x =+. 37.[5(2)2]x y x z y --+-【解答】解:原式(1052)x y x z y =----, 1052x y x z y =-+++,115x y z =++.38.化简:224(32)(21)x x x x +-+--.【解答】解:原式2243221x x x x =+-+-+, 2224231x x x x =-+-++,224x x =-++.39.3(34)x -+【解答】解:3(34)912x x -+=--.40.化简:22(212)(1)a a a a -+--+【解答】解:原式222121a a a a =-+-+- 2a a =+.41.43[3(42)8]x x x ---+【解答】解:原式439(42)24x x x =-+-- 43361824x x x =-+--1712x =-+.42.化简:223(2)2(3)a b b a b b +--【解答】解:原式223626a b b a b b =+-+ 212a b b =+.43.化简:2()2()a a b a b ++-+【解答】解:原式222a a b a b =++-- a b =-.44.22222(3)(5)1a b ab ab a b --++【解答】解:原式22226251a b ab ab a b =---+ 22571a b ab =-+45.化简:32234(3)(25)a b b a --+-+【解答】解:原式322341225a b b a =-+-+ 3210a b =+.46.化简:3(1)(5)x x ---【解答】解:原式335x x =--+22x =+.47.计算:22213(54)62a a a a a -+-+ 【解答】解:原式222135462a a a a a =---+ 21112a a =--. 48.化简:22(621)2(342)a a a a +---+【解答】解:原式22621684a a a a =+--+- 22107a a =+-.49.化简:223(2)2(3)a ab ab b ---+【解答】解:原式22(36)(62)a ab ab b =---+ 223662a ab ab b =-+-2232a b =-.50.已知23A x =-,21312B x x =--,求2A B -的值. 【解答】解:221232(31)2A B x x x -=---- 61x =-.。

初一数学 合并同类项同步练习及答案

初一数学 合并同类项同步练习及答案

合并同类项学习检测(一)1.下面解一元一次方程的变形对不对?如果不对,指出错在哪里,并改正.(1)从3x-8=2,得到3x=2-8; (2)从3x=x-6,得到3x-x=6.2.下列变形中:①由方程=2 去分母,得x-12=10; ②由方程x= 两边同除以,得x=1;③由方程6x-4=x+4 移项,得7x=0; ④由方程2- 两边同乘以6,得12-x-5=3(x+3).错误变形的个数是()个.A.4 B.3 C.2 D.13.若式子5x-7 与4x+9 的值相等,则x 的值等于().A.2 B.16 C.6 D.44.合并下列式子,把结果写在横线上.(1)x-2x+4x= ; (2)5y+3y-4y= ; (3)4y-2.5y-3.5y= .5.解下列方程.(1)6x=3x-7 (2)5=7+2x (3)y- = y-2 (4)7y+6=4y-6.根据下列条件求x 的值: (1)25 与x 的差是-8.(2)x 的与8 的和是2.7.如果方程3x+4=0 与方程3x+4k=8 是同解方程,则k= .8.如果关于y 的方程3y+4=4a 和y-5=a 有相同解,则a 的值是.9.一桶色拉油毛重8 千克,从桶中取出一半油后,毛重4.5 千克,桶中原有油多少千克?10.如图所示,天平的两个盘内分别盛有50 克,45 克盐,问应该从盘A 内拿出多少盐放到盘B 内,才能使两盘内所盛盐的质量相等.11.小明每天早上7:50 从家出发,到距家1000 米的学校上学,每天的行走速度为80 米/分.一天小明从家出发5 分后,爸爸以180 米/分的速度去追小明,并且在途中追上了他.(1)爸爸追上小明用了多长时间?(2)追上小明时距离学校有多远?12.已知y1=2x+8,y2=6-2x.(1)当x 取何值时,y1=y2? (2)当x 取何值时,y1 比y2 小13.已知关于x 的方程x=-2 的根比关于x 的方程5x-2a=0 的根大2,求关于x 的方程-15=0 的解.14.编写一道应用题,使它满足下列要求:(1)题意适合一元一次方程;(2)所编应用题完整,题目清楚,且符合实际生活.15.如图3-2 是某风景区的旅游路线示意图,其中B,C,D 为风景点,E 为两条路的交叉点,图中数据为相应两点间的路程(单位:千米).一学生从A 处出发,以2 千米/时的速度步行游览,每个景点的逗留时间均为0.5 小时.(1)当他沿路线A—D—C—E—A 游览回到A 处时,共用了 3 小时,求CE 的长.(2)若此学生打算从A 处出发,步行速度与各景点的逗留时间保持不变,且在最短时间内看完三个景点返回到 A 处,请你为他设计一条步行路线,并说明这样设计的理由(不考虑其他因素).参考答案:1.(1)题不对,-8 从等号的左边移到右边应该改变符号,应改为3x=2+8.(2)题不对,-6 在等号右边没有移项,不应该改变符号,应改为3x-x=-6.2.B [点拨:方程x= ,两边同除以,得x= )3.B [点拨:由题意可列方程5x-7=4x+9,解得x=16)4.(1)3x (2)4y (3)-2y5.(1)6x=3x-7,移项,得6x-3x=-7,合并,得3x=-7,系数化为1,得x=- .(2)5=7+2x,即7+2x=5,移项,合并,得2x=-2,系数化为1,得x=-1.(3)y- = y-2,移项,得y- y=-2+ ,合并,得y=- ,系数化为1,得y=-3.(4)7y+6=4y-3,移项,得7y-4y=-3-6,合并同类项,得3y=-9,系数化为1,得y=-3.6.(1)根据题意可得方程:25-x=-8,移项,得25+8=x,合并,得x=33.(2)根据题意可得方程:x+8=2,移项,得x=2-8,合并,得x=-6,系数化为1,得x=-10.7.k=3 [点拨:解方程3x+4=0,得x=- ,把它代入3x+4k=8,得-4+4k=8,解得k=3]8.19 [点拨:∵3y+4=4a,y-5=a 是同解方程,∴y= =5+a,解得a=19]9.解:设桶中原有油x 千克,那么取掉一半油后,余下部分色拉油的毛重为(8-0.5x)千克,由已知条件知,余下的色拉油的毛重为4.5 千克,因为余下的色拉油的毛重是一个定值,所以可列方程8-0.5x=4.5.解这个方程,得x=7.答:桶中原有油7 千克.10.解:设应该从盘A 内拿出盐x 克,可列出表格:盘A 盘B 原有盐(克)50 45 现有盐(克)50-x 45+x 设应从盘A 内拿出盐x 克放在盘B 内,则根据题意,得50-x=45+x.解这个方程,得x=2.5,经检验,符合题意.答:应从盘A 内拿出盐2.5 克放入到盘 B 内.11.解:(1)设爸爸追上小明时,用了x 分,由题意,得180x=80x+80×5 ,移项,得100x=400.系数化为1,得x=4.所以爸爸追上小明用时4 分钟.(2)180×4=720(米),1000-720=280(米).所以追上小明时,距离学校还有280 米.12.(1)x=- [点拨:由题意可列方程2x+8=6-2x,解得x=- ] (2)x=- [点拨:由题意可列方程6-2x-(2x+8)=5,解得x=- ] 13.解:∵ x=-2,∴x=-4.∵方程x=-2 的根比方程5x-2a=0 的根大2,∴方程5x-2a=0 的根为-6.∴5×(-6)-2a=0,∴a=-15.∴-15=0.∴x=-225.14.本题开放,答案不唯一.15.解:(1)设CE 的长为x 千米,依据题意得1.6+1+x+1=2(3-2×0.5 )解得x=0.4,即CE 的长为0.4 千米.(2)若步行路线为A—D—C—B—E—A(或A—E—B—C—D—A),则所用时间为( 1.6+1+1.2+0.4+1)+3×0.5=4.1 (小时);若步行路线为A—D—C—E—B—E—A(或A—E—B—E—C—D—A),则所用时间为(1.6+1+0.4+0.4×2+1)+3×0.5=3.9 (小时).故步行路线应为A—D—C—E—B—E—A(或A—E—B—E—C—D—A).合并同类项学习检测(二)一、选择题1 .下列式子中正确的是( ) A.3a+2b =5ab B. 3x2 + 5x 5 = 8x 7C. 4x 2 y - 5xy 2 =-x 2 yD.5xy-5yx =02 .下列各组中,不是同类项的是A 、3 和 0B 、2πR 2与π 2 R 2C 、xy 与 2pxyD 、- x n +1 y n -1与3y n -1 x n +13 .下列各对单项式中,不是同类项的是()1A.0 与B. -3x n +2 y m 与2 y m x n +2 3C.13x 2 y 与25 yx 2D. 0.4a2b 与0.3ab 2 4 .如果 1 x a +2 y 3与- 3x 3 y 2 b -1 是同类项,那么 a 、b 的值分别是()3 ⎧a = 1 ⎧a = 0 ⎧a = 2 ⎧a = 1 A. ⎨b = 2 B. ⎨ = 2 C. ⎨ = 1 D. ⎨b = 1 ⎩ ⎩b ⎩b ⎩5 .下列各组中的两项不属于同类项的是 ( )A. 3m 2n 3 和-m 2n 3xy 1 B. 和 5xy C.-1 和 D. a 2 和 x 3 5 46 .下列合并同类项正确的是 ( ) (A) 8a - 2a = 6 ;(B) 5x 2 + 2x 3 = 7x 5 ;(C) 3a 2b - 2ab 2 = a 2b ; (D) - 5x 2 y - 3x 2 y = -8x 2 y7 .已知代数式 x + 2 y 的值是 3,则代数式2x + 4y +1的值是A.1B.4C. 7D.不能确定8 . x 是一个两位数, y 是一个一位数,如果把 y 放在 x 的左边,那么所成的三位数表示为 A. yx B. y + x C.10 y + x D.100 y + x9 .某班共有 x 名学生,其中男生占 51%,则女生人数为()A 、49%xB 、51%xC 、 x49%x D 、 51%10.一个两位数是a ,还有一个三位数是b ,如果把这个两位数放在这个三位数的前面,组成一个五位数,则这个五位数的表示方法是 ( )10a +b二、填空题B.0a + bC.0a + bD. a + b11.写出-2x 3 y 2 的一个同类项.12.单项式-1x a+b y a-1 与5x4 y3 是同类项,则a -b 的值为。313.若-4x a y +x2 y b =-3x2 y ,则a +b = .14.合并同类项: 3a2b - 3ab + 2a2b + 2ab =_.15.已知2x6 y2 和-1 x3m y n 是同类项,则9m2 - 5mn -17 的值是.316.某公司员工,月工资由m 元增长了10%后达到元三、解答题17.先化简,再求值: 3m -(52 2m -1) + 3(4 -m) ,其中m =-3.18.化简: 7a2b + (-4a2b + 5ab2 ) - (2a2b - 3ab2 ) .四、合并同类项⑴3x2-1-2x-5+3x-x2⑵-0.8a2b-6ab-1.2a2b+5ab+a2b参考答案一、选择题 1 .D 2 .C 3 .D 4 .A 5 .D 6 .D 7 .C8 .D9 .A 10.C 二、填空题11. 2x 3 y 2 (答案不唯一) 12.4; 13.3 14. 5a 2b - ab ; 15. -1 16.1.1m三、解答题3 5 3 5 17.解: m - ( 2 2 m -1) + 3(4 - m ) = m -2 m + 1 + 12 - 3m ( )= - 4m +13 2当 m = -3时, - 4m +13 = -4 ⨯(-3) +13 = 2518. 7a 2b + (-4a 2b + 5ab 2 ) - (2a 2b - 3ab 2 ) = 7a 2b - 4a 2b + 5ab 2 - 2a 2b + 3ab 2= (7 - 4 - 2)a2b + (5 + 3)ab2 ( )= a2b + 8ab2四、合并同类项⑴2x2+x-6 ⑵-a2b-ab。

七年级数学代数式合并同类项整式加减练习题(附答案)

七年级数学代数式合并同类项整式加减练习题(附答案)

七年级数学代数式合并同类项整式加减练习题一、单选题1.下列整式的加减,结果是单项式的是( )A.22(341)(341)k k k k +---+B.3232(1)2(1)p p p p +--+-C.23231233(133)(1)3322m n m m n m -++--- D.222(56)2(33)a a a a a -+-+二、解答题2.列式并计算: 1-减去56-与38-的和,所得的差是多少? 3、列式计算(1) 与6的和乘以-4 (2) 的倒数与-5的和的平方4、列式计算.(1)-15的相反数与-5的绝对值的商的相反数是多少?(2)一个数的 4 13倍是-13,这个数是多少?5、列式计算:(1)1.3与 的和除以3与的差,商是多少?(2)在一个除法算式里,商和余数都是5,并且被除数、除数、商和余数的和是81。

被除数、除数各是什么数?6、整式加减计算题:(1)3a 2-2a-4a 2-7a;(2)3a 2+5-2a 2-2a+3a-8;(3)(7m 2n-5mn)-(4m 2n-5mn);(4) 13(9a-3)+2(a+1).7.整式的运算1.化简求值:22112122333x x y x y ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中23x =,2y =-;2.化简求值:2222332232a b ab ab a b ab ab ⎡⎤⎛⎫--++ ⎪⎢⎥⎝⎭⎣⎦-,其中a ,b 满足()21402a b -++=. 三、计算题8.计算:()341162|3|1--+÷-⨯-9.计算下列各式(1)()()1218723--+-+- (2) 11224463⎛⎫+-⨯ ⎪⎝⎭10.计算题(1)20(14)(18)13-+---- (2)()1 850.254⎛⎫+-+- ⎪⎝⎭(3)772(6)483÷-⨯- (4)3571491236⎛⎫--+÷ ⎪⎝⎭ 11.计算题(1)()517248612⎛⎫-+-⨯- ⎪⎝⎭(2)()()4211235⎡⎤---⨯--⎣⎦ 12.计算18361129⎛⎫-⨯-- ⎪⎝⎭. 13.计算:321(1)[2(3)]4--⨯--. 14.7511()(36)9612++⨯15.计算: 1.()1211363912⎛⎫-+⨯- ⎪⎝⎭; 2.()()3211341⎡⎤⨯---⎣-⎦. 16.计算:(1)23122(3)(1)6293--⨯-÷-; (2)4199[32(4)](1416)41313--⨯-÷-. 17.计算:()()22018110.22024---⨯-+- 18.计算:4211(10.5)2(3)3⎡⎤---⨯⨯--⎣⎦ 19.计算或化简:(1)32(17)|23|-----; (2)33(2)()424-⨯÷-⨯; (3)4211(10.5)[2(3)]3---⨯⨯--. (1)32(17)|23|-----321723=-+-5517=-+38=-(2)33(2)()424-⨯÷-⨯ 342423=⨯⨯⨯ 16=(3)4211(10.5)[2(3)]3---⨯⨯-- 111(29)23=--⨯⨯- 11(7)6=--⨯- 716=-+16= 20.计算或化简:1. 32(17)23-----2. 33(2)()424-⨯÷-⨯ 3. 4211(10.5)[2(3)]3---⨯⨯-- 21.计算:1. ()()1218715-+----2. 323531415642⎡⎤⎛⎫⎛⎫⎛⎫-÷--⨯---⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦22.计算1557()(36)29612-+-⨯- 23.计算: ()235363412⎛⎫-+⨯- ⎪⎝⎭. 24.计算:1. ()2718732-+--;2. 42112(3)6⎡⎤--⨯--⎣⎦; 列式并计算:25、列式并计算:(1)与的差乘以﹣3;(2)﹣4,5,﹣3三数的和比这三个数的绝对值的和小多少四、填空题26、根据下列语句列式并计算:(1) 与-4的差的平方:( );(2)-2与的商加上3的相反数:( )。

七年级数学合并同类项同步练习及答案

七年级数学合并同类项同步练习及答案

七年级数学合并同类项同步练习及答案篇一:七年级数学合并同类项同步练习1、下列代数式中,哪些是整式?-3x ,5xy +11121x , x-7, , x+. 2x332、写出下列单项式的系数和次数① -xy ② ab-0.5xy④ -3.写出下列多项式是几次几项式?a)知识平台1.同类项的意义. 2.合并同类项的意义. 3.合并同类项的方法.思维点击1.判断同类项的标准有两条:①所含字母相同;②相同字母的指数也分别相等,?两条标准缺一不可.例如:3xy与3xy虽然所含字母相同,但在这两个单项式中,x的指数不相等,y的值数也不相等,所以不是同类项.-2xy与3yx两个项所含字母相同,字母x,y?的指数也相等,所以是同类项. 2.合并同类项的要点是:①字母和字母的指数不变;②同类项的系数相加(合并).例如:合并同类项3xy和5xy,字母x、y及x、y的指数都不变,?只要将它们的系数3和5相加,即3xy+5xy=(3+5)xy=8xy.考点浏览☆考点了解同类项的意义,会合并同类项.222222332222a211122222ab-5a-7b② -xy+3x+2xy- 2231k121k12xy与-xy是同类项,则k=______,xy+(-xy)=________. 33331k12【解析】 xy与-xy是同类项,这两项中x的指数必须相等,所以k=2;?合并同类项,只需将它33111k12们的系数相加,因为与-互为相反数,它们的和为零,所以xy+(-xy)=0.答案是:2 0.3333例1 如果例2 合并下列多项式中的同类项.(1)4xy-8xy+7-4xy+10xy-4;(2)a-2ab+b+a+2ab+b.【解析】(1)初学时用不同记号标出各同类项,会减少运算的错误;(2)常数项都是同类项;(3)两个同类项的系数互为相反数,则合并后结果为0.答案是:(1)原式=(4xy-4xy)+(-8xy+10xy)+(7-4)mengchengxianxinjiaoyuzhongxin222222222222=(4-4)xy+(-8+10)xy+3=2xy+3;(2)原式=(a+a)+(-2ab+2ab)+(b+b)=2a+2b.在线检测1.将如图两个框中的同类项用线段连起来: 2.当m=________时,-xb与 k232m22222222213xb是同类项. 43.如果5ab与-4ab是同类项,那么5ab+(-4ab)=_______. 4.直接写出下列各式的结果:k21122xy+xy=_______;(2)7ab+2ab=________;(3)-x-3x+2x=_______;221212222(4)xy-xy-xy=_______;(5)3xy-7xy=________.23(1)-5.选择题:(1)下列各组中两数相互为同类项的是() A.22122222xy与-xy; B.0.5ab与0.5ac; C.3b与3abc;D.-0.1mn与mn 32(2)下列说法正确的是()A.字母相同的项是同类项 B.只有系数不同的项,才是同类项 C.-1与0.1是同类项D.-xy与xy是同类项 6.合并下列各式中的同类项:(1)-4xy-8xy+2xy-3xy;(2)3x-1-2x-5+3x-x;(3)-0.8ab-6ab-1.2ab+5ab+ab;(4)5yx-3xy-7xy+6xy-12xy+7xy+8xy. 7.求下列多项式的值: (1)(2)3xy+2xy-7xy-mengchengxianxinjiaoyuzhongxin22222222222222222222212211a-8a-+6a-a+,其中a=; 323423122xy+2+4xy,其中x=2,y=.243.4 合并同类项(答案) 1.略 2.略 3.ab4.(1)0 (2)9ab (3)-2x (4)5.(1)D (2)C6.(1)-2xy-11xy (2)2x+x-6 (3)-ab-ab (4)-xy+5xy7.(1)- mengchengxianxinjiaoyuzhongxin222222122xy (5)-4xy659 (2) 44篇二:初一数学《合并同类项》练习3.4合并同类项一、选择题1 .下列式子中正确的是()A.3a+2b=5abB.3x?5x?8xC.4x2y?5xy2??x2yD.5xy-5yx=0 2 .下列各组中,不是同类项的是A、3和0B、2?R与?RC、xy与2pxyD、?xn?1yn?1与3yn?1xn?1 3 .下列各对单项式中,不是同类项的是( )A.0与222257122B.?3xn?2ym与2ymxn?2 C.13x2y与25yx2 D.0.4ab与0.3ab 314 .如果xa?2y3与?3x3y2b?1是同类项,那么a、b的值分别是( )3?a?1?a?0?a?2?a?1A.? B.? C.? D.??b?1?b?2?b?2?b?15 .下列各组中的两项不属于同类项的是()A.3mn和?mnB.2323xy123和5xy C.-1和D.a和x456 .下列合并同类项正确的是 ( )235(A)8a?2a?6; (B)5x?2x?7x ;(C) 3ab?2ab?ab;(D)?5x2y?3x2y??8x2y 7 .已知代数式x?2y的值是3,则代数式2x?4y?1的值是A.1B.4C. 7D.不能确定2228 .x是一个两位数,y是一个一位数,如果把y放在x的左边,那么所成的三位数表示为A.yxB.y?xD.100y?xC.10y?x9 .某班共有x名学生,其中男生占51%,则女生人数为 ( )A、49%xB、51%xC、xx D、51%49%10.一个两位数是a,还有一个三位数是b,如果把这个两位数放在这个三位数的前面,组成一个五位数,则这个五位数的表示方法是( )10a?b B.100a?bC.1000a?bD.a?b二、填空题11.写出?2xy的一个同类项_______________________.3212.单项式-x13a?bya?1与5x4y3是同类项,则a?b的值为_________?13.若?4xay?x2yb??3x2y,则a?b?__________. 14.合并同类项:3a2b?3ab?2a2b?2ab?_______________.115.已知2x6y2和?x3myn是同类项,则9m2?5mn?17的值是_____________.316.某公司员工,月工资由m元增长了10%后达到_______元? 三、解答题 17.先化简,再求值:18.化简:7a2b?(?4a2b?5ab2)?(2a2b?3ab2).参考答案一、选择题1 .D2 .C3 .D4 .A5 .D6 .D7 .C8 .D9 .A10.C 二、填空题 11.2xy(答案不唯一)12.4; 13.314.5a2b?ab;15.?1 16.11.m 三、解答题17.解:335m?(m?1)?3(4?m),其中m??3. 223535m?(m?1)?3(4?m)=m?m?1?12?3m( )=?4m?132222当m??3时,?4m?13??4?(?3)?13?252222218.7ab?(?4ab?5ab)?(2ab?3ab)=7ab?4ab?5ab?2ab?3ab22=(7?4?2)ab?(5?3)ab( )=ab?8ab22222223.4合并同类项同步练习21:1. 判断下列各题中的两个项是不是同类项,是打√,错打? ⑴12xy与-3yx2 ( ) 322⑵ab与ab ( ) ⑶2abc与-2abc( ) (4)4xy与25yx ( ) (5)24 与-24 ( ) (6) x与2 ( ) 2. 2. 判断下列各题中的合并同类项是否正确,对打√,错打? (1)2x+5y=7y ( ) ( 2.)6ab-ab=6( ) (3)8xy?9xy?xy( )(4)332222531m?2m3? ( ) 22325(5)5ab+4c=9abc ( ) (6)3x?2x?5x ( ) (7) 4x?x?5x ( ) (8) 3ab?7ab??4ab () 3. 与2222212xy不仅所含字母相同,而且相同字母的指数也相同的是() 212122A.xzB. xyC.?yxD. xy2222224.下列各组式子中,两个单项式是同类项的是()22A.2a与aB.5ab 与abC. xy与xyD. 0.3mn与0.3xy5.下列计算正确的是()A.2a+b=2abB.3x?x?2C. 7mn-7nm=0D.a+a=a6.代数式-4ab与3ab都含字母,并且因此-4ab 与3ab是7.所含相同,并且也相同的项叫同类项。

(完整word版)合并同类项50题(有答案).doc

(完整word版)合并同类项50题(有答案).doc

合并同类项专项练习 50 题(一)一、选择题1 . 下列式子中正确的是( )A.3 a+2b =5abB.3x 25x 58x 7222xy-yxC. 4x y 5xyxyD.55 =02 . 下列各组中 , 不是同类项的是A 、 3 和 0 B、 2 R 2与 2 R 2C 、 xy 与 2pxyD 、x n 1 y n 1与3y n 1x n 13 .下列各对单项式中, 不是同类项的是 ( )A.0 与1B.3x n 2 y m 与 2 y m x n 2 C. 13x 2 y 与 25yx 2 D. 0.4a 2 b 与 0.3ab234 .如果1x a 2 y 3与 3x 3 y2b 1是同类项 , 那么 a 、 b 的值分别是 ( )3a 1 a 0a 2 a 1A.2B.C.bD.b 1bb 215 .下列各组中的两项不属于同类项的是( )A. 3m 2 n 3 和 m 2 n3B.xy5和 5xyC.-1和1D.a 2 和 x 346 .下列合并同类项正确的是( )(A) 8a 2a 6 ;(B)5x 22x 3 7x 5 ;(C) 3a 2 b2ab 2a 2b ; (D)5x 2 y 3x 2 y8x 2 y7 .已知代数式x 2 y 的值是 3, 则代数式 2x4y1的值是A.1B.4C. 7D. 不能确定8 . x 是一个两位数 ,y 是一个一位数 , 如果把 y 放在 x 的左边 , 那么所成的三位数表示为A. yxB. y xC.10 y xD.100 y x9 . 某班共有 x 名学生 , 其中男生占 51%,则女生人数为()A 、 49%xB、 51%xC、xD、x49%51%10. 一个两位数是 a , 还有一个三位数是 b , 如果把这个两位数放在这个三位数的前面, 组成一个五位数 , 则这个五位数的表示方法是 ( )10a b B. 100a b C. 1000a bD.a b二、填空题11.写出2x3 y2的一个同类项_______________________.12.单项式-1 xa b y a 1与5x4 y3是同类项, 则a b 的值为_________?313.若4x a y x2 y b 3x2 y , 则a b __________.14.合并同类项:3a2b 3ab 2a 2b 2ab _______________ .15 .已知2x6 y2和1 x3m y n是同类项, 则 9m2 5mn 17 的值是_____________. 316.某公司员工, 月工资由m元增长了10%后达到_______元 ?三、解答题17.先化简,再求值: 3 m2(5 m21) 3( 4 m) ,其中m 3 .18.化简 : 7 2 ( 4 2 5ab 2 ) (22 3 2).a b a b a b ab19.化简求值 : 5(32 b ab 2 ) ( a b 2 3 2 b ) 1 1a a , 其中 a ,b.2 320.先化简 , 后求值 :2(mn 3m2 ) [m 25( mn m 2 ) 2mn] ,其中 m 1, n 2 21.化简求值 : 5a2 [3a 2(2a 3) 4a 2 ] ,其中 a 1222.给出三个多项式 : 1x2 x , 1 x2 1 , 1 x2 3y ;2 3 2请你选择其中两个进行加法或减法运算, 并化简后求值 : 其中x1,y 2 . 23.先化简 , 再求值 : 5xy 8x2 12x2 4xy ,其中x 1 , y 2 .224.先化简 , 再求值 ?(5a 2-3b 2)+(a 2+b2)-(5a 2+3b2) 其中 a=-1 b=125.化简求值(-3 x2-4 y)-(2 x2-5 y+6)+( x2-5 y-1)其中x=-3 , y=-126.先化简再求值:(ab-3a2)-2b2-5ab-(a2-2ab),其中a=1,b=-2 ?27.有这样一道题 : “计算(2 x3 3x2 y 2xy 2 ) (x3 2xy 2 y3 ) ( x3 3x2 y y3 ) 的值,1x 1 1其中 x, y1?”甲同学把“”错抄成了“ x ”但他计算的结果也是2 2 2正确的 , 请你通过计算说明为什么?28.已知 : (x 2)2 | y 1| 0 ,求 2( xy2 x2 y) [2 xy 2 3(1 x2 y)] 2 的值? 2参考答案一、选择题1. D2. C3. D4. A5. D6. D7. C8. D9. A10.C二、填空题11.2x3y2(答案不唯一)12.4;13.314.5a2b ab ;15. 116.11.m三、解答题3m 51) 3(43m51 12 3m ( )= 4m 1317.解: ( m m) = m2 2 2 2当 m 3时, 4m 13 4 ( 3) 13 2518.7a2b ( 4a2 b 5ab 2 ) (2a 2b 3ab2 ) = 7a 2b 4a2 b 5ab 2 2a 2b 3ab2 =( 7 4 2)a 2b (5 3)ab 2 ( )= a 2b 8ab 219.解 :原式 = 2320.原式mn ,当 m 1, n2 时,原式 1 ( 2)2 ;21.原式 = 9a 2 a 6 ;-2;22. (1) ( 1 x2 x )+( 1 x2 3 y )= x2 x 3y2 2当 x 1, y 2 ,原式=( 1)2 ( 1) 3 2 6( 去括号 2 分 )(2)( 1x 2 x )-( 1 x 2 3y ) = x 3y ( 去括号 2 分 )22当 x 1, y 2 , 原式 = ( 1) 3 27 ( 1 x 2x )+( 1 x 2 1)= 5 x 2x1 523 66( 1x 2x )-( 1 x 2 1)= 1 x 2 x 1 1123 6 6 ( 1 x 23 y )+( 1 x 2 1)=5 x 2 3y 1 4723 66 ( 1 x 2 3 y )-( 1x 21)= 1 x 2 3y 1 312 3 6623.解 : 原式 5xy 8x 212 x 2 4xy5xy 4xy12x 2 8x 2 xy 4x 2当 x12 时 , 原式 =1 1 , y22 4222222222224.解 : 原式 =5a -3b +a +b -5a -3b=-5b +a当 a=-1 b=122=-5+1=-4原式 =- 5×1+(-1) 2=025. 33. 26 . -827.解 : ∵原式 = 2x 3 3x 2 y 2xy 2x 3 2xy 2y 3 x 3 3x 2 y y 3(2 1 1)x 3( 3 3) x 2 y ( 2 2) xy 2( 1 1) y 32 y 3∴此题的结果与 x 的取值无关 ?28 . 解 : 原 式 = 2xy 22x 2 y [2 xy 2 3 x 2 y] 2 = 2xy 2 2x 2 y 2xy 2 3 x 2 y 2=(2 2) xy 2 (2 1)x 2 y (3 2) = x 2 y 1∵ ( x 2)20 , | y1| 0 又∵ ( x 2) 2 | y 1 | 0 ∴ x2 , y11 2 22∴原式 = (2)2 1=32合并同类项专项练习 50 题(二)1. 判断下列各题中的两个项是不是同类项,是打√,错打 ⑴1x 2 y 与-3y x 2( )3⑵ ab 2 与 a 2b ( ) ⑶ 2a 2 bc 与 -2 ab 2 c( ) ( 4) 4xy 与 25yx ( ) (5)24 与-24 ( ) (6) x 2 与 22( )2. 判断下列各题中的合并同类项是否正确,对打√,错打(1) 2x+5y=7y ( ) ( 2.)6ab-ab=6( )(3)8x3y9xy 3x 3 y ()(4)5 m 3 2m 31()22(5)5ab+4c=9abc ( ) (6)3x 3 2x 25x 5()(7) 4x 2 x 2 5x 2( )(8)3a 2b 7ab 24ab() 3. 与1x 2 y 不仅所含字母相同,而且相同字母的指数也相同的是()21 x2 z1xyA. B.C.yx 2 D. xy 24.22下列各组式子中,两个单项式是同类项的是()A.2a 与 a2B.5a 2b 与 a 2 bC. xy与 x 2 yD. 0.3mn 2 与 0.3x y 25. 下列计算正确的是()A.2a+b=2abB.3x 2 x 22C. 7mn-7nm=0D.a+a= a 26. 代数式 -4a b 2 与 3 ab 2都含字母,并且都是一次,都是二次,因此 -4a b 2与 3 ab 2 是7. 所含 相同,并且也相同的项叫同类项。

初中数学专题合并同类项(含答案)

初中数学专题合并同类项(含答案)

4.5 合并同类项A 卷一、填空题:1、合并同类项:-x -3x = . 2、合并同类项:21b -0.5b = . 3、代数式-2x +3y 2+5x 中,同类项是 和 .二、选择题:4、下列各组代数式中,属于同类项的是( )A 、2x 2y 与2xy 2B 、xy 与-xyC 、2x 与2xyD 、2x 2与2y 25、下列各式中,合并同类项正确的是( )A 、-a+3a=2B 、x 2-2x 2=-xC 、2x +x=3xD 、3a+2b=5ab6、当a =-21,b =4时,多项式2a 2b -3a -3a 2b+2a 的值为( ) A 、2 B 、-2 C 、21 D 、-21 7、已知25x 6y 和5x 2m y 是同类项,m 的值为( )A 、2B 、3C 、4D 、2或38、合并同类项5x 2y -2x 2y 的结果是( )A 、3B 、3xy 2C 、3x 2yD 、-3x 2y三、解答题:9、合并同类项:⑴ 3f +2f -6f ⑵ x -y +5x -4y10、求代数式的值6x +2x 2-3x +x 2+1,其中x =3.B 卷一、填空题:1、若-3x 2y+ax 2y =-6x 2y ,则a = .2、若单项式21x 2y m 与-2x n y 3是同类项,则m = ,n = . 3、5个连续正整数,中间一个数为n ,则这5个数的和为 .二、选择题:4、下列计算正确的是( )A 、3a 2+2a=5a 2B 、a 2b +ab 2=2a 3b 3C 、-6x 2+x 2+5x 2=0D 、5m -2m =35、关于x 的多项式ax +bx 合并同类项后的结果为0,则下列说法正确的是( )A 、a 、b 都必为0B 、a 、b 、x 都必为0C 、a 、b 必相等D 、a 、b 必互为相反数6、已知2x m y 3与3xy n 是同类项,则代数式m -2n 的值是( )A 、-6B 、-5C 、-2D 、57、下列两项是同类项的是( )A 、-xy 2与2yx 2B 、-2x 2y 2与-2x 2C 、3a 2b 与-ba 2D 、2a 2与2b 28、将代数式25x y 2+2522xy y x 合并同类项,结果是( ) A 、21x 2y B 、21x 2y +5xy 2 C 、211x 2y D 、-21x 2y +x 2y +5xy 2 三、解答题:9、要使多项式mx 3+3nxy 2+2x 3-xy 2+y 不含二次项,求2m +3n 的值.10、把(a +b )看作一个因式,合并同类项4(a +b )2+2(a +b )-7(a +b )+3(a +b )2探究创新一、填空题:1、已知单项式3x 3y m 与-31x n -1y 2的和是单项式,则m = ,n = . 2、已知︱m+1︱+︱2-n ︱=0,则31x m+ n y 与-3xy 3m+2n 同类项(填“是”或“不是”).3、按规律填数-5,-2,1,4, , ,… …,第n 个数是 .二、选择题:4、一个三角形的底边增加10%,高减少10%,则这个三角形的面积( )A 、增大0.5%B 、减少1%C 、增大1%D 、不改变5、若代数式xy 2与-3x m -1y 2n 的和是-2xy 2,则2m +n 的值是( )A 、1B 、3C 、4D 、56、已知a =2,b=3,则A 、ax 3y 和bm 3n 2是同类项B 、3x a y 3和bx 3y 3是同类项C 、b x 2a+1y 4和a x 5y b+1是同类项D 、5m 2 b n 5a 和6n 2 b m 5a 是同类项7、若n 为正整数,则化简(-1)2 n a +(-1)2 n+1a 的结果是( )A 、0B 、2aC 、-2aD 、2a 或-2a 8、若a -b =0,则22432234b a b ab b a b a a ++++=( ) A 、4 B 、4a 2b 2 C 、5 D 、5a 2b 2三、解答题:9、如果关于x 的多项式-2x 2+mx +nx 2-5x -1的值与x 的取值无关,求m 、n 的值.10、如图,你能根据图形推导出一个什么样的结论?答案:A 卷1、 -4x2、03、-2x,5x4、B5、C6、D7、B8、C9、⑴-f ⑵ 6x -5y10、原式=3x +3x 2+1=37A 卷1、 -32、3,23、5n4、C5、D6、B7、C8、A9、m+2=0 m =-2; 3n —1=0 n=31 则2m+3n=2×(-2)+3×31=0 10、7(a +b )2-5(a +b )探究创新1、2,42、是3、7,10,3n-84、B5、D6、C7、A8、C9、n-2=0 ,n=2 m-5=0,m=510、(a+b)2=a2+2ab+b2.。

七年级数学上册合并同类项检测题及答案

七年级数学上册合并同类项检测题及答案

七年级数学上册合并同类项检测题及答案本文对七年级数学上册中涉及到合并同类项的部分进行检测,为了更好的学习效果,我们将提供题目和答案,希望能帮助同学们更好地理解并掌握这一概念。

单项选择题1.下列各式中,能够合并同类项的是()。

A. 3a+5b B. 2a-3ab C. 4abc-2a-3b D. 6a+5bc答案:A,D2.(2x+3y)+(4x+5y)=()。

A. 5x+8y B. 6x+7y C. 6x+8y D. 7x+8y答案:C3.()可写成2a+5b的形式。

A. 3a+5b-a B. 2a+5b+b C. 3ab-b-2a D.2ab+ab-a答案:A4.()等于5ax+2by。

A. 3ax+by+2ax B. 5ax+2by+3ax C. 5ax+by+3ax D.2by+3ax+5ax答案:B5.(a+2b-3c)+(7c+4a-b)=( )。

A.5a+6b+4c B.5a-2b+4c C. 5a+6b-4cD.5a+6b-2c答案:D填空题1.(2x-3y)+(4x-5y)= ___________。

答案:6x-8y2.(3a+2b)-(5a-b)= __________。

答案:-2a+3b3.(6x-2y)+(-2x+3y)= __________。

答案:4x+y4.(4ab-2a-6b)+(a+3b+2a)= __________。

答案:6ab-a-b5.(2x-3y)+(5y-x)= __________。

答案:x-2y解决问题1.如果两个同类项各自的系数不同该怎么办?这种情况下,我们需要通过化简先将各自的系数相同,例如:2x+3y+4x-5y = (2x+4x) + (3y-5y) = 6x-2y2.合并同类项要注意什么?在合并同类项的时候,我们需要注意变量部分相同,同时系数也要相同。

3.为什么要合并同类项?合并同类项的目的在于简化表达式,使其更加简单明了,从而更便于计算。

七年级数学合并同类项同步练习(附答案)

七年级数学合并同类项同步练习(附答案)

七年级数学合并同类项同步练习(附答案)一、选择题1 .计算223a a +的结果是( ) A.23a B.24a C.43a D.44a2 .下面运算正确的是( ).A.ab b a 523=+B.03322=-ba b aC.532523x x x =+ D.12322=-y y 3 .下列计算中,正确的是( )A 、2a +3b =5ab ;B 、a 3-a 2=a ;C 、a 2+2a 2=3a 2;D 、(a -1)0=1.4 .已知一个多项式与239x x +的和等于2341x x +-,则这个多项式是( )A.51x --B.51x +C.131x --D.131x + 5 .下列合并同类项正确的是A.2842x x x =+B.xy y x 523=+C.43722=-x xD.09922=-ba b a 6 .下列计算正确的是( )(A)3a+2b=5ab (B)5y 2-2y 2=3 (C)-p 2-p 2=-2p 2(D)7m-m=77 .加上-2a-7等于3a 2+a 的多项式是 ( )A 、3a 2+3a-7B 、3a 2+3a+7C 、3a 2-a-7D 、-4a 2-3a-7 8 .当1=a 时,a a a a a a 10099432-++-+- 的值为( )A. 5050B. 100C. 50D. -50 二、填空题9 .化简:52a a -=_________. 10.计算:=-x x 53_________。11.一个多项式与2x 2-3xy 的差是x 2+xy,则这个多项式是_______________. 三、解答题12.求多项式:10X 3-6X 2+5X-4与多项式-9X 3+2X 2+4X-2的差。13.化简:2(2a 2+9b)+3(-5a 2-4b)14.化简:2222343423x y xy y xy x -+--+.15.先化简,后求值.(1)化简:()()22222212a b ab ab a b +--+-(2)当()221320b a -++=时,求上式的值.16.先化简,再求值:x 2 + (-x 2 +3xy +2y 2)-(x 2-xy +2y 2),其中x=1,y=3.17.计算:(1)()()32223232y xy y x xy y ---+-;(2)5(m-n)+2(m-n)-4(m-n)。18.先化简,再求值:)52338()5333(3122222y xy x y xy x x +++-+-,其中21-=x ,2=y .19.化简求值: )3()3(52222b a ab ab b a +--,其中31,21==b a .20.先化简,后求值:]2)(5[)3(2222mn m mn m m mn +-----,其中2,1-==n m21.化简求值:]4)32(23[522a a a a ----,其中21-=a22.给出三个多项式:212x x + ,2113x +,2132x y +; 请你选择其中两个进行加法或减法运算,并化简后求值:其中1,2x y =-=.23.先化简,再求值:()()2258124xy x xxy ---+,其中1,22x y =-=.24.先化简,再求值。(5a 2-3b 2)+(a 2+b 2)-(5a 2+3b 2)其中a=-1 b=125.化简求值(-3x 2-4y )-(2x 2-5y +6)+(x 2-5y -1) 其中 x =-3 ,y =-126.先化简再求值:(ab-3a 2)-2b 2-5ab-(a 2-2ab),其中a=1,b=-2。27.有这样一道题:“计算322323323(232)(2)(3)x x y xy x xy y x x y y ----++-+-的值,其中12x =,1y =-。”甲同学把“12x =”错抄成了“12x =-”但他计算的结果也是正确的,请你通过计算说明为什么?28.已知:21(2)||02x y ++-= ,求22222()[23(1)]2xy x y xy x y +----的值。3.4合并同类项参考答案一、选择题1 .B2 .B;3 .C ;4 .A5 .D6 .C7 .B8 .D 二、填空题9 .3a ; 10.-2x 11.3x 2-2xy 三、解答题12.粘贴有误,原因可能为题目为公式编辑器内容,而没有其它字符13.解:原式=4a 2+18b-15a 2-12b =-11a 2+6b14.解:原式=)44()32()33(2222y y xy xy x x -+-+- =-xy15.原式=21a b -=1.16.x 2 + (-x 2 +3xy +2y 2)-(x 2-xy +2y 2)= x 2-x 2 +3xy +2y 2-x 2+xy-2y 2 = 4xy-x 2当x=1,y=3时 4xy-x 2=4×1×3-1=11。 17.(1)()()yx xy y xy y x xy y y xy y x xy y 2232223322232232232-=+--+-=---+-(2)5(m-n)-2(m-n)-4(m-n) =(5-2-4)(m-n) =-2(m-n) =-2m+2n 。18.解:原式=2222252338533331y xy x y xy x x ++++--=)5253()33()38331(22222y y xy xy x x x ++-++- =2y 当21-=x ,y =2时,原式=4 .19.解:原式=3220.原式mn =,当2,1-==n m 时,原式2)2(1-=-⨯=;21.原式=692-+a a ;-2; 22.(1) (212x x +)+(2132x y +)=23x x y ++ (去括号2分) 当1,2x y =-=,原式=2(1)(1)326-+-+⨯=(2)(212x x +)-(2132x y +) =3x y - (去括号2分)当1,2x y =-=,原式=(1)327--⨯=- (212x x +)+(2113x +)=255166x x ++= (212x x +)-(2113x +)=2111166x x +-=- (2132x y +)+(2113x +)=25473166x y ++= (2132x y +)-(2113x +)=21313166x y +-=23.解:原式2258124xy x x xy =-+- ()()2254128xy xy x x =-+- 24xy x =+当1,22x y =-=时,原式=2112422⎛⎫-⨯+⨯- ⎪⎝⎭=024.解:原式=5a 2-3b 2+a 2+b 2-5a 2-3b 2=-5b 2+a 2当a=-1 b=1原式=-5×12+(-1)2=-5+1=-4 25.33. 26. -827.解:∵原式=32232332323223x x y xy x xy y x x y y ---+--+-3223(211)(33)(22)(11)x x y xy y =--+-++-++-- 32y =-∴此题的结果与x 的取值无关。28.解:原式=222222[23]2xy x y xy x y +--+-=222222232xy x y xy x y +-+--=22(22)(21)(32)xy x y -+-+-=21x y + ∵2(2)0x +≥,1||02y -≥又∵21(2)||02x y ++-= ∴2x =-,12y = ∴原式=21(2)12-⨯+=3。

解一元一次方程(一)——合并同类项与移项 同步练习题 (含答案) 2024年人教版数学七年级上册

解一元一次方程(一)——合并同类项与移项 同步练习题  (含答案) 2024年人教版数学七年级上册

3.2解一元一次方程(一)——合并同类项与移项同步练习 2023-2024学年人教版数学七年级上册姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.下列选项中,哪个是方程的解()A.B.C.D.2.解一元一次方程,移项正确的是()A.B.C.D.3.方程7x+4=8x的解是()A.x=﹣4 B.x=4 C.x=﹣3 D.x=34.已知方程7x+2=3x-6与x-1=k 的解相同,则3k2-1的值为()A.18 B.20 C.26 D.-265.若 =3 -5, = -7, + =20,则的值为()A.22 B.12 C.32 D.86.若关于的方程的解是,则的值()A.B.1 C.D.7.若方程2x+1=﹣1的解是关于x的方程1﹣2(x﹣a)=2的解,则a的值为()A.﹣1 B.1 C.﹣D.﹣8.若关于的方程的解是正整数,则的整数值有个.()A.1个B.2个C.3个D.4个二、填空题:(本题共5小题,每小题3分,共15分.)9.方程3x﹣6=0的解的相反数是.10.当x= 时,两个代数式1+x²,x2-2x+3的值相等。

11.若是关于x的方程的解,则.12.若关于x的方程3x﹣7=2x+a的解与方程4x+3=﹣5的解互为倒数,则a的值为. 13.一组“数值转换机”按下面的程序计算,如果输入的数是10,那么输出的结果为19,要使输出的结果为13,则输入的最小正整数是.三、解答题:(本题共5题,共45分)14.解方程:.15.解下列方程:(1);(2)16.m为何值时,关于x的一元一次方程的解与的解相等?17.下面是明明同学解方程2+3x=-2x-13的第一步:3x+2x =-13-2.请回答:(1)为什么这样做:;(2)这样做的依据:;(3)求出方程2+3x=-2x-13的解.18.小莹在解关于的方程时,误将看作,得方程的解为,求原方程的解为多少?参考答案:1.C 2.A 3.B 4.C 5.D 6.B 7.D 8.D9.-210.111.12.13.414.解:移项得,合并同类项得,解得15.(1)解:,移项得:,合并同类项得:,把系数化为1得:(2)解:,合并同类项得:,把系数化为1得:.16.解:解第一个方程得:x=3,解第二个方程得:x=2m-1,∴2m﹣1=3,解得:m=2 17.(1)先通过移项,把已知项移到方程的右边,未知项移到方程的左边,为合并同类项做准备(2)等式的基本性质1(3)解:2+3x=-2x-13.3x+2x =-13-2.5x=-15.x=-318.解:把代入方程得:,解得:,∴原方程为,解得:,∴原方程的解为。

七年级数学合并同类项(含答案).

七年级数学合并同类项(含答案).

3.4合并同类项同步练习21:1. 判断下列各题中的两个项是不是同类项,是打√,错打⨯ ⑴y x 231与-3y 2x ( ) ⑵2ab 与b a 2( ) ⑶bc a 22与-2c ab 2( ) (4)4xy 与25yx ( ) (5)24 与-24 ( ) (6) 2x 与22 ( ) 2. 2. 判断下列各题中的合并同类项是否正确,对打√,错打⨯ (1)2x+5y=7y ( ) ( 2.)6ab-ab=6 ( ) (3)8x y x xy y 3339=-( ) (4)2122533=-m m ( ) (5)5ab+4c=9abc ( ) (6)523523x x x =+ ( ) (7) 22254x x x =+ ( ) (8) ab ab b a 47322-=- ( ) 3. 与y x 221不仅所含字母相同,而且相同字母的指数也相同的是( ) A.z x 221 B. xy 21 C.2yx - D. x 2y 4.下列各组式子中,两个单项式是同类项的是( )A.2a 与2aB.5b a 2 与b a 2C. xy 与y x 2D. 0.3m 2n 与0.3x 2y5.下列计算正确的是( )A.2a+b=2abB.3222=-x xC. 7mn-7nm=0D.a+a=2a6.代数式-4a 2b 与32ab 都含字母 ,并且 都是一次, 都是二次,因此-4a 2b 与32ab 是7.所含 相同,并且 也相同的项叫同类项。

8.在代数式222276513844x x x y xy x -+-+--+中,24x 的同类项是 ,6的同类项是 。

9.在9)62(22++-+b ab k a 中,不含ab 项,则k= 10.若22+k kyx 与n y x 23的和未5ny x 2,则k= ,n=11. 若-3x m-1y 4与2n 2y x 31+是同类项,求m,n.12.合并同类项:⑴3x 2-1-2x-5+3x-x 2 ⑵-0.8a 2b-6ab-1.2a 2b+5ab+a 2b ⑶222b ab a 43ab 21a 32-++- ⑷6x 2y+2xy-3x 2y 2-7x-5yx-4y 2x 2-6x 2y(5)4x 2y-8x y 2+7-4x 2y+12xy 2-4; (6)a 2-2ab +b 2+2a 2+2ab - b 2.答案:1. ⑴√⑵ⅹ⑶ⅹ⑷√⑸√⑹ⅹ2. ⑴ⅹ⑵ⅹ⑶ⅹ⑷ⅹ⑸ⅹ⑹ⅹ⑺√⑻ⅹ3. C4.B5.C6. a b a b 同类项7.字母 相同字母的次数 -5x 2, -7x 2 1 9. k=3 10.2,4 11 m=3 n=2 12. ⑴2x 2+x-6 ⑵-a 2b-ab ⑶22b ab 21a 1217-+ ⑷-7x 2y 2-3xy-7x。

七年级数学 上 合并同类项91题(含答案)

七年级数学 上 合并同类项91题(含答案)
合并同类项专项练习 91 题(有答案)
1.4a2+3b2﹣2ab﹣4a2﹣4b2+2ba
9.4x2y﹣8xy2+7﹣4x2y+10xy2﹣4.
2.﹣4x2y+8xy2﹣9x2y﹣21xy2.
10. 15x+4x﹣10x
3.5xy2+2x2y﹣3xy2﹣x2y
11. ﹣p2﹣p2﹣p2
4.a2+3ab+6﹣8a2+ab
13.
=
a2b=
a2b
14. 原式=2x2﹣3x2﹣3x+5x+1+7=﹣x2+2x+8; 15. 原式=﹣x2+2x2﹣3x2+7xy﹣5xy=﹣2x2+2xy. 16. 15x+4x﹣10x=19x﹣10x=9x; 17. ﹣p2﹣p2﹣p2=﹣3p2; 18. x2y﹣3xy2+2yx2﹣y2x=3x2y﹣4xy2. 19. 2x+(x﹣4)﹣(5x﹣4)=2x+x﹣4﹣5x+4=﹣2x; 20. 原式=3a2﹣6a﹣9+25a2+10=28a2﹣6a+1. 21. ﹣3y+0.75y﹣0.25y=(﹣3+0.75﹣0.25)y=﹣2.5y. 22. 5a﹣1.5a+2.4a=(5﹣1.5+2.4)a=5.9a
33. 3a+2a﹣7a 34. ﹣4x2y+8xy2﹣9x2y﹣21xy2. 35.3a2﹣2a﹣4a2﹣7a. 36.12x2y﹣xy﹣3﹣10x2y+6xy+3. 37. 3ab+2mn﹣3ab+4mn 38. ﹣5yx2+4xy2﹣2xy+6x2y+2xy+5. 39.3x﹣2y+1+3y﹣2x﹣5. 40.ax2+2a2x+a3.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档