高考数学-选择题的解法技巧

合集下载

高考数学答题技巧:选择题十大解法

高考数学答题技巧:选择题十大解法

2019年高考数学答题技巧:选择题十大解法查字典数学网整理了2019年高考数学答题技巧:选择题十大解法,帮助广大高中学生学习数学知识!高考数学选择题从难度上讲是比其他类型题目降低了,但知识覆盖面广,要求解题熟练、准确、灵活、快速。

选择题的解题思想,渊源于选择题与常规题的联系和区别。

它在一定程度上还保留着常规题的某些痕迹。

而另一方面,选择题在结构上具有自己的特点,即至少有一个答案(若一元选择题则只有一个答案)是正确的或合适的。

因此可充分利用题目提供的信息,排除迷惑支的干扰,正确、合理、迅速地从选择支中选出正确支。

选择题中的错误支具有两重性,既有干扰的一面,也有可利用的一面,只有通过认真的观察、分析和思考才能揭露其潜在的暗示作用,从而从反面提供信息,迅速作出判断。

由于我多年从事高考试题的研究,尤其对选择题我有自己的一套考试技术,我知道无论是什么科目的选择题,都有它固有的漏洞和具体的解决办法,我把它总结为:6大漏洞、8大法则。

6大漏洞是指:有且只有一个正确答案;不问过程只问结果;题目有暗示;答案有暗示;错误答案有严格标准;正确答案有严格标准;8大原则是指:选项唯一原则;范围最大原则;定量转定性原则;选项对比原则;题目暗示原则;选择项暗示原则;客观接受原则;语言的精确度原则。

经过我的培训,很多的学生的选择题甚至1分都不丢。

下面是一些实例:1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为A.-5/4B.-4/5C.4/5D.25/5解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。

题中没有给定A、B、C三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B。

高考数学选择题技巧方法

高考数学选择题技巧方法

l 有且仅有一个平面与α垂
直;③异面直线 a、 b 不垂直, 那么过 a 的任一个平面与 b 都不垂直。其中正确命题的个数为(

A.0
B.1
C. 2
D.3
解析 :利用立几中有关垂直的判定与性质定理对上述三个命题作出判断,
例 3、已知 F1、F2 是椭圆
x 2 y2
+
=1 的两焦点,
经点 F2 的的直线交椭圆于点
x 1.
例 12. 1 2i ( C ) i
A. 2 i
解析: 1 2i i
B. 2 i
i 2 2i 2i
i
C. 2 i
D. 2 i
例 13. 等比数列 { an} 中 a1 512 , 公比 q
1
,记 n
2
a1 a 2 L
an (即
数列 { an} 的前 n 项之积),
8 , 9 , 10 , 11 中值为正数的个数是
根据 f(-x)=f(x) 可得 函数为偶函数且在( 0, + 无穷大)上单调递减
) 上单调增 ) 上单调增
例 9.集合 A { x | | x 2 | 2} , B { y | y x2 , 1 x 2} , 则 A I B C
A. R B . { x | x 0} C . {0}
D

A [ 0 , 4] , B [ 4 , 0] , 所以 A I B {0} .
一.选择题部分
(一)高考数学选择题的解题方法
1、直接法 :就是从题设条件出发, 通过正确的运算、推理或判断, 直接得出结论再与选择支对照, 从 而作出选择的一种方法。运用此种方法解题需要扎实的数学基础。
例 1、某人射击一次击中目标的概率为 ()

[全]高考数学选择题六大答题技巧(附例题详解)

[全]高考数学选择题六大答题技巧(附例题详解)

[全]高考数学选择题六大答题技巧(附例题详解)选择题是高考数学试卷的三大题型之一.选择题的分数一般占全卷的40%左右:(1)绝大部分数学选择题属于中低档题,且一般按由易到难的顺序排列,主要的数学思想和数学方法能通过它得到充分的体现和应用,并且因为它还有相对难度(如思维层次、解题方法的优劣选择,解题速度的快慢等),所以选择题已成为具有较好区分度的基本题型之一。

(2)选择题具有概括性强、知识覆盖面广、小巧灵活及有一定的综合性和深度等特点,且每一题几乎都有两种或两种以上的解法,能有效地检测学生的思维层次及观察、分析、判断和推理能力。

目前高考数学选择题采用的是一元选择题(即有且只有一个正确答案),由选择题的结构特点,决定了解选择题除常规方法外还有一些特殊的方法.解选择题的基本原则是:“小题不能大做”,要充分利用题目中(包括题干和选项)提供的各种信息,排除干扰,利用矛盾,作出正确的判断。

数学选择题的求解,一般有两条思路:一是从题干出发考虑,探求结果。

二是从题干和选择支联合考虑或从选择支出发探求是否满足题干条件。

解答数学选择题的主要方法包括直接法、概念辨析法、数型结合法、特殊值法、排除法、逆向思维法等,这些方法既是数学思维的具体体现,也是解题的有效手段。

一一、直接法直接对照型选择题是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,从而直接得出正确结论,然后对照题目所给出的选项“对号入座”,从而确定正确的选择支。

这类选择题往往是由计算题、应用题或证明题改编而来,其基本求解策略是由因导果,直接求解。

思路解析:关于直线与圆锥曲线位置关系的题目,通常是联立方程解方程组.本题即是利用渐近线与抛物线相切,求出渐近线斜率.二、概念辨析法概念辨析是从题设条件出发,通过对数学概念的辨析,进行少量运算或推理,直接选择出正确结论的方法.这类题目常涉及一些似是而非、很容易混淆的概念或性质,这需要考生在平时注意辨析有关概念,准确区分相应概念的内涵与外延,同时在审题时要多加小心,准确审题以保证正确选择.一般说来,这类题目运算量小,侧重判断,下笔容易,但稍不留意则易误入命题者设置的“陷阱”。

高考数学选择题的解题技巧

高考数学选择题的解题技巧

高考数学选择题的解题技巧耒阳市第二中学 彭利华高考数学试题中,选择题注重多个知识点的小型综合,渗透各种数学思想和方法,体现以考查“三基”为重点的导向,能否在选择题上获取高分,对高考数学成绩影响重大.解答选择题的基本要求是四个字——准确、迅速.解数学选择题的常用方法,主要分直接法和间接法两大类.直接法是解答选择题最基本、最常用的方法;但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答.因此,我们还要掌握一些特殊的解答选择题的方法.1、直接法:直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论,然后对照题目所给出的选择支“对号入座”作出相应的选择.涉及概念、性质的辨析或运算较简单的题目常用直接法.例1.若sin 2x >cos 2x ,则x 的取值范围是( )(A ){x |2k π-34π<x <2k π+π4,k ∈Z } (B ) {x |2k π+π4<x <2k π+54π,k ∈Z } (C ) {x |k π-π4<x <k π+π4,k ∈Z } (D ) {x |k π+π4<x <k π+34π,k ∈Z } 例2.设f (x )是(-∞,∞)是的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,则f (7.5)等于( )(A ) 0.5 (B ) -0.5 (C ) 1.5 (D ) -1.5例3.七人并排站成一行,如果甲、乙两人必需不相邻,那么不同的排法的种数是( )(A ) 1440 (B ) 3600 (C ) 4320 (D ) 48002、特例法:用特殊值(特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.例4.已知长方形的四个项点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射解等于反射角),设P 4坐标为(44,0),1x 2,tan x θ<<若则的取值范围是( )(A ))1,31( (B ))32,31((C ))21,52( (D ))32,52( 例5.如果n 是正偶数,则C n 0+C n 2+…+C nn -2+C n n =( ) (A ) 2n (B ) 2n -1 (C ) 2n -2 (D ) (n -1)2n -1 例6.等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( )(A )130 (B )170 (C )210 (D )260例7.若1>>b a ,P =b a lg lg ⋅,Q =()b a lg lg 21+,R =⎪⎭⎫ ⎝⎛+2lg b a ,则( ) (A )R <P <Q (B )P <Q <R(C )Q <P <R (D )P <R <Q3、筛选法:从题设条件出发,运用定理、性质、公式推演,根据“四选一”的指令,逐步剔除干扰项,从而得出正确的判断.例8.已知y =log a (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是( )(A )(0,1) (B )(1,2) (C )(0,2) (D ) [2,+∞)例9.过抛物线y 2=4x 的焦点,作直线与此抛物线相交于两点P 和Q ,那么线段PQ 中点的轨迹方程是( )(A ) y 2=2x -1 (B ) y 2=2x -2(C ) y 2=-2x +1 (D ) y 2=-2x +24、代入法:将各个选择项逐一代入题设进行检验,从而获得正确的判断.即将各选择支分别作为条件,去验证命题,能使命题成立的选择支就是应选的答案.例10.函数y =sin(π3-2x )+sin2x 的最小正周期是( ) (A )π2(B ) π (C ) 2π (D ) 4π 例11.函数y =sin (2x +25π)的图象的一条对称轴的方程是( ) (A )x =-2π (B )x =-4π (C )x =8π (D )x =45π 5、图解法:据题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确的判断.习惯上也叫数形结合法.例12.在)2,0(π内,使x x cos sin >成立的x 的取值范围是( )(A ))45,()2,4(ππππ (B )),4(ππ(C ))45,4(ππ (D ))23,45(),4(ππππ 例13.在圆x 2+y 2=4上与直线4x +3y -12=0距离最小的点的坐标是( )(A )(85,65) (B )(85,-65) (C )(-85,65) (D )(-85,-65) 例14.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是( )(A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+)严格地说,图解法并非属于选择题解题思路范畴,而是一种数形结合的解题策略.但它在解有关选择题时非常简便有效.不过运用图解法解题一定要对有关函数图象、方程曲线、几何图形较熟悉,否则错误的图象反而会导致错误的选择.如:例15.函数y =|x 2—1|+1的图象与函数y =2 x 的图象交点的个数为( )(A )1 (B )2 (C )3 (D )46、割补法“能割善补”是解决几何问题常用的方法,巧妙地利用割补法,可以将不规则的图形转化为规则的图形,这样可以使问题得到简化,从而缩短解题长度.例16.一个四面体的所有棱长都为2,四个项点在同一球面上,则此球的表面积为( )(A )3π (B )4π (C )3π3 (D )6π我们在初中学习平面几何时,经常用到“割补法”又一次用到了“割补法”,这些蕴涵在课本上的方法当然是各类考试的重点内容.因此,当我们遇到不规则的几何图形或几何体时,自然要想到“割补法”.7、极限法:从有限到无限,从近似到精确,从量变到质变.应用极限思想解决某些问题,可以避开抽象、复杂的运算,降低解题难度,优化解题过程.例17.对任意θ∈(0,2π)都有( ) (A )sin(sin θ)<cos θ<cos(cos θ) (B ) sin(sin θ)>cos θ>cos(cos θ)(C )sin(cos θ)<cos(sin θ)<cos θ (D ) sin(cos θ)<cos θ<cos(sin θ)例18.不等式组⎪⎩⎪⎨⎧+->+->x x x x x 22330的解集是( )(A )(0,2) (B )(0,2.5) (C )(0,6) (D )(0,3)例19.在正n 棱锥中,相邻两侧面所成的二面角的取值范围是( )(A )(n n 2-π,π) (B )(nn 1-π,π) (C )(0,2π) (D )(n n 2-π,n n 1-π) 8、估值法由于选择题提供了唯一正确的选择支,解答又无需过程.因此可以猜测、合情推理、估算而获得.这样往往可以减少运算量,当然自然加强了思维的层次.例20.如图,在多面体ABCDEF 中,已知面ABCD 是边长为3的正方形,EF ∥AB ,EF 23=,EF 与面AC 的距离为2,则该多面 体的体积为( )(A )29 (B )5 (C )6 (D )215 例21.已知过球面上A 、B 、CAB =BC =CA =2,则球面面积是( )(A )916π (B )38π (C )4π (D )964π 估算,省去了很多推导过程和比较复杂的计算,节省了时间,从而显得快捷.其应用广泛,它是人们发现问题、研究问题、解决问题的一种重要的运算方法.总之,从考试的角度来看,解选择题只要选对就行,至于用什么“策略”,“手段”都是无关紧要的.所以人称可以“不择手段”.但平时做题时要尽量弄清每一个选择支正确的理由与错误的原因,另外,在解答一道选择题时,往往需要同时采用几种方法进行分析、推理,只有这样,才会在高考时充分利用题目自身提供的信息,化常规为特殊,避免小题大作,真正做到又快又准。

高考数学选择题解题方法与技巧

高考数学选择题解题方法与技巧
1 , 则使 f ( x ) > 0的x取值范围是( D )
A、x﹥1
B、 x ﹥1 且 - 1﹤x﹤0
C、- 1﹤x﹤0
D、x ﹥1 或 - 1﹤x﹤0
3、知识面广、切入点多、综合性强,题材内容知识点多, 跨度较大。
如:若π/2 < θ < π,且cosθ= - 3/5 ,则sin(θ+π/3)等于
• 3.解数学选择题的常用方法,主要分直接 法和间接法两大类.直接法是解答选择题最 基本、最常用的方法;但高考的题量较大, 如果所有选择题都用直接法解答,不但时 间不允许,甚至有些题目根本无法解答.因 此,我们还要掌握一些特殊的解答选择题 的方法.
• 关于选择题的几点说明
1、占据《数学》试卷“半壁江山”的选择题,自然是 三种题型(选择题、填空题、解答题)中的 “大姐 大”。可以说“得数学者得高考,得选择题者得数 学”。
• 用特殊值代替题设普遍条件,得出特殊结 论,对各个选项进行检验,从而作出正确 的判断.常用的特例有特殊数值、特殊数 列、特殊函数、特殊图形、特殊角、特殊 位置等.
例6.如果n是正偶数,则Cn0+Cn2+…+Cnn-2+
Cnn=( B )
A. 2 n B. 2n-1 C. 2 n-2 D. (n-1)2n-1
• 解:(特值法)当n=2时,代入得C20+ C22=2,排除答案A、C;当n=4时,代 入得C40+C42+C44=8,排除答案D.所以 选B. 另解:(直接法)由二项展开式系数的性 质有Cn0+Cn2+…+Cnn-2+Cnn=2n-1选B.
例7.等差数列{an}的前m项和为30,前2m 项和为100,则它的前3m项和为( C )
3、抓往关键,全面分析
在解题过程中,通过审题、析题后找到题 目的关键所在是十分重要的,从关键处入 手,找突破口,联系知识进行全面的分析 形成正确的解题思路,就可以化难为易, 化繁为简,从而解出正确的答案。

2023高考_高考数学选择题蒙题技巧

2023高考_高考数学选择题蒙题技巧

2023高考数学选择题蒙题技巧2023高考数学选择题蒙题技巧死亡拯救法:“三短一长就选长,三长一短就选短,两长两短就选B,参差不齐C无敌。

一样长选C,一样短选B。

"这是网上的,如果是图像题。

那就蒙B、C吧,几率大一点!1、答案有根号的,不选2、答案有1的,选3、三个答案是正的时候,在正的中选4、有一个是正X,一个是负X的时候,在这两个中选5、题目看起来数字简单,那么答案选复杂的,反之亦然6、上一题选什么,这一题选什么,连续有三个相同的则不适合本条7、答题答得好,全靠眼睛瞟8、以上都不实用的时候选B9、在计算题中,要首先写一答字:然后在答题,即使只有一个答字10、最后一招杀手锏:如果你在选择题上不想地O分的话,建议所有选择题全选A,我就这样的。

培养“蒙感”:这个所谓“蒙感”,就是这蒙题的感觉。

因为不可能一面卷子上你一道题也不会做(当然也有例外),你也有很大可能有不会做的题。

这时,就要看蒙题的感觉了。

所有考试的人都知道,选择题中选择B、C选项的占绝大多数。

所以遇到不会的题,就往B、C上靠,几率会大一点。

还有,如果你有很多题不会——比如说五道题里你有三道不会,那就要看你平时做题的感觉了。

高考数学快速蒙题技巧1.高考时带一个量角器进考场,因为高考解析几何题一定会有求度数的小题,这时你就可以用量角器测一下,就可以写出最后结论,这是最简单也是最牛的高考数学蒙题技巧。

2.在数学计算题中,要首先写一答字!如果选项是4个数,一般是第二大的是正确选项。

单看选项,一般BD稍多,A较少。

还有一点,选了之后就不要改了,除非你有90以上的把握。

这个经验堪称是史上最牛的'高考数学蒙题技巧。

3.经过历年高考经验总结,高考数学第一题和最后一题一般不会是A!高考数学选择题的答案分布均匀!填空题不会就填0或1!答案有根号的,不选!答案有1的,选!有一个是正X,一个是负X的时候,在这两个中选!题目看起来数字简单,那么答案选复杂的,反之亦然!上一题选什么,这一题选什么,连续有三个相同的则不适合本条!以上都不实用的时候选B!4.数学选择不会时去除最大值与最小值再二选一,老师告诉我们的!高考题百分之八十是这样的。

高考数学选择题答题技巧总结

高考数学选择题答题技巧总结

2019高考数学选择题答题技巧总结选择题从难度上讲是比其他类型题目降低了,但知识覆盖面广,要求解题熟练、准确、灵活、快速。

选择题的解题思想,渊源于选择题与常规题的联系和区别。

它在一定程度上还保留着常规题的某些痕迹。

而另一方面,选择题在结构上具有自己的特点,即至少有一个答案(若一元选择题则只有一个答案)是正确的或合适的。

因此可充分利用题目提供的信息,排除迷惑支的干扰,正确、合理、迅速地从选择支中选出正确支。

选择题中的错误支具有两重性,既有干扰的一面,也有可利用的一面,只有通过认真的观察、分析和思考才能揭露其潜在的暗示作用,从而从反面提供信息,迅速作出判断。

由于我多年从事高考试题的研究,尤其对选择题我有自己的一套考试技术,我知道无论是什么科目的选择题,都有它固有的漏洞和具体的解决办法,我把它总结为:6大漏洞、8大法则。

“6大漏洞”是指:有且只有一个正确答案;不问过程只问结果;题目有暗示;答案有暗示;错误答案有严格标准;正确答案有严格标准;“8大原则”是指:选项唯一原则;范围最大原则;定量转定性原则;选项对比原则;题目暗示原则;选择项暗示原则;客观接受原则;语言的精确度原则。

经过我的培训,很多的学生的选择题甚至1分都不丢。

下面是一些实例:1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

2.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

3.剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

4.数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。

高考数学选择题解题方法与技巧

高考数学选择题解题方法与技巧

高考数学选择题解题方法与技巧高考数学作为整个考试体系中的重头戏,其重要性不言而喻。

而在数学试卷中,选择题占据着相当大的比例。

选择题虽然答案唯一,但是解法多样,解题速度与准确度的提升对于整体得分至关重要。

以下,我们将探讨高考数学选择题的解题方法与技巧。

一、审题清晰,明确题意选择题往往看似简单,但常常隐藏着一些细微的差别。

在解题前,务必仔细审题,明确题目的要求和考察的知识点。

特别要注意题目中的关键词,如“最大”、“最小”、“唯一”等,这些词往往决定了答案的唯一性。

二、排除法,逐一筛选当面对一个复杂的选择题时,如果无法直接得出答案,可以尝试使用排除法。

根据题目的条件,逐一排除不符合条件的选项,直到剩下唯一正确的答案。

这种方法在选项较多或题目较复杂时非常有效。

三、特殊值法,巧妙解题对于一些涉及变量和参数的选择题,可以尝试使用特殊值法。

即选取一些特殊的数值或情况代入题目中,通过计算或推理得出答案。

这种方法往往能够简化问题,快速找到答案。

四、图形辅助,直观明了对于涉及几何或函数图像的选择题,利用图形进行辅助往往能够直观明了地解决问题。

通过画图,可以更清楚地理解题目中的条件,从而更容易找到正确答案。

五、逻辑推理,严谨准确对于一些需要逻辑推理的选择题,务必保持严谨的态度。

根据题目给出的条件,逐步进行推理,确保每一步都是正确的。

同时,要注意避免逻辑陷阱,确保推理的严密性。

六、注意题目中的陷阱有些选择题会故意设置陷阱,诱导考生选择错误答案。

在面对这些题目时,一定要保持冷静,认真分析题目的条件和要求,避免被陷阱所迷惑。

七、多做模拟题,提高熟练度要想在高考中快速准确地解答选择题,平时的练习是必不可少的。

通过多做模拟题和真题,可以熟悉各种题型和解题方法,提高解题速度和准确度。

同时,也要注意总结归纳错题的原因和教训,避免在考试中犯同样的错误。

八、保持良好的心态在高考中,保持良好的心态是非常重要的。

面对选择题时,不要过于紧张或焦虑,要相信自己平时的努力和准备。

对口高考数学选择题解题技巧方法-(1)

对口高考数学选择题解题技巧方法-(1)

3、抓住关键,全面分析
通过审题、析题后找到题目 的关键所在是十分重要的,从关 键处入手,找突破口,联系知识 进行全面的分析形成正确的解题 思路,就可以化难为易,化繁为 简,从而解出正确的答案.
4、反复检查,认真核对
在审题、析题的过程中, 由于思考问题不全面,往往会 出现偏差.因而,再回首看上一 眼,再认真核对一次,也是解 选择题必不可少的步骤.
(1)特殊值法
例3.函数f(x)= x2+mx+1的图像关于直线x=2对称
的充要条件是:( )
A.m=-4 B.m=4 C.m=-2 D.m=2 (P18.8)
例4.函数f(x)= 1 ln(1 x)的定义域是
1 x
A.(-∞,-1)
B.(1,+∞)
C.(-1,1)∪(1,+∞) D.(-∞,+∞) (p21.4)
正是由于选择题与其他题型特点不 同,解题方法也有很大区别,做选择题 最忌讳:
(1)见到题就埋头运算,按着解答 题的思路去求解,得到结果再去和 选项对照,这样做花费时间较长, 有时还可能得不到正确答案.
(2) 随意“蒙”一个答案,准确率 只有25%!但经过筛选、淘汰,正 确率就可以大幅度提高。
解选择题的基本策略是 多思考一点 , 少计算一点!
C.2
D.1
F2
o
x
F1
解析
集合A中的元素是椭圆
x2 4

y2 16
=1上的点,集合B中
的元素是函数y=3x的图象上的点.由数形结合,可知
A∩B中有2个元素,因此A∩B的子集的个数为4.
四 筛选法 数学选择题的解题本质就是去伪存真,舍弃不符合题目要求 的选项,找到符合题意的正确结论.筛选法(又叫排 除法) 就是通过观察分析或推理运算各项提供的信息或通过特例, 对于错误的选项,逐一剔除,从而获得正确的结论.

高考数学选择题答题技巧 解题套路有哪些

高考数学选择题答题技巧 解题套路有哪些

高考数学选择题答题技巧解题套路有哪些在高考时,把握肯定的答题技巧能够帮助同学们更好的答题,节省时间。

以下是我为大家整理的相关内容,以供参考,一起来看看!高考数学选择题答题技巧有哪些1、小题不能大做;2、不要不管选项;3、能定性分析就不要定量计算;4、能特值法就不要常规计算;5、能间接解就不要直接解;6、能排解的先排解缩小选择范围;7、分析计算一半后直接选选项;8、三个相像选相像。

可以利用简便方法进行答题。

数学常考答题套路1、函数或方程或不等式的题目,先直接思索后建立三者的联系。

首先考虑定义域,其次使用“三合肯定理”。

2、假如在方程或是不等式中消失超越式,优先选择数形结合的思想方法。

3、面对含有参数的初等函数来说,在讨论的时候应当抓住参数没有影响到的不变的性质。

如所过的定点,二次函数的对称轴或是.....4、选择与填空中消失不等式的题目,优选特别值法。

5、求参数的取值范围,应当建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分别参数的方法。

6、恒成立问题或是它的反面,能够转化为最值问题,留意二次函数的应用,敏捷使用闭区间上的最值,分类争论的思想,分类争论应当不重复不遗漏。

7、圆锥曲线的题目优先选择它们的定义完成,直线与圆维曲线相交问题,若与弦的中点相关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必需先考虑是否为二次及根的判别式。

8、求曲线方程的题目,假如知道曲线的外形,则可选择待定系数法,假如不知道曲线的外形,则所用的步骤为建系、设点、列式、化简(留意去掉不符合条件的特别点)。

9、求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可。

10、三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用帮助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,留意向量角的范围。

11、数列的题目与和相关,优选和通公式,优选作差的方法;留意归纳、猜想之后证明;猜想的方向是两种特别数列;解答的时候留意使用通项公式及前n项和公式,体会方程的思想。

高考遇到不会做的题怎么办?数学选择题10大蒙题技巧

高考遇到不会做的题怎么办?数学选择题10大蒙题技巧

高考遇到不会做的题怎么办?数学选择题10大蒙题技巧1.特值检验法对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为A.-5/4 B.-4/5 C.4/5 D.25/5解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。

题中没有给定A、B、C三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B。

2.极值检验法将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

3.剔除法利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

4.数形结合法由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。

数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

5.递推归纳法通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

6.顺推破解法利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

例:银行计划将某资金给项目M和N投资一年,其中40%的资金给项目M,60%的资金给项目N,项目M能获得10%的年利润,项目N能获得35%的年利润,年终银行必须回笼资金,同时按一定的回扣率支付给储户。

高考数学选择题、填空题的六大解题方法和技巧

高考数学选择题、填空题的六大解题方法和技巧

高考数学选择题、填空题的六大解题方法和技巧方法一:直接法直接法就是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,得出正确结论,此法是解选择题和填空题最基本、最常用的方法.【典例1】(1)(2021·新高考Ⅱ卷)在复平面内,复数2-i 1-3i对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限【解析】选A.因为2-i1-3i =(2-i )(1+3i )(1-3i )(1+3i ) =5+5i 10 =12 +12 i ,所以复数2-i 1-3i 对应的点位于第一象限.(2)(2021·烟台二模)已知双曲线C :x 2a 2 -y 2b 2 =1(a>0,b>0)的左、右焦点分别为F 1,F 2,点A 在C 的右支上,AF 1与C 交于点B ,若2F A ·2F B =0,且|2F A |=|2F B |,则C 的离心率为( ) A . 2 B . 3 C . 6 D .7【解析】选B.由F 2A·F 2B =0且|2F A |=|2F B |知:△ABF 2为等腰直角三角形且 ∠AF 2B =π2 、∠BAF 2=π4 ,即|AB|= 2 |2F A |= 2 |2F B |, 因为⎩⎪⎨⎪⎧|F 1A|-|F 2A|=2a ,|F 2B|-|F 1B|=2a ,|AB|=|F 1A|-|F 1B|,所以|AB|=4a ,故|F 2A|=|F 2B|=2 2 a ,则|F 1A|=2( 2 +1)a ,而在△AF 1F 2中,|F 1F 2|2=|F 2A|2+|F 1A|2-2|F 2A||F 1A|cos ∠BAF 2, 所以4c 2=8a 2+4(3+2 2 )a 2-8( 2 +1)a 2,则c 2=3a 2,故e =ca = 3 . 【变式训练】1.(2021·北京高考)在复平面内,复数z 满足(1-i)z =2,则z =( ) A .1 B .i C .1-i D .1+i【解析】选D.方法一:z =21-i =2(1+i )(1-i )(1+i )=1+i.方法二:设z =a +bi ,则(a +b)+(b -a)i =2,联立⎩⎪⎨⎪⎧a +b =2,b -a =0, 解得a =b =1,所以z =1+i.2.(2021·郑州二模)已知梯形ABCD 中,以AB 中点O 为坐标原点建立如图所示的平面直角坐标系.|AB|=2|CD|,点E 在线段AC 上,且AE→ =23 EC → ,若以A ,B 为焦点的双曲线过C ,D ,E 三点,则该双曲线的离心率为( )A .10B .7C . 6D . 2【解析】选B.设双曲线方程为x 2a 2 -y 2b 2 =1,由题中的条件可知|CD|=c , 且CD 所在直线平行于x 轴, 设C ⎝ ⎛⎭⎪⎫c 2,y 0 ,A(-c ,0),E(x ,y),所以AE → =(x +c ,y),EC →=⎝ ⎛⎭⎪⎫c 2-x ,y 0-y ,c 24a 2 -y 20 b 2 =1,由AE → =23 EC →,可得⎩⎪⎨⎪⎧x =-25c y =25y 0,所以E ⎝ ⎛⎭⎪⎫-25c ,25y 0 ,因为点E 的坐标满足双曲线方程,所以4c 225a 2 -4y 2025b 2 =1, 即4c 225a 2 -425 ⎝ ⎛⎭⎪⎫c 24a 2-1 =1,即3c 225a 2 =2125 ,解得e =7 .方法二:特例法从题干出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或特殊图形或特殊位置,进行判断.特例法是“小题小做”的重要策略,要注意在怎样的情况下才可以使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊函数等.【典例2】(1)(2021·郑州三模)在矩形ABCD 中,其中AB =3,AD =1,AB 上的点E 满足AE +2BE =0,F 为AD 上任意一点,则EB ·BF =( ) A .1 B .3 C .-1 D .-3 【解析】选D.(直接法)如图,因为AE +2BE =0, 所以EB =13 AB , 设AF =λAD ,则BF =BA +λAD =-AB +λAD ,所以EB ·BF =13 AB ·(-AB +λAD )=-13 |AB |2+13 λAB ·AD =-3+0=-3.(特例法)该题中,“F为AD上任意一点”,且选项均为定值,不妨取点A为F. 因为AE+2BE=0,所以EB=13AB.故EB·BF=13AB·(-AB)=-132 AB=-13×32=-3.(2)(2021·成都三模)在△ABC中,内角A,B,C成等差数列,则sin2A+sin2C-sin A sin C=________.【解析】(方法一:直接法)由内角A,B,C成等差数列,知:2B=A+C,而A+B+C=π,所以B=π3,而由余弦定理知:b2=a2+c2-2ac cos B=a2+c2-ac,结合正弦定理得:sin2B=sin2A+sin2C-sin A sin C=3 4.(方法二:特例法)该题中只有“内角A,B,C成等差数列”的限制条件,故可取特殊的三角形——等边三角形代入求值.不妨取A=B=C=π3,则sin 2A+sin2C-sin A sin C=sin2π3+sin2π3-sinπ3sinπ3=34.(也可以取A=π6,B=π3,C=π2代入求值.)答案:34【变式训练】设四边形ABCD为平行四边形,|AB→|=6,|AD→|=4,若点M,N满足BM→=3MC→,DN→=2NC → ,则AM → ·NM → 等于( ) A .20 B .15 C .9 D .6【解析】选C.若四边形ABCD 为矩形,建系如图,由BM → =3MC → ,DN → =2NC→ ,知M(6,3),N(4,4),所以AM → =(6,3),NM → =(2,-1),所以AM → ·NM → =6×2+3×(-1)=9.方法三:数形结合法对于一些含有几何背景的问题,往往可以借助图形的直观性,迅速作出判断解决相应的问题.如Veen 图、三角函数线、函数图象以及方程的曲线等,都是常用的图形.【典例3】已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( )A .1B .2C . 2D .22【解析】选C.如图,设OA→ =a ,OB → =b ,则|OA → |=|OB → |=1,OA → ⊥OB → ,设OC → =c ,则a-c =CA → ,b -c =CB → ,(a -c )·(b -c )=0,即CA → ·CB → =0.所以CA → ⊥CB → .点C 在以AB 为直径的圆上,圆的直径长是|AB→ |= 2 ,|c |=|OC → |,|OC → |的最大值是圆的直径,长为 2 .【变式训练】1.设直线l :3x +2y -6=0,P(m ,n)为直线l 上动点,则(m -1)2+n 2的最小值为( ) A .913 B .313 C .31313 D .1313【解析】选A.(m -1)2+n 2表示点P(m ,n)到点A(1,0)距离的平方,该距离的最小值为点A(1,0)到直线l 的距离,即|3-6|13 =313,则(m -1)2+n 2的最小值为913 .2.(2021·河南联考)已知函数f(x)=⎩⎪⎨⎪⎧x ln x -2x (x>0),x 2+1(x≤0), 若f(x)的图象上有且仅有2个不同的点关于直线y =-32 的对称点在直线kx -y -3=0上,则实数k 的取值是________. 【解析】直线kx -y -3=0关于直线y =-32 对称的直线l 的方程为kx +y =0,对应的函数为y =-kx ,其图象与函数y =f(x)的图象有2个交点.对于一次函数y =-kx ,当x =0时,y =0,由f(x)≠0知不符合题意. 当x≠0时,令-kx =f(x),可得-k =f (x )x ,此时, 令g(x)=f (x )x =⎩⎨⎧ln x -2(x>0),x +1x (x<0).当x>0时,g(x)为增函数,g(x)∈R ,当x<0时,g(x)为先增再减函数,g(x)∈(-∞,-2]. 结合图象,直线y =-k 与函数y =g(x)有2个交点, 因此,实数-k =-2,即k =2. 答案:2方法四:排除法排除法也叫筛选法、淘汰法,它是充分利用单选题有且只有一个正确的选项这一特征,通过分析、推理、计算、判断,排除不符合要求的选项,从而确定正确选项.【典例4】(1)(2021·郑州二模)函数f(x)=sin x ln π-xπ+x在(-π,π)的图象大致为()【解析】选A.根据题意,函数f(x)=sin x ln π-xπ+x,x∈(-π,π),f(-x)=sin (-x)ln π+xπ-x=sin x lnπ-xπ+x=f(x),则f(x)在区间(-π,π)上为偶函数,所以排除B,C,又由f ⎝ ⎛⎭⎪⎫π2 =sin π2 ln π23π2=ln 13 <0,所以排除D.(2)(2021·太原二模)已知函数y =f(x)部分图象的大致形状如图所示,则y =f(x)的解析式最可能是( )A .f(x)=cos x e x -e -xB .f(x)=sin x e x -e -xC .f(x)=cos x e x +e -xD .f(x)=sin x e x +e -x 【解析】选A.由图象可知,f(2)<0,f(-1)<0, 对于B ,f(2)=sin 2e 2-e -2>0,故B 不正确;对于C ,f(-1)=cos (-1)e -1+e=cos 1e -1+e>0,故C 不正确; 对于D ,f(2)=sin 2e 2+e -2 >0,故D 不正确.【变式训练】1.(2021·嘉兴二模)函数f(x)=⎝⎛⎭⎪⎫1x -1+1x +1 cos x 的图象可能是()【解析】选C.由f(-x)=⎝⎛⎭⎪⎫1-x -1+1-x +1 cos (-x) =-⎝ ⎛⎭⎪⎫1x -1+1x +1 cos x =-f(x)知, 函数f(x)为奇函数,故排除B.又f(x)=⎝⎛⎭⎪⎫1x -1+1x +1 cos x =2x x 2-1 cos x , 当x ∈(0,1)时,2xx 2-1 <0,cos x>0⇒f(x)<0.故排除A ,D.2.(2021·石家庄一模)甲、乙、丙三人从红、黄、蓝三种颜色的帽子中各选一顶戴在头上,每人帽子的颜色互不相同,乙比戴蓝帽的人个头高,丙和戴红帽的人身高不同,戴红帽的人比甲个头小,则甲、乙、丙所戴帽子的颜色分别为( ) A .红、黄、蓝 B .黄、红、蓝 C .蓝、红、黄 D .蓝、黄、红【解析】选B.丙和戴红帽的人身高不同,戴红帽的人比甲个头小,故戴红帽的人为乙,即乙比甲的个头小;乙比戴蓝帽的人个头高,故戴蓝帽的人是丙. 综上,甲、乙、丙所戴帽子的颜色分别为黄、红、蓝.方法五:构造法构造法实质上是转化与化归思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等模型转化为熟悉的问题求解.【典例5】(1)(2021·昆明三模)已知函数f(x)=e x -a -ln x x -1有两个不同的零点,则实数a 的取值范围是( )A .(e ,+∞)B .⎝ ⎛⎭⎪⎫e 2,+∞C .⎝ ⎛⎭⎪⎫12,+∞ D .(1,+∞)【解析】选D.方法一(切线构造):函数f(x)=e x -a -ln xx -1有两个不同的零点, 则e x -a -1=ln xx 有两个解, 令g(x)=e x -a -1,h(x)=ln xx (x>0),则g(x)与h(x)有2个交点,h′(x)=1-ln xx 2 (x>0), 当x>e 时h′(x)<0,h(x)单调递减, 当0<x<e 时h′(x)>0,h(x)单调递增, 由g′(x)=e x -a (x>0)得g(x)单调递增, 图象如下,当g(x)与h(x)相切时,设切点为⎝ ⎛⎭⎪⎫x 0,ln x 0x 0 , h′(x 0)=1-ln x 0x 2=g′(x 0)=0x ae -, 同时ln x 0x 0 =ex 0-a -1,得ln x 0x 0 +1=1-ln x 0x 2,即x0ln x0+x20=1-ln x0,(x0+1)ln x0=-(x0+1)(x0-1),又x0>0,ln x0=1-x0,所以x0=1,此时1=e1-a,所以a=1,当a>1时,可看作g(x)=e x-1-1的图象向右平移,此时g(x)与h(x)必有2个交点,当a<1时,图象向左平移二者必然无交点,综上a>1.方法二(分离参数):由题意,方程e x-a-ln xx-1=0有两个不同的解,即e-a=ln xx+1e x有两个不同的解,所以直线y=e-a与g(x)=ln xx+1e x的图象有两个交点.g′(x)=⎝⎛⎭⎪⎫ln xx+1′×e x-(e x)′×⎝⎛⎭⎪⎫ln xx+1(e x)2=-(x+1)(ln x+x-1)x2e x.记h(x)=ln x+x-1.显然该函数在(0,+∞)上单调递增,且h(1)=0,所以0<x<1时,h(x)<0,即g′(x)>0,函数单调递增;所以x>1时,h(x)>0,即g′(x)<0,函数单调递减.所以g(x)≤g(1)=ln 11+1e1=1e.又x→0时,g(x)→0;x→+∞时,g(x)→0.由直线y=e a与g(x)=ln xx+1e x的图象有两个交点,可得e -a <1e =e -1,即-a<-1,解得a>1.方法三:由题意,方程e x -a -ln x x -1=0有两个不同的解,即e x -a =ln x x +1,也就是1e a (xe x )=x +ln x =ln (xe x ).设t =xe x (x>0),则方程为1e a t =ln t ,所以1e a =ln t t .由题意,该方程有两个不同的解.设p(x)=xe x (x>0),则p′(x)=(x +1)e x (x>0),显然p′(x)>0,所以p(x)单调递增,所以t =p(x)>p(0)=0.记q(t)=ln t t (t>0),则q′(t)=1-ln t t 2 .当0<t<e 时,q′(t)>0,函数单调递增;当t>e 时,q′(t)<0,函数单调递减.所以q(t)≤q(e)=ln e e =1e .又t→0时,q(t)→0;t→+∞时,q(t)→0.由方程1e a =ln t t 有两个不同的解,可得0<1e a <1e ,解得a>1.(2)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P-ABC 为鳖臑,PA ⊥平面ABC ,PA =AB =2,AC =4,三棱锥P-ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( )A .8πB .12πC .20πD .24π【解析】选C.将三棱锥P-ABC 放入长方体中,如图,三棱锥P-ABC 的外接球就是长方体的外接球.因为PA =AB =2,AC =4,△ABC 为直角三角形,所以BC =42-22 =2 3 .设外接球的半径为R ,依题意可得(2R)2=22+22+(2 3 )2=20,故R 2=5,则球O 的表面积为4πR 2=20π.【变式训练】1.已知2ln a =a ln 2,3ln b =b ln 3,5ln c =c ln 5,且a ,b ,c ∈(0,e),则( )A .a<b<cB .b<a<cC .c<b<aD .c<a<b【解析】选D.因为2ln a =a ln 2,3ln b =b ln 3,5ln c =c ln 5,且a ,b ,c ∈(0,e),化为:ln a a =ln 22 ,ln b b =ln 33 ,ln c c =ln 55 ,令f(x)=ln x x ,x ∈(0,e),f′(x)=1-ln x x 2 ,可得函数f(x)在(0,e)上单调递增,在(e ,+∞)上单调递减,f(c)-f(a)=ln 55 -ln 22 =2ln 5-5ln 210=ln 253210 <0,且a ,c ∈(0,e), 所以c<a ,同理可得a<b.所以c<a<b.2.(2021·汕头三模)已知定义在R 上的函数f(x)的导函数为f′(x),且满足f′(x)-f(x)>0,f(2 021)=e 2 021,则不等式f ⎝ ⎛⎭⎪⎫1e ln x <e x 的解集为( ) A .(e 2 021,+∞)B .(0,e 2 021)C .(e 2 021e ,+∞)D .(0,e 2 021e )【解析】选D.令t =1e ln x ,则x =e et ,所以不等式f ⎝ ⎛⎭⎪⎫1e ln x <e x 等价转化为不等式f(t)<e e et =e t ,即f (t )e t <1 构造函数g(t)=f (t )e t ,则g′(t)=f′(t )-f (t )e t, 由题意,g′(t)=f′(t )-f (t )e t>0, 所以g(t)为R 上的增函数,又f(2 021)=e 2 021,所以g(2 021)=f (2 021)e 2 021 =1,所以g(t)=f (t )e t <1=g(2 021),解得t<2 021,即1e ln x<2 021,所以0<x<e 2 021e .方法六:估算法估算法就是不需要计算出准确数值,可根据变量变化的趋势或极值的取值情况估算出大致取值范围,从而解决相应问题的方法.【典例6】(2019·全国Ⅰ卷)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12 (5-12 ≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12 .若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是( )A.165 cm B.175 cmC.185 cm D.190 cm【解析】选B.头顶至脖子下端的长度为26 cm,可得咽喉至肚脐的长度小于42 cm,肚脐至足底的长度小于110 cm,则该人的身高小于178 cm,又由肚脐至足底的长度大于105 cm,可得头顶至肚脐的长度大于65 cm,则该人的身高大于170 cm,所以该人的身高在170~178 cm之间.【变式训练】设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为9 3 ,则三棱锥D-ABC体积的最大值为()A.12 3 B.18 3C.24 3 D.54 3【解析】选B.等边三角形ABC的面积为9 3 ,显然球心不是此三角形的中心,所以三棱锥的体积最大时,三棱锥的高h应满足h∈(4,8),所以13×9 3 ×4<V三棱锥D-ABC <13×9 3 ×8,即12 3 <V三棱锥D-ABC<24 3 .。

高考数学选择题的解题技巧归纳

高考数学选择题的解题技巧归纳

高考数学选择题的解题技巧归纳高考数学选择题蒙题技巧数量原则理想状态:15道题,每题5个选项,A、B、C、D、E平均每个选项共出现3次。

答案排列:3、3、3、3、3实际状态:每个选项在2——4的范围内。

选项排列:3、3、3、2、4(此种状态略多呈现)或3、2、4、2、4。

即某一个选项为2个,某一个选项为4个三不相同原则即连续三个问题不会连续出现相同答案答案排列不会出现ABCDE的英文字母排列顺序中庸之道即数值优先选择“中间量”选项,选项优先考虑BCD。

在同一道题中优先考虑数值的“中间量”后考虑选项BCD。

(如E选项对应数值为中间量时,优先从数值入手考虑)出现诸如“以上结果都不对”的选项不予考虑由提干给定信息入手,通过选项特征排除错误选项选项基本特征如下:单值与多值(例如提干出现“偶次方、绝对值、对称性”等结果出现多值) 正值与负值(考前冲刺P12/25题根据提干排除负值)有零与无零区间的开与闭(看极端情况能否取等号)正无穷与负无穷(通过极限考虑)整数与小数(分数)质数与合数大于与小于整除与不能整除带符号与不带符号(例如根号、平方号等等)少数服从多数原则即看选项特征,具有同一特征多的选项优先考虑。

复杂表达式化简题一般情况下选项出现1、2、0、-1、-2的情况比较多前后无定位,连续几道题均不会都需猜蒙答案的情况观察已做完的选项情况,哪个选项少就将这几道题全写成这个选项。

答案往往出现在互为相反数、互为倒数、相加为一(概率题)的几个选项。

高考数学选择题解题技巧高考数学选择题解题技巧一、排除法所谓排除法,就是经过判断推理,将四个备选答案中的三个迷惑答案一一排除,剩下一个正确答案.排除法也叫筛选法.例1 若a b,且c为实数,则下列各式中正确的是( ).A.ac bcB.acbc2 D.ac2≥bc2解析:由于c为实数,所以c可能大于0、小于0、也可能等于0.当c=0时,显然A、B、C均不成立,故应排除A、B、C.对于D来说,当c 0,c 0,c=0时,ac2≥bc2都成立,故应选D.例2 在Rt△ABC中,∠C=90°,AC=15,BC=8,则sinA+sinB+sinC=( ). A. B. C. D.解析:由∠C=90°可得 sinC=1. 又因为∠A、∠B均为锐角,所以sinA、sinB均为正数,从而 sinA+sinB+sinC 1.而A、B、C三个选项中的值均小于1,于是排除A、B、C ,故选 D.高考数学选择题解题技巧二、特殊值法当某些题目比较抽象,难以对其作出判断时,我们可以在符合题目条件的`范围内,用某些特殊值代替题目中的字母,然后作出判断.我们将这种解题的方法称为特殊值法.例3 若二次方程x2+2px+2q=0有实数根,其中p,q为奇数,那么它的根一定为( ).A.奇数B.偶数C.分数D.无理数解析:此题关于x的方程的系数为字母p、q,虽然知道p、q为奇数,但仍比较抽象,我们可以根据题设条件赋予未知字母特定的值,然后再去解这个一元二次方程,它的根的情况便一目了然了.不妨设p=3,q=1,则原方程变为x2+6x+2=0解得x=± -3,显然这是一个无理数,故应选择D.例4 若a、b、c都不为零,但a+b+c=0,则 + + 的值( ).A.正数B.零C.负数D.不能确定解析:此题若按传统方法进行通分将非常麻烦且不易求解,若采用特殊值法,则能化繁为简.令a=1、b=1、c=-2,代入原式得 + + = + - =0,故选B. 高考数学选择题解题技巧三、代入检验法当某些问题(如方程、函数等)解起来比较麻烦时,可以换一个角度进行分析判断,即把给出的根、给出的点或给出的值代入方程或函数式中进行验证,从而使问题得以简化.这类处理问题的方法被称为代入法,又叫验证法.例5 若最简根式和是同类根式,则a、b的值为( ).A.a=1 b=1B.a=1 b=-1C.a=-1 b=-1D.a=-1 b=1解析:由同类根式的定义可知根指数相同,被开方数也相同,这样便可列出一个二元一次方程组,再解这个二元一次方程组,用求出的解去检验给出的a、b的值,显然比较麻烦,如采用将给出的a、b的值分别代入最简根式中,再作出判断便容易多了.当把a=1、b=1代入根式后分别得出和,显然它们为同类根式,故应选A. 例6 若△ABC的三边长分别为整数,周长为11,且一边长为4,则这个三角形的最大边长为( ).A.7B.6C.5D.4解析:(1)若最大边为7,7+4=11,两边长就等于周长显然不行;(2)若最大边为6,则另一边只能为1,1、4、6无法构成三角形;(3)若最大边为5,且一边长为4.则第三边为2,因此5为最大边,无需再考虑4的情况.故选C.高考数学选择题解题技巧四、估算法估算法是一种粗略的计算方法,实质上是一种快速的近似计算方法,即对题目所给条件或信息作适当的变形与整理,从而对结果确定出一个范围或作出一个估计.例7 已知地球的表面积约等于5.1亿平方千米,其中水面面积约等于陆地面积的倍,则陆地面积约等于( )亿平方千米(精确到0.1).数学高考选择答题技巧一、按部就班的解题方法。

高考数学的解题思路技巧

高考数学的解题思路技巧

高考数学的解题思路技巧高考数学的解题思路指导(一)选择题对选择题的审题,主要应清楚:是单选还是多选,是选择正确还是选择错误?答案写在什么地方,等等。

做选择题有四种基本方法:1 回忆法。

直接从记忆中取要选择的内容。

2 直接解答法。

多用在数理科的试题中,根据已知条件,通过计算、作图或代入选择依次进行验证等途径,得出正确答案。

3 淘汰法。

把选项中错误中答案排除,余下的便是正确答案。

4 猜测法。

(二) 应用性问题的审题和解题技巧解答应用性试题,要重视两个环节,一是阅读、理解问题中陈述的材料;二是通过抽象,转换成为数学问题,建立数学模型。

函数模型、数列模型、不等式模型、几何模型、计数模型是几种最常见的数学模型,要注意归纳整理,用好这几种数学模型。

(三) 最值和定值问题的审题和解题技巧最值和定值是变量在变化过程中的两个特定状态,最值着眼于变量的最大/小值以及取得最大/小值的条件;定值着眼于变量在变化过程中的某个不变量。

近几年的数学高考试题中,出现过各种各样的最值问题和定值问题,选用的知识载体多种多样,代数、三角、立体几何、解析几何都曾出现过有关最值或定值的试题,有些应用问题也常以最大/小值作为设问的方式。

分析和解决最值问题和定值问题的思路和方法也是多种多样的。

命制最值问题和定值问题能较好体现数学高考试题的命题原则。

应对最值问题和定值问题,最重要的是认真分析题目的情景,合理选用解题的方法。

(四) 计算证明题解答这种题目时,审题显得极其重要。

只有了解题目提供的条件和隐含的信息,确定具体解题步骤,问题才能解决。

在做这种题时,有一些共同问题需要注意:1 注意完成题目的全部要求,不要遗漏了应该解答的内容。

2 在平时练习中要养成规范答题的习惯。

3 不要忽略或遗漏重要的关键步骤和中间结果,因为这常常是题答案的采分点。

4 注意在试卷上清晰记录细小的步骤和有关的公式,即使没能获得最终结果,写出这些也有助于提高你的分数。

5 保证计算的准确性,注意物理单位的变换。

高考数学选择题秒杀技巧

高考数学选择题秒杀技巧

高考数学选择题秒杀技巧
1. 嘿,你知道吗?特殊值法简直就是高考数学选择题的大救星啊!比如这道题“若函数 f(x)满足 f(2)=3,那 f(4)等于多少”,咱就直接找个满足条件的特殊值带进去,说不定一下就出来啦,这多省事儿呀!
2. 哇塞,选项代入排除法可太好用啦!就像找宝藏一样,把不合适的选项一个一个排除掉,最后剩下的不就是正确答案嘛!比如那道求角度的题,一试就知道哪个对啦!
3. 哎呀呀,图形结合法真是绝了呀!碰到几何题,画个图出来,答案有时候就一目了然啦!像那道求阴影面积的,画出来不就清楚多啦!
4. 嘿,数量关系分析法也很牛呀!看看题目里的数量关系,分析分析,答案也许就自己蹦出来咯!比如那道算速度的题,通过关系一分析不就懂啦!
5. 哇哦,反推法有时候能带来大惊喜呢!从答案反推条件,看看合不合理,不就知道选哪个啦!就像那道判断函数奇偶性的题,反推一下嘛!
6. 哈哈,极限思维法也是个厉害角色呀!把数值往极限去想,往往能找到突破点呢!像那道求最大值的题,想想极限情况呀!
7. 哟呵,整体代换法可别小瞧呀!把一个复杂的式子整体代换一下,说不定难题就变简单啦!比如那道含有多项式的题,整体代换一下多轻松呀!
8. 哎呀,类比法也很有趣呀!想想类似的题目怎么做的,这道题也许就有思路啦!就像那道和之前做过的类似的题,类比一下就懂啦!
9. 哇,估算法有时候能快速解决问题呀!大致估算一下范围,就能排除好多选项呢!比如那道计算面积的题,先估算个大概嘛!
10. 嘿,规律总结法可是很重要的哟!多做几道题总结总结规律,以后碰到类似的题就不怕啦!就像那类找数列规律的题,总结好规律就简单啦!
我的观点结论就是:这些高考数学选择题秒杀技巧真的超有用,大家一定要好好掌握呀,能帮你在考场上节省不少时间,提高准确率呢!。

高考数学答题技巧:解答选择题的几种有效方法_答题技巧

高考数学答题技巧:解答选择题的几种有效方法_答题技巧

高考数学答题技巧:解答选择题的几种有效方法_答题技巧古语云:授人以鱼,只供一饭。

授人以渔,则终身受用无穷。

学知识,更要学方法。

清华网校的学习方法栏目由清华附中名师结合多年教学经验和附中优秀学生学习心得组成,以帮助学生培养良好的学习习惯为目的,使学生在学习中能够事半功倍。

高考中总有那么一两道问题难度系数很低的,问题难,以拉开来不同考生的差距。

遇到难题一时想不出来,可以考虑换一种方法,换一种思路,如果仍然没有头绪,不妨先放一放,记下题号,等后面的解答完了再回来看看,你可能会获得新的解题方法。

最后如果仍然没有想出来的也不能放弃,是选择题就要猜测答案了,填空题也不能空着,猜测答案往上写,是大题,就要分步写,只要与问题有关,能写多少写多少。

遇到了难题,我该怎么办?会做的题目要力求做对、做全、得满分,而更多的问题是对不能完整完成的题目如何分段得分。

下面有两种常用方法。

一、面对一个疑难问题,一时间想不出方法时,可以将它划分为几个子问题,然后在解决会解决的部分,即能解决到什么程度就解决到什么程度,能演算几步就写几步。

如从最初的把文字语言译成符号语言,把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。

而且可望在上述处理中,可能一时获得灵感,因而获得解题方法。

二。

有些问题好几问,每问都很难,比如前面的小问你解答不出,但后面的小问如果根基前面的结论你能够解答出来,这时候不妨先解答后面的,此时可以引用前面的结论,这样仍然可以得分。

如果稍后想出了前面的解答方法,可以补上:“事实上,第一问可以如下证明”。

选择题有什么解题技巧吗?1、直接求解法从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择支对照来确定选择支。

2、筛选排除法在几个选择支中,排除不符合要求的选择支,以确定符合要求的选择支。

3、特殊化方法就是取满足条件的特例(包括取特殊值、特殊点、以特殊图形代替一般图形等),并将得出的结论与四个选项进行比较,若出现矛盾,则否定,可能会否定三个选项;若结论与某一选项相符,则肯定,可能会一次成功,这种方法可以弥补其它方法的不足。

高考数学选择题的解题技巧

高考数学选择题的解题技巧

高考数学选择题的解题技巧解数学选择题的常用方法,主要分直接法和间接法两大类.直接法是解答选择题最基本、最常用的方法,但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答,因此,我们还要研究解答选择题的一些技巧.总的来说,选择题属小题,解题的原则是:小题巧解,小题不能大做.方法一 直接法直接法就是从题干给出的条件出发,进行演绎推理,直接得出结论.这种策略多用于一些定性的问题,是解选择题最常用的策略.这类选择题是由计算题、应用题、证明题、判断题改编而成的,可直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则等通过准确的运算、严谨的推理、合理的验证得出正确的结论,然后与选择支对照,从而作出相应的选择.例1 数列{a n }的前n 项和为S n ,已知a 1=13,且对任意正整数m 、n ,都有a m +n =a m ·a n ,若S n <a 恒成立,则实数a 的最小值为( ) A.12 B.23 C.32D .2解析 对任意正整数m 、n ,都有a m +n =a m ·a n ,取m =1,则有a n +1=a n ·a 1⇒a n +1a n =a 1=13,故数列{a n }是以13为首项,以13为公比的等比数列,则S n =131-13n 1-13=12(1-13n )<12,由于S n <a 对任意n ∈N *恒成立,故a ≥12,即实数a 的最小值为12,选A .思维升华 直接法是解答选择题最常用的基本方法.直接法适用的围很广,只要运算正确必能得出正确的答案.平时练习中应不断提高用直接法解选择题的能力,准确把握题目的特点.用简便的方法巧解选择题,是建立在扎实掌握“三基”的基础上的,否则一味求快则会快中出错.将函数y =sin 2x (x ∈R )的图象分别向左平移m (m >0)个单位、向右平移n (n >0)个单位所得到的图象都与函数y =sin(2x +π3)(x ∈R )的图象重合,则|m -n |的最小值为( )A.π6B.5π6C.π3D.2π3解析 函数y =sin 2x (x ∈R )的图象向左平移m (m >0)个单位可得y =sin 2(x +m )=sin(2x+2m )的图象,向右平移n (n >0)个单位可得y =sin 2(x -n )=sin(2x -2n )的图象.若两图象都与函数y =sin(2x +π3)(x ∈R )的图象重合,则⎩⎪⎨⎪⎧2m =π3+2k 1π,2n =-π3+2k 2π,(k 1,k 2∈Z )即⎩⎪⎨⎪⎧m =π6+k 1π,n =-π6+k 2π.(k 1,k 2∈Z )所以|m -n |=|π3+(k 1-k 2)π|(k 1,k 2∈Z ),当k 1=k 2时,|m -n |min =π3.故选C .方法二 特例法特例检验(也称特例法或特殊值法)是用特殊值(或特殊图形、特殊位置)代替题设普遍条件,得出特殊结论,再对各个选项进行检验,从而做出正确的选择.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.特例检验是解答选择题的最佳方法之一,适用于解答“对某一集合的所有元素、某种关系恒成立”,这样以全称判断形式出现的题目,其原理是“结论若在某种特殊情况下不真,则它在一般情况下也不真”,利用“小题小做”或“小题巧做”的解题策略.例2 (1)等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( ) A .130 B .170 C .210 D .260(2)如图,在棱柱的侧棱A 1A 和B 1B 上各有一动点P 、Q 满足A 1P =BQ ,过P 、Q 、C 三点的截面把棱柱分成两部分,则其体积之比为( )A .3∶1B .2∶1C .4∶1 D.3∶1解析 (1)取m =1,依题意a 1=30,a 1+a 2=100,则a 2=70,又{a n }是等差数列,进而a 3=110,故S 3=210,选C .(2)将P 、Q 置于特殊位置:P →A 1,Q →B ,此时仍满足条件A 1P =BQ (=0),则有1C AA B V -=1A ABC V -=1113ABC A B C V -,故选B .思维升华 特例法具有简化运算和推理的功效,比较适用于题目中含有字母或具有一般性结论的选择题,但用特例法解选择题时,要注意以下两点: 第一,取特例尽可能简单,有利于计算和推理;第二,若在不同的特殊情况下有两个或两个以上的结论相符,则应选另一特例情况再检验,或改用其他方法求解.已知O 是锐角△ABC 的外接圆圆心,∠A =60°,cos B sin C ·AB →+cos C sin B·AC →=2m ·AO →,则m 的值为( ) A.32 B. 2 C .1 D.12答案 A解析 如图,当△ABC 为正三角形时,A =B =C =60°,取D 为BC 的中点, AO →=23AD →,则有13AB →+13AC →=2m ·AO →, ∴13(AB →+AC →)=2m ×23AD →,∴13·2AD →=43mAD →,∴m =32,故选A . 方法三 排除法(筛选法)例3 函数y =x sin x 在[-π,π]上的图象是( )解析 容易判断函数y =x sin x 为偶函数,可排除D ; 当0<x <π2时,y =x sin x >0,排除B ;当x =π时,y =0,可排除C ;故选A .思维升华 排除法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小选项的围找出矛盾,这样逐步筛选,直到得出正确的答案.它与特例法、图解法等结合使用是解选择题的常用方法.函数y =2|x |的定义域为[a ,b ],值域为[1,16],a 变动时,方程b =g (a )表示的图形可以是( )解析 研究函数y =2|x |,发现它是偶函数,x ≥0时,它是增函数,因此x =0时函数取得最小值1,而当x =±4时,函数值为16,故一定有0∈[a ,b ],而4∈[a ,b ]或者-4∈[a ,b ],从而有结论a =-4时,0≤b ≤4,b =4时,-4≤a ≤0,因此方程b =g (a )的图形只能是B .方法四 数形结合法(图解法)在处理数学问题时,能够将抽象的数学语言与直观的几何图形有机结合起来,通过对规图形或示意图形的观察分析,将数的问题(如解方程、解不等式、判断单调性、求取值围等)与某些图形结合起来,利用图象的直观性,化抽象为直观,化直观为精确,从而使问题得到解决,这种方法称为数形结合法.例4 函数f (x )=⎝ ⎛⎭⎪⎫12|x -1|+2cos πx (-2≤x ≤4)的所有零点之和等于( )A .2B .4C .6D .8解析 由f (x )=⎝ ⎛⎭⎪⎫12|x -1|+2cos πx =0,得⎝ ⎛⎭⎪⎫12|x -1|=-2cos πx , 令g (x )=⎝ ⎛⎭⎪⎫12|x -1|(-2≤x ≤4),h (x )=-2cos πx (-2≤x ≤4),又因为g (x )=⎝ ⎛⎭⎪⎫12|x -1|=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -1, 1≤x ≤4,2x -1, -2≤x <1.在同一坐标系中分别作出函数g (x )=⎝ ⎛⎭⎪⎫12|x -1|(-2≤x ≤4)和h (x )=-2cos πx (-2≤x ≤4)的图象(如图),由图象可知,函数g (x )=⎝ ⎛⎭⎪⎫12|x -1|关于x =1对称,又x =1也是函数h (x )=-2cos πx (-2≤x ≤4)的对称轴,所以函数g (x )=⎝ ⎛⎭⎪⎫12|x -1|(-2≤x ≤4)和h (x )=-2cos πx (-2≤x ≤4)的交点也关于x =1对称,且两函数共有6个交点,所以所有零点之和为6. 答案 C思维升华 本题考查函数图象的应用,解题的关键是将零点问题转化为两图象的交点问题,然后画出函数的图象找出零点再来求和.严格地说,图解法并非属于选择题解题思路畴,但它在解有关选择题时非常简便有效.运用图解法解题一定要对有关函数的图象、方程曲线、几何图形较熟悉.图解法实际上是一种数形结合的解题策略.过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB的面积取最大值时,直线l 的斜率等于( ) A.33 B .-33 C .±33D .- 3 答案 B解析 由y =1-x 2,得x 2+y 2=1(y ≥0),其所表示的图形是以原点O 为圆心,1为半径的上半圆(如图所示).由题意及图形,知直线l 的斜率必为负值,故排除A ,C 选项.当其斜率为-3时,直线l 的方程为3x +y -6=0,点O 到其距离为|-6|3+1=62>1,不符合题意,故排除D 选项.选B.方法五 估算法由于选择题提供了唯一正确的选择支,解答又无需过程.因此,有些题目,不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量,但是加强了思维的层次.例5 若A 为不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为( ) A.34 B .1 C.74D .2解析 如图知区域的面积是△OAB 去掉一个小直角三角形. 阴影部分面积比1大,比S △OAB =12×2×2=2小,故选C 项.答案 C思维升华 “估算法”的关键是确定结果所在的大致围,否则“估算”就没有意义.本题的关键在于所求值应该比△AOB 的面积小且大于其面积的一半.已知sin θ=m -3m +5,cos θ=4-2m m +5(π2<θ<π),则tan θ2等于( ) A.m -39-m B.m -3|9-m | C.13D .5 答案 D解析 利用同角正弦、余弦的平方和为1求m 的值,再根据半角公式求tan θ2,但运算较复杂,试根据答案的数值特征分析.由于受条件sin 2θ+cos 2θ=1的制约,m 为一确定的值,进而推知tan θ2也为一确定的值,又π2<θ<π,因而π4<θ2<π2,故tan θ2>1.1.解选择题的基本方法有直接法、排除法、特例法、估算法、验证法和数形结合法.但大部分选择题的解法是直接法,在解选择题时要根据题干和选择支两方面的特点灵活运用上述一种或几种方法“巧解”,在“小题小做”、“小题巧做”上做文章,切忌盲目地采用直接法. 2.由于选择题供选答案多、信息量大、正误混杂、迷惑性强,稍不留心就会误入“陷阱”,应该从正反两个方向肯定、否定、筛选、验证,既谨慎选择,又大胆跳跃.3.作为平时训练,解完一道题后,还应考虑一下能不能用其他方法进行“巧算”,并注意及时总结,这样才能有效地提高解选择题的能力.。

高考数学选择题满分技巧

高考数学选择题满分技巧

高考数学选择题满分技巧高考选择题特点:1、选择题分数所占比例高,约占750分的40%以上,即315~330分(数学占40%)。

2、选择题可猜答,有一定几率不会做也能得分。

3、选择题容易丢分也容易得分,单题分值较大,而且存在干扰选项做误导,选择题好坏能决定你与他人的优势或劣势。

4、选择题可快速答题,留下时间做大题,也可浪费你大量时间,叫你来不及做题。

5、掌握选择题答题技巧可做到所有科目选择题既能快速解答,又能获取满分。

一、猜答技巧选择题虽不易猜答但仍有它的答题基本方法,现简单介绍如下:消元法选择题答案是唯一正确的,运用消元法是最普通的。

该法也适用多选题排除错误选项。

分析法将四个选择项全部置于试题中,纵横比较,逐个分析,去误求正,去伪存真,获得理想的答案。

联想法有时对四个选项无从下手,这时可以展开联想,联想课本、练习、阅读材料及其他,从而捕捉自己需要的知识点。

类比法在能力倾向选择题中类比法十分重要,四个选项中有一个选项不属于同一范畴,那么,余下的三项则为选择项。

推测法利用上下文推测词义。

有些试题要从句子中的结构及语法知识推测入手,配合自己平时积累的常识来判断其义,推测出逻辑的条件和结论,以期将正确的选项准确地选出。

二、数学选择题部分方法1)数学选项暗示:①开闭区间的思想就是暗示我们能不能取到这个值,直接代入验证就行。

一般可通过数形结合来判断其具体取值。

②含有+∞及-∞的。

即极限讨论法,一般有给出无穷大的选项,我们可用极限的思想去讨论排除或者待选(案例较多,大家自行找任意题去验证)。

③函数单调性判断。

根据单调性的特征取两个到三个好算的特殊值验证即可得出结论。

④函数奇偶性判断。

根据对称特性,取相应的对称点验证是否成立。

2)根据所学知识点简化我们不必管其中的道理,但是这类题通常比较难,我们在完全没有思路的时候,完全可以利用知识点来简化。

3)定性理解做题法,数形结合但凡考题涉及到函数和坐标系的,直接画图,画完图就是小学生做的了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选择题的解法技巧题型概述选择题注重基本知识与基本技能的考查,侧重于解题的灵活性和快捷性,以“小”“巧”著称,试题层次性强,一般按照由易到难的顺序排列,能充分体现学生灵活运用知识的能力. 解题策略:充分利用题设和选择支两方面所提供的信息作出判断,一般有两种思路:一是从题干出发考虑探求结果;二是从题干和选择支联合考虑或从选择支出发探求是否满足题干条件;先定性后定量,先特殊后推理,先间接后直接,先排除后求解,一定要小题巧解,避免小题大做. 方法一 直接法直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密地推理和准确地运算,从而得出正确的结论,然后对照题目所给出的选项“对号入座”,作出相应的选择.涉及概念、性质的辨析或运算较简单的题目常用直接法.例1 (1)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =26,B =2A ,则cos A 的值为( ) A.63 B.263C.66D.68(2)已知双曲线的一个焦点与抛物线x 2=24y 的焦点重合,其一条渐近线的倾斜角为30°,则该双曲线的标准方程为( ) A.x 29-y 227=1 B.y 29-x 227=1 C.y 212-x 224=1 D.y 24-x 212=1 解析 (1)在△ABC 中,a sin A =b sin B, ∴3sin A =26sin B =26sin 2A =262sin A cos A, ∴cos A =63. (2)由题意知,抛物线的焦点坐标为(0,6),所以双曲线的焦点坐标为(0,6)和(0,-6),所以双曲线中c =6,又因为双曲线一条渐近线的倾斜角为30°,所以a b =33,所以a 2b 2=13,又a 2+b 2=36,得a 2=9,b 2=27.所以双曲线的标准方程为y 29-x 227=1.答案 (1)A (2)B思维升华 涉及概念、性质的辨析或运算较简单的题目常用直接法.只要推理严谨,运算正确必能得出正确的答案.平时练习中应不断提高用直接法解选择题的能力,不能一味求快导致快中出错.跟踪演练1 (1)数列{a n }满足a 1=2,a n =a n +1-1a n +1+1,其前n 项积为T n ,则T 10等于( )A.16 B .-16C .6D .-6(2)(2015·四川)执行如图所示的程序框图,输出S 的值为( )A .-32B. 32C .-12D.12答案 (1)D (2)D解析 (1)由a n =a n +1-1a n +1+1⇒a n +1=1+a n 1-a n ,所以a 2=-3,a 3=-12,a 4=13,a 5=2,a 6=-3,…,由此可知数列{a n }的项具有周期性,且周期为4,第一周期内的四项之积为1,则a 9=a 1=2,a 10=a 2=-3,所以数列{a n }的前10项之积为1×1×2×(-3)=-6. (2)每次循环的结果依次为: k =2,k =3,k =4,k =5>4, ∴S =sin5π6=12.故选D. 方法二 特例法从题干(或选项)出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或图形位置,进行判断.特殊化法是“小题小做”的重要策略,要注意在怎样的情况下才可使用.特殊情况可能是:特殊值、特殊点、特殊位置、特殊函数等.例2 (1)设f (x )=⎩⎪⎨⎪⎧(x -a )2,x ≤0,x +1x +a ,x >0.若f (0)是f (x )的最小值,则a 的取值范围为( )A .[-1,2]B .[-1,0]C .[1,2]D .[0,2](2)已知等比数列{a n }满足a n >0,n =1,2,3,…,且a 5·a 2n -5=22n (n ≥3),当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1等于( ) A .n (2n -1) B .(n +1)2 C .n 2D .(n -1)2解析 (1)若a =-1,则f (x )=⎩⎪⎨⎪⎧(x +1)2,x ≤0,x +1x -1,x >0,易知f (-1)是f (x )的最小值,排除A ,B ;若a =0,则f (x )=⎩⎪⎨⎪⎧x 2,x ≤0,x +1x ,x >0,易知f (0)是f (x )的最小值,故排除C.D 正确.(2)因为a 5·a 2n -5=22n (n ≥3), 所以令n =3,代入得a 5·a 1=26, 再令数列为常数列,得每一项为8, 则log 2a 1+log 2a 3+log 2a 5=9=32. 结合选项可知只有C 符合要求. 答案 (1)D (2)C思维升华 特例法具有简化运算和推理的功效,比较适用于题目中含有字母或具有一般性结论的选择题,但用特例法解选择题时,要注意以下两点: 第一,取特例尽可能简单,有利于计算和推理;第二,若在不同的特殊情况下有两个或两个以上的结论相符,则应选另一特例情况再检验,或改用其他方法求解.跟踪演练2 (1)已知O 是锐角△ABC 的外接圆圆心,∠A =60°,cos B sin C ·AB →+cos C sin B·AC →=2m ·AO →,则m 的值为( ) A.32 B. 2 C .1 D.12(2)如图,在棱柱的侧棱A 1A 和B 1B 上各有一动点P 、Q 满足A 1P =BQ ,过P 、Q 、C 三点的截面把棱柱分成两部分,则其体积之比为( )A .3∶1B .2∶1C .4∶1 D.3∶1答案 (1)A (2)B解析 (1)如图,当△ABC 为正三角形时,A =B =C =60°,取D 为BC 的中点,AO →=23AD →,则有13AB →+13AC →=2m ·AO →, ∴13(AB →+AC →)=2m ×23AD →,∴13·2AD →=43mAD →,∴m =32,故选A. (2)将P 、Q 置于特殊位置:P →A 1,Q →B ,此时仍满足条件A 1P =BQ (=0), 则有1—C AA B V =1—A ABC V =VABC —A 1B 1C 13.故选B.方法三 排除法排除法就是充分运用选择题中单选题的特征,即有且只有一个正确选择项这一信息,从选择项入手,根据题设条件与各选择项的关系,通过分析、推理、计算、判断,对选择项进行排除,将其中与题设矛盾的干扰项逐一排除,从而获得正确结论的方法. 一般选择支与题干或常识矛盾,选择支互相矛盾时用排除法.例3 (1)(2015·课标全国Ⅱ)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图.以下结论不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关(2)已知函数f (x )=x (1+a |x |).设关于x 的不等式f (x +a )<f (x )的解集为A ,若[-12,12]⊆A ,则实数a 的取值范围是( ) A .(1-52,0)B .(1-32,0)C .(1-52,0)∪(0,1+32)D .(-∞,1-52)解析 (1)从2006年,将每年的二氧化硫排放量与前一年作差比较,得到2008年二氧化硫排放量与2007年排放量的差最大,A 选项正确;2007年二氧化硫排放量较2006年降低了很多,B 选项正确;虽然2011年二氧化硫排放量较2010年多一些,但自2006年以来,整体呈递减趋势,即C 选项正确;自2006年以来我国二氧化硫年排放量与年份负相关,D 选项错误,故选D.(2)当x =0时,有f (a )<f (0)=0,由[-12,12]⊆A ,当x =-12,a =-12时,有f (a )=-12×(1-12×|-12|)=-38<0,排除B 、D ,当x =12,a =12时,有f (a )=12×(1+12×|12|)=58>0,排除C ,所以选择A. 答案 (1)D (2)A思维升华 排除法适应于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,直到得出正确的答案. 跟踪演练3 (1)设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是( ) A .(-1,0)∪(0,1) B .(-∞,-1)∪(1,+∞) C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)(2)已知函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的最小正周期是π,若将其图象向右平移π3个单位后得到的图象关于原点对称,则函数f (x )的图象( ) A .关于直线x =π12对称B .关于直线x =5π12对称C .关于点(π12,0)对称D .关于点(5π12,0)对称答案 (1)C (2)B解析 (1)取a =2验证满足题意,排除A 、D ,取a =-2验证不满足题意,排除B.∴正确选项为C.(2)∵f (x )的最小正周期为π,∴2πω=π,ω=2,∴f (x )的图象向右平移π3个单位后得到g (x )=sin[2(x -π3)+φ]=sin(2x -2π3+φ)的图象,又g (x )的图象关于原点对称,∴-2π3+φ=k π,k ∈Z ,φ=2π3+k π,k ∈Z .又|φ|<π2,∴|2π3+k π|<π2,∴k =-1,φ=-π3,∴f (x )=sin(2x -π3),当x =π12时,2x -π3=-π6,∴A ,C 错误,当x =5π12时,2x -π3=π2,∴B 正确,D 错误.方法四 数形结合法根据命题条件中的函数关系或几何意义,作出函数的图象或几何图形,将数的问题(如解方程、解不等式、判断单调性、求取值范围等)与某些图形结合起来,利用图象的直观性,化抽象为直观,化直观为精确,从而使问题得到解决,这种方法称为数形结合法.例4 若直角坐标平面内的两点P ,Q 满足条件:①P ,Q 都在函数y =f (x )的图象上;②P ,Q 关于原点对称,则称点对[P ,Q ]是函数y =f (x )的一对“友好点对”(注:点对[P ,Q ]与[Q ,P ]看作同一对“友好点对”).已知函数f (x )=⎩⎪⎨⎪⎧log 2x (x >0),-x 2-4x (x ≤0),则此函数的“友好点对”有( ) A .0对 B .1对 C .2对D .3对解析 根据题意,将函数f (x )=-x 2-4x (x ≤0)的图象绕原点旋转180°后,得到的图象所对应的解析式为y =x 2-4x (x ≥0),再作出函数y =log 2x (x >0)的图象,如图所示.由题意,知函数y =x 2-4x (x >0)的图象与函数f (x )=log 2x (x >0)的图象的交点个数即为“友好点对”的对数.由图可知它们的图象交点有2个,所以此函数的“友好点对”有2对.答案 C思维升华 数形结合法是依靠图形的直观性进行分析的,用这种方法解题比直接计算求解更能抓住问题的实质,并能迅速地得到结果.使用数形结合法解题时一定要准确把握图形、图象的性质,否则会因为错误的图形、图象得到错误的结论.跟踪演练4 (1)已知非零向量a ,b ,c 满足a +b +c =0,向量a ,b 的夹角为120°,且|b |=2|a |,则向量a 与c 的夹角为( ) A .60° B .90° C .120°D .150°(2)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a 的取值范围是( )A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]答案 (1)B (2)D解析 (1)如图,因为〈a ,b 〉=120°,|b |=2|a |,a +b +c =0,所以在△OBC 中,BC 与CO 的夹角为90°,即a 与c 的夹角为90°.(2)函数y =|f (x )|的图象如图所示. ①当a =0时,|f (x )|≥ax 显然成立.②当a >0时,只需在x >0时,ln(x +1)≥ax 成立.比较对数函数与一次函数y =ax 的增长速度.显然不存在a >0使ln(x +1)≥ax 在x >0上恒成立.③当a <0时,只需x <0,x 2-2x ≥ax 成立,即a ≥x -2成立,∴a ≥-2. 综上所述:-2≤a ≤0.故选D. 方法五 构造法构造法是一种创造性思维,是综合运用各种知识和方法,依据问题给出的条件和结论给出的信息,把问题作适当的加工处理,构造与问题相关的数学模式,揭示问题的本质,从而沟通解题思路的方法.例5 已知函数f (x )是定义在R 上的可导函数,且对于∀x ∈R ,均有f (x )>f ′(x ),则有( ) A .e 2 018f (-2 018)<f (0),f (2 018)>e 2 018f (0) B .e 2 018f (-2 018)<f (0),f (2 018)<e 2 018f (0) C .e 2 018f (-2 018)>f (0),f (2 018)>e 2 018f (0) D .e 2 018f (-2 018)>f (0),f (2 018)<e 2 018f (0) 解析 构造函数g (x )=f (x )ex ,则g ′(x )=f ′(x )e x -(e x )′f (x )(e x )2=f ′(x )-f (x )e x ,因为∀x ∈R ,均有f (x )>f ′(x ),并且e x >0, 所以g ′(x )<0,故函数g (x )=f (x )e x 在R 上单调递减,所以g (-2 018)>g (0),g (2 018)<g (0), 即f (-2 018)e -2 018>f (0),f (2 018)e 2 018<f (0),也就是e 2 018f (-2 018)>f (0), f (2 018)<e 2 018f (0). 答案 D思维升华 构造法求解时需要分析待求问题的结构形式,特别是研究整个问题复杂时,单独摘出其中的部分进行研究或者构造新的情景进行研究.跟踪演练5 (1)(2015·课标全国Ⅱ)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( ) A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-∞,-1)∪(-1,0)D .(0,1)∪(1,+∞)(2)若四面体ABCD 的三组对棱分别相等,即AB =CD ,AC =BD ,AD =BC ,给出下列五个命题:①四面体ABCD 每组对棱相互垂直; ②四面体ABCD 每个面的面积相等;③从四面体ABCD 每个顶点出发的三条棱两两夹角之和大于90°而小于180°; ④连接四面体ABCD 每组对棱中点的线段相互垂直平分;⑤从四面体ABCD 每个顶点出发的三条棱的长可作为一个三角形的三边长. 其中正确命题的个数是( ) A .2 B .3 C .4D .5答案 (1)A (2)B解析 (1)因为f (x )(x ∈R )为奇函数,f (-1)=0,所以f (1)=-f (-1)=0.当x ≠0时,令g (x )=f (x )x ,则g (x )为偶函数,且g (1)=g (-1)=0.则当x >0时,g ′(x )=⎝⎛⎭⎫f (x )x ′=xf ′(x )-f (x )x 2<0,故g (x )在(0,+∞)上为减函数,在(-∞,0)上为增函数.所以在(0,+∞)上,当0<x <1时,g (x )>g (1)=0⇔f (x )x >0⇔f (x )>0;在(-∞,0)上,当x <-1时,g (x )<g (-1)=0⇔f (x )x<0⇔f (x )>0.综上,得使f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),选A. (2)构造长方体,使三组对棱恰好是长方体的三组平行面中异面的对角线,在此背景下,长方体的长、宽、高分别为x 、y 、z . 对于①,需要满足x =y =z ,才能成立;因为各个面都是全等的三角形(由对棱相等易证),则四面体的同一顶点处对应三个角之和一定恒等于180°,故②成立,③显然不成立;对于④,由长方体相对面的中心连线相互垂直平分判断④成立;从每个顶点出发的三条棱的长恰好分别等于各个面的三角形的三边长,⑤显然成立.故正确命题有②④⑤. 方法六 估算法由于选择题提供了唯一正确的选项,解答又无需过程,因此,有些题目不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量,但是加强了思维的层次.例6 (1)图中阴影部分的面积S 是h 的函数(0≤h ≤H ),则该函数的大致图象是( )(2)已知三棱锥S —ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积是( ) A.36 B.26 C.23D.22解析 (1)由题图知,随着h 的增大,阴影部分的面积S 逐渐减小,且减小得越来越慢,结合选项可知选B.(2)容易得到△ABC 的面积为34,而三棱锥的高一定小于球的直径2,所以V <13×34×2=36,立即排除B 、C 、D ,答案选A. 答案 (1)B (2)A思维升华 估算法一般包括范围估算,极端值估算和推理估算.当题目从正面解析比较麻烦,特值法又无法确定正确的选项时(如难度稍大的函数的最值或取值范围、函数图象的变化等问题)常用此种方法确定选项.跟踪演练6 (1)已知x 1是方程x +lg x =3的根,x 2是方程x +10x =3的根,则x 1+x 2等于( ) A .6 B .3 C .2D .1(2)(2015·湖北)在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12”的概率,p 2为事件“xy ≤12”的概率,则( )A .p 1<p 2<12B .p 2<12<p 1C.12<p 2<p 1 D .p 1<12<p 2答案 (1)B (2)D解析 (1)因为x 1是方程x +lg x =3的根,所以2<x 1<3,x 2是方程x +10x =3的根,所以0<x 2<1, 所以2<x 1+x 2<4.故B 正确.(2)在直角坐标系中,依次作出不等式⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤1,x +y ≤12,xy ≤12的可行域如图所示:。

相关文档
最新文档