(完整版)高斯消元法MATLAB实现
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数值分析》实验报告
一、实验目的与要求
1.掌握高斯消去法的基本思路和迭代步骤;
2.培养编程与上机调试能力。
二、实验内容
1.编写用高斯消元法解线性方程组的MATLAB程序,并求解下面的线性方程组,然后用逆矩阵解方程组的方法验证.
(1)
123
123
123
0.101 2.304 3.555 1.183
1.347 3.712 4.623
2.137
2.835 1.072 5.643
3.035
x x x
x x x
x x x
++=
⎧
⎪
-++=
⎨
⎪-++=
⎩
(2)
123
123
123
528
28321
361
x x x
x x x
x x x
++=
⎧
⎪
+-=
⎨
⎪--=
⎩
2.编写用列主元高斯消元法解线性方程组的MATLAB程序,并求解下面的线性方程组,然后用逆矩阵解方程组的方法验证.
(1)
123
123
123
0.101 2.304 3.555 1.183
1.347 3.712 4.623
2.137
2.835 1.072 5.643
3.035
x x x
x x x
x x x
++=
⎧
⎪
-++=
⎨
⎪-++=
⎩
(2)
123
123
123
528
28321
361
x x x
x x x
x x x
++=
⎧
⎪
+-=
⎨
⎪--=
⎩
三.MATLAB计算源程序
1. 用高斯消元法解线性方程组b
AX=的MATLAB程序
输入的量:系数矩阵A和常系数向量b;
输出的量:系数矩阵A和增广矩阵B的秩RA,RB, 方程组中未知量的个数n 和有关方程组解X及其解的信息.
function [RA,RB,n,X]=gaus(A,b)
B=[A b]; n=length(b); RA=rank(A);
RB=rank(B);zhica=RB-RA;
if zhica>0,
disp('请注意:因为RA~=RB,所以此方程组无解.')
return
end
if RA==RB
if RA==n
disp('请注意:因为RA=RB=n,所以此方程组有唯一解.')
X=zeros(n,1); C=zeros(1,n+1);
for p= 1:n-1
for k=p+1:n
m= B(k,p)/ B(p,p); B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1);
end
end
b=B(1:n,n+1);A=B(1:n,1:n); X(n)=b(n)/A(n,n);
for q=n-1:-1:1
X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q);
end
else
disp('请注意:因为RA=RB End 2.列主元消元法及其MATLAB程序 AX 的MA TLAB程序 用列主元消元法解线性方程组b 输入的量:系数矩阵A和常系数向量b; 输出的量:系数矩阵A和增广矩阵B的秩RA,RB, 方程组中未知量的个数n和有关方程组解X及其解的信息. function [RA,RB,n,X]=liezhu(A,b) B=[A b]; n=length(b); RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0, disp('请注意:因为RA~=RB,所以此方程组无解.') return end if RA==RB if RA==n disp('请注意:因为RA=RB=n,所以此方程组有唯一解.') X=zeros(n,1); C=zeros(1,n+1); for p= 1:n-1 [Y,j]=max(abs(B(p:n,p))); C=B(p,:); B(p,:)= B(j+p-1,:); B(j+p-1,:)=C; for k=p+1:n m= B(k,p)/ B(p,p); B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1); end end b=B(1:n,n+1);A=B(1:n,1:n); X(n)=b(n)/A(n,n); for q=n-1:-1:1 X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q); end else disp('请注意:因为RA=RB end