第八章 假设检验课后习题答案
习题解答(第8章)

第八章 假 设 检 验三、解答题1. 某种零件的长度服从正态分布,方差2= ,随机抽取6件,记录其长度(毫米)分别为,,,,,在显著性水平 = 下,能否认为这批零件的平均长度为32.50毫米 解:这是单个正态总体均值比较的问题,若设该种零件的长度),(~2σμN X ,则需要检验的是:00:μμ=H 01:μμ≠H由于2σ已知,选取nX Z σμ0-=为检验统计量,在显著水平 = 下,0H 的拒绝域为:}|{|}|{|005.02z z z z ≥=≥α}查表得 2.58005.0=z ,现由n =6, 31.1266711∑===ni i x n x ,1.1=σ, 50.320=μ计算得:2.583.0581561.132.5-31.126670>==-=nx z σμz 落入拒绝域中,故在的显著水平下应拒绝0H ,不能认为这批零件的平均长度为32.50毫米。
EXCEL 实验结果:2. 正常人的脉搏平均每分钟72次,某医生测得10例“四乙基铅中毒”患者的脉搏数如下:@54,67,68,78,70,66,67,65,69,70已知人的脉搏次数服从正态分布,问在显著水平 = 下,“四乙基铅中毒”患者的脉搏和正常人的脉搏有无显著差异解:这是单个正态总体均值比较的问题,若设“四乙基铅中毒”患者的脉搏数),(~2σμN X ,则需要检验的是:0:μμ=H1:μμ≠H由于方差未知,选取nS X T 0μ-=为检验统计量,在显著水平 = 下,0H 的拒绝域为:)}9(|{|)}1(|{|2/05.02t t n t t ≥=-≥α查表得 2.26)9(025.0=t ,现由n =10, 67.411∑===n i i x n x , ()35.211122∑==--=n i ix x n s , 计算得2.262.451035.2724.670>=-=-=nsX t μ-t 落入拒绝域中,故在的显著水平下应拒绝0H ,“四乙基铅中毒”患者的脉搏和正常人的脉搏有显著差异。
浙大版概率论与数理统计答案---第八章

第八章 假设检验注意: 这是第一稿(存在一些错误)1 、解 由题意知:~(0,1)/X N nμσ- (1)对参数μ提出假设:0: 2.3H μ≤, 1: 2.3H μ> (2)当0H 为真时,检验统计量 2.3~(0,1)0.29/35X N -,又样本实测得 2.4x =,于是002.4 2.3()( 2.04)1(2.04)0.0207/0.29/35/H H X X P P P n nμμσσ----=≥=≥=-Φ= (3)由(2)知,犯第I 类错误的概率为0.0207 (4)如果0.05α=时,经查表得 1.645z α=,于是2.3 2.3{}{ 1.645}/0.29/35X X W z W n ασ-->=>(5)是。
2、 14.5515x =<故将希望得到支持的假设“15μ>”作为原假设,即考虑假设问题 0H :15μ≥,1H :15μ<因2σ未知,取检验统计量为0/X T S nμ-=,由样本资料10n =,14.55x =, 1.2445s =和015μ=代入得观察值0 1.2857t =-,拒绝域为()00.059/X W T t S n μ⎧⎫-==≤-⎨⎬⎩⎭,查分布表得()0.059 1.8331t =,()00.059t t >-故接受原假设0H ,即认为该广告是真实的。
3、 解(1)由题意得,检验统计量1/X Z nσ-=,其拒绝域为1{}{ 1.66}/X W Z z W X nασ-==≥=≥ 当2μ=时,犯第II 类错误的概率为:0021.662{|}{ 1.66|2}P{}=0.198//X P H H P X n nβμσσ--==≤==≤接受是错误的 (2)222(n 1)S ~(n 1)χσ--,当2σ未知时,检验统计量224S ,其拒绝域为:2221W {24S (24)}{S 0.577}αχ-=<=<当21.25σ=时,检验犯第I 类错误的概率为:2220024S 240.577{|}{S 0.577| 1.25}P{}=0.0121.251.25P H H P ασ⋅==<==<拒绝是正确的4、 (1)提出假设0H :3000μ=,1H :3000μ≠ 建立检验统计量0/X T S nμ-=,其中03000μ=在显著水平0.05α=下,检验的拒绝域为()00.0257 2.3646/X W T t S n μ⎧⎫-==≥=⎨⎬⎩⎭,由样本资料得观察值()00.0252958.7530002.97271348.4375/8t t -==>,故有显著差异。
概率论与数理统计(经管类)第八章课后习题答案word

习题8.11.某天开工时,需检验自动装包机工作是否正常.根据以往的经验,其装包的重量在正常情况下服从正态分布N(100,1.52)(单位:公斤).现抽测了9包,其重量为:99.3 98.7 100.5 101.2 98.3 99.7 99.5 102.0 100.5问这天包装机工作是否正常?将这一问题化为一个假设检验问题,写出假设检验的步骤,设α=0.05.解: (1)作假设H0:μ=100,H1:μ≠100(2)选取检验统计量u=X−100σ√n⁄(3)查表知μα2=μ0.025=1.96, 拒绝域为|u|=|X−100σ√n⁄|≥1.96(4)由样本观测值有=99.97∴|u|=|X−100σ√n⁄|=|99.97−1001.5√9⁄|=0.06<1.96.不属于拒绝域,所以接受原假设H0,即认为这天包装机工作正常.2.设α,β分别是假设检验中犯第一,第二类错误的概率且H0,H1分别为原假设和备择驾驶,则(1)P{接受H0|H0不真}=β(2)P{拒绝H0|H0真}=α(3)P{拒绝H0|H0不真}=1−β(4)P{接受H0|H0真}=1−α习题8.21.某自动机生产一种铆钉,尺寸误差X~N(μ,1),该机正常工作与否的标志是检验μ=0是否成立.一日抽检容量n=10的样本,测得样本均值X=1.01.试问:在检验水平α=0.05下,该日自动机工作是否正常?解:检验假设H0:μ=μ0=0,H1:μ≠0∵X=1.01,n=10,σ=1∴|u|=|X−μσ√n⁄|=|1.01−01√10⁄|=3.194查表知μα2=μ0.025=1.96,由于|u|=3.194>1.96,故拒绝H0,即该日自动机工作不正常.2.假定考生成绩服从正态分布,在某地一次数学统考中,随机抽取了36位考生的成绩,算的平均成绩为X=66.5分,标准差S=15分,问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?解: 检验假设H0:μ=μ0=70,H1:μ≠70选取检验统计量t =X−μ0S √n⁄−1)拒绝域为|t |=|X−70S √n ⁄≥t α2(n −1)=t 0.025(35)=2.0301将X =66.5,S =15,n =36代入得|t |=1.4<2.0301.故接受H 0.即在显著性水平0.05下, 可以认为这次考试全体考生的平均成绩为70分. 3. 某种产品的重量X~N (12,1)(单位:克).更新设备后,从新生产的产品中,随机地抽取100个,测得样本均值=12.5(克).如果方差没有变化,问设备更新后,产品的平均重量是否有显著变化(α=0.1)? 解: 检验假设H 0:μ=μ0=12,H 1:μ≠12 ∵ =12.5,n =100,σ=1∴|u |=|X −μσ√n⁄|=|12.5−121√100⁄|=5查表知μα2=μ0.05=1.645,由于|u |=5>1.645,故拒绝H 0.即设备更新后,产品的平均重量有显著变化.4. 一种燃料的辛烷等级服从正态分布,其平均等级为98.0,标准差为0.8,现从一批新油中抽25桶,算得样本均值为97.7.假定标准差与原来一样,问新油的辛烷平均等级是否比原燃料平均等级偏低(α=0.05). 解: 检验假设H 0:μ≤μ0=98,H 1:μ>98 ∵ =97.7,n =25,σ=0.8∴|u |=|X −μσ√n⁄|=|97.7−980.8√25⁄|=1.875查表知μα2=μ0.025=1.96,由于|u |=1.875<1.96,故接受H 0.即可以认为新油的辛烷平均等级比原燃料平均等级偏低.5. 从一批灯泡中随机抽取50个,分别测量其寿命,算得其平均值X =1900(小时),标准差S=490(小时).问能否认为这批灯泡的平均寿命为2000(小时)( α=0.01).(用大样本情况下的u 检验) 解: 检验假设H 0:μ=μ0=2000,H 1:μ≠2000 ∵ X =1900,n =50,s =490∴|u |=|X −μs √n⁄|=|1900−2000490√50⁄|=1.44查表知μα2=μ0.005=2.57,由于|u |=1.44<2.57,故接受H 0.即可以认为这批灯泡的平均寿命为2000(小时).6. 某批矿砂的五个样品中镍含量经测定为(%):3.25 3.27 3.24 3.263.24设测定值服从正态分布,问能否认为这批矿砂的镍含量为3.25%(α=0.05). 解: 检验假设H 0:μ=μ0=3.25,H 1:μ≠3.25 选取检验统计量t =X−μ0S √n⁄−1)经计算=3.252,S =0.013 拒绝域为|t |=|X−3.25S √n⁄|≥t α2(n −1)=t 0.025(4)=2.7764将X =66.5,S =15,n =5代入得|t |=0.344<2.7764.故接受H 0. 即可以认为这批矿砂的镍含量为3.25%.7. 有甲,乙两台机床加工同样产品,从这两台机床中随机抽取若干件,测得产品直径(单位:毫米)为:机床甲20.5 19.8 19.7 20.4 20.1 20.0 19.0 19.9 机床乙19.720.8 20.5 19.8 19.4 20.6 19.2 假定两台机床加工的产品直径都服从正态分布,且总体方差相等.问甲,乙两台车床加工的产品直径有无显著差异(α=0.05). 解:检验假设H 0:μ1=μ2,H 1:μ1≠μ2经计算X =19.925,y =20,S 12=1.5157,S 22=2.386∴|t |=|X −y S w √1m +1n|=||19.925−20√7∗1.5157+6∗2.3868+7−2∗√18+17||=0.265查表知t α2(m +n −2)=t 0.025(13)=2.1604,由于|t |=0.265<2.1604,故接受H 0.即甲,乙两台车床加工的产品直径无显著差异.8. 从甲地发送一个信号到乙地.设乙地接受到的信号值是一个服从正态分布N(μ,0.22)的随机变量,其中μ为甲地发送的真实信号值.现甲地重复发送同一信号5次,乙地接受到的信号值为 8.05 8.15 8.2 8.1 8.25 设接收方有理由猜测甲地发送的信号值为8.问能否接受这一猜测? (α=0.05) 解: 检验假设H 0:μ=μ0=8,H 1:μ≠8∵ =8.15,n =5,σ=0.2∴|u |=|X −μσ√n⁄|=|8.15−80.2√5⁄|=1.677查表知μα2=μ0.025=1.96,由于|u |=1.677<1.96,故接受H 0.即可以接受这一猜测. 习题8.31. 某纺织厂生产的某种产品的纤度用X 表示,在稳定生产时,可假定X~N(μ,σ2),其中标准差σ=0.048.现在随机抽取5跟纤维,测得其纤度为 1.32 1.55 1.36 1.40 1.44 试问总体X 的方差有无显著变化. (α=0.1) 解: 检验假设H 0:σ=0.048,H 1:σ≠0.048 检验统计量χ2=(n−1)S 2σ02~χ2(n −1)由α=0.1查表得χα22(n −1)=χ0.052(4)=9.488,χ1−α22(n −1)=χ0.952(4)=0.711于是得出拒绝域为W =(0,0.711)∪(9.488,+∞) 经计算S 2=0.31124代入χ2=(n−1)S 2σ02=4∗0.311240.048=13.51>9.488,故拒绝H 0.即总体X 的方差有显著变化.2. 设有来自正态总体X~N(μ,σ2),容量为100的样本,样本均值X =2.7,μ,σ2均未知,而∑(x i −x)2ni=1=225在α=0.05下,检验下列假设: (1) H 0:μ=3, H 1:μ≠3; (2) H 0:σ2=2.5, H 1:σ2≠2.5. 解: (1) 检验假设H 0:μ=3, H 1:μ≠3∵ X =2.7,n =100,S =√1n −1∑(x i −x)2ni=1=1.508 因此可用大样本情况的u 检验|u |=|X −μs √n⁄|=|2.7−31.508√100⁄|=1.99查表知μα2=μ0.025=1.96,由于|u |=1.99>1.96,故拒绝H 0.(同课后答案有争议)(2)该题无法查到χ0.0252(99)值故省略.(用χ2检验)3. 甲,乙两台机床加工某种零件,零件的直径服从正态分布,总体方差反映了加工精度.为比较两台机床的加工精度有无差别,现从各自加工的零件中分别抽取7件产品和8件产品,测得其直径为X(机床甲)16.2 16.4 15.8 15.5 16.7 15.6 15.8 Y(机床乙)15.9 16.0 16.4 16.1 16.5 15.8 15.7 15.0 问这两台机床的加工精度是否一致? 解:该题无α值,故省略.(用F 检验)4. 对两批同类电子元件的电阻进行测试,各抽6件,测得结果如下(单位:Ω)A 批0.140 0.138 0.143 0.141 0.144 0.137 B 批 0.135 0.140 0.142 0.136 0.138 0.141 已知元件电阻服从正态分布,设σ=0.05,问:(1) 两批电子元件电阻的方差是否相等; (2) 两批元件的平均电阻是否有差异.解: (1)检验假设H 0:σ12=σ22, H 1:σ12≠σ22经计算S 12=0.00272,S 22=0.00282由α=0.05查表得F α2(n 1−1,n 2−1)=F 0.025(5,5)=无法查F 0.025(5,5)对应值,故无法做. 习题8.4某厂使用两种不同的原料生产同一类产品,随机选取使用原料A 生产的产品22件,测得平均质量为X =2.36(kg),样本标准差S x =0.57(kg).取使用原料B 生产的样品24件,测得平均质量为y =2.55(kg),样本标准差S y =0.48(kg).设产品质量服从正态分布,这两个样本相互独立.问能否认为使用B 原料生产的产品平均质量较使用原料A 显著大?(取显著性水平α=0.05).解:检验假设H 0:μA ≥μB , H 0:μA <μB ; 选取检验统计量t =X −y S w √1m +1n+n −1)|t |=|X −y S w √1m +1n|=|2.36−2.55√21∗0.572+23∗0.48244∗√122+124|=1.226查表知t α2(m +n −2)=t 0.025(44)=2.0154,由于|t |=1.226<2.0154,故接受H 0.即使用B 原料生产的产品平均质量于使用原料A 生产的产品平均质量无显著大.自测题8 一、,选择题在假设检验问题中,显著性水平α的意义是 A . A. 在H 0成立的条件下,经检验H 0被拒绝的概率 B. 在H 0成立的条件下,经检验H 0被接受的概率 C. 在H 0不成立的条件下,经检验H 0被拒绝的概率 D. 在H 0不成立的条件下,经检验H 0被接受的概率 二、,填空题1. 设总体X 服从正态分布N (μ,σ2),其中μ未知,x 1,x 2,⋯,x n 为其样本.若假设检验问题为H 0:σ2=1, H 1:σ2≠1,则采用的检验统计量应为 χ2=(n−1)S 21.2. 设某假设检验问题的拒绝域为W,且当原假设H 0成立时,样本值x 1,x 2,⋯,x n 落入W 的概率为0.15,则犯第一类错误的概率为 0.15 .(参考page 169)3. 设样本,x 1,x 2,⋯,x n 来自正态分布N (μ,1),假设检验问题为H 0:μ=0,H 1:μ≠0,则在H 0成立的条件下,对显著性水平α,拒绝域W 应为 |u |>u α,其中u =X √n .(参考page 181表8-4)三、某型号元件的尺寸X 服从正态分布,其均值为3.278cm,标准差为0.002cm.现用一种新工艺生产此类元件,从中随机取9个元件,测量其尺寸,算得均值X =3.2795cm ,问用新工艺生产的元件尺寸均值与以往有无显著差异.(显著发生性水平α=0.05)(附u 0.025=1.96,u 0.05=1.645) 解: 检验假设H 0:μ=μ0=3.278,H 1:μ≠3.278 ∵ X =3.2795,n =9,σ=0.002∴|u |=|X −μσ√n⁄|=|3.2795−3.2780.002√9⁄|=2.25又因μα2=μ0.025=1.96,|u |=2.25>1.96故拒绝H 0,即用新工艺生产的元件尺寸均值与以往有差异.四、用传统工艺加工的某种水果罐头中,每瓶的平均维生素C的含量为19(单位:mg).现改变了加工工艺,抽查了16瓶罐头,测得维生素C的含量的平均值X=20.8,样本标准差S=1.617.假定水果罐头中维生素C的含量服从正态分布.问在使用新工艺后,维生素C的含量是否有显著变化(显著性水平α=0.01)?(附t0.005(15)=2.9467,t0.005(16)=2.9208)解: 检验假设H0:μ=μ0=19,H1:μ≠19∵=20.8,n=16,S=1.617∴|t|=|X−μS√n⁄|=|20.8−191.617√16⁄|=4.453又因tα2(n−1)=t0.005(15)=2.9467,|t|=4.453>2.9467故拒绝H0,即使用新工艺后,维生素C的含量有显著变化.。
数理统计答案第八章答案(中山大学版)

=
0.006 5 = 0.0576 0.2331
因为 o.0576<0.2331.所以不能拒绝原假设,即认为处理前后含脂率的平均值无显著变 化。 解三:使用 Matlab 统计工具箱求解:使用函数函数 ttest2() 调用格式: [h,sig,ci]=ttest2(X,Y,alpha,tail) %sig 为当原假设为真时得到观察值的概率, 当 sig 为
ˆ ij ) 2 (nij − np = 3.0762 < χ 2 0.95 (2) = 5.9915 χ = ∑∑ ˆ np i =1 j =1 ij
2 2 3
故不能拒绝原假设.即认为慢性气管炎与吸烟量是相关的. 9. 解:当 a1 > a0 时,设 ξ1 , ξ 2 ,
, ξ n 为总体 ξ 的样本,由于似然比
另解:采用两个正态总体方差相等时的均值差的t检验法.检验统计量:
t=
( X − Y ) − ( μ1 − μ2 ) ∼ t (2n − 2) = t (10), SW 1/ n + 1/ n
tα (n + m − 2) = t0.025 (10) = 2.2281
2 2 (n − 1) S12 + (m − 1) S2 = 3.0469 n+m−2
β = P{ X 0 | H 1} = Pa {
1
n (ξ − a0 )
σ
<
σ ln k
n (a1 − a0 ) n (a1 − a0 ) } 2σ
+
n (a1 − a0 ) } 2σ
= Pa1 { = φ(
n (ξ − a1 )
σ
< −
σ ln k
n (a1 − a0 )
Geitel第八章 假设检验习题解答

2
当 H 0 为真时,选择检验统计量 U
X 0
_
~ N (0.1)
n
对于给定的选著水平
0.05 , 查 附 表 2 得 临 界 值 U 0.025 1.96 , 使 得
P ( U 1.96) 0.05 ,
从而确定拒绝域: U 1.96
由于 X 4.484 ,所以
故统计量 U 的观测值 U 落入拒绝域, 于是接受 H 0 ,即不能认为这批零件的平均尺寸仍为 15. 4. 设某次考试的考生成绩服从正态分布,从中随机地抽取 36 位考生的成绩,得平均 成绩为 66.5 分, 样本标准差为 15 分, 问在显著性水平 0.05 下是可否认为这次考试成绩平均 为 70 分? 解 检验假设: H 0 : 0 70 , H1 : 70
2
0.3 是否可信?
0
解 检验假设: H
:
2
2 0
40 , H1 : 2 0.3
当 H 0 为真时,选择检验统计量
2
(n 1) S 2
02
~ 2 (8)
2 0.025
对于给定的显著性水平 0.05 ,查附表 3 得临界值
(8) 17.535
H1 : A B
当 H 0 为真时,选择检验统计量 U
X A XB
_
2
n1
2
n2
~ N (0,1)
对给定的显著性水平 0.05 ,查附表 2 得临界值 0.025 1.96
已知 =0.2,计算 U
2
1.5 1.6 0.4899 1.96 0.2 0.2 12 8
概率论与数理统计第八章习题答案

第八章 假设检验部分习题解答2~(32.05,1.1)6cm 32.5629.6631.6430.0031.8731.0332.050.050.01.N ξαα==已知某种零件的长度,现从中抽查件,测得它们的长度(单位:)为:,,,,,试问这批零件的平均长度是否就是厘米?检查使用两个不同的显著性水平:,0011:32.05.~(0,1)1,.6,31.03)31.127.H N n U u µµξα==<−=+=解:()提出假设,),计算将以上数据代入得观察值/20.02510/20.005102.056.(5)0.05 1.96,|| 2.056 1.96,0.05;0.01 2.58,|| 2.58,0.01u u u H u u u H αααααα=−====>====<=作出判断。
当时,因而时,拒绝当时,因而时,接受。
0(,1)100 5.32:50.01N H µξµα===从正态总体中抽取个样品,计算得,试检验是否成立(显著性水平)?00/2/201/20.01: 5.(2)(3),(||)1.(4) 5.32.3.250.01H u P U u U u u u αααµµξαµα==<=−=======解:()提出假设,使求观察值。
已知将以上数据代入得观察值()作出判断。
当时,0510 2.58,|| 2.58,0.01u H α=>=因而时,拒绝。
26.~(100,1.2)999.3 98.7 100.5 101.2 98.3 99.7 102.1 100.5 99.5.0.05(1)2N g ξα=某公司用自动灌装机灌装营养液,设自动灌装机的正常灌装量,现测量支灌装样品的灌装量(单位:)为,,,,,,,,问在显著性水平下,灌装量是否符合标准?()灌装精度是否在标准范围内?001/20.0251():100.()~(0,1)()1,.()9,0.05.0.05 1.i H ii N iii iv n u v u u αµµξααα==−<−==−===解:()提出假设,)()作出判断。
第8章假设检验测试参考答案..

第八章假设检验1. A2. A3. B4. D5. C6.A1.某厂生产的化纤纤度服从正态分布,纤维的纤度的标准均值为1.40。
某天测得25根纤维的纤度的均值39x,检验与原来设计的标准均值相比是否有所变化,要求的.1=2.,3.87磅,标4.在假设检验中,不拒绝原假设意味着()。
A. 原假设肯定是正确的B. 原假设肯定是错误的C. 没有证据证明原假设是正确的D. 没有证据证明原假设是错误的5.在假设检验中,原假设和备择假设()。
A. 都有可能成立B. 都有可能不成立C. 只有一个成立而且必有一个成立D. 原假设一定成立,备择假设不一定成立6.在假设检验中,第一类错误是指()。
A. 当原假设正确时拒绝原假设B. 当原假设错误时拒绝原假设C. 当备择假设正确时拒绝备择假设D. 当备择假设不正确时未拒绝备择假C0A.H:μ=0μ,1H:μ≠0μB. 0H:μ≥0μ,1H:μ<0μC.H:μ≤0μ,1H:μ>0μD. 0H:μ>0μ,1H:μ≤0μ11.指出下列假设检验形式的写法哪一个是错误的()。
A.H:μ=0μ,1H:μ≠0μB. 0H:μ≥0μ,1H:μ<0μC.H:μ≤0μ,1H:μ>0μD. 0H:μ>0μ,1H:μ≤0μ12.如果原假设H为真,所得到的样本结果会像实际观测结果那么极端或更极端的概0率称为()。
A. 临界值B. 统计量C. P值D. 事先给定的显着性水平13.B 14.B 15.A 16.D 17.C 18.果所计算出的P值越小,说明检验的结果( )。
A. 越显着 B. 越不显着 C. 越真实 D. 越不真实16.在大样本情况下, 总体方差未知时,检验总体均值所使用的统计量是( )。
A. z=nx σμ0- B. z=nx 2σμ- C. t=n s x 0μ- D. z=ns x 0μ- 17.18.20.C. 0H :μ≤5,1H :μ>5 D. 0H :μ≥5,1H :μ<521.一项研究表明,中学生中吸烟的比例高达30%,为检验这一说法是否属实,建立的原假设和备择假设应为( )。
概率论与数理统计第八章假设检验习题解答

1.[一]某批矿砂的5个样品中的镍含量,经测定为(%)3.25 3.27 3.24 3.26 3.24。
设测定值总体服从正态分布,问在α = 0.01下能否接受假设:这批矿砂的含镍量的均值为3.25.解:设测定值总体X~N (μ,σ 2),μ,σ 2均未知步骤:(1)提出假设检验H 0:μ=3.25; H 1:μ≠3.25 (2)选取检验统计量为)1(~25.3--=n t nS X t(3)H 0的拒绝域为| t |≥).1(2-n t α(4)n=5, α = 0.01,由计算知01304.0)(11,252.3512=--==å=i iX Xn S x查表t 0.005(4)=4.6041, )1(343.0501304.025.3252.3||2-<=-=n t t α(5)故在α = 0.01下,接受假设H 02.[二] 如果一个矩形的宽度ω与长度l 的比618.0)15(21»-=l ω,这样的矩形称为黄金矩形。
这种尺寸的矩形使人们看上去有良好的感觉。
现代建筑构件(如窗架)、工艺品(如图片镜框)、甚至司机的执照、商业的信用卡等常常都是采用黄金矩型。
下面列出某工艺品工厂随机取的20个矩形的宽度与长度的比值。
设这一工厂生产的矩形的宽度与长短的比值总体服从正态分布,其均值为μ,试检验假设(取α = 0.05)H 0:μ = 0.618H 1:μ≠0.6180.693 0.749 0.654 0.670 0.662 0.672 0.615 0.606 0.690 0.628 0.668 0.611 0.606 0.609 0.601 0.553 0.570 0.844 0.576 0.933. 解:步骤:(1)H 0:μ = 0.618; H 1:μ≠0.618 (2)选取检验统计量为)1(~618.0--=n t nS X t(3)H 0的拒绝域为| t |≥).1(2-n t α (4)n=20 α = 0.05,计算知0925.0)(11,6605.01121=--===åå==ni ini ix xn S xnx ,)1(055.2200925.0618.06605.0||,0930.2)1(22-<=-==-n t t n t αα(5)故在α = 0.05下,接受H 0,认为这批矩形的宽度和长度的比值为0.6183.[三] 要求一种元件使用寿命不得低于1000小时,今从一批这种元件中随机抽取25件,测得其寿命的平均值为950小时,已知这种元件寿命服从标准差为σ =100小时的正态分布。
第8章假设检验含答案

第8章假设检验含答案第8章假设检验一、单项选择题1.设样本是来自正态总体,其中未知,那么大样本时检验假设时,用的是()。
A 、 Z 检验法B 、检验法C 、检验法D 、检验法答案:A2.在假设检验中,由于抽样的偶然性,拒绝了实际上成立的H 0假设,则()。
A 、犯第I 类错误B 、犯第II 类错误C 、推断正确D 、 A,B 都有可能答案:A3.在假设检验中,由于抽样偶然性,接受了实际上不成立的H 0假设,则()。
A 、犯第I 类错误B 、犯第II 类错误C 、推断正确D 、 A,B 都有可能答案:B4.在假设检验中,接受了实际上成立的H 0假设,则()。
A 、犯第I 类错误B 、犯第II 类错误C 、推断正确D 、 A,B 都有可能答案:C5.在假设检验中,拒绝实际上不成立的H 0假设是()。
A 、犯第I 类错误B 、犯第II 类错误C 、推断正确D 、 A,B 都有可能答案:C6.α=0.05, t>t 0.05,ν,统计上可认为( )。
A 、两总体均数差别无显著意义B 、两样本均数差别无显著意义C 、两总体均数差别有显著意义D 、两样本均数差别有显著意义答案:C7.假设检验时,是否拒绝H 。
,取决于( )。
A 、被研究总体有无本质差别B 、选用α的大小C 、抽样误差的大小D 、以上都是答案:D8.设总体服从N(μ,σ2)分布,σ2已知,若样本容量n 和置信度1-α均保持不变,则对于不同的样本观测值,总体均值μ的置信区间长度()。
A 、变长B 、变短C 、不变D 、不能确定答案:C9.假设检验中,显著性水平α表示()。
A 、P{接受0H |0H 为假}B 、P{拒绝0H |0H 为真}C 、置信度为αD 、无具体含义答案:B11.在对总体参数的假设检验中,若给定显著性水平α(0<α<1),则犯第一类错误的概率为()。
A .1-αB 、αC 、α/2D 、不能确定答案:B12.对某批产品的合格率进行假设检验,如果在显著性水平α=0.05下接受了零假设,则在显著性水平α=0.01下()。
概率统计第八章假设检验参考答案

概率论与数理统计作业班级 姓名 学号 任课教师第八章 假设检验教学要求:一、理解假设检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误;二、了解一个正态总体均值与方差的假设检验,了解两个正态总体均值差与方差比的假设检验;三、了解总体分布假设的2χ检验法,会应用该方法进行分布拟合优度检验(选学).重点:假设检验的基本思想、假设检验的基本步骤、单个正态总体均值和方差的假设检验. 难点:正态总体均值和方差的假设检验.一、基本计算题1.某灯泡厂生产一种节能灯泡,其使用寿命(单位:小时)长期以来服从正态分布)(2150,1600N .现从一批灯泡中随意抽取25只,测得它们的平均寿命为1636小时.假定灯泡寿命的标准差稳定不变,问这批灯泡的平均寿命是否等于1600小时(取显著性水平05.0=α)?解:(1) 依题意,检验假设1600:00==μμH ,(1600:01=≠μμH ); (2) 由于标准差σ已知,在0H 成立时,采用U 检验法.选择统计量:nX U σμ0-=~()1,0N(3) 对于给定的显著性水平05.0=α,当25=n 时,查正态分布表得临界点96.1025.02==z z α(4)由25=n ,,1636=x ,150=σ,计算统计值:2.125150160016360=-=-=nx u σμ(5) 由于96.12.1025.02==<=z z u α落在拒绝域⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≥-==20ασμz n x u W之外,所以在显著性水平05.0=α下,接受1600:0=μH .即认为这批灯泡的平均寿命等于1600.2.正常人的脉搏平均为72(次/min ),检查10例四乙基铅中毒患者,测的他们的脉搏(次/min )为: 54 67 68 78 70 66 67 70 65 69已知脉搏服从正态分布,在显著性水平05.0=α下,问四乙基铅中毒患者与正常人的脉搏有无显著差异?解:(1) 依题意,检验假设72:00==μμH ,(72:01=≠μμH ); (2) 由于标准差σ未知,在0H 成立时,采用T 检验法.选择统计量:nS X T 0μ-=~()1-n t (3) 对于给定的显著性水平05.0=α,当10=n 时,查t 分布表得临界点 :()2622.2)9(1025.02==-t n t α,(4) 由10=n ,,4.67=x ,9292.5=s 计算统计值:4534.2109292.5724.670=-=-=n s x t μ (5) 由于>=4534.2t ()2622.2)9(1025.02==-t n t α,t 落在拒绝域 :)}1(/{2-≥-==n t ns x t W αμ之内,故拒绝72:00==μμH ,即四乙基铅中毒患者与正常人的脉搏有显著差异.3.某食品厂生产一种食品罐头,每罐食品的标准重量为500克.今从刚生产的一批罐头中随机抽取10罐,称得其重量为(单位:克)495 510 505 498 503 492 502 512 497 506假定罐头重量服从正态分布,问这批罐头的平均重量是否合乎标准(取05.0=α)?解:(1) 依题意,检验假设500:00==μμH ,(500:01=≠μμH ); (2) 由于标准差σ未知,在0H 成立时,T 检验法.选择统计量:nS X T 0μ-=~()1-n t (3) 对于给定的显著性水平05.0=α,当10=n 时,查t 分布表得临界点 :()2622.2)9(1025.02==-t n t α,(4) 由10=n ,,502101101==∑=i ix x ,∑==--=1012225.6)(1101i i x x s ,计算统计值: 9730.0105.65005020=-=-=n s x t μ (5) 由于<=9730.0t ()2622.2)9(1025.02==-t n t α,t 落在拒绝域 :)}1(/{2-≥-==n t ns x t W αμ之外,故接受500:00==μμH ,即认为这批罐头的平均重量合乎标准.4.在10块田地上同时试种,A B 两种谷物,根据亩产量(单位:kg )算得30.97A x =,79.21=B y ,26.7As =,21.1B s =.问这两种谷物的平均亩产量有无显著差异(05.0=α)? 假定两种谷物的亩产量都服从正态分布,且方差相等.解:(1)设A X ~()211,σμN ,BY~()222,σμN,依题意,检验假设210:μμ=H,(211:μμ≠H );(2)由于2221,σσ未知但2221σσ=,在0H 成立时,选择统计量:2111n n S Y X T w+-=~()221-+n n t其中 ()()2112122212-+-+-=n n S n S n S BA w;(3) 对于给定的显著性水平05.0=α,当1021==n n 时,查t 分布表得临界点()1009.2)18(2025.0212==-+t n n t α,(4)由1021==n n , 97.30=x ,7.26=A s ,79.21=B y ,1.21=B s 计算统计值:8465.01011010635.2479.2197.301121=+-=+-=n n s y x t wB A其中 ()()05.5792112122212=-+-+-=n n s n s n s BA w,0635.24=w s ;(5)由于<=8465.0t ()1009.2)18(2025.0212==-+t n n t α,t 没有落在接受域中,故应接受210:μμ=H ,即这两种谷物的平均亩产没有明显差异.5.按两种不同配方生产橡胶,测的伸长率(%)如下:配方Ⅰ: 540 533 525 520 544 531 536 529 534配方Ⅱ: 565 577 580 575 556 542 560 532 570 561 设橡胶伸长率服从正态分布,检验按两种配方生产的橡胶伸长率的方差是否相同(取05.0=α)?解:(1) 设Y X ,分别表示配方Ⅰ、配方Ⅱ的总体,则X ~()211,σμN,Y ~()222,σμN . 依题意,检验假设22210:σσ=H ,22211:σσ≠H ;(2)在0H 成立时,选择统计量:222122212221S S S S F ==σσ~()1,121--n n F (3)对于给定的显著性水平05.0=α,当10,921==n n 时,查F 分布的双侧临界值: ()()10.49,82,1025.0212==--F n n F α,()()()2294.036.418,919,81,1025.0975.02121≈===---F F n n Fα (4) 由于4444.5329191==∑=i i x x ,()778.5319129121=--=∑=i i x x s ,8.561101101∑-==i i y y ,()8444.2381101101222∑==--=i i y y s ;得统计值:2271.08444.2367778.532221≈==s s F(5) 由于()2294.09,82271.0975.0=<≈F F .则F 落在拒绝域中,故应拒绝22210:σσ=H (或接受22211:σσ≠H )。
习题八假设检验答案

习题八假设检验答案(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--习题八 假设检验一、填空题1.设12,,...,n X X X 是来自正态总体的样本,其中参数2,μσ未知,则 检验假设0:0H μ=的t -t -检验使用统计量tX2.设12,,...,n X X X 是来自正态总体的样本,其中参数μ未知,2σ已知。
要检验假设0μμ=应用 U 检验法,检验的统计量是X U =0H 成立时该统计量服从N (0,1) 。
3.要使犯两类错误的概率同时减小,只有 增加样本容量 ;4 . 设12,,...,n X X X 和12,,...,m Y Y Y 分别来自正态总体2~(,)X X X N μσ和2~(,)Y Y Y N μσ,两总体相互独立。
(1)当X σ和Y σ已知时,检验假设0:X Y H μμ=所用的统计量为X YU =0H 成立时该统计量服从 N (0,1) 。
(2)若X σ和Y σ未知,但X Y σσ= ,检验假设0:X Y H μμ=所用的统计量 为X YT =0H 成立时该统计量服从(2)t m n +- 。
5.设12,,...,n X X X 是来自正态总体的样本,其中参数μ未知,要检验假设 2200:H σσ=,应用 2χ 检验法,检验的统计量是 2220(1)n S χσ-=;当0H 成立时,该统计量服从 2(1)n χ- 。
6.设12,,...,n X X X 和12,,...,m Y Y Y 分别来自正态总体2~(,)X X X N μσ和2~(,)Y Y Y N μσ,两总体相互独立。
要检验假设220:X YH σσ=,应用 F 检验法,检验的统计量为 22XYS F S = 。
7.设总体22~(,),,X N μσμσ 都是未知参数,把从X 中抽取的容量为n 的 样本均值记为X ,样本标准差记为S (修正),在显著性水平α下,检验假设 01:80;:80;H H μμ=≠的拒绝域为 2||(1)T t n α≥- 在显著性水平α下,检验假设22220010:;:;H H σσσσ=≠的拒绝域为 222(1)n αχχ≥-或222(1)n αχχ≤- ;8.设总体22~(,),,X N μσμσ都是未知参数,把从X 中抽取的容量为n 的样本均值记为X ,样本标准差记为S (修正),当2σ已知时,在显著性水平α下,检验假设0010:;:H H μμμμ≥<的统计量为 X U ={}U u α≤- 。
大学概率论第八章假设检验 答案 2019-02-24

第八章 假设检验基础训练1一、填空题1、(1)()10--=n n Q X t μ (2)2022σχQ = ()()⎪⎪⎭⎫ ⎝⎛---1,122/1222/2n Q n Q ααχχ 2、%5=p %5<p %5=α 3、2111n n YX U +-=σ ()1,0N二、选择题B B B C三、解答题1、接受0H ,认为该机工作正常2、拒绝0H ,即认为在水平05.0=α下这批导线的标准差显著偏大3、接受0H ,即可以认为这次考试全体考生的平均成绩为70分4、在01.0=α水平下,不能认为灯泡的平均寿命有显著变化5、拒绝0H ,认为广告策划不符合实际6、接受0H ,即甲、乙两台机床加工的产品直径无显著差异7、拒绝 0H ,即有显著差异8、01.0=α,犯第一类错误的概率即01.0=α基础训练2一、填空题 1、()ab a b n -2σ ()22242b a a b n -σ 2、F ∑∑==----=n i i m i i Y Y m X X n F 1212)()1(()1(3、}1(|80|{2/-≥-*n t n S X nα ⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧-<-⋃⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧->--==∑∑}1()(}1((22/1202122/2021n X X n X X n i i n i i ααχσχσ 二、选择题B C B三、解答题1、接受0H ,即可认为这批产品的该项指标为16002、拒绝0H ,患者的脉博与正常人的脉博有显著差异3、拒绝0H ,即认为这批产品不符合标准4、拒绝0H ,可认为该批木材属于一等品5、可以认为两支矿脉含锌量相同综合训练一、选择题A B D A二、解答题1、176.1=c2、拒绝0H ,即可认为新工艺对电阻有显著差异3、拒绝0 H4、拒绝0H ,即不能推广5、接受0H6、第一类错误的概率为610-=α,第二类错误的概率为610.90.4686β=-≈。
概率论与数理统计第八章课后习题及参考答案

概率论与数理统计第八章课后习题及参考答案1.设某产品指标服从正态分布,它的均方差σ已知为150h ,今从一批产品中随机抽查26个,测得指标的平均值为1637h .问在5%的显著性水平,能否认为这批产品的指标为1600h ?解:总体X ~)150,(2μN ,检验假设为0H :1600=μ,1H :1600≠μ.采用U 检验法,选取统计量nX U /00σμ-=,当0H 成立时,U ~)1,0(N ,由已知,有1637=x ,26=n ,05.0=α,查正态分布表得96.1025.0=u ,该检验法的拒绝域为}96.1{>u .将观测值代入检验统计量得2577.142.293726/150********==-=u ,显然96.12577.1<=u ,故接受0H ,即可认为这批产品的指标为1600h .2.正常人的脉搏平均为72次/min ,现某医生从铅中毒患者中抽取10个人,测得其脉搏(单位:次/min)如下:54,67,68,78,70,66,67,70,65,69设脉搏服从正态分布,问在显著性水平05.0=α下,铅中毒患者与正常人的脉搏是否有显著性差异?解:本题是在未知方差2σ的条件下,检验总体均值72=μ.取检验统计量为nS X T /0μ-=,检验假设为0H :720==μμ,1H :72≠μ.当0H 成立时,T ~)1(-n t ,由已知,有4.67=x ,93.5=s ,05.0=α,查t 分布表得262.2)9(025.0=t ,将观测值代入检验统计量得45.288.16.410/93.5724.67/0-=-=-=-=n s x t μ,显然)9(262.2447.2025.0t t =>=,故拒绝0H ,即铅中毒患者与正常人的脉搏有显著性差异.3.测定某溶液中的水分,得到10个测定值,经统计%452.0=x ,22037.0=s ,该溶液中的水分含量X ~),(2σμN ,μ与2σ未知,问在显著性水平05.0=α下该溶液水分含量均值μ是否超过5%?解:这是在总体方差2σ未知的情况下,关于均值μ的单侧检验.检验假设为0H :%5.0≤μ,1H :%5.0>μ.此假设等价于检验假设0H :%5.0=μ,1H :%5.0>μ.由于2σ未知,取检验统计量为nS X T /0μ-=.当0H 成立时,T ~)1(-n t ,拒绝域为)}1(/{0-≤-n t n s x αμ,将观测值代入检验统计量得709.1037.0)5.052.0(10/0=-=-=ns x t μ,由05.0=α,查t 分布表得833.1)9(05.0=t ,显然)9(833.1709.105.0t t =<=,所以接受0H ,即该溶液水分含量均值μ是否超过5%.4.甲、乙两个品种作物,分别用10块地试种,产量结果97.30=x ,79.21=y ,7.2621=s ,1.1222=s .设甲、乙品种产量分别服从正态分布),(21σμN 和),(22σμN ,试问在01.0=α下,这两种品种的产量是否有显著性差异?解:这是在方差相等但未知的情况下检验两正态总体的均值是否相等的问题.检验假设为0H :21μμ=,1H :21μμ≠.由题可知,22221σσσ==未知,因此取检验统计量nm n m mn S n S m YX T +-+-+--=)2()1()1(2221,当0H 为真时,T ~)2(-+n m t ,该检验法的拒绝域为)}2({2/-+>n m t t α.由题设,10==n m ,97.30=x ,79.21=y ,7.2621=s ,1.1222=s .将其代入检验统计量得n m n m mn S n S m yx t +-+-+--=)2()1()1(222166.4201810101.1297.26979.2197.30=⨯⨯⨯+⨯-=,由01.0=α,查t 分布表得878.2)18()2(005.02/==-+t n m t α.显然)18(878.266.4005.0t t t =>=,因此,拒绝0H ,即这两种品种的产量有显著性差异.5.某纯净水生产厂用自动灌装机装纯净水,该自动灌装机正常罐装量X ~)4.0,18(2N ,现测量某厂9个罐装样品的灌装量(单位:L)如下:0.18,6.17,3.17,2.18,1.18,5.18,9.17,1.18,3.18在显著性水平05.0=α下,试问:(1)该天罐装是否合格?(2)罐装量精度是否在标准范围内?解:(1)检验罐装是否合格,即检验均值是否为18,故提出假设0H :18=μ,1H :18≠μ,由于方差224.0=σ已知,取检验统计量为nX U /00σμ-=,当0H 为真时,U ~)1,0(N ,该检验法的拒绝域为}{2/αu u ≥.由题可知,9=n ,18=x ,将其代入检验统计量得09/4.01818/00=-=-=n x u σμ,由05.0=α,查标准正态分布表得96.1025.0=u ,显然,025.096.10u u =<=,故接受0H ,即该天罐装合格.(2)检验罐装量精度是否在标准范围内,即检验假设0H :224.0≤σ,1H :224.0>σ,此假设等价于0H :224.0=σ,1H :224.0>σ.由于18=μ已知,选取检验统计量为∑=-=n i i X12202)18(1σχ,当0H 为真时,2χ~)(2n χ,该检验法的拒绝域为)}({22n αχχ≥.由已知计算得625.6)18(112202=-=∑=n i i x σχ,查2χ分布表得307.18)10(205.0=χ,由此知)10(307.18625.6205.02χχ=<=,故接受0H ,即罐装量精度在标准范围内.6.某厂生产某型号电池,其寿命长期以来服从方差221600h =σ的正态分布,现从中抽取25只进行测量,得222500h s =,问在显著性水平05.0=α下,这批电池的波动性较以往有无显著变化?解:这是在均值未知的条件下,对正态总体方差的检验问题.检验假设为0H :202σσ=,1H :202σσ≠,其中160020=σ,取检验统计量为222)1(σχS n -=.当0H 为真时,2χ~)(2n χ,对于给定的显著性水平,该检验法的拒绝域为)}1({22/12-≤-n αχχ或)}1({22/2-≥n αχχ.将观测值25002=s 代入检验统计量得5.371600250024)1(222=⨯=-=σχs n .对于05.0=α,查2χ分布表得401.12)24()1(2975.022/1==--χχαn ,364.39)24()1(2025.022/==-χχαn ,由于)24(364.395.37401.12)24(2025.022975.0χχχ=<=<=,故接受0H ,即这批电池的波动性较以往无显著变化.7.某工厂生产一批保险丝,从中任取10根试验熔化时间,得60=x ,8.1202=s ,设熔化时间服从正态分布),(2σμN ,在01.0=α下,试问熔化时间的方差是否大于100?解:本题是在均值未知的条件下,检验2σ是否大于100,是关于2σ的单侧检验问题.检验假设为0H :1002≥σ,1H :1002<σ,此假设等价于0H :1002=σ,1H :1002<σ,这是左侧检验问题,取检验统计量为2022)1(σχS n -=,当0H 为真时,2χ~)(2n χ,该检验法的拒绝域为)}1({212-≤-n αχχ.将10=n ,10020=σ,8.1202=s ,代入上述统计量得87.101008.1209)1(2022=⨯=-=σχs n .对于01.0=α,查2χ分布表得0879.2)9(299.0=χ,显然)9(0879.287.10299.02χχ=>=,接受0H ,即熔化时间的方差大于100.本题如果将检验假设设为0H :1002≤σ,1H :1002>σ,即进行右侧检验,统计量得选取如上,则该检验法的拒绝域为)}1({22-≥n αχχ.对于01.0=α,查2χ分布表得666.21)9(201.0=χ,显然)9(666.2187.10201.02χχ=<=,接受0H ,即熔化时间的方差不大于100.注:若选取的显著性水平为3.0=α,用MATLAB 计算得6564.10)9(23.0=χ,从而有)9(6564.1087.1023.02χχ=<=,则应拒绝原假设,即熔化时间的方差大于100.上述结果说明了在观测值接近临界值时,原假设不同的取法会导致检验结果的不一样,如果用-p 值检验法则可避免上述矛盾.8.设有两个来自不同正态总体的样本,4=m ,5=n ,60.0=x ,25.2=y ,07.1521=s ,81.1022=s .在显著性水平05.0=α下,试检验两个样本是否来自相同方差的总体?解:记两正态总体为),(211σμN 和),(222σμN ,其中1μ和2μ未知.检验假设为0H :2221σσ=,1H :2221σσ≠.取检验统计量为2221S S F =,当0H 为真时,F ~)1,1(--n m F ,该检验法的拒绝域为)}1,1({2/1--≤-n m F F α或)}1,1({2/--≥n m F F α.由题可知,05.0=α,4=m ,5=n ,将观测值代入检验统计量得39.181.1007.152221===s s F ,查F 分布表得98.9)4,3()1,1(025.02/1==---F n m F α,066.010.151)3,4(1)4,3()1,1(025.0975.02/====--F F n m F α.由此知)4,3(98.939.1066.0)4,3(025.0975.0F F =<<=,观测值没有落入拒绝域内,接受0H ,即两个样本来自相同方差的总体.9.某厂的生产管理员认为该厂第一道工序加工完的产品送到第二道工序进行加工之前的平均等待时间超过90min .现对100件产品的随机抽样结果的平均等待时间为96min ,样本标准差为30min .问抽样的结果是否支持该管理员的看法?(05.0=α).解:这是非正态总体均值的检验问题,用X 表示第一道工序加工完的产品送到第二道工序进行加工之前的等待时间,设其均值为μ,依题意,检验假设为0H :90≤μ,1H :90>μ.由于100=n 为大样本,故用U 检验法.总体标准差σ未知,用样本标准差S 代替.取检验统计量为100/90S X U -=,当0H 为真时,近似地有U ~)1,0(N ,该检验法的拒绝域为}{αu u >.由题可知,96=x ,30=s ,100=n .对于05.0=α,查标准正态分布表得645.105.0==u u α.将观测值代入检验统计量得2100/309096100/90=-=-=s x u ,显然,05.0645.12u u =>=,故拒绝0H ,即平均等待时间超过90分钟,也即支持该管理员的看法.10.一位中学校长在报纸上看到这样的报道:“这一城市的初中学生平均每周看8h 电视.”她认为她所领导的学校,学生看电视时间明显小于该数字.为此,她向学校的100名初中学生作了调查,得知平均每周看电视的时间5.6=x h ,样本标准差为2=s h ,问是否可以认为校长的看法是对的?(05.0=α)解:初中生每周看电视的时间不服从正态分布,这是非正态总体均值的假设检验问题.检验假设为0H :8=μ,1H :8<μ.由于100=n 为大样本,故用U 检验法,取检验统计量为nS X U /μ-=,当0H 为真时,近似地有U ~)1,0(N ,该检验法的拒绝域为}{αu u -<.由题可知,5.6=x ,2=s ,100=n .对于05.0=α,查标准正态分布表得645.105.0==u u α.将观测值代入检验算统计量得5.7100/285.6-=-=u ,显然,05.0645.15.7u u -=-<-=,故拒绝0H ,即初中生平均每周看电视的时间少于8小时,这位校长的看法是对的.11.已知某种电子元件的使用寿命X (单位:h)服从指数分布)(λE .抽查100个元件,得样本均值950=x h .能否认为参数001.0=λ?(05.0=α)解:X ~)(λE ,λ1)(=X E ,21)(λ=X D ,由中心极限定理知,当n 充分大时,近似地有n X n X U )1(/1/1-=-=λλλ~)1,0(N .由题可知001.00=λ,检验假设可设为0H :0λλ=,1H :0λλ≠.取检验统计量为n X n X U )1(/1/1000-=-=λλλ,当0H 为真时,近似地有U ~)1,0(N ,该检验法的拒绝域为}{2/αu u ≤.由题知,100=n ,950=x ,05.0=α,查标准正态分布表知96.1025.02/==u u α.将观测值代入检验统计量得5.0-=u ,显然,025.096.15.0u u =<=,故接受0H ,即可以认为参数001.0=λ.12.某地区主管工业的负责人收到一份报告,该报告中说他主管的工厂中执行环境保护条例的厂家不足60%,这位负责人认为应不低于60%,于是他在该地区众多的工厂中随机抽查了60个厂家,结果发现有33家执行了环境保护条例,那么由他本人的调查结果能否证明那份报告中的说法有问题?(05.0=α)解:设执行环境保护条例的厂家所占的比率为p ,则检验假设为0H :6.0≥p ,1H :6.0<p ,上述假设等价于0H :6.0=p ,1H :6.0<p .引入随机变量⎩⎨⎧=.,0,,1条例抽到的厂家为执行环保例抽到的厂家执行环保条X 则X ~),1(p B ,p X E =)(,)1()(p p X D -=,由中心极限定理,当0H 为真时,统计量60/)6.01(6.06.0/)1(000--=--=X n p p p X U 近似地服从)1,0(N .对于显著性水平05.0=α,查标准正态分布表得645.105.0==u u α,由此可知05.0}645.160/)6.01(6.06.0{≈-<--X P .以U 作为检验统计量,该检验法的拒绝域为}645.1{05.0-=-<u u .将55.06033==x 代入上述检验统计量,得791.060/)6.01(6.06.055.0/)1(000-=--=--=n p p p x u ,显然,05.0645.1791.0u u -=->-=,故接受0H ,即执行环保条例的厂家不低于60%,也即由他本人的调查结果证明那份报告中的说法有问题.13.从选取A 中抽取300名选民的选票,从选取B 中抽取200名选民的选票,在这两组选票中,分别有168票和96票支持所选候选人,试在显著性水平05.0=α下,检验两个选区之间对候选人的支持是否存在差异.解:这是检验两个比率是否相等的问题,检验假设为0H :21p p =,1H :21p p ≠.取检验统计量为⎪⎭⎫ ⎝⎛+--=m n p p p pU 11)ˆ1(ˆˆˆ21,其中)(1ˆ2121m n Y Y Y X X X mn p ++++++++= 是21p p p ==的点估计.当0H 为真时,近似地有U ~)1,0(N .由题可知300=n ,168=n μ,200=m ,96=m μ,又56.0300168ˆ1==p ,48.020096ˆ2==p ,528.0500264ˆ==++=m n p m n μμ.由此得统计量的观测值为755.11201472.0528.048.056.0=⨯⨯-=u ,由05P,得拒绝域为}U.1u,{>>α96.0=)96(=.1H,即两个选区之间对候选人的支持无显著性因为96.1u,故接受0=755.1<差异.。
最新贾俊平第四版统计学-第八章假设检验练习答案

贾俊平第四版统计学-第八章假设检验练习答案------------------------------------------作者xxxx------------------------------------------日期xxxx第八章假设检验练习答案一.选择题二.填空题1。
第一类错误,第二类错误,一, 二2。
第一类,第二类,原假设,不拒绝3。
(1)22022010<≥μμ:,:H H(2)第一类错误是指新方法不能降低成本但被采用,导致成本上升;第二类错误是指新方法能够降低成本,但没有采用。
4。
失学儿童中女孩所占的比例π(或男孩所占的比例*π);434310>≤ππ:,:H H (或4141*1*0<≥ππ:,:H H ); n p z )1(πππ--=三.计算题1。
解: 55.455.410≠=μμ:,:H H总体服从正态分布,总体含碳量的标准差σ=0。
108,n=9,检验统计量为833.19/108.055.4484.4/0-=-=-=n x z σμ α=0。
05,双侧检验,临界值为96.1025.0±=±z ,因为z 〉—1。
96,未落入拒绝域不拒绝原假设结论:在显著性水平α=0.05下,样本提供的证据不足以推翻“现在生产的铁水平均含碳量为4.55”的说法。
2. 7.67.610>≤μμ:,:H Hn=200〉30大样本,总体标准差未知,5.2,25.7==s x 检验统计量为11.3200/5.27.625.7/0=-=-=n s x z μ a =0.01,右侧检验,临界值为33.201.0=z .因为z=3。
11>z 0.01,落入拒绝域,所以拒绝原假设.结论:在显著性水平α=0.01下,认为“如今每个家庭每天看电视的平均时间比十年前增加了"。
3。
解: 606010>≤μμ:,:H Hn=7<30小样本,总体标准差未知,经计算34.11,65==s x 检验统计量为17.17/34.116065/0=-=-=n s x t μ a =0。
统计学第五版第八章课后习题答案王永

n1 n2 11000
合并比例 x1 x 2 293 p 0.0133 n1 n2 22000
p1=0.95%, p2=1.72% 临界值(s):
Z =) ( 1 2 ) 1 1) P (1 P ) n n 2 1
解:已知μ =250,σ =30,N=25, x =270,α =0.05 右侧检验 ∵小样本,σ 已知 ∴采用Z统计量 Z ∵α =0.05,∴ =1.645 H 0 :μ ≤250 H1 :μ >250 计算统计量:
x / n
Z
=(270-250)/(30/5)=3.33
结论: Z统计量落入拒绝域,在α=0.05的显著性水平上,拒绝 H 0 ,接 受 H1 。
决策:有证据表明,这种化肥可以使小麦明显增产。
8.4 糖厂用自动打包机打包,每包标准重量是100千克。每天开工后需要检验 一次打包机工作是否正常。某日开工后测得9包重量(单位:千克)如下: 99.3,98.7,100.5,101.2,98.3,99.7,99.5,102.1,100.5 已知包重服从正态分布,试检验该日打包机工作是否正常 (α=0.05) 。
甲法: 31 34 29 32 35 38 34 30 29 32 31 26 乙法: 26 24 28 29 30 29 32 26 31 29 32 28 两总体为正态总体,且方差相同。问两种方法的装配时 间有无显著差别(α =0.05)? 解: 正态总体,小样本,σ²未知但相同,独立样本t检验 0 : 甲 - = 0 H 乙 甲 H1 : - 乙≠ 0
2 2
5 1.96
nB
决策:在α = 0.05的水平上拒绝 H 0 。 结论:可以认为A、B两厂生产的材料平均抗压强度不相同。
第8章假设检验测试答案汇总.doc

第八章假设检验1. A2. A3. B4. D5.C 6. A1.某厂生产的化纤纤度服从正蘇布纤维的纤度的标准均值为1.40。
某天测爲根纤维的纤度的均值x 13,检验与原飛计的标准均值相比是否有所便,要求的显著性水平为a0=05,则下列正确的假设形式是兀A. H : p=1.40,0H : p*1.40 B .1H : p< 1.40, H : p>0 11.40C. H : p<1.40,0H : p> 1.40 D .1H : p> 1.40, H : p V0 11.402.某一贫困地区估计营养不良人蠶逃I%,然而有人认为这比例3. 一项新的减肥计划声称:在计划实施的第一周,参加者的体重平均至少可以减魏磅。
随机抽取40位参加该项计划的样本,结果显示 样本的体重平均减少7磅,标准着3.2磅,则其原假设和揶勰A. H : 0TT <02H : TT〉0・2B ・ H : 0 TT =02 H : TT*10.2C. H : 0 TT > 0.3, H : TTV0・3 1D . H : 0 TT >0.3, H : TT<1 实际上要讓检验该说法是否正确, 则假设形式为)C0.3A.H : p< 8 ,H : p> 8B・H : p> 8 ,H : p<01018C.H : p< 7 ,0H : |J > 71D .H : p> 7 ,H : p<174.在假设检验中,不拒绝原假设意味養)。
A.原假设肯定是正确的.原假设肯定是错锻C.没有证据证明原假设是正确®I.没有证据证明原假设是错躍7. B■C9.B10.A11.D 12. C5.在假设检验中,原假设和备择假设( A.都有可能成立C .只有一个成立而且必有一个成立择假设不一定成立6.在假设检验中, 第一错暹扌旨 )。
A.当原假设正确时拒绝原假设原假设C.当备择假设正确时拒绝备择假设 未拒绝备择假设)oB.都有可能不成立 D.原假设一定成立,备B.当原假设错谍拒绝D.当备择假设不正确时绝原假设C.当备择假设正确时扼绝备择假设D.当备择假设亞确时拒绝备择假设A.当原假设正确时拒绝原假设B.当原假设错除扼A.H : o ,H : 0 H : o ,H • o M = M* B .阻 M< 0 10 1C.H : o,H : 0 H : o ,H : o A M> D ■ AA.H : o ,H : 0 H : o ,M = 尸 B ・" M< 0 1 0 1C.H : o,H : 0 H : 0,M> 1D 0A 19.指出下列假设聲證哪一个属電i 验)<8.指出下列假设检验哪一个属希樋验)GA.H : o,H : 0 H : o,H : 0 P M =B M< 0 1 0 1C.H : o,H : o h : o,H : 0 A M> D ,M> A 0 1 0 1C. P 值.事先给定的显曹水平13. B 14. B 15. A 16. D 17.3A. H : M = 0C ・ H :12.如果原 H 为圍f 得到的样本结果会像o j H : o H : M* B ・" 1 0o ,H : o H : M> D .M> 1 0 o ,H : o M< 1o ,H :端或更极端的概率称为)GA. 临僵B.统量18.13.P值越小()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 假设检验
1. D .
2.解:(1)提出假设 0H :均值00.618μμ==, 1H :0μμ≠ (2)在原假设0H 成立的条件下,构造统计量
(19)X t t =
:
(3)查t 分布表,得拒绝域()2
,(19)t α-∞-和()
2
(19),t α+∞,其中2
0.025(19)(19) 2.093t t α==。
(4)由样本值得 0.6605x =,0.1002272s =;得统计量值 2.052 2.093t =<,不在拒绝域中,故不能拒绝假设0H 。
3. X
t =
4. 解:(1)提出假设 0H :均值010μμ=≥,1H :均值0μμ< (2)在原假设0H 成立的条件下,构造统计量
(19)X t t =
:
(3)查t 分布表,得拒绝域(),(19)t α-∞-0.05(19)(19) 1.729t t α==
(4)由样本值得 10.02x =,0.510s =;得统计量值 1.754 1.729t =>-,不在拒绝域中,故不能拒绝假设0H 。
概率与数理统计模拟试卷一 答案
一、填空(每空3分,共30分)
1.0.7; 0.58;2. B =123A A A , C =123A A A ;3. 0.5 ;4.
149
; 5. 是 6. 2
χ分布,自由度为n 。
二、单项选择题(每题4分,共20分) 1.A ; 2.B ; 3.B ; 4.C ;5.B 。
三、(8分)
解:设i A 表示第i 次取到白球()1,2i =
122121212232()3253213
287(1)()()()(2)()38787568()78
P A A P A P A A P A A P A A P A ⨯
=+=⨯+⨯==; ===
四、(8分)
解:(1)1()0.4P X x ==
1222222
12
()0.60.4 1.4,()0.60.4()[()]0.24 1.4 2.2,E X x x E X x x D X E X =+= ⎧ ⎨=+=+=+=⎩ 得 121,2x x ==,所以有
0,1
(){}0.6,
121,
2
x F x P X x x x <⎧⎪=≤= ≤<⎨≥⎪⎩ 五. (12分)
解(1)由(,)1F +∞+∞=,即
120
1
(,)[]110
x
f x y dxdy c x ydy dx c +∞+∞
-∞-∞
==
=⎰⎰⎰⎰,
得10c = (2)240105,01,
()(,)0,
x X x ydy x x f x f x y dy +∞
-∞
⎧⎪=<<=
=⎨⎪⎩⎰⎰其它.
1231010(1),01,
()(,)3
0,y Y x ydx y y y f y f x y dx +∞-∞
⎧⎪=-<<==⎨⎪⎩
⎰⎰
其它.
(3)因为(,)()()X Y f x y f x f y ≠,所以X 与Y 不相互独立;
(4)112
2
11
2
32185{1}10(105)96
x
x
P X Y x ydydx x x dx -+>==-=
⎰⎰
⎰ 六.(8分) 解:似然函数1
1
()(1)(5)
(1)[(5)]n
n
n i i i i L x x θ
θθθθ===
+-=+-∏∏,对似然函数取对数得,
对数似然函数 1
ln ()ln(1)ln(5)n
i i L n x θθθ
==++-∑,
对数似然方程 1
ln ln(5)01n
i i d L n
x d θθ==+-=+∑
则 θ的最大似然估计量为 $1
1ln(5)
n
i i n
x θ
==---∑。
七. (14分)
解:(1)构造随机变量
~(3)x t t =
,则t 的1α-置信区间为 22
*(3)*(3)S t S t X X αα⎛
⎫ + ⎝ 查表得2
0.025(3)(3) 3.1824t t α==;又有
4, 3.65,1267n s x ====
带入置信区间公式 得t 的0.95置信区间为(1261.2,1272.8)。
(2) 提出假设 2
0:4H σ=;2
1:4H σ≠ 在原假设0H 成立条件下,选统计量
2
2
(1)~(1)(3)n s n χχχσ-=
-=2
22
在给定的显著性水平α下,查表求得拒绝域为
()2
1,(3)
αχ
--∞或()2
(3),αχ+∞ 即拒绝域(),0.22-∞或()9.348,+∞
由样本观测值得统计量的值109.348χ=>2
,所以拒绝原假设,不能认为测定值的标
准差是2C ︒。