阵列声波测井原理

合集下载

04声波全波列测井

04声波全波列测井

声波全波列测井一、声波全波列测井的几何横型及典型全波列波形:声波全波列信息:有纵波、横波(属于体波)、还有伪瑞利波和斯通利波(属于导波),对于快速地层(地层横波速度大于井内流体声速)。

在全波列信息中,初至波是地层纵波,其幅度较小,频率较高,在纵波之后是地层横波波至。

由于伪瑞利波的影响,横波部分幅度较大,最后到达的大幅度低频波是斯通利波,这是一种沿井壁与井内流体之间传播的导波,速度比井内流体声速略低。

低频斯通利波又称为管波。

对于慢速地层(地层横波速度小于井内流体声速),难以看到以临界折射方式传播的横波。

体波的主要特征是:在地层中传播,幅度存在几何扩散。

速度没有频散现象,有一系列共振频率。

在均匀各向同性的弹性介质中,纵波和横波的速度前面已经列出来了。

导波的主要特点是:沿井壁传播、幅度最大、进入地层和井内流体则显著衰减。

不存在几何扩散,相速度有频散。

斯通利波速度始终低于井内流体速度。

相速度的频散较小,中低频端有明显增加。

在均匀完全弹性地层中,低频斯通利波的速度与横波速度存在一定的关系,在软地层中我们就可以利用斯通利波速度估算地层横波到速度。

在进行全波列测井时,两个接收器交替接收来自两个发射器经地层传播过来的各种声波信息。

每一个深度点有四组波形数据被记录在磁带上。

3700的长源距声波通常每个波形到记录长度为960个类,采样间距dt可为2us、4us或8us。

声波全波列测井资料的一般处理流程是:首先识别和提取各道波形中纵波、横波、斯通利波等到波至点,然后计算各组份波的声波时差和幅度衰减,最后对波形进行频谱分析,提取各分波的主频、峰值及能量等参数。

二、下面先对3700、DDL-V及CSU三种长源距声波仪的声学结构和工作方式简单对比介绍一下:3700系列的长源距声波声系尺寸为T1’R12’R27’T2.记录T1-R1,T1-R2,T2-R1,T2-R2四道全波列波形。

每道波形从发射到接收总共采样960各数字,可相隔2us采样一个数(就是在这个时间点的波形幅度)。

阵列声波测井仪

阵列声波测井仪

在声波测井中,常常会因为地层的衰减,使得声波测井仪无法接收声波的首波信号。

为了增强接收的声波信号,通常采用两种方法:一是通过增大换能器尺寸来降低声波的频率从而减小地层衰减;二是增大换能器的发射功率来增大声波信号的功率,但是由于换能器所能承受的最大激发电压和温度的限制,致使发射声信号功率有限。

所以,可以通过相控阵技术使阵列发射探头发出的声信号同相位叠加,改善指向性达到增强首波信号的目的。

阵列声波测井仪有两种组成方式:一是单接收器和一维阵列声源的组合;二是单声源和一维阵列接收器的组合。

换能器为薄圆管形压电换能器。

本文采用了声波测井中的传输网络理论与指向性权系数的概念,推导出了换能器的几何形状与尺寸对线阵声源的导向系数的关系。

通过改变阵列接收器接收到的声波信号的时间偏移量和线阵声源的激发延迟时间,可以令接收的首波幅度(阵列声源)与叠加波的首波幅度(阵列接收器)达到最大。

通过本文提出的方法可以令声波测井中接收到的声波测井信号的首波幅度大大增加。

关键词:阵列声波测井、相控阵、指向性、换能器、激发延迟时间In acoustic logging, often because of the decline of formation makes sonic tool cannot receive the first wave of sound wave signal. In order to enhance the received acoustic signal, usually adopts two methods: one is through increased to reduce the frequency of the acoustic transducer dimension reducing formation attenuation; Second is to increase the transmission power of the transducer to increase the acoustic signal of power, but because of the transducer can bear the limit of maximum excitation voltage and temperature, the sound emission signal power co., LTD. So can make through phased array technology emission probe array acoustic signals with the phase superposition, achieve the enhancement purpose to the first wave signal to improve the directivity. Array acoustic logging tool is composed of two ways: one is the combination of single receiver and a one-dimensional array source; The second is simple sound source and the combination of a one-dimensional array receiver. Transducer is a thin circular tube in the shape of a piezoelectric transducer. This paper adopts the transmission network theory and directivity of acoustic logging weight coefficient, the concept of the geometric shape and size of the transducer is deduced on the relationship between the linear array direction Guide coefficient of sound source. By changing the array receiver to receive the time offset and linear array acoustic signal source excitation delay time, can receive the first wave of sound source (array) and superposition of wave amplitude of the first wave amplitude (array receiver) maximum. By the proposed approach can make sonic logging in the received the first wave of acoustic logging signal amplitude increase greatly.Keywords: array sonic logging、phased array、directivity、transduc、Stimulate the delay time引言声波测井就是利用声波在油井下面的地层中传播后,因为不同的地层密度等参数不一样,导致接收到的声波的参数产生变化,分析这些变化的参数,就可以分析出这些地层的结构,岩石属性,以及石油的分布情况,估计出储集层的孔隙度等性质。

声波测井原理

声波测井原理

声波测井原理声波测井是一种利用声波在地层中传播的特性来获取地层信息的技术手段。

声波测井可以提供地层的孔隙度、渗透率、岩性、地层压力等重要参数,对于油气勘探和开发具有重要意义。

声波测井原理是声波在地层中传播的物理过程,下面将对声波测井原理进行详细介绍。

首先,声波测井是利用声波在地层中传播的速度来获取地层信息的。

声波在地层中传播的速度与地层的物性参数有密切的关系,不同类型的地层对声波的传播速度有不同的影响。

通过测量声波在地层中的传播速度,可以推断出地层的孔隙度、渗透率等参数。

其次,声波测井是利用声波在地层中的反射和折射来获取地层信息的。

当声波遇到地层界面时,会发生反射和折射现象,根据反射和折射的规律,可以推断出地层的厚度、岩性等信息。

通过分析反射和折射的特征,可以识别出地层中的油气层、水层等目标层位。

另外,声波测井是利用声波在地层中的衰减来获取地层信息的。

声波在地层中传播时会发生衰减,衰减的程度与地层的渗透率、孔隙度等参数有关。

通过测量声波的衰减情况,可以推断出地层的渗透率、孔隙度等信息。

总的来说,声波测井原理是利用声波在地层中传播的速度、反射和折射、衰减等特性来获取地层信息的。

通过对声波在地层中的传播过程进行分析和解释,可以揭示地层的内部结构、物性参数等重要信息。

声波测井技术在油气勘探和开发中具有重要的应用价值,对于提高勘探开发效率、降低勘探风险具有重要意义。

综上所述,声波测井原理是声波在地层中传播的物理过程,通过对声波在地层中的传播速度、反射和折射、衰减等特性进行分析,可以获取地层的孔隙度、渗透率、岩性、地层压力等重要参数。

声波测井技术是一种重要的地球物理勘探手段,对于油气勘探和开发具有重要意义。

希望本文能够对声波测井原理有所了解,并对相关领域的研究工作有所帮助。

偶极子 交叉偶极子阵列声波测井

偶极子 交叉偶极子阵列声波测井

MAC、XMAC仪器是目前国际上非常先进的 声波测井仪,由于声波换能器的响应频带较 宽,低频响应更好,在井下实现数字化,信 号动态范围更大,因此记录的波形更完整, 更有利于获得准确的纵波、横波、斯通利波 的时差、幅度等参数,特别是 XMAC仪器在分 析地层速度各向异性方面具有独特的优势。
一、声波基础理论概述 二、偶极子及交叉偶极子阵列声波测量原理 三、所提供的基本成果及图件 四、偶极子及交叉偶极子阵列声波地质应用
裂缝、溶孔发育段声波幅度及衰减情况
高角度裂缝发育段声波幅度衰减情况
5、地层速度各向异性
在构造应力不均衡或 裂缝性地层中,横波 在传播过程中通常分 离成快横波、慢横波, 且快、慢横波速度通 常显示出方位各向异 性,质点平行于裂缝 走向振动、方向沿井 轴向上传播速度比质 点垂直于裂缝走向振 动、方向沿井轴向上 传播的横波速度要快, 以上就称之为地层横 波速度的各向异性。
Vs=(μ/ρ)0.5
对于大多数岩石, Vs比Vp小1.6至2.4倍
2019/11/16
8
软地层中声波的传播
由于软的固结松散的岩石 具有较小的弹性硬度,使 得软地层中声速相对较慢。 因此在硬地层中可以获得 横波和纵波时差,然而在 慢速的固结较差的地层中, 由于横波速度小于井内流 体声速,横波首波与井中 钻井液一起传播,不能产 生临界折射的滑行横波, 使得单极声波测井无法测 出横波的首波。
页岩
58.8-143
液体及气体:
材料
时 差 (us/ft )
水(淡水): 水(含NaCl 100,000mg/L ) 水(含NaCl 200,000mg/L ) 石 油: 泥 浆: 氢: 甲 烷:
208 192.3 181.8
238.1 189 235.3 666.6

阵列声波测井的原理

阵列声波测井的原理

阵列声波测井的原理
阵列声波测井是一种地球物理测井技术,其原理是利用声波在地下岩石中的传播特性来获取地层的物理特征。

下面是阵列声波测井的主要原理:
1.声波传播原理:阵列声波测井利用地下介质中的岩石和流体对声波的传播速度和衰减产生的影响。

当声波传播到不同性质的地层时,会发生反射、折射和散射等现象,可以通过地震学和声学理论研究声波的传播规律。

2.发射与接收系统:阵列声波测井使用一组多个发送和接收器件构成的阵列来发射和接收声波信号。

发送器件通常是振动子,它能够将电信号转换为机械振动,从而发射声波信号。

接收器件通常是压电晶体或振动器,能够将接收到的机械振动转换为电信号。

3.接收信号处理:接收到的声波信号被记录下来并进行信号处理。

通常会通过时域和频域的方法对接收信号进行分析,比较接收到的信号和已知模型的差异,从而推导出地层的波速、衰减、密度等物理参数。

4.解释与应用:通过对地层声波响应的解释,可以获得地层的结构、岩性、饱含流体类型和含量等信息。

阵列声波测井可用于石油勘探、地质调查、地下水资源评价等领域,帮助确定油气储层的分布和性质,评估地下水资源的储量和质量等。

阵列声波测井技术基础和应用

阵列声波测井技术基础和应用
单极子、偶极子发射
四、阵列声波测井基础
P-波:也就是纵波,它取“Primary”的字首,表示初至波的 意思。(也叫 Compressional Wave) S-波:就是横波,它取“Secondary”的字首,表示次到波的 意思。(也叫 Shear Wave)
四、阵列声波测井基础
斯通利波(Stoneley Wave):是一种沿井壁传播的、在井 壁和声波探头之间环状空间中的流体(一般是井内泥浆)中 产生的导波,即当声波脉冲与井壁和井内流体的界面相遇时 就会产生斯通利波。斯通利波在全波列上具有波幅相对较 大、频率较低、速度低于井内的流体纵波声速等突出的特 点。斯通利波的相速度一般为纵波速度的0.89-0.96倍,其频 率小于5000Hz,斯通利波在流体和固体交界面处波幅最大, 在流体介质中斯通利波的衰减最快。 应用:利用它的衰减可以进行地层渗透率的评价。
(MIRL 3206)
PA
小探头 ———
——— ———
9.0″ 5.5″
24″
550
井眼居中测量
五、阵列声波测井仪
三大测井公司 1、斯仑贝谢公司:DSI 2、阿特拉斯公司:MAC、XMAC 3、哈里伯顿公司:WaveSonic
六、声波慢度的提取
波形区分方法:
(1)、在声波全波列图上,横波幅度大于纵波幅度; (2)在声波全波列图上,纵波和横波首波相位是相反的,即相位相差180°; (3)从到达时间上区分速度较快的纵波和速度较慢的横波及其它速度更慢的 斯通利波。
增加井内液柱压力,将减小井眼周围的应力集中,当有 效切向应力变为拉伸并达到岩石的抗拉强度时,地层容易 张性破裂,在井壁上产生裂缝。当岩石受最大切向应力 时,θ应为90°,得到地层破裂时
3σ x − σ y − Pm − α Pp = −St

正交偶极子阵列声波测井(XMAC-II)

正交偶极子阵列声波测井(XMAC-II)

小于 1。 由双井径测井曲线可近似计算不平衡构造因子,根据式 6-8 计算的最小水平主应力及 不平衡构造因子计算最大水平主应力。 根据最大水平主应力与最小水平主应力,进而计算地应力差。 ②地应力方向 地下不同地质时期形成的各种岩石,都具有一定的强度,因此在地壳应力场的作用下, 都可能发生弹性变形或产生弹性势能。 某深度的岩石在垂向主应力, 最大与最小水平主应力 的作用下, 一般处于相对平衡状态。 当井眼在地层内被钻开后, 在井壁岩石上形成应力集中, 垂直于井轴的横向截面上处于两个水平应力的压力作用及钻井液的张应力作用。 根据力的叠 加原理,井壁上的应力状态用下式表示: Sθ= S1+S2-2(S1-S2)·COS2θ-Pm (6-9) 式中:Sθ—井壁岩石的切向应力; S1—最大水平主应力; Pm—钻井液柱压力; θ—相对于最大水平主应力方向的逆时针方位角。 由(6-9)式可看出,当θ为 0 度或 180 度时,即在最大水平主应力的方向,井壁岩石所 受的应力最小,此时切向应力值为: Sθ=3S2-S1-Pm (6-10) 当θ为 90 度或 180 度时,即在最小水平主应力的方向上,井壁岩石所受的切向应力最 大,此时切向应力值为: Sθ=3S1-S2-Pm (6-11) 根据脆性材料破裂理论,当作用力达到或超过材料的破坏强度时,就会发生破裂现象。 井眼周围的岩石在最大水平主应力方向, 受到较弱的压应力, 此时的岩石不易受地应力破坏, 井眼尺寸应接近钻头直径。如果泥页岩与钻井液作用,发生水化膨胀,进而出现井壁破坏的 情况,要与地应力的作用区别开来。井眼在最小水平主应力方向受到较强的压应力,当这个 压应力超过岩石的抗剪强度时, 井壁岩石就会发生剪切破坏, 出现井壁崩落, 形成椭园井眼。 显然,椭园井眼的短轴方向即为最大水平主应力方向。 井眼崩落椭园的测量是由四臂或六臂地层倾角测井仪直接测量的。测井是在电缆提升 过程中进行的,当电缆以一定速度提升时,测井仪器也以一定速率旋转,当某对极板进入椭 园井眼的长轴位置时,测井仪不再旋转,而是按一定的方向上升,这样就可测出或计算出椭 园井眼的长轴及短轴。再结合一号极板测量的方位,就可判断出最大水平主应力方向。

声波测井重要知识点

声波测井重要知识点

声波测井重要知识点声波测井是地球物理勘探中常用的一种测井方法,其原理是利用声波在地层中的传播特性来获取有关地层结构和岩石属性的信息。

声波测井包括测量地震波在地层中传播时间和振幅的测井方法,以及通过分析地震反射和折射来确定地层性质的地震测井方法。

本文将介绍声波测井的基本原理以及几个重要的知识点。

声波测井原理:声波在地层传播时会受到地层的吸收、散射和反射等因素的影响,从而传播的速度、振幅和频率会发生变化。

通过测量声波的传播特性,可以获得有关地层的信息。

声波测井的主要知识点如下:1.声速:声速是声波在介质中传播的速度,它受到地层岩石的密度和流体饱和度等因素的影响。

常见的声速测井方法有全波传播时差测井、全波传播振幅测井和多道测井等。

2.声频率:频率是声波的振动次数,它对地层信息的分辨能力有很大影响。

高频率的声波能够提供更高的地层分辨率,但传播距离较短,低频率的声波可以传播更远,但分辨率较低。

合理选择声波的频率可以获得更准确的地层信息。

3.反射:地震波在地层中传播时,会遇到不同介质之间的反射界面,从而产生反射波。

反射波的振幅和到达时间可以提供地层的界面信息,如岩石层位、裂缝、气水界面等。

4.折射:地震波在地层中传播时,会由于介质的变化而发生弯折,这种现象称为折射。

折射波的振幅和到达时间可以提供地层的速度、倾角和入射角等信息。

5.衰减:声波在地层中传播时会由于介质的吸收和散射而衰减。

衰减会导致声波传播距离的减小和振幅的减弱。

对于薄层和含有流体的岩石,衰减影响更为显著。

6.岩石弹性参数:声波测井可以通过测量声波传播速度和密度等参数来确定地层岩石的弹性参数,如岩石的弹性模量、泊松比、剪切模量等。

这些参数对于岩石力学性质和岩性解释非常重要。

7.流体饱和度:声波测井可以通过测量声波速度的变化来估算地层中的流体饱和度。

由于流体的密度和声速与岩石不同,当地层中存在流体时,声速会有明显的变化。

声波测井可以提供丰富的地层信息,对于确定含油气层、划分地层、解释岩性和评价油气储层等都具有重要意义。

阵列声波测井介绍

阵列声波测井介绍

苏xx井第7号层MPAL资料纵波幅度衰减明显,有效地指示出气层的特征。


理 论


图横

版波
进速
行 气

图 版



纵波时差


理 论

图横
版波
进速
行 气




气层 差气层 油层 水层 干层
纵波时差
利用泊松比、压缩系数参数进行储层识别的方法标准
泊松比 干层 0.22左右 泥岩 0.22-0.35 气层 < 0.23
处理成果质量控制
• 预处理
——在波列里提取时差 ——波形和频谱的一致
• 后台处理
——时差和相似度重合 ——首波到时和波形重合
预处理质量控制
交互的时差编辑
未编辑 Comp. Shear
Draw
编辑后
Shear
Correlogram
后台处理质量控制
时差/相似度 & 首波到时/波形
偶极横波提取
从偶极 波形中 提取横 波时差
仪器总装图
接收电路
接收声系
隔声体
发射声系
发射线路
仪器由发射电路短节、发射换能器短节、隔声体 短节、接收换能器短节和接收控制采集电子线路短 节五部分组成 ,仪器总长8.53米,重约300公斤。
测量方式
单极方式:
采用传统的单极声源发射器,可向井周围发射声波,使 井壁周围产生轻微的膨胀作用,因此在地层中产生了纵 波和横波,由此得出纵波和横波时差 。在疏软地层中, 由于地层横波首波与井中泥浆波一起传播,因此单极声 波测井无法获取横波首波 。
MPALmechprop岩石物理参数提取模块

声波测井的基本原理

声波测井的基本原理

声波测井的基本原理引言:声波测井是一种常用的地球物理测井技术,通过发送声波信号并接收其反射信号来获取地下岩石的物理特性信息。

本文将介绍声波测井的基本原理,并探讨其在油气勘探和地质研究中的应用。

一、声波传播原理声波是一种机械波,是由分子间的振动传递能量而产生的。

在地下岩石中,声波通过分子间的碰撞和相互作用传播。

声波传播的速度取决于岩石的密度和弹性模量。

岩石越密度大、弹性模量高,声波传播速度越快。

二、声波测井仪器声波测井通常使用声波测井仪器进行,它包括发射器和接收器两部分。

发射器会向井孔中发射声波信号,而接收器则接收并记录反射回来的声波信号。

三、测井参数解释声波测井中常用的参数有声波传播速度(Vp)、剪切波传播速度(Vs)和声波衰减系数(Attenuation)。

声波传播速度是指声波在岩石中传播的速度,剪切波传播速度是指岩石中剪切波的传播速度,而声波衰减系数则表示声波在岩石中传播时的衰减程度。

四、应用领域1. 油气勘探:声波测井可以提供地下岩石的物理特性信息,如孔隙度、饱和度、岩石密度等,这些信息对于油气勘探具有重要意义。

通过测量声波传播速度和剪切波传播速度,可以帮助确定油气储层的性质和分布。

2. 地质研究:声波测井可以提供岩石的弹性参数,如岩石的压缩模量和剪切模量。

这些参数对于研究地下构造和岩石力学性质具有重要意义。

通过测量声波传播速度和剪切波传播速度的变化,可以揭示地下构造的变化和岩石的变形状态。

3. 水文地质研究:声波测井可以帮助确定地下水的分布和流动状况。

通过测量声波传播速度和声波衰减系数的变化,可以推断地下水的饱和度和渗透能力等参数,从而为水文地质研究提供重要参考。

五、声波测井的优势声波测井具有以下几个优势:1. 非侵入性:声波测井是一种非侵入性的测井技术,不需要取样,不会对地下环境产生破坏。

2. 高分辨率:声波测井可以提供高分辨率的地下岩石信息,可以检测到细小的地质构造和岩石特征。

3. 广泛适用:声波测井适用于各种类型的地质环境,包括陆地和海洋等。

声波测井的基本原理

声波测井的基本原理

声波测井的基本原理声波测井是一种常用的地球物理勘探方法,它利用声波在地下介质中传播的特性来获取地下岩石的物理参数。

声波测井的基本原理可以总结为以下几点。

1. 声波传播原理声波是一种机械波,它可以在固体、液体和气体等介质中传播。

在地下岩石中,声波的传播速度与岩石的密度、模量以及岩石中的孔隙度有关。

当声波传播到不同介质之间的界面时,会发生反射和折射现象,通过测量声波的传播时间和传播速度,可以获得地下岩石的结构和性质信息。

2. 声波发射与接收声波测井通常通过在井中放置声源和接收器来实现。

声源会产生一系列的声波脉冲,这些声波脉冲沿着井筒向地下传播。

当声波脉冲遇到地层界面时,一部分能量会被反射回来,一部分能量会继续向下传播。

接收器可以接收到反射回来的声波信号,并将其转化为电信号。

3. 声波传播时间与距离声波传播的速度与介质的物理性质有关。

在地下岩石中,声波的传播速度通常比较稳定,因此可以利用声波传播时间与声波传播距离的关系来计算声波的传播速度。

通过测量声波的传播时间,可以推算出声波在地层中的传播距离,从而得到地下岩石的深度信息。

4. 声波速度与地层参数地下岩石的物理参数可以通过声波的传播速度来推算。

例如,声波在固体中的传播速度与固体的弹性模量和密度有关,声波在液体中的传播速度与液体的密度有关。

通过测量声波的传播速度,可以反推出地下岩石的弹性模量、密度等物理参数,从而了解岩石的性质和结构。

5. 声波测井的应用声波测井广泛应用于油气勘探、地质工程和水文地质等领域。

在油气勘探中,声波测井可以帮助确定油气藏的储集层和非储集层,评估油气储量和产能。

在地质工程中,声波测井可以评估地下岩石的稳定性和工程建设的可行性。

在水文地质中,声波测井可以帮助研究地下水的分布和流动规律。

声波测井的基本原理是利用声波在地下介质中传播的特性来获取地下岩石的物理参数。

通过测量声波的传播时间和传播速度,可以推算出地下岩石的深度、结构和性质信息。

声波测井的基本原理

声波测井的基本原理

声波测井的基本原理声波测井是一种常用的地球物理勘探技术,它利用声波在岩石中传播的特性,测量地下岩石的物理性质,如密度、声速、泊松比等,从而推断出地下岩石的结构和性质。

声波测井的基本原理是利用声波在岩石中传播的速度和衰减特性,来推断地下岩石的物理性质。

声波测井的原理可以简单地描述为:在井中发射一束声波,当声波穿过地层时,会受到地层中各种物理性质的影响,如密度、声速、泊松比等,从而导致声波的传播速度和衰减特性发生变化。

通过测量声波在地层中的传播速度和衰减特性,可以推断出地层的物理性质,如密度、声速、泊松比等。

声波测井的基本原理可以用以下公式表示:V = d / t其中,V表示声波在岩石中的传播速度,d表示声波在岩石中传播的距离,t表示声波传播的时间。

根据这个公式,可以通过测量声波传播的时间和距离,来计算声波在岩石中的传播速度。

声波测井的测量方法通常有两种:一种是通过测量声波在岩石中的传播时间和距离,来计算声波在岩石中的传播速度;另一种是通过测量声波在岩石中的衰减特性,来推断岩石的物理性质。

声波测井的应用范围非常广泛,可以用于石油勘探、矿产勘探、地质调查、地下水资源勘探等领域。

在石油勘探中,声波测井可以用于确定油层的厚度、孔隙度、渗透率等参数,从而帮助石油勘探人员确定油田的储量和开发方案。

在矿产勘探中,声波测井可以用于确定矿体的形态、大小、深度等参数,从而帮助矿产勘探人员确定矿体的储量和开采方案。

在地质调查和地下水资源勘探中,声波测井可以用于确定地下岩石的物理性质,从而帮助地质学家和水文学家了解地下岩石的结构和性质,为地质调查和地下水资源勘探提供重要的参考数据。

总之,声波测井是一种非常重要的地球物理勘探技术,它利用声波在岩石中传播的特性,测量地下岩石的物理性质,从而推断出地下岩石的结构和性质。

声波测井的基本原理是利用声波在岩石中传播的速度和衰减特性,来推断地下岩石的物理性质。

声波测井的应用范围非常广泛,可以用于石油勘探、矿产勘探、地质调查、地下水资源勘探等领域。

阵列声波测井原理

阵列声波测井原理

阵列声波测井原理声波测井原理是一种常用的测井方法,利用声波在不同介质中传播速度不同的特性来获取地下岩石的信息。

阵列声波测井是声波测井的一种高级形式,通过使用多个发射器和接收器组成的阵列,可以提供更加详细和准确的地质信息。

阵列声波测井原理的基本思想是利用声波在地层中传播的速度来推断地层的物理性质。

当声波通过地层时,会受到地层中岩石的密度、波速、声阻抗等因素的影响,不同类型的岩石会对声波产生不同的响应。

通过分析接收到的声波信号,可以推断地层的岩性、孔隙度、饱和度等参数。

阵列声波测井通常包括发射器和接收器两部分。

发射器会向地层发射声波信号,而接收器则记录下声波信号在地层中传播的情况。

通过分析接收到的信号,可以得出地层的声波速度、波幅、波形等信息。

通过比对不同时刻的声波信号,可以获得地层中的速度变化情况,从而推断地层的性质。

阵列声波测井在勘探、开发和生产阶段都有着重要的应用价值。

在勘探阶段,通过阵列声波测井可以获取地下岩石的物理性质,帮助勘探人员确定地质构造、油气藏类型等信息,指导勘探工作的展开。

在开发和生产阶段,阵列声波测井可以帮助工程师优化井筒设计、确定注采层位、评估储量储层条件等,提高油气开采的效率和经济效益。

除了在油气勘探开发领域,阵列声波测井还广泛应用于地质勘探、岩石力学、地震勘探等领域。

通过阵列声波测井,地质学家可以更加准确地刻画地下岩石的结构和性质,为地质研究提供重要数据支撑。

岩石力学领域可以通过阵列声波测井来评估岩石的强度、应力状态等参数,为工程设计提供参考依据。

地震勘探中也可以利用阵列声波测井的技术手段,提高地震成像的分辨率和准确性。

总的来说,阵列声波测井原理是一种非常重要的地球物理勘探技术,可以为勘探开发工作提供关键信息支持。

通过分析地层中声波的传播情况,可以获取地下岩石的性质参数,为油气勘探、地质研究、工程设计等领域提供重要数据支撑。

随着科技的不断进步,阵列声波测井技术也在不断创新和完善,将为地下资源的勘探和开发带来更大的便利和效益。

阵列声波测井原理

阵列声波测井原理

阵列声波测井原理介绍如下:
阵列声波测井是一种测量岩层物理性质的技术,其原理基于声波在岩石中传播时受到的衰减和反射。

以下是阵列声波测井的原理:
1.声波传播原理:阵列声波测井主要利用声波在岩石中的传播规律。

当声波从声源发
出时,它会在岩石中传播,同时受到衰减和反射。

衰减是指声波在传播过程中能量不断减少,反射是指声波遇到不同密度或速度的介质时,部分能量会反射回来。

通过测量声波的衰减和反射情况,可以了解岩石的物理性质。

2.阵列声波测井原理:阵列声波测井是一种利用多个声波接收器同时接收声波信号的
技术。

该技术主要包括发射和接收两个过程。

在发射过程中,声源向地层发射声波信号,在接收过程中,多个声波接收器接收地层反射的声波信号。

通过对接收信号的处理,可以得到地层中声波传播的速度和衰减等信息。

3.应用范围:阵列声波测井技术广泛应用于石油勘探领域。

通过测量声波在岩石中传
播的速度和衰减情况,可以了解地层的岩性、孔隙度、含水量等物理性质,从而判断油气藏的储集层和非储集层。

阵列声波测井也可用于地质灾害预测、地下水资源勘探等领域。

5700测井技术介绍—阵列声波测井原理及地质应用

5700测井技术介绍—阵列声波测井原理及地质应用

5700测井技术介绍——阵列声波测井原理及地质应用目录一、前言 (2)二、阵列声波测井原理 (2)1、多极子阵列声波仪器的测量原理 (2)2、交叉偶极子阵列声波仪器的测量原理 (3)3、阵列声波的测量方式 (4)4、阵列声波测井波形分析 (4)三、阵列声波的处理 (6)1、提取纵波、横波及斯通利波 (6)2、数据处理STC算法 (6)3、全波列分析处理程序 (7)四、阵列声波的基本地质应用 (8)1、利用纵波、横波及斯通利波识别裂缝 (8)2、鉴别岩性和识别气层 (9)3、在计算岩石机械特性中的应用 (10)4、压裂施工分析 (11)5、利用时滞频移识别裂缝带 (13)6、判断地层各向异性 (14)7、计算地层应力和确定应力方位 (16)五、总结及建议 (17)一、前言阵列声波仪器能够测量地层的纵波、横波、斯通利波,通过一定的数学计算方法便能提取这些波的首波传播时间,计算频散特性,从而分析出岩石的声学特性,再结合密度、泥质含量、孔隙度等曲线能够计算地层弹性力学参数、机械特性参数、泥浆参数、地层渗透率等参数,并且能够计算各向异性地层的各向异性大小和方位。

利用这些参数能够评价井眼的稳定性,评价裂缝的发育带,确定应力大小及方位,为压裂施工提供压力参数,为钻井泥浆的配制提供泥浆参数,并能判断岩石裂缝的有效性。

由于这些特点,目前阵列声波测井已得到了广泛的应用。

尤其在解决复杂的地质问题,为油田增产、增效服务方面,起到了非常重要的作用。

二、阵列声波测井原理1、多极子阵列声波仪器的测量原理多极子阵列声波测井仪器(MAC)将单极子阵列和偶极子阵列进行有效地组合,两个阵列的配置是完全独立的(如图2-1)。

该仪器的声系包括1个单极子声系和1个偶极子声系。

单极子声系包括2个单极子发射换能器T1、T2和8个接收换能器,发射换能器带宽为2KHz-15KHz,中心频率为8KHz,可以激发地层纵波、斯通利波,在地层中激发转换横波。

声波测井的基本原理

声波测井的基本原理

声波测井的基本原理声波测井是一种常用的地球物理勘探方法,通过发送声波信号进入地下,然后接收和分析返回的信号,可以获取有关地下岩石性质和地层构造的信息。

声波测井的基本原理是利用声波在不同岩石中的传播速度差异来推断地层的性质。

声波测井利用的声波信号是由测井仪器通过声源产生的。

这些声源通常是以一定频率振动的麦克氏震荡器,通过控制震荡器的频率和振幅,可以产生不同类型的声波信号。

在测井过程中,这些声波信号通过井中的探头向地下传播。

当声波信号遇到地下岩石时,会发生反射、折射和散射等现象。

这些现象会导致声波信号的传播速度和振幅发生变化。

通过测量返回的声波信号的传播时间和振幅,可以推断地下岩石的物理性质。

在声波测井中,最常用的参数是声波的传播速度。

传播速度是声波信号在岩石中传播的速度。

不同类型的岩石对声波的传播速度有不同的影响。

例如,固体岩石的传播速度较高,而含有流体的岩石的传播速度较低。

通过测量声波信号的传播时间,可以计算出不同深度处的传播速度,并进一步推断出地下岩石的类型和含有的流体性质。

除了传播速度,声波测井还可以提供其他有关地下岩石的信息。

例如,通过分析声波信号的振幅,可以推断地下岩石的密度和孔隙度。

密度是岩石单位体积的质量,而孔隙度是岩石中孔隙空间的比例。

这些参数对于研究地下岩石的物理性质和储层特征非常重要。

声波测井不仅可以应用于石油勘探和开发领域,还可以用于地质研究、水文地质调查等领域。

通过声波测井可以获取的地下岩石信息非常丰富,可以帮助地质学家和工程师更好地了解地下结构和性质,指导相关工程的设计和施工。

声波测井是一种基于声波传播原理的地球物理勘探方法。

通过测量声波信号的传播时间、振幅等参数,可以推断地下岩石的性质和构造。

声波测井在石油勘探和开发、地质研究等领域有着广泛的应用,为相关工程的设计和施工提供了重要的信息基础。

阵列声波测井原理

阵列声波测井原理

阵列声波测井原理阵列声波测井是利用探头发射的声波阵列信号反射、衍射、穿透、在地层弹性介质中传播,由另一个探头接收的,利用声波阵列信号传播特点和波场特性,综合分析接收信号,获取介质物理量及其爆破反射系数,以测量井壁及其附近的介质参数和大地物理场地的方法。

本文从分析阵列声波测井的数据处理方法出发,介绍阵列声波测井及其原理。

阵列声波测井实质上是一种声波投射技术,它改变了传统单点声波测井的投射形式。

从技术上讲,它采用一种或多种传播声波阵列作为投射信号,以提高信号的分辨率和可靠性。

多路发射阵列可以在投射过程中体现为空间分布的相位叠加,从而促进信号的传播和利用。

这些相位相互作用使得信号在空间中可以以规则的方式传播,即波能在空间上形成定向的指向,并可以利用这一特性以及波谱的概念,进行定向的投射,以获取介质的物理特性和爆破反射系数。

2、阵列声波的传播特性多路发射阵列声波把相位射入检测点后,会在介质内发生反射和衍射,以及诸多其他传播现象。

阵列声波的传播特性在本质上与其他声波技术并无大的区别,但它的传播特性有很大的不同。

首先,阵列声波的传播与传统单点声波的传播不同,它的传播不再是简单的线性传播,而是形成空间形象。

其次,传播特性受阵列参数的影响较大,主要是受阵列的排列方式的影响,可以实现有限的定向性和空间分布性。

第三,考虑到阵列参数和介质性质,传播距离非常短,因此它可以定位好边界,避免投射信号受到来自其他位置的强烈反射或衍射扰动。

3、阵列声波测井的数据处理经过阵列声波投射后,接收信号会经过一系列的处理,以便便于分析介质物理量及其爆破反射系数。

首先,对数据进行正交转换,将信号转换为正交基础函数的线性组合,这一步是将信号的时域变换到频域。

然后,以正交函数参数估算介质的参数,如介电常数、泊松比等,进而估算介质反射系数。

最后,将反射系数进行精确的校正,以获得位于检测点附近的介质参数。

总之,阵列声波测井是一种高效、可靠的测井技术,它通过数据处理技术获取了介质的物质参数和爆破反射系数,为更好的了解地层物质特性提供了有力的支持。

阵列声波测井介绍

阵列声波测井介绍

阵列声波测井介绍一、阵列声波测井是什么呢?嘿,小伙伴们!今天咱们来唠唠阵列声波测井这个超有趣的东西。

阵列声波测井啊,就像是给地球内部做一次超级详细的“听诊”呢。

它是一种在石油勘探等领域超级重要的技术手段哦。

简单来说呢,它就是通过在井里放置一些特殊的仪器设备,然后这些设备可以发出声波,再接收从地层反射回来或者传播过来的声波信号。

这些声波信号就像地层在和我们悄悄说话一样,能告诉我们好多关于地层的秘密呢。

二、阵列声波测井的原理你想啊,声波在不同的地层物质里传播速度是不一样的,就像在水里和在空气中声音传播速度不同一样。

当地层里有不同的岩石类型,比如说砂岩、页岩之类的,声波在它们里面跑的速度就有差异。

而且声波在传播过程中还会有衰减、反射等情况。

阵列声波测井仪器就是利用这些特性,通过多个接收器接收不同时间到达的声波信号,然后分析这些信号,就能知道地层的一些性质啦,像是地层的孔隙度啊,渗透率啊之类的,这些对于判断地下有没有石油,石油好不好开采可是非常关键的信息呢。

三、阵列声波测井仪器的组成这个测井仪器也很神奇呢。

它有发声源,这个发声源就像一个小小的“声波工厂”,能够产生我们需要的声波信号。

然后还有一排排列得整整齐齐的接收器,这些接收器就像一群小耳朵,认真地听着地层传回来的声波信号。

这些接收器之间的距离、排列方式等都是有讲究的哦,这样才能更好地捕捉到不同的声波信息。

而且整个仪器还得能够适应井下的高温、高压等恶劣环境,毕竟井下可不是什么舒服的地方。

四、阵列声波测井的应用领域阵列声波测井的用处可大啦。

在石油行业里,那可是勘探开发的得力助手。

通过它得到的地层信息,可以帮助工程师们确定油藏的位置、大小、油层的厚度等。

除了石油行业,在地质研究方面也很有用。

比如研究地层的构造、地层的沉积环境等。

而且在一些水利工程的地下勘探中,也能用到阵列声波测井,看看地下的岩石结构是不是稳定,会不会有渗漏之类的问题。

五、阵列声波测井的发展历程阵列声波测井也不是一下子就这么厉害的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

阵列声波测井原理
阵列声波测井是一种利用声波技术来测量井壁岩石物性参数的方法。

它利用了声波在不同介质中传播速度不同这一物理现象,通过测量声波在岩石中的传播速度和衰减程度,进而推算出井壁岩石的物性参数,如泊松比、弹性模量、密度等。

阵列声波测井是一种非侵入式的测井方法,即不需要对井壁进行钻孔或取心样,而是通过在井内下放一根带有多个声波发射器和接收器的探头,将声波信号发射到井壁上并接收反射回来的信号,从而实现对井壁岩石物性的测量。

阵列声波测井的优点在于其高分辨率和准确性。

由于其探头上带有多个声波发射器和接收器,可以在一个测量位置进行多次测量,从而获得更加准确的数据。

此外,阵列声波测井可以获取更加详细的井壁岩石物性信息,如各向异性、孔隙度、渗透率等,进而为油气勘探和开发提供更加准确的地质数据支持。

阵列声波测井的应用范围非常广泛。

它可以用于不同类型的油气储层和地质构造的测量,如碳酸盐岩、砂岩、页岩、裂缝岩等。

此外,阵列声波测井还可以用于水文地质、矿产资源勘探、地下工程等领域的测量。

阵列声波测井的测量原理主要包括传播时间测量、振幅衰减测量和相位测量。

其中,传播时间测量是最基本的测量方式,通过测量声
波从发射器到接收器所需的时间,可以计算出声波在岩石中的传播速度,从而推算出岩石的物性参数。

振幅衰减测量可以用来评估岩石的衰减能力,相位测量则可以用来评估岩石的各向异性。

阵列声波测井虽然具有高分辨率和准确性的优点,但也存在一些局限性。

首先,阵列声波测井需要良好的井壁条件,如平整度、光洁度等,否则会对测量结果产生影响。

其次,阵列声波测井需要高质量的数据处理和解释,否则会对数据的准确性和可靠性产生影响。

最后,阵列声波测井的成本相对较高,需要进行专业的设备和技术支持。

阵列声波测井是一种基于声波技术的高分辨率、准确性较高的测井方法。

它可以广泛应用于不同领域的地质勘探和开发,为油气产业和地质学研究提供了重要的技术支持。

相关文档
最新文档