物理化学课后习题答案第二章
第五版物理化学第二章习题答案
第二章热力学第一定律1mol理想气体在恒定压力下温度升高1℃,求过程中系统与环境交换的功。
解:理想气体n = 1mol对于理想气体恒压过程,应用式(2.2.3)W =-p ambΔV =-p(V2-V1) =-(nRT2-nRT1) =-1mol水蒸气(H2O,g)在100℃,下全部凝结成液态水。
求过程的功。
假设:相对于水蒸气的体积,液态水的体积可以忽略不计。
解: n = 1mol恒温恒压相变过程,水蒸气可看作理想气体, 应用式(2.2.3)W =-p ambΔV =-p(V l-V g ) ≈ pVg = nRT =在25℃及恒定压力下,电解1mol水(H2O,l),求过程的体积功。
H2O(l) = H2(g) + 1/2O2(g)解: n = 1mol恒温恒压化学变化过程, 应用式(2.2.3)W=-p ambΔV =-(p2V2-p1V1)≈-p2V2 =-n2RT=-系统由相同的始态经过不同途径达到相同的末态。
若途径a的Q a=,Wa=-;而途径b的Q b=-。
求W b.解: 热力学能变只与始末态有关,与具体途径无关,故ΔU a= ΔU b 由热力学第一定律可得Qa + Wa = Q b + W b∴ W b = Q a + W a-Q b = -始态为25℃,200 kPa的5 mol某理想气体,经途径a,b两不同途径到达相同的末态。
途经a先经绝热膨胀到 -28.47℃,100 kPa,步骤的功;再恒容加热到压力200 kPa的末态,步骤的热。
途径b为恒压加热过程。
求途径b的及。
解:先确定系统的始、末态3111061902000001529831485m ...P nRT V =××==32101601000005824431485m ...P nRT V V =××=== kJ .kJ )..(Q W U Δa a 85194225575=+=+=-对于途径b ,其功为kJ .J ..V Δp W b 932706190101602000001-)-(--===根据热力学第一定律4mol 某理想气体,温度升高20℃, 求ΔH-ΔU 的值。
物理化学课后习题第二章答案
2.15 容积为0.1m3的恒容密闭容器中有一绝热隔板,其两侧分别为0℃,4mol的Ar(g)及150℃,2mol的Cu(s)。
现将隔板撤掉,整个系统达到热平衡,求末态温度t及过程的ΔH 。
已知:Ar(g)和Cu(s)的摩尔定压热容C p,m分别为20.786J·mol-1·K-1及24.435 J·mol-1·K-1,且假设均不随温度而变。
解: 恒容绝热混合过程Q = 0 W = 0∴由热力学第一定律得过程ΔU=ΔU(Ar,g)+ΔU(Cu,s)= 0ΔU(Ar,g) = n(Ar,g) C V,m (Ar,g)×(t2-0)ΔU(Cu,S) ≈ΔH (Cu,s) = n(Cu,s)C p,m(Cu,s)×(t2-150)解得末态温度t2 = 74.23℃又得过程ΔH =ΔH(Ar,g) + ΔH(Cu,s)=n(Ar,g)C p,m(Ar,g)×(t2-0) + n(Cu,s)C p,m(Cu,s)×(t2-150)= 2.47kJ或ΔH =ΔU+Δ(pV) =n(Ar,g)RΔT=4×8314×(74.23-0)= 2.47kJ2.17 单原子理想气体A与双原子理想气体B的混合物共5mol,摩尔分数y=0.4,B始态温度T1=400K,压力P1=200kPa,今该混合气体绝热反抗恒外压p=100kPa 膨胀到平衡态,求末态温度T2及过程的W,ΔU及ΔH。
2.21 已知水(H2O,l)在100℃的饱和蒸气压p s=101.325kPa,在此温度、压力下水的摩尔蒸发焓。
求在100℃,101.325kPa下使1kg水蒸气全部凝结成液体水时的W,Q,ΔU,ΔH和ΔH。
设水蒸气适用理想气体状态方程式。
解: 题给过程的始末态和过程特性如下:n = m/M = 1kg/18.015g·mol-1 = 55.509mol题给相变焓数据的温度与上述相变过程温度一致,直接应用公式计算W=-p ambΔV =-p(V l-V g )≈pVg = n g RT=172.2kJΔU = Q p + W =-2084.79kJ2.24蒸气锅炉中连续不断地注入20℃的水,将其加热并蒸发成180℃,饱和蒸气压为1.003Mpa的水蒸气。
物理化学 答案 第二章_习题解答
nO2 、 nN2 、 nAr ,收集得到的干燥空气中各气体的物质的量为 nO′ 2 、 n′N2 、 nA′ r ,空气组成
为 78%N2,21%O2 和 0.94%Ar。
依据亨利定律对 1.0kg H2O 有:pB = kB nB
= 0.017
2-6 20℃下 HCl 溶于苯中达平衡,气相中的 HCl 的分压为 101.325kPa 时,溶液中
HCl 摩尔分数为 0.0425,已知 20℃时苯的饱和蒸气压为 10.0kPa。若 20℃时 HCl 和苯蒸气
总压为 101.325kPa,求 100 克苯中溶解多少克 HCl。
解:令 A 为苯,B 为 HCl。
mol·dm3 = 0.547mol·dm-3
bB
=
nB mA
=
wB M (1 − wB )
=
0.095 0.18 × (1 − 0.095)
mol·kg-1 = 0.583mol·kg-1
2-4 若将 25℃、101.325KPa 纯理想气体的状态定为气体的标准状态,则氧气的标准
熵 S1O =205.03J·K-1·mol-1,现改为 25℃、100Kpa 的纯理想气体作为气体的标准态,氧气
=
pA p
=
p
* A
x
A
p
=
91.19kPa × 1 3
50.663kPa
= 0.6
5
yB = 1 - yA = 0.4 2-10 苯和甲苯在 293.15K 时的蒸气压分别为 9.958 和 2.973kPa,今以等质量的苯和 甲苯在 293.15K 时相混合,试求(1)苯和甲苯的分压;(2)液面上蒸气的总压力(设混 合物为理想溶液)。
第五版物理化学第二章习题答案
第二章热力学第一定律2.1 1mol理想气体在恒定压力下温度升高1℃,求过程中系统与环境交换的功。
解:理想气体n = 1mol对于理想气体恒压过程,应用式(2.2.3)W =-p ambΔV =-p(V2-V1) =-(nRT2-nRT1) =-8.314J2.2 1mol水蒸气(H2O,g)在100℃,101.325kPa下全部凝结成液态水。
求过程的功。
假设:相对于水蒸气的体积,液态水的体积可以忽略不计。
解: n = 1mol恒温恒压相变过程,水蒸气可看作理想气体, 应用式(2.2.3)W =-pamb ΔV =-p(Vl-Vg) ≈ pVg = nRT = 3.102kJ2.3 在25℃及恒定压力下,电解1mol水(H2O,l),求过程的体积功。
H2O(l) =H2(g) + 1/2O2(g)解: n = 1mol恒温恒压化学变化过程, 应用式(2.2.3)W=-pamb ΔV =-(p2V2-p1V1)≈-p2V2=-n2RT=-3.718kJ2.4 系统由相同的始态经过不同途径达到相同的末态。
若途径a的Q a=2.078kJ,Wa=-4.157kJ;而途径b的Q b=-0.692kJ。
求W b.解: 热力学能变只与始末态有关,与具体途径无关,故ΔU a= ΔU b由热力学第一定律可得 Qa + Wa = Q b + W b∴ W b = Q a + W a-Q b = -1.387kJ2.5 始态为25℃,200 kPa 的5 mol 某理想气体,经途径a ,b 两不同途径到达相同的末态。
途经a 先经绝热膨胀到 -28.47℃,100 kPa ,步骤的功;再恒容加热到压力200 kPa 的末态,步骤的热。
途径b 为恒压加热过程。
求途径b 的及。
解:先确定系统的始、末态3111061902000001529831485m ...P nRT V =××==32101601000005824431485m ...P nRT V V =××=== kJ .kJ )..(Q W U Δa a 85194225575=+=+=-对于途径b ,其功为kJ .J ..V Δp W b 932706190101602000001-)-(--===根据热力学第一定律2.6 4mol 某理想气体,温度升高20℃, 求ΔH -ΔU 的值。
(完整版)物理化学课后答案-热力学第一定律
欢迎共阅第二章热力学第一定律【复习题】【1】判断下列说法是否正确。
(1)状态给定后,状态函数就有一定的值,反之亦然。
(2)状态函数改变后,状态一定改变。
(3)状态改变后,状态函数一定都改变。
(4)因为△ U=Q v, △H =Q p,所以Q v,Q p是特定条件下的状态函数。
(5)恒温过程一定是可逆过程。
(6)汽缸内有一定量的理想气体,反抗一定外压做绝热膨胀,则△H= Q p=0。
(7)根据热力学第一定律,因为能量不能无中生有,所以一个系统若要对外做功,必须从外界吸收热量。
(8)系统从状态Ⅰ变化到状态Ⅱ,若△T=0 ,则Q=0 ,无热量交换。
(9)在等压下,机械搅拌绝热容器中的液体,使其温度上升,则△H = Q p = 0。
(10)理想气体绝热变化过程中,W=△U,即W R=△U=C V△T,W IR=△U=C V△T,所以W R=W IR 。
(11)有一个封闭系统,当始态和终态确定后;(a)若经历一个绝热过程,则功有定值;(b)若经历一个等容过程,则Q 有定值(设不做非膨胀力);(c)若经历一个等温过程,则热力学能有定值;(d)若经历一个多方过程,则热和功的代数和有定值。
(12)某一化学反应在烧杯中进行,放热Q1,焓变为△ H 1,若安排成可逆电池,使终态和终态都相同,这时放热Q2,焓变为△ H2,则△ H1=△H 2。
【答】(1)正确,因为状态函数是体系的单质函数,体系确定后,体系的一系列状态函数就确定。
相反如果体系的一系列状态函数确定后,体系的状态也就被惟一确定。
(2)正确,根据状态函数的单值性,当体系的某一状态函数改变了,则状态函数必定发生改变。
(3)不正确,因为状态改变后,有些状态函数不一定改变,例如理想气体的等温变化,内能就不变。
(4)不正确,ΔH=Qp,只说明Qp 等于状态函数H 的变化值ΔH,仅是数值上相等,并不意味着Qp 具有状态函数的性质。
ΔH=Qp 只能说在恒压而不做非体积功的特定条件下,Qp 的数值等于体系状态函数H 的改变,而不能认为Qp 也是状态函数。
物理化学课后解答第二章
=1/690.96=0.00145
(3) 亨利标准态
1600℃时,Si 以液态存在
γ =α , /α , 0
Si
R Si(l)
H Si(l)
α ,H Si(l) =αR,Si(l)/γ0Si =0.00145/0.00116=1.25
4)=3)- 1)-2),
△rG0(4)=-576842.28-(-5715.35)=-571126.93J/mol △rG0(4)=-RTlnK4=-8.314*1873 lnK4
5
lnK3=36.676, K3=8.476X1015 据 4), K3= αSiO2(s)/(αSi(l)*(pO2/p*))
α =α /γ X %,Ag(l)
R,Ag(l)
0
0
Ag(l) Ag(l)
αR,Ag(l) 可由习题 2-2 中热力学等温方程式求出。
关键:
因为 Ag 和 Zn 服从 Henry law, Ag 和 Zn 在铅液中含量又很低,可近
似认为 f%,Ag(l) =1,f%,Zn(l) =1。
2-5 高炉渣中(SiO2)与生铁中的[Si]可发生下述反应
)( s )
PO2 P0
⎟⎟⎠⎞
⎟ ⎟
公式(2)
⎟
⎟⎠平衡态
选择不同
Si
的标准态,公式(2)中仅
a[Si]( s )
和
μ0
[Si ]( s )
值发生变化。
若炉渣中 SiO2(s)是纯物质,则 SiO2(s)在炉渣中的活度定义为 1, 即
第五版物理化学第二章习题集规范标准答案
第二章热力学第一定律2.1 1mol理想气体在恒定压力下温度升高1℃,求过程中系统与环境交换的功。
解:理想气体n = 1mol对于理想气体恒压过程,应用式(2.2.3)W =-p ambΔV =-p(V2-V1) =-(nRT2-nRT1) =-8.314J2.2 1mol水蒸气(H2O,g)在100℃,101.325kPa下全部凝结成液态水。
求过程的功。
假设:相对于水蒸气的体积,液态水的体积可以忽略不计。
解: n = 1mol恒温恒压相变过程,水蒸气可看作理想气体, 应用式(2.2.3)W =-pambΔV =-p(Vl-Vg) ≈ pVg = nRT = 3.102kJ2.3 在25℃及恒定压力下,电解1mol水(H2O,l),求过程的体积功。
H2O(l) =H2(g) + 1/2O2(g)解: n = 1mol恒温恒压化学变化过程, 应用式(2.2.3)W=-pambΔV =-(p2V2-p1V1)≈-p2V2=-n2RT=-3.718kJ2.4 系统由相同的始态经过不同途径达到相同的末态。
若途径a的Q a=2.078kJ,Wa=-4.157kJ;而途径b的Q b=-0.692kJ。
求W b.解: 热力学能变只与始末态有关,与具体途径无关,故ΔU a= ΔU b由热力学第一定律可得 Qa + Wa = Q b + W b∴ W b = Q a + W a-Q b = -1.387kJ2.5 始态为25℃,200 kPa 的5 mol 某理想气体,经途径a ,b 两不同途径到达相同的末态。
途经a 先经绝热膨胀到 -28.47℃,100 kPa ,步骤的功;再恒容加热到压力200 kPa 的末态,步骤的热。
途径b 为恒压加热过程。
求途径b 的及。
解:先确定系统的始、末态3111061902000001529831485m ...P nRT V =××==32101601000005824431485m ...P nRT V V =××=== kJ .kJ )..(Q W U Δa a 85194225575=+=+=-对于途径b ,其功为kJ .J ..V Δp W b 932706190101602000001-)-(--===根据热力学第一定律2.6 4mol 某理想气体,温度升高20℃, 求ΔH -ΔU 的值。
物理化学答案——第二章-热力学第二定律
第二章 热力学第二定律 一、基本公式和基本概念 基本公式1. 热力学第二定律的数学表达式----克劳修斯不等式 ()0A B A B QS Tδ→→∆-≥∑2. 熵函数的定义 ()R QdS Tδ=, ln S k =Ω3. 熵变的计算理想气体单纯,,p V T 变化22,1122,1122,,11ln ln ln ln lnln V m p m p m V m T V S C R T V T p S C R T p V p S C C V p ∆=+∆=-∆=+理想气体定温定压混合过程ln i i iS R n x ∆=-∑封闭系统的定压过程21,d T p m T C S n T T∆=⎰封闭系统定容过程 21,d T V m T C S n T T∆=⎰可逆相变 m n H S T∆∆=标准状态下的化学反应 ,()r m Bm B BS S T θθν∆=∑定压下由1T 温度下的化学反应熵变求2T 温度下的熵变 21,21()()d T p m r m r m T C S T S T T T∆∆=∆+⎰4. 亥姆霍兹函数 A U TS ≡-5. 吉布斯函数 G H TS ≡-6. G ∆和A ∆的计算(A ∆的计算原则与G ∆相同,做相应的变换即可)定温过程G H T S ∆=∆-∆组成不变的均相封闭系统的定温过程 21d p p G V p ∆=⎰理想气体定温过程 21ln p G nRT p ∆= 7. 热力学判据熵判据:,()0U V dS ≥亥姆霍兹函数判据:,,'0(d )0T V W A =≤ 吉布斯函数判据:,,'0(d )0T p W G =≤8. 热力学函数之间的关系组成不变,不做非体积功的封闭系统的基本方程d d d d d d d d d d d d U T S p V H T S V pA S T p V G S T V p=-=+=--=-+麦克斯韦关系S VpS T Vp TT p V S T V p S S p V T S V p T ∂∂⎛⎫⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭⎛⎫∂∂⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭∂∂⎛⎫⎛⎫= ⎪ ⎪∂∂⎝⎭⎝⎭⎛⎫∂∂⎛⎫=- ⎪ ⎪∂∂⎝⎭⎝⎭9. 吉布斯-亥姆霍兹方程2()pG HT T T ∆⎡⎤∂⎢⎥∆=-⎢⎥∂⎢⎥⎣⎦ 基本概念1. 热力学第二定律在研究化学或物理变化驱动力来源的过程中,人们注意到了热功交换的规律,抓住了事物的共性,提出了具有普遍意义的熵函数。
北京大学《物理化学》课后章节练习题第2章习题及答案
ΔS = ΔSA + ΔSB
=
nACv,m
(
A)
ln
T2 T1
+
nBC
p,
m
(B)
ln
T2 T1
+ nBR ln
pB,1 pB,2
由此得 T2=254.84K
所以
W = −ΔU = −nACv,m ( A)(T2 − T1) − nBCv,m (B)(T2 − T1) = 2440.5J
5. 解:(1)
21.
已知纯物质的平衡稳定条件为 ( ∂p ∂V
)T
<
0 ,请证明任一物质绝热可逆膨胀后
压力必然降低。
-4-
第二章 习题答案
∫ 1.解: ΔS = nR ln
p1 p2
+
C T2 p T T1
dT
= nR ln
p1 p2
+
n(Cv,m
+
R) ln
T2 T1
= −86.67J.K −1
2.解:设终态温度为 T
等式右边可以转化为
W = WB = p外 (VB,2 −VB,1) = p B,2 (VB,2 − VB,1) = pB,2VB,2 − p B V,2 B,1
=
nB R(T2
− TB,1
pB,2 ) pB,1
=
2R(T
− (300K ) 1)...........(2) 2
联立(1)和(2)式,得T2=264.7K
4. 一导热良好的固定隔板将一带无摩擦绝热活塞的绝热气缸分为左右两室,左
室中充入 1mol A,右室中充入 2mol B,设A和B均为理想气体且A为单原子 气体,B为双原子气体,起始温度均为 300K,压力均为 101.325kPa,始态如 图所示,图中C为销钉,p外为 50.663kPa。 (a)若将绝热活塞上的销钉 C 拔掉,求平衡时,该过程的功及体系的熵变。 (b)若拔掉销钉后使其可逆膨胀至p外,则该过程的功和体系熵又为何值。
物理化学课后习题答案第二章
第二章2.1 1mol 理想气体在恒定压力下温度升高1℃,求过程中系统与环境交换的功。
解:理想气体n = 1mol恒压升温p 1, V 1, T 1 p 2, V2, T 2 对于理想气体恒压过程,应用式(2.2.3)W =-p amb ΔV =-p(V 2-V 1) =-(nRT 2-nRT 1) =-8.314J2.2 2.2 1mol 1mol 水蒸气(H 2O,g)在100℃,101.325kPa 下全部凝结成液态水。
求过程的功。
假设:相对于水蒸气的体积,液态水的体积可以忽略不计。
解: n = 1mol H 2O(g) H 2O(l)恒温恒压相变过程,水蒸气可看作理想气体, 应用式(2.2.3)W =-p amb ΔV =-p(V l -V g ) ≈ pVg = nRT = 3.102kJ 2.3 在25℃及恒定压力下,电解1mol 水(H 2O,l),求过程的体积功。
H 2O(l) = H 2(g) + 1/2O 2(g) 解: n = 1mol H 2O(l) H 2(g) + + O 2(g) n 1=1mol 1mol + 0.5mol = n 0.5mol = n 2V 1 = V l V(H 2) + V (O V(O 2) = V2 恒温恒压化学变化过程, 应用式(2.2.3)W=-p amb ΔV =-(p 2V 2-p 1V 1)≈-p 2V 2 =-n 2RT=-3.718kJ100℃,101.325kPa25℃,101.325kPa2.4 系统由相同的始态经过不同途径达到相同的末态。
若途径a 的Q a =2.078kJ ,Wa=-4.157kJ ;而途径b 的Q b =-0.692kJ 。
求W b 解: 热力学能变只与始末态有关,与具体途径无关,故 ΔU a = ΔU b由热力学第一定律可得 Qa + Wa = Q b + W b ∴ W b = Q a + W a -Q b = -1.387kJ2.6 4mol 4mol 某理想气体,温度升高20℃, 求ΔH -ΔU 的值。
第五版物理化学课后习题答案
物化第二章 热力学第一定律2-1. 1mol 理想气体在恒定压力下温度升高1℃,求过程中系统与环境交换的功。
解: n = 1molp 1, V 1, T 1−−−→−恒压升温p 2, V 2, T 2 W =-p a m b ΔV =-p (V 2-V 1) =-nR (T 2-T 1) =-8.314J2-2. 1mol 水蒸气(H 2O ,g )在100℃,101.325kPa 下全部凝结成液态水。
求过程的功。
假设:相对于水蒸气的体积,液态水的体积可以忽略不计。
解: n = 1molH 2O (g )−−−−−→−kPa101.325100℃,H 2O (l ) W =-p a m b ΔV =-p (V l -V g ) ≈ pVg = nRT = 3.102kJ2-3. 在25℃及恒定压力下,电解1mol 水(H 2O ,l ),求过程的体积功。
H 2O (l ) H 2(g ) + 12O 2(g )解: n = 1molH 2O (l )−−−−−→−kPa 101.325100℃,H 2(g ) + O 2(g )n 1=1mol 1mol + 0.5mol = n 2 V 1 = V l V (H 2) + V (O 2) = V 2W =-p amb ΔV =-(p 2V 2-p 1V 1)≈-p 2V 2 =-n 2RT =-1.5×R ×298.15=-3.718kJ2-4.系统由相同的始态经过不同的途径达到相同的末态。
若途径a 的Q a =2.078 kJ ,W a =-4.157 kJ ,而途径b 的Q b =-0.692kJ 。
求W b 。
解:Q a +W a =Q b +W bW b =Q a +W a -Q b =2.078-4.157+0.692=-2.079+0.692=-1.387kJ2-5.始态为25℃,200 kPa 的5 mol 某理想气体,经途径a ,b 两不同途径到达相同的末态。
物理化学第二章课后习题解答
第二章习题及答案2.1mol 某理想气体(11m ,mol K J 10.29−−⋅⋅=p C ),从始态(400K 、200kPa )分别经下列不同过程达到指定的终态。
试计算各过程的Q 、W 、∆U 、∆H 、及∆S 。
(1)恒压冷却至300K ;(2)恒容加热至600K ;(3)绝热可逆膨胀至100kPa ;解:(1)==111p nRT V L 63.16m 1063.1610200400314.81333=×=×××−1122V T V T =47.1263.164003001122=×=×=V T T V L 832)63.1647.12102003−=−××=∆=(外V P W kJ)400300()314.810.29(1m ,−×−×=∆=∆T nC U V kJ08.2−=,m 129.10(300400)p H nC T ∆=∆=××−2.92kJ=−kJ830=−∆=W U Q ∫=∆21d T T P T T C S =37.810.29300400−=×∫T dT J∙K -1(2)0=W )400600()314.810.29(1m ,−×−×=∆=∆T nC U V kJ16.4=,m 129.10(600400)p H nC T ∆=∆=××−5.82kJ=kJ16.4=−∆=W U Q ∫=∆21d T T V T T C S =43.8)314.810.29(600400=×−∫T dT J∙K -1(3)40.1314.810.2910.29,,=−==m V m P C C γ,γγγγ−−=122111P T P T 40.1140.1240.1140.1100200400−−=T 3282=T K=Q)400328()314.810.29(1m ,−×−×−=∆−=∆−=T nC U W V kJ50.1=)400328(314.810.291m ,−×××=∆=∆T nC H p kJ4.17−=0==∆TQ S R 12.1mol He(g)在400K 、0.5MPa 下恒温压缩至1MPa ,试计算其Q 、W 、∆U 、∆H 、∆S 、∆A 、∆G 。
物理化学第二章-习题及答案
第一章 热力学第一定律填空题1、一定温度、压力下,在容器中进行如下反应:Zn(s)+2HCl(aq)= ZnCl 2(aq)+H 2(g)若按质量守恒定律,则反应系统为 系统;若将系统与环境的分界面设在容器中液体的表面上,则反应系统为 系统。
2、所谓状态是指系统所有性质的 。
而平衡态则是指系统的状态 的情况。
系统处于平衡态的四个条件分别是系统内必须达到 平衡、 平衡、 平衡和 平衡。
3、下列各公式的适用条件分别为:U=f(T)和H=f(T)适用于 ;Q v =△U 适用于 ;Q p =△H 适用于 ; △U=dT nC 12T T m ,v ⎰适用于 ; △H=dT nC 21T T m ,P ⎰适用于 ; Q p =Q V +△n g RT 适用于 ;PV r=常数适用于 。
4、按标准摩尔生成焓与标准摩尔燃烧焓的定义,在C (石墨)、CO (g )和CO 2(g)之间, 的标准摩尔生成焓正好等于 的标准摩尔燃烧焓。
标准摩尔生成焓为零的是 ,因为它是 。
标准摩尔燃烧焓为零的是 ,因为它是 。
5、在节流膨胀过程中,系统的各状态函数中,只有 的值不改变。
理想气体经节流膨胀后,它的 不改变,即它的节流膨胀系数μ= 。
这是因为它的焓 。
6、化学反应热会随反应温度改变而改变的原因是 ;基尔霍夫公式可直接使用的条件是 。
7、在 、不做非体积功的条件下,系统焓的增加值 系统吸收的热量。
8、由标准状态下元素的 完全反应生成1mol 纯物质的焓变叫做物质的 。
9、某化学反应在恒压、绝热和只做膨胀功的条件下进行, 系统温度由T 1升高到T 2,则此过程的焓变 零;若此反应在恒温(T 1)、恒压和只做膨胀功的条件下进行,则其焓变 零。
10、实际气体的μ=0P T H〈⎪⎭⎫ ⎝⎛∂∂,经节流膨胀后该气体的温度将 。
11、公式Q P =ΔH 的适用条件是 。
12、若某化学反应,只做体积功且满足等容或等压条件,则反应的热效应只由 决定,而与 无关。
物理化学 第二章 热力学第一定律 经典习题及答案
V3 = V2 =
W b = − p外 ΔV = − p3 (V3 − V1 ) = − 200 × 103 (0.10167 − 0.06197) = −7.940kJ
由热力学第一定律
Wa + Qa = Wb + Qb -5.57+25.42= − 7.940 + Qb ∴ Qb = 27.79
= − 2 × 8.314 × 300 × (1 −
2.
∂H ∂p 求证: C p − CV = − + V ∂p T ∂ T V
方法一:和课件中的证明类似
方法二:
∂H ∂U ∂H ∂( H m − pVm C p,m − CV,m = m − m = m − ∂T ∂T p ∂T V ∂T p V ∂H ∂H ∂p = m − m +Vm ∂T V ∂T p ∂T V 令H = H (T , p) ∂H ∂H dH = dT + dp ∂T p ∂p T
2.10 2 mol 某理想气体,
。由始态 100 kPa,50 dm3,先恒容加热使
压力体积增大到 150 dm3,再恒压冷却使体积缩小至 25 dm3。求整个过程的 。 解:过程图示如下 n = 2mol 理想气体 T1 = ? p1 = 100kPa V1 = 0.05m3 n = 2mol 理想气体 恒容 → T2 = ? p2 = 200kPa V2 = 0.05m3 n = 2mol 理想气体 恒压 → T3 = ? p3 = 200kPa V3 = 0.025m3
3.
∂U 已知:理想气体 =0 ∂V T
第五版物理化学第二章习题答案解析
第二章 热力学第一定律2.1 1mol 理想气体在恒定压力下温度升高1℃,求过程中系统与环境交换的功。
解:理想气体n = 1mol对于理想气体恒压过程,应用式(2.2.3)W =-p amb ΔV =-p(V 2-V 1) =-(nRT 2-nRT 1) =-8.314J2.2 1mol 水蒸气(H 2O,g)在100℃,101.325kPa 下全部凝结成液态水。
求过程的功。
假设:相对于水蒸气的体积,液态水的体积可以忽略不计。
解: n = 1mol恒温恒压相变过程,水蒸气可看作理想气体, 应用式(2.2.3)W =-p amb ΔV =-p(V l -V g ) ≈ pVg = nRT = 3.102kJ2.3 在25℃及恒定压力下,电解1mol 水(H 2O,l),求过程的体积功。
H 2O(l) = H 2(g) + 1/2O 2(g) 解: n = 1mol恒温恒压化学变化过程, 应用式(2.2.3)W=-p amb ΔV =-(p 2V 2-p 1V 1)≈-p 2V 2 =-n 2RT=-3.718kJ2.4 系统由相同的始态经过不同途径达到相同的末态。
若途径a 的Q a =2.078kJ,Wa=-4.157kJ ;而途径b 的Q b =-0.692kJ 。
求W b .解: 热力学能变只与始末态有关,与具体途径无关,故 ΔU a = ΔU b由热力学第一定律可得 Qa + Wa = Q b + W b ∴ W b = Q a + W a -Q b = -1.387kJ2.5 始态为25℃,200 kPa 的5 mol 某理想气体,经途径a ,b 两不同途径到达相同的末态。
途经a 先经绝热膨胀到 -28.47℃,100 kPa ,步骤的功;再恒容加热到压力200 kPa 的末态,步骤的热。
途径b 为恒压加热过程。
求途径b 的及。
解:先确定系统的始、末态3111061902000001529831485m ...P nRT V =××==32101601000005824431485m ...P nRT V V =××=== kJ .kJ )..(Q W U Δa a 85194225575=+=+=-对于途径b ,其功为kJ .J ..V Δp W b 932706190101602000001-)-(--===根据热力学第一定律2.6 4mol 某理想气体,温度升高20℃, 求ΔH-ΔU 的值。
物理化学(天津大学第四版)课后答案 第二章 热力学第一定律
(2)
的
;
(3)
的
;
解:(1)C10H8 的分子量 M = 128.174,反应进程 。
(2)
。
(3)
2.34 应用附录中有关物资在 25 °C 的标准摩尔生成焓的数据,计算下列反应
在 25 °C 时的
及
。
(1)
(2)
为
,甲酸(HCOOH, l)、甲醇(CH3OH, l)、水(H2O, l)及二氧
化碳(CO2, g)的标准摩尔生成焓
分别为
、
及
°C 时下列反应的标准摩尔反应焓。
、 。应用这些数据求 25
解:显然要求出甲酸甲脂(HCOOCH3, l)的标准摩尔生成焓
课 后 答 案 网
2.39 对于化学反应
(3)
课 后 答 案 网
解:查表知
NH3(g) -46.11 NO2(g) 33.18
NO(g) 90.25
H2O(g)
H2O(l)
-241.818 -285.830
HNO3(l) -174.10
Fe2O3(s) -824.2
CO(g) -110.525
(1) (2) (3) 3.35 应用附录中有关物资的热化学数据,计算 25 °C 时反应
通电缓慢加热左侧气体 A,使推动活塞压缩右侧气体 B 到最终压力增至 200 kPa。
求:
课 后 答 案 网
(1)气体 B 的末态温度 。 (2)气体 B 得到的功 。 (3)气体 A 的末态温度 。
(4)气体A从电热丝得到的热 。 解:过程图示如下
由于加热缓慢,B 可看作经历了一个绝热可逆过程,因此 功用热力学第一定律求解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章2.1 1mol理想气体在恒定压力下温度升高1℃,求过程中系统与环境交换的功。
解:理想气体n = 1mol恒压升温p1, V1, T1p2, V2, T2对于理想气体恒压过程,应用式(2.2.3)W =-p ambΔV =-p(V2-V1) =-(nRT2-nRT1) =-8.314J2.2 1mol水蒸气(H2O,g)在100℃,101.325kPa下全部凝结成液态水。
求过程的功。
假设:相对于水蒸气的体积,液态水的体积可以忽略不计。
解: n = 1mol100℃,101.325kPaH2O(g) H2O(l)恒温恒压相变过程,水蒸气可看作理想气体, 应用式(2.2.3)W =-p ambΔV =-p(V l-V g ) ≈ pVg = nRT = 3.102kJ2.3 在25℃及恒定压力下,电解1mol水(H2O,l),求过程的体积功。
H2O(l) =H2(g) + 1/2O2(g)解: n = 1mol25℃,101.325kPaH2O(l) H2(g) + O2(g) n1=1mol 1mol + 0.5mol = n2V1 = V l V(H2) + V(O2) = V2恒温恒压化学变化过程, 应用式(2.2.3)W=-p ambΔV =-(p2V2-p1V1)≈-p2V2 =-n2RT=-3.718kJ2.4 系统由相同的始态经过不同途径达到相同的末态。
若途径a的Q a=2.078kJ,Wa=-4.157kJ;而途径b的Q b=-0.692kJ。
求W b.解: 热力学能变只与始末态有关,与具体途径无关,故ΔU a = ΔU b由热力学第一定律可得 Qa + Wa = Q b + W b∴W b = Q a + W a-Q b = -1.387kJ2.6 4mol某理想气体,温度升高20℃, 求ΔH-ΔU的值。
解: 理想气体n = 1mol C p,m-C V,m = R应用式(2.4.21) 和(2.4.22)ΔH = n C p,mΔT ΔU = n C V,mΔT∴ΔH-ΔU = n(C p,m-C V,m)ΔT = nRΔT = 665.12J2.7 已知水在25℃的密度ρ=997.04kg·m-3。
求1mol水(H2O,l)在25℃下:(1)压力从100kPa增加至200kPa时的ΔH;(2)压力从100kPa增加至1Mpa时的ΔH。
假设水的密度不随压力改变,在此压力范围内水的摩尔热力学能近似认为与压力无关。
解: 已知ρ= 997.04kg·m-3M H2O = 18.015 × 10-3 kg·mol-1凝聚相物质恒温变压过程, 水的密度不随压力改变,1molH2O(l)的体积在此压力范围可认为不变, 则 V H2O = m /ρ= M/ρΔH -ΔU = Δ(pV) = V(p2 -p1 )摩尔热力学能变与压力无关, ΔU = 0∴ΔH = Δ(pV) = V(p2-p1 )1) ΔH -ΔU = Δ(pV) = V(p2 -p1 ) = 1.8J2) ΔH -ΔU = Δ(pV) = V(p2 -p1 ) = 16.2J2.8 某理想气体C v,m=3/2R。
今有该气体5mol在恒容下温度升高50℃。
求过程的W,Q,ΔH和ΔU。
解: 理想气体恒容升温过程n = 5mol C V,m = 3/2RQ V =ΔU = n C V,mΔT = 5×1.5R×50 = 3.118kJW = 0ΔH = ΔU + nRΔT = n C p,mΔT= n (C V,m+ R)ΔT = 5×2.5R×50 = 5.196kJ2.9 某理想气体C v,m=5/2R。
今有该气体5mol在恒压下温度降低50℃。
求过程的W,Q,ΔUΔH和ΔH。
解: 理想气体恒压降温过程n = 5molC V,m = 5/2R C p,m = 7/2RQ p =ΔH = n C p,mΔT = 5×3.5R×(-50) = -7.275kJW =-p ambΔV =-p(V2-V1) =-(nRT2-nRT1) = 2.078kJΔU =ΔH-nRΔT = n C V,mΔT = 5×2.5R×(-50) = -5.196kJ2.10 2mol某理想气体,C p,m=7/2R。
由始态100kPa,50dm3,先恒容加热使压力升高至200kPa,再恒压冷却使体积缩小至25dm3。
求整个过程的W,Q,ΔH和ΔU。
解: 理想气体连续pVT变化过程. 题给过程为n = 5mol C V,m = 5/2R C p,m = 7/2R恒压(2)恒容(1)p1=100kPa p2= 200kPa p3 = p2V1 = 50dm3V2 = V1V3=25dm3T1T2T3始态末态∵p3V3 = p1V1∴T3 = T11) ΔH 和ΔU 只取决于始末态,与中间过程无关∴ΔH = 0 ΔU = 02) W1 = 0W2=-p ambΔV=-p(V3-V2)=200kPa×(25-50)×10-3m3= 5.00kJ∴W = W1 + W2 = 5.00kJ3) 由热力学第一定律 Q = ΔU-W = -5.00kJ2.15 容积为0.1m3的恒容密闭容器中有一绝热隔板,其两侧分别为0℃,4mol的Ar(g)及150℃,2mol的Cu(s)。
现将隔板撤掉,整个系统达到热平衡,求末态温度t及过程的ΔH。
已知:Ar(g)和Cu(s)的摩尔定压热容C p,m分别为20.786J·mol-1·K-1及24.435 J·mol-1·K-1,且假设均不随温度而变。
解: 恒容绝热混合过程Q = 0 W = 0∴由热力学第一定律得过程ΔU=ΔU(Ar,g)+ΔU(Cu,s)= 0ΔU(Ar,g) = n(Ar,g) C V,m (Ar,g)×(t2-0)ΔU(Cu,S) ≈ΔH (Cu,s) = n(Cu,s)C p,m(Cu,s)×(t2-150)解得末态温度t2 = 74.23℃又得过程ΔH =ΔH(Ar,g) + ΔH(Cu,s)=n(Ar,g)C p,m(Ar,g)×(t2-0) + n(Cu,s)C p,m(Cu,s)×(t2-150)= 2.47kJ或ΔH =ΔU+Δ(pV) =n(Ar,g)RΔT=4×8314×(74.23-0)= 2.47kJ2.21求1molN2(g)在300K恒温下从2dm3可逆膨胀到40dm3时的体积功W r。
(1)假设N2(g)为理想气体;(2)假设N2(g)为范德华气体,其范德华常数见附录。
解: 题给过程为n = 1mol恒温可逆膨胀N2(g) N2(g)V1=2dm3V2=40dm3应用式(2.6.1)1) N2(g)为理想气体p = nRT/V∴2) N2(g)为范德华气体已知n=1mol a =140.8×10-3Pa·m6·mol-2b= 39.13×10-6m3·mol-1所以2.22 某双原子理想气体1mol从始态350K,200kPa经过如下四个不同过程达到各自的平衡态,求各过程的功W。
(1)恒温下可逆膨胀到50kPa;(2)恒温反抗50kPa恒外压不可逆膨胀;(3)绝热可逆膨胀到50kPa;(4)绝热反抗50kPa恒外压不可逆膨胀。
解: 双原子理想气体n = 5mol;C V,m =(5/2)R ;C p,m = (7/2)R2.23 5mol双原子理想气体从始态300K,200kPa,先恒温可逆膨胀到压力为50kPa,再绝热可逆压缩到末态压力200kPa。
求末态温度T及整个过程的W,Q,ΔUΔH和ΔH。
解: 理想气体连续pVT变化过程. 题给过程为n = 5mol C V,m = 5/2R C p,m = 7/2R恒压(2)恒容(1)p1 = 200kPa p2 = 50kPa p3 = 200kPaT1 = 300K T2 = T1 T3 = ?始态末态由绝热可逆过程方程式得1) ΔH 和ΔU 只取决于始末态,与中间过程无关ΔH = n C p,mΔT = n C p,m(T3-T1) = 21.21kJΔU = n C V,mΔT = n C V,m(T3-T1) = 15.15kJ2) W1 =W2 =ΔU = n C V,mΔT = n C V,m(T3-T2) = 15.15kJ∴W = W1 + W2 = -2.14kJ3) 由热力学第一定律得Q =ΔU-W = 17.29kJ2.27 已知水(H2O,l)在100℃的饱和蒸气压p s=101.325kPa,在此温度、压力下水的摩尔蒸发焓。
求在100℃,101.325kPa下使1kg水蒸气全部凝结成液体水时的W,Q,ΔUΔH和ΔH。
设水蒸气适用理想气体状态方程式。
解: 题给过程的始末态和过程特性如下:n = m/M = 1kg/18.015g·mol-1 = 55.509mol恒温恒压H2O(g) H2O(l)可逆相变373.15K,101.325kPa 373.15K,101.325kPa题给相变焓数据的温度与上述相变过程温度一致,直接应用公式计算W=-p ambΔV =-p(V l-V g )≈pVg = n g RT=172.2kJΔU = Q p + W =-2084.79kJ2.28已知100kPa下冰的熔点为0℃,此时冰的比熔化焓。
水的平均比定压热容求在绝热容器内向1kg50℃的水中投入0.1kg0℃的冰后,系统末态的温度。
计算时不考虑容器的热容。
解:假设冰全部熔化,末态温度为t . 题给过程分为两部分,具体如下:恒压变温H2O(l) H2O(l)ΔH1m1(l) = 1kg m1(l) = 1kgt1(l) = 50℃t恒压变温可逆相变H2O(s) H2O(l) H2O(l)ΔH3ΔH2m2(s) = 0.1kg m2(l) = 0.1kg m2(l) = 0.1kgt2(s) = 0℃t2(l) = 0℃t整个过程绝热ΔH = ΔH1 +ΔH2 +ΔH3其中整理可得末态温度 t = 38.21℃2.30 蒸气锅炉中连续不断地注入20℃的水,将其加热并蒸发成180℃,饱和蒸气压为1.003Mpa的水蒸气。
求每生产1kg水蒸气所需要的热量。
已知:水(H 2O,l)在100℃的摩尔蒸发焓,水的平均摩尔定压热容,水蒸气(H 2O,g)的摩尔定压热容与温度的函数关系见附录。