人教版六年级下册数学圆锥的体积课件PPT
圆锥的认识说课(课件)人教版六年级下册数学

四、说教学重难点
教学重点
掌握圆锥的特征
教学难点
圆锥的高的测量方法
五、说教法学法
本课在教学时适宜让学生主动思考,合作交流,动手实践,让学生在具 体情境中亲自体验感知圆锥的特征。另外,要鼓励学生主动参与、动手 操作、发挥自己的聪明才智,能根据具体情况想出测量高的方法。在教 学过程中,恰当地运用远程教育资源,既能创设教学情境,又能将抽象 的知识直观化,更加直观地体验感知圆锥的特征。本课我将采取“引导 ——探索——发展”的教学模式,在教学中充分利用根据实情进行二次 加工的农远资源课件,更加优化本课的教学,提高教学效率。这种教学 模式,能促使学生学中有思,思中有疑,疑中有得。
轻松,记得牢固。整个过程体现出了学生是学习的主体,教师是应用资 源合理组织学生求知的引导者这一新课理念。
板块三、巩固练习。 1、求下列各圆锥的体积。 (1)底面积30平方厘米,高5厘米。 (2)底面半径4分米,高是3分米。 (3)底面直径12厘米,高是10厘米。 (4)底面周长31.4厘米,高6厘米。
为了巩固圆锥的表象,激发学生的学习兴趣,我问学生:“在生活中, 你还见过那些圆锥形的物体?”想一想、说一说。 并开展小游戏:学生抢答出屏幕上圆锥形物体的名称。 揭示课题,板题:圆锥的认识
2、认识圆锥的特征 我先引导学生看一看、摸一摸圆锥形实物,再让学生观看动画,在生动 有趣的氛围中轻松掌握圆锥的各部分名称及特征。 接着让学生拿起圆锥模型,小组同学相互说说圆锥的各部分名称。 最后,让学生闭上眼睛想一想圆锥是什么样子的?在脑中建立圆锥的模 型。
2.求下面各物体的体积。(单位:厘米) 目的是让学生运用所学的知识解决实际问题。 3.讨论题:把一个体积是60立方厘米的圆柱体木块,削成一个最大的圆 锥体,圆锥体的体积是多少?削去的体积是多少? 通过讨论,让学生把所学的知识,形成技能技巧,培养学生的创新能力 。
人教版六年级数学下册第三单元《圆柱与圆锥》课件共10个精品课件

柱的底面直径与高的比。
πd=h d :h = 1 :π
课堂总结
通过这节课的学习, 你有什么收获?
义务教育人教版六年级下册
第3单元 圆柱与圆锥 1.圆 柱
第 5 课时 圆柱的体积
复习导入
填空。 圆柱的侧面积=( 底面周长×高 ) 圆柱的表面积=( 侧面积+底面积×2 ) 长方体的体积=( 长×宽×高 ) 正方体的体积=(棱长×棱长×棱长)
底面 侧面
圆柱的底面都 是圆,并且大 小一样。
底面 圆柱的侧面是曲面。
哪个圆柱比较高?为什么?
底面 O
侧面 高
底面 O 侧面 高
底面 O
底面
圆柱两个底面之间的距离叫做高, 圆柱有无数条高。
动手操作: 如果把一张长方形的硬纸贴在木棒上,快速转
动木棒,想一想,转出来的是什么形状?
转动起来像一个圆柱。
8cm
要解决这个问题,就
是要计算什么?
10cm
杯子的容积
10cm
杯子的底面积: 杯子的容积:
8cm
3.14×(8÷2)2
50.24×10
=3.14×42
=502.4 (cm3 )
=3.14×16
=502.4 (mL)
=50.24 (cm2 )
答:因为502.4大于498,所以杯子能 装下这袋牛奶。
(长方体)
(正方体 )
( 圆柱 )
课堂总结
通过这节课的学习, 你有什么收获?
义务教育人教版六年级下册
第3单元 圆柱与圆锥 1.圆 柱
第 2 课时 圆柱的认识(2)
复习导入
圆柱由哪几部分组成? 有什么特征?
上、下底面:圆 侧面:曲面
探究新知
六年级下册数学课件 第二单元 《第4课时 圆锥的体积》苏教版 (共45张PPT)

3、一个圆柱和一个圆锥等底等高,圆柱的体积是3立方分
米,圆锥的体积是( 1 )立方分米。
4、一个圆锥的底面积是12平方厘米,高是6厘米,体积是 ( 24 )立方厘米。
二、判断:
1、圆锥的体积等于圆柱体积的1/3。( × )
2、圆柱的体积大于与它等底等高的圆锥体的体积。
答:这堆小麦的体积是6.28立方米.
一个圆锥形零件,它的底面直径是10厘米,高是3厘米,这个 零件的体积是多少立方厘米?
1 3.14 (10 2)2 3 3
78.(5 厘米3)
答:这堆零件的体积是78.5立方厘米.
一、填空:
1、圆锥的体积=( V=13 s h ),用字母表示是
(13×底面积×高 )。
再见
将圆锥形容器装满沙,再倒入圆柱 形容器,看几次能倒满.
圆锥的体积V等于和它等底等高 的圆柱体积的三分之一
Vபைடு நூலகம்柱=sh
V=
1 3
sh
打谷场上,有一个近似于圆锥的小麦堆,测得底面半径是 2米,高是1.5米。你能计算出这堆小麦的体积吗
1 3.14 22 1.5 3 6.2(8 米3)
苏教版数学六年级下册
第二单元
第4课时 圆锥的体积
学习目标
1.会用圆锥的体积计算公式计算圆 锥的体积。
2.培养观察、比较、分析、综合的 能力以及初步的空间观念。
导入新知
同学们,大家觉得我们今天要 研究的圆锥的体积可能转化为什 么图形来研究比较简单呢?
合作探究
圆锥的体积 怎么求呢?
准备等底等高的圆柱形容器和 圆锥形容器各一个。
s 9m2
3.6m 8dm 8cm
人教版六年级数学下册第三单元第11课《整理和复习》课件

×2
S表= 2πrh+2πr2
V=πr2h
图形 圆柱
底面半径 底面直径
5dm
10dm
1m
2m
20cm
40cm
高 4dm 0.7m 5cm
表面积 282.6dm2 10.676m2
3140cm2
体积 314dm3 2.198m3 6280cm3
想一想:圆柱的侧面积、表面积怎样计算?圆柱、圆锥 的体积公式是怎样导出的?再填写下表。
? 出米率 = 磨出大米的质量÷稻谷的质量
磨出大米的质量 = 稻谷的质量×出米率
27.76×70% = 19.432(千克) 答:一漏斗稻谷能磨出19.432千克大米。
如图,将一个圆柱切成4份,增加了多少表面积?
增加了4个长方 形的面积
12×16×4 = 192×4 = 768(平方厘米) 答:增加了768平方厘米。
圆锥只有一条高
圆锥的底面是一个圆, 侧面是一个扇形。
圆锥可看成由三角形旋转形成的。
6.圆锥的体积
圆锥的体积是与它等底等高的圆柱体积的
1 3
。
底面积×高
圆锥体积=13×底面积×高 V圆锥=13×πr2×h
7.解决问题
切割问题:切割前后的表面积增加了,体积不变。
新增两个一组邻边分别 为圆柱的底面直径和高 的长方形或正方形。
C.缩小到原来的21
(7)用一块长25.12厘米,宽18.84厘米的长方形铁皮,配 上两个直径为( C )厘米的圆形铁皮正好可以做成 圆柱形容器。 A.3 B.8 C.6或8
3.计算圆柱的表面积。(单位: cm)(8分) 3.14×8×20+3.14×(8÷2)2×2=602.88(cm2)
(人教版)六年级数学下册课件_圆锥的体积_4

1.2 米 4米
×3.14×(4 ÷ 2)×1.2 × )
3
1) = 3.14×(4 ÷ 2)×(1.2 ×—) × )
=12.56 ×0.4 = 5.024(立方米) (立方米) 735×5.024 ≈ 3693 (千克) × 千克) 答:这堆小麦大约有3693千克 这堆小麦大约有 千克
解决问题: 解决问题:
体积等于圆柱体积的— 体积等于圆柱体积的 3
用字母表示: 用字母表示: 1 V= Sh 3
已知: 已知:等底等高的圆锥和圆柱
根据左图体积填写右图体积: 根据左图体积填写右图体积: (1) ) (2)
90立方厘米 立方厘米
(
30)立方厘米
80立方厘米 立方厘米 ( )立方厘米 240
例1:一个圆锥的零件,底面积是 :一个圆锥的零件, 19平方厘米,高是 厘米。这个零 平方厘米, 厘米。 平方厘米 高是12厘米 件的体积是多少? 件的体积是多少?
圆锥的体积
实验小学
情景引入: 情景引入: 谁做的房子的体积大呢? 谁做的房子的体积大呢?
明明说: 明明说:我做的房子的底面比你做的 房子的底面大,高也比你的高, 房子的底面大,高也比你的高,所以 我做的房子的体积大。 我做的房子的体积大。
(s=6 h=6.3)
(S=12.5 h=9)
聪聪说:我做的房子上下一样粗呀, 聪聪说:我做的房子上下一样粗呀, 而你做的房子却越向上越细呀, 而你做的房子却越向上越细呀,所 以我做的房子的体积大。 以我做的房子的体积大。
已知圆锥的底面半径r h,如 1.已知圆锥的底面半径r和高h,如 已知圆锥的底面半径 和高h, 何求体积V? 何求体积V? 2 1
S=π
r
三2第2课时《圆锥的体积》教案-人教版版数学六年级下册

上课解决方案教案设计教学目标知识与技能1.理解并掌握圆锥的体积计算公式,能正确地计算圆锥的体积。
2.能运用圆锥的体积计算公式解决有关的实际问题。
过程与方法经历自主探究圆锥的体积计算公式的过程,增强操作能力,体验观察、比较、分析、总结、归纳等学习方法。
情感、态度与价值观通过实验,培养学生勇于探索的求知精神,感受发现知识的快乐,体会数学与生活的密切联系,能积极参与数学活动,自觉养成与人合作交流和独立思考的良好习惯。
重点难点重点:掌握圆锥的体积计算公式,能运用公式解决简单的实际问题。
难点:理解圆锥的体积计算公式的推导过程。
课前准备教师准备PPT课件铅锤学生准备等底、等高的圆柱形和圆锥形容器沙子水教学过程板块一激发兴趣,问题导入1.提问激趣:怎样计算这个铅锤的体积?(出示铅锤)生:可以用排水法。
把铅锤全部浸入盛水的量杯中(水未溢出),升高那部分水的体积就是铅锤的体积。
2.追问:怎样求出沙堆的体积?(课件出示教材33页例3)工地上有一堆沙子,其形状近似于一个圆锥(如右图),这堆沙子的体积大约是多少?如果每立方米沙子大约重1.5 t,这堆沙子大约重多少吨?预设生1:用排水法好像不行。
生2:改变圆锥形沙堆的形状,堆成正方体,测出它的棱长后,计算它的体积。
生3:改变圆锥形沙堆的形状,堆成长方体,测出它的长、宽、高后,计算它的体积。
生4:改变圆锥形沙堆的形状,堆成圆柱,测出它的底面周长和高后,计算它的体积。
3.导入新知:大家都想到了用转化法求沙堆的体积,但如果我们在计算沙堆的体积时,必须把沙子重新堆放成以前学过的几何图形,这样做既麻烦又不容易成功,看来我们还需要寻求一种更普遍、更科学、更便利的求圆锥的体积的方法。
(板书课题:圆锥的体积) 操作指导通过提出问题,引发学生的认知冲突,激发学生的求知欲,培养学生自主探究的意识,感受学习数学的必要性。
板块二动手操作,探究新知活动1观察猜想,确定方向1.猜一猜:圆锥的体积可能与哪种立体图形的体积有关?(学生大胆猜想,可能与圆柱的体积有关)2.交流:探究圆锥的体积要借助一个什么样的圆柱呢?明确:探究圆锥的体积要借助一个与这个圆锥等底、等高的圆柱。
新人教版小学数学六年级下册课件:《整理和复习》(共18张ppt)

A
B
综合应用
(3)甲乙两人分别利用一张长20厘米,宽15厘米的纸用两种不同的方法围成一个圆柱体(接头处不重叠),那么围成的圆柱( )。 A. 高一定相等 B. 侧面积一定相等 C. 侧面积和高都相等 D. 侧面积和高都不相等
综合应用
问题一
底面
底面
底面的周长
底面
底面
高
长方形的长=圆柱底面的周长,宽=圆柱的高。
圆柱的展开图
底面的周长
圆锥的特征
从圆锥的顶点到底面圆心的距离是圆锥的高。
底面
O
r
h
高
圆锥的底面是个圆, 侧面是一个扇形。
问题一
顶点
问题二
圆柱的侧面积与表面积
底面
底面
高
侧 面
底面
底面
高
底面的周长
S表面积=S侧面积+2×S底面积
综合应用
(1)做一个圆柱形烟囱要用多少铁皮,是求圆柱的( )。 A.侧面积 B.表面积 C.体积 (2)一个圆柱形水箱,底面周长是12.56分米,给这个水箱配一个盖子,应选铁皮为( )。(单位:分米) A. B. C.
——
0.5cm
4.5m
——
10dm
1m
40cm
2dm
1cm
314dm3
6280cm3
1.1775m3
2.198m3
10.048dm3
282.6dm2
3140cm2
10.676m2
综合应用
1. 计算下面各图形的体积。
8.5×4×3=102 (dm3)
( )2×3.14×5=251.2(cm3)
8 2
综合应用
新人教版六年级下册数学教学课件-3.6圆锥的体积

我们已经会计算圆柱的体积,如何计 算圆锥的体积呢?
课件PPT
探索新知
圆锥的体积和圆 柱的体积有没有 关系呢?
圆柱的底面是圆, 圆锥的底面也等高的圆柱和圆锥形容器。
课件PPT
探索新知
(2)用倒水的方法来探究。
课件PPT
探索新知
课件PPT
探索新知
课件PPT
探索新知
课件PPT
探索新知
课件PPT
探索新知
课件PPT
探索新知
课件PPT
探索新知
课件PPT
探索新知
课件PPT
探索新知
课件PPT
探索新知
在空圆锥形容器里装满水,然后 倒入空圆柱形的容器里,经实验,3 次正好将空圆柱形容器装满。
课件PPT
探索新知
推导圆锥体积公式:
圆柱的体积=底面积 ×
1 圆锥的体积= 底面积 ×高×3
一个圆柱的体积是28.26立方米,与它
等底等高的圆锥的体积是(84.78 )立方米。
课件PPT
易错题型
一个圆柱的体积是28.26立方米,与它
等底等高的圆锥的体积是( )立方米。
圆锥的体积是与它等底等高的圆柱体积的三分之 一,并不是圆柱的3倍。
课件PPT
易错题型
正确解答
一个圆柱的体积是28.26立方米,与它
人教版
六年级 数学 下册
课件PPT
第3单元
圆柱与圆锥
第6课时
圆锥的体积
课件PPT
学习目标
参与实验,从而推导出圆锥体积 的计算公式,会运用圆锥的体积 公式计算圆锥的体积。 培养初步的空间观念,经历圆锥体 积公式的推导过程,体验观察、比 较、分析、总结、归纳的学习 方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求下面各圆锥的体积(只列式不计算)
①底面面积是7.8平方米,高是1.8米。 1 —×7.8 ×1.8 列式: 3 ②底面半径是4厘米,高是21厘米。 1 —×3.14×4 ×21 列式: 3 ③底面直径是6分米,高是6分米。 1 6 )² —×3.14 ×(— ×6 2 列式: 3
3.14×(5÷2)2=19.625(平方米)
它的体积: 1 —× 19.625×3.6 =23.55(立方米) 3
判断:
1、圆柱体的体积一定比圆锥体的体积大。 ( × ) 1 2、圆锥的体积等于和它等底等高的圆柱的— 。 3 (√ ) 3、正方体、长方体、圆锥体的体积都等于底 面积×高。( × ) 4、等底等高的圆柱和圆锥,如果圆柱体的体 积是27立方米,那么圆锥的体积是9立方米。 (√ )
= 3.14×4 = 12.56(平方米)
= 6.28(立方米)
答:这堆沙子大约6.28立方米。
做一做:
一个圆锥形零件,底面积是45平方厘 米,高是6厘米。这个零件的体积是 多少立方厘米?
1 —×45 3
×6=90(立方厘米)
答:这个零件的体积是90立方厘米。
做一做:
有一座圆锥形帐篷,底面直径约5米,高约 3.6米。它的占地面积是多少平方米?它的 体积是多少立方米? 它的占地面积:
复习:
1、圆柱体积的计算公式是什么?
圆柱的体积=底面积×高
V =S h
柱Hale Waihona Puke 底2、圆柱的特征是什么?两个底相等
仔 细 观 察 , 你 发 现 了 什 么
你发现了什么?
圆柱和圆锥的底相等,高相等。
在此前提下,通过下面的试验,探究一下 圆锥和圆柱体积之间的关系。
结论:
等底等高,体积不等。
1 圆锥体积等于圆柱的— ,
3
圆柱体积是圆锥的3倍。
h
h
V圆锥=—V圆柱=—Sh
3 3
1
1
例题:
工地上有一些沙子, 堆起来近似于一个圆 锥,这堆沙子大约多 少立方米?(得数保 留两位小数)
1.2m 4m
(1)沙堆底面积: (2)沙堆的体积: 1 ×12.56×1.2 — 4 3 3.14×(—)² 2