成都市七年级上册数学期末试卷(带答案)-百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都市七年级上册数学期末试卷(带答案)-百度文库
一、选择题
1.﹣3的相反数是( )
A .1
3- B .13 C .3- D .3
2.若多项式229x mx ++是完全平方式,则常数m 的值为()
A .3
B .-3
C .±3
D .+6
3.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28 B .30 C .32 D .34
4.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( )
A .9a 9b -
B .9b 9a -
C .9a
D .9a - 5.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM 的长( )
A .7cm
B .3cm
C .3cm 或 7cm
D .7cm 或 9cm
6.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是( )
A .2
B .8
C .6
D .0 7.解方程121123
x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1
C .3(x +1)﹣2(2x ﹣1)=6
D .3(x +1)﹣2×2x ﹣1=6 8.﹣3的相反数是( )
A .1
3- B .13 C .3- D .3
9.若a<b,则下列式子一定成立的是( )
A .a+c>b+c
B .a-c<b-c
C .ac<bc
D .a b c c
< 10.下列等式的变形中,正确的有( )
①由5 x =3,得x = 53
;②由a =b ,得﹣a =﹣b ;③由﹣x ﹣3=0,得﹣x =3;④由m =n ,得m n
=1. A .1个 B .2个 C .3个 D .4个
11.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是( )
A .a+b<0
B .a+c<0
C .a -b>0
D .b -c<0 12.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每
件的进价为( )
A .180元
B .200元
C .225元
D .259.2元 二、填空题
13.=38A ∠︒,则A ∠的补角的度数为______.
14.36.35︒=__________.(用度、分、秒表示)
15.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.
16.﹣30×(1223-+45)=_____. 17.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.
18.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______.
19.请先阅读,再计算:
因为:
111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910
++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
1111111191122334
9101010=-+-+-++-=-= 则1111100101101102102103
20192020++++=⨯⨯⨯⨯_________. 20.按照下面的程序计算:
如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________.
21.A 学校有m 个学生,其中女生占45%,则男生人数为________.
22.4是_____的算术平方根.
23.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为118000千米,用科学记数法表示为_____千米.
24.如图,点O 在直线AB 上,射线OD 平分∠AOC ,若∠AOD=20°,则∠COB 的度数为_____度.
三、解答题
25.如图,AB和CD相交于点O,∠A=∠B,∠C=75°求∠D的度数.
26.教材中的探究:如图1,把两个边长为1的小正方形沿对角线剪开,所得的4个直角三角形拼成一个面积为2的大正方形.由此,得到了一种能在数轴上画出无理数对应点的方法.
(1)图2中A、B两点表示的数分别为,;
(2)请你参照上面的方法,把长为5,宽为1的长方形进行裁剪,拼成一个正方形.
①在图3中画出裁剪线,并在图4位置画出所拼正方形的示意图.
②553的点,(图中标出必要线段长)
27.解下列方程(组)
(1)
235
21 x y
x y
+=⎧
⎨
-=-⎩
(2)
23
1
x x
= -
28.在大课间活动中,同学们积极参加体育锻炼,小龙在全校随机抽取一部分同学就“我最喜爱的体育项目”进行了一次抽样调查,下面是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:
(1)小龙共抽取______名学生;
(2)补全条形统计图;
(3)在扇形统计图中,“其他”部分对应的圆心角的度数是_______;
(4)若全校共2100名学生,请你估算“立定跳远”部分的学生人数.
29.定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角.如图1,若1COD AOB 2
∠∠=,则COD ∠是AOB ∠的内半角.
()1如图1,已知AOB 70∠=,AOC 25∠=,COD ∠是AOB ∠的内半角,则BOD ∠=______;
()2如图2,已知AOB 60∠=,将AOB ∠绕点O 按顺时针方向旋转一个角度α(0α60)<<至COD ∠,当旋转的角度α为何值时,COB ∠是AOD ∠的内半角. ()3已知AOB 30∠=,把一块含有30角的三角板如图3叠放,将三角板绕顶点O 以3度/秒的速度按顺时针方向旋转(如图4),问:在旋转一周的过程中,射线OA ,OB ,OC ,OD 能否构成内半角?若能,请求出旋转的时间;若不能,请说明理由.
30.解方程:
()2(-2)-3419(1)x x x -=-
四、压轴题
31.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.
观察下列按照一定规律堆砌的钢管的横截面图:
用含n的式子表示第n个图的钢管总数.
(分析思路)
图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.
如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)
(解决问题)
(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.
S=1+2 S=2+3+4 _____________ ______________
(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:
_______ ____________ _______________ _______________
(3)用含n的式子列式,并计算第n个图的钢管总数.
32.如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是段AB的“2倍点”.
(1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”)
(2)若AB=15cm,点C是线段AB的“2倍点”.求AC的长;
(3)如图②,已知AB=20cm.动点P从点A出发,以2c m/s的速度沿AB向点B匀速移动.点Q从点B出发,以1c m/s的速度沿BA向点A匀速移动.点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s),当t=_____________s时,点Q 恰好是线段AP的“2倍点”.(请直接写出各案)
33.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.
(1)若AC=4cm,求DE的长;
(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
【分析】
相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.
【详解】
根据相反数的定义可得:-3的相反数是3.故选D.
【点睛】
本题考查相反数,题目简单,熟记定义是关键.
2.C
解析:C
【解析】
【分析】
利用完全平方式的结构特征即可求出m 的值.
【详解】
解:∵多项式2222923x mx x mx ++=++是完全平方式,
∴2m =±6,
解得:m =±3,
故选:C .
【点睛】
此题考查了完全平方式,熟练掌握完全平方公式的结构特征是解本题的关键.
3.B
解析:B
【解析】
【分析】
根据同底数幂的乘除法法则,进行计算即可.
【详解】
解:(1.8−0.8)×220=220(KB ),
32×211=25×211=216(KB ),
(220−216)÷215=25−2=30(首),
故选:B .
【点睛】
本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.
4.C
解析:C
【解析】
【分析】
分别表示出愿两位数和新两位数,进而得出答案.
【详解】
解:由题意可得,原数为:()10a b b ++;
新数为:10b a b ++,
故原两位数与新两位数之差为:()()10a b b 10b a b 9a ++-++=.
故选C .
【点睛】
本题考查列代数式,正确理解题意得出代数式是解题关键.
5.C
【解析】
【分析】
应考虑到A、B、C三点之间的位置关系的多种可能,即点C在点A与B之间或点C在点B 的右侧两种情况进行分类讨论.
【详解】
①如图1所示,当点C在点A与B之间时,
∵线段AB=10cm,BC=4cm,
∴AC=10-4=6cm.
∵M是线段AC的中点,
∴AM=1
2
AC=3cm,
②如图2,当点C在点B的右侧时,∵BC=4cm,
∴AC=14cm
M是线段AC的中点,
∴AM=1
2
AC=7cm.
综上所述,线段AM的长为3cm或7cm.
故选C.
【点睛】
本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.6.B
解析:B
【解析】
【分析】
由31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…得出末尾数字以2,8,6,0四个数字不断循环出现,由此用2018除以4看得出的余数确定个位数字即可.
【详解】
∵2018÷4=504…2,
∴32018﹣1的个位数字是8,
故选B.
【点睛】
本题考查了尾数的特征,关键是能根据题意得出个位数字循环的规律是解决问题的关键.7.C
解析:C
【解析】
方程两边都乘以分母的最小公倍数即可.
【详解】
解:方程两边同时乘以6,得:3(1)2(21)6x x +--=,
故选:C .
【点睛】
本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.
8.D
解析:D
【解析】
【分析】
相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.
【详解】
根据相反数的定义可得:-3的相反数是3.故选D.
【点睛】
本题考查相反数,题目简单,熟记定义是关键.
9.B
解析:B
【解析】
【分析】
根据不等式的基本性质逐一进行分析判断即可.
【详解】
A.由a<b ,两边同时加上c ,可得 a+c<b+c ,故A 选项错误,不符合题意;
B. 由a<b ,两边同时减去c ,得a-c<b-c ,故B 选项正确,符合题意;
C. 由a<b ,当c>0时,ac<bc ,当c<0时,ac<bc ,当c=0时,ac=bc ,故C 选项错误,不符合题意;
D.由 a<b ,当a>0,c ≠0时,
a b c c <,当a<0时,a b c c
>,故D 选项错误, 故选B.
【点睛】
本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键. 10.B
解析:B
【解析】
①若5x=3,则x=
35
, 故本选项错误;
②若a=b,则-a=-b,故本选项正确;
③-x-3=0,则-x=3,故本选项正确;
④若m=n≠0时,则n
m
=1,
故本选项错误.
故选B.
11.C
解析:C
【解析】
【分析】
根据数轴上的数,右边的数总是大于左边的数,即可判断a、b、c的符号,根据到原点的距离即可判断绝对值的大小,再根据有理数的加减法法则即可做出判断.
【详解】
根据数轴可知:a<b<0<c,且|a|>|c|>|b|
则A. a+b<0正确,不符合题意;
B. a+c<0正确,不符合题意;
C.a-b>0错误,符合题意;
D. b-c<0正确,不符合题意;
故选C.
【点睛】
本题考查了数轴以及有理数的加减,难度适中,熟练掌握有理数的加减法法则和利用数轴比较大小是解题关键.
12.A
解析:A
【解析】
【分析】
设这种商品每件进价为x元,根据题中的等量关系列方程求解.
【详解】
设这种商品每件进价为x元,则根据题意可列方程270×0.8-x=0.2x,解得x=180.故选A.【点睛】
本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.
二、填空题
13.【解析】
【分析】
根据两个角互补的定义对其进行求解.
【详解】
解:
,
的补角的度数为:,
故答案为:.
【点睛】
本题考查互补的含义,解题关键就是用180度直接减去即可.
解析:142︒
【解析】
【分析】
根据两个角互补的定义对其进行求解.
【详解】
解:
∠=,
A
38
∴A
∠的补角的度数为:18038142
-=,
故答案为:142︒.
【点睛】
本题考查互补的含义,解题关键就是用180度直接减去即可.
14.【解析】
【分析】
进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.
【详解】
解:36.35°=36°+0.35×60′=36°21′.
故答案为:36°21′.
【点
解析:3621'
o
【解析】
【分析】
进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.
【详解】
解:36.35°=36°+0.35×60′=36°21′.
故答案为:36°21′.
【点睛】
本题主要考查了度分秒的换算,相对比较简单,注意以60为进制,熟记1°=60′,1′=60″.
15.【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,
共用去:(2a+3b)元
解析:(23)a b +
【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.
故选C.
【点睛】
此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.
16.﹣19.
【解析】
【分析】
根据乘法分配律简便计算即可求解.
【详解】
解:﹣30×(+)
=﹣30×+(﹣30)×()+(﹣30)×
=﹣15+20﹣24
=﹣19.
故答案为:﹣19.
【点睛
解析:﹣19.
【解析】
【分析】
根据乘法分配律简便计算即可求解.
【详解】
解:﹣30×(
1223-+45) =﹣30×12
+(﹣30)×(23-)+(﹣30)×45 =﹣15+20﹣24
=﹣19.
故答案为:﹣19.
【点睛】
本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键. 17.30﹣
【解析】
试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,
故答案为:30
解析:30﹣
【解析】
试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,
故答案为:30﹣.
考点:列代数式
18.2020
【解析】
【分析】
把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.
【详解】
代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),
由已知
解析:2020
【解析】
【分析】
把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.
【详解】
代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),
由已知,a-b=-7,c+d=2013,
∴原式=7+2013=2020,
故答案为:2020.
【点睛】
本题考查了整式加法交换律和结合律的运算,整体代换思想的应用,掌握整式加法运算律的应用是解题的关键.
19.【解析】
【分析】
根据给出的例子找出规律,然后依据规律列出式子解决即可.
【详解】
解:
故答案为
【点睛】
本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的 解析:242525
【解析】
【分析】
根据给出的例子找出规律,然后依据规律列出式子解决即可.
【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
⎝⎭ 1111111110010110110210210320192020
-+-+-++-= 96
10100242525=
= 故答案为
242525
【点睛】
本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 20.42或11
【解析】
【分析】
由程序图可知,输出结果和x 的关系:输出结果=4x-2,当输出结果是166时,可以
求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求
解析:42或11
【解析】
【分析】
由程序图可知,输出结果和x的关系:输出结果=4x-2,当输出结果是166时,可以求出x的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求出x的之即可.【详解】
解:当4x-2=166时,解得x=42
当4x-2小于149时,将4x-2作为一个整体重新输入
即4(4x-2)-2=166,解得x=11
故答案为42或11
【点睛】
本题考查了程序运算题,解决本题的关键是正确理解题意,熟练掌握一元一次方程的解法,考虑问题需全面,即当输出结果小于149时,将4x-2作为一个整体重新输入程序.
21.【解析】
【分析】
将男生占的比例:,乘以总人数就是男生的人数.
【详解】
男生占的比例是,则男生人数为55%,
故答案是55%.
【点睛】
本题列代数式的关键是正确理解题文中的关键词,从而明确其
解析:55%m
【解析】
【分析】
-,乘以总人数就是男生的人数.
将男生占的比例:145%
【详解】
-=,则男生人数为55%m,
男生占的比例是145%55%
故答案是55%m.
【点睛】
本题列代数式的关键是正确理解题文中的关键词,从而明确其中的运算关系,正确地列出代数式.
22.【解析】
试题解析:∵42=16,
∴4是16的算术平方根.
考点:算术平方根.
解析:【解析】
试题解析:∵42=16,
∴4是16的算术平方根.
考点:算术平方根.
23.18×105
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原
解析:18×105
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:118000=1.18×105,
故答案为1.18×105.
24.140
【解析】
【分析】
【详解】
解:∵OD平分∠AOC,
∴∠AOC=2∠AOD=40°,
∴∠COB=180°﹣∠COA=140°
故答案为:140
解析:140
【解析】
【分析】
【详解】
解:∵OD平分∠AOC,
∴∠AOC=2∠AOD=40°,
∴∠COB=180°﹣∠COA=140°
故答案为:140
三、解答题
25.75°.
【解析】
【分析】
先判断AC//BD,然后根据平行线的性质进行求解即可得.
【详解】
∵∠A=∠B,
∴AC//BD,
∴∠D=∠C=75°.
【点睛】
本题考查了平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键. 26.(1)12
-,12
+;(2)①详见解析;②详见解析
【解析】
【分析】
(1)依据点A到原点的距离为:21
-,点A在原点左侧,即可得到点A表示的实数为
+,点B在原点右侧,即可得到点A表示的实数12
-,依据点B到原点的距离为:12
为12
+;
(2)依据所拼正方形的面积为5,即可得到其边长为5,进而得到分割线的长度;(3)依据(2)中分割线的长度即可得到表示数5以及5﹣3的点.
【详解】
解:(1)由图可得,点A到原点的距离为:21
-,点A在原点左侧,
∴点A表示的实数为12
-,
由图可得,点B到原点的距离为:12
+,点B在原点右侧,
∴点B表示的实数为12
+,
故答案为:12
+;
-,12
(2)如图所示:
(3)表示数5以及5﹣3的点如图所示:
【点睛】
本题主要考查了实数与数轴,任意一个实数都可以用数轴上的点表示;反之,数轴上的任
意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.
27.(1)11
x y =⎧⎨
=⎩;(2)3x =. 【解析】
【分析】
(1)方程组利用代入消元法求出解即可;
(2)分式方程去分母转化为整式方程,求出整式方程的解,经检验即可得到分式方程的解.
【详解】 解: (1) 23521x y x y +=⎧⎨-=-⎩
①②, 由②得,21x y =-③,
将③代入①得,2(21)35y y -+=,
解得1y =,
将1y =代入③得,1x =,
11x y =⎧∴⎨=⎩
; (2)去分母得233x x =-,
解得:3x =,
经检验: 3x =是原方程的解,
∴方程的解为3x =.
【点睛】
此题考查了解二元一次方程组和解分式方程,熟练掌握方程或方程组的解法是解本题的关键.
28.(1)50;(2)补图见解析;(3)72°;(4)672人.
【解析】
【分析】
(1)画出统计图,根据跳绳的人数除以占的百分比即可得出抽取的学生总数;
(2)根据总学生数,求出踢毽子与其他的人数,补全条形统计图即可
(3)根据其他占的百分比乘以360°即可得到结果
(4)由立定跳远的百分比,乘以2100即可得到结果
【详解】
(1)根据题意得:15÷30%=50(名)
则共抽取50名学生
(2)根据题意得:踢毽子人数为50×18%=9(名),其
他人数为50×(1-30%-18%-32%)=10名,
补全条形统计图,如图所示
(3)根据题意得:360°×20%=72°
则“其他"部分对应的圆心角的度数是72°;
(4)根据题意得'立定跳远"部分的学生有
2100×32%=672(名)
【点睛】
此题考查条形统计图,用样本估计总体和扇形统计图,看懂图中数据是解题关键
29.(1)10°;(2) 20;(3)见解析.
【解析】
【分析】
(1)根据内半角的定义解答即可;
(2)根据内半角的定义解答即可;
(3)根据根据内半角的定义列方程即可得到结论.
【详解】
解:()1COD ∠是AOB ∠的内半角,AOB 70∠=,
1COD AOB 352
∠∠∴==, AOC 25∠=,
BOD 70352510∠∴=--=,
故答案为10,
()2AOC BOD α∠∠==,
AOD 60α∠∴=+,
COB ∠是AOD ∠的内半角,
()
1BOC 60α60α2∠∴=+=-, α20∴=,
∴旋转的角度α为20时,COB ∠是AOD ∠的内半角;
()3在旋转一周的过程中,射线OA ,OB ,OC ,OD 能否构成内半角; 理由:设按顺时针方向旋转一个角度α,旋转的时间为t ,
如图1,BOC ∠是AOD ∠的内半角,AOC BOD α∠∠==,
AOD 30α∠∴=+, ()130302αα∴+=-, 解得:10α=,
103
t s ∴=; 如图2,BOC ∠是AOD ∠的内半角,AOC BOD ∠∠α==,
30AOD ∠α∴=+,
()
130302αα∴+=-, 90α∴=,
90303
t s ∴==; 如图3,AOD ∠是BOC ∠的内半角,360AOC BOD ∠∠α==-,
36030αBOC ∠∴=+-,
()
136030α360α302∴+-=--, α330∴=,
330t 110s 3
∴==, 如图4,AOD ∠是BOC ∠的内半角,AOC BOD 360α∠∠==-,
BOC 36030α∠∴=+-,
()()
136030α303036030α2∴+-=+-+-, 解得:α350=,
350t s 3
∴=, 综上所述,当旋转的时间为
10s 3或30s 或110s 或350s 3时,射线OA ,OB ,OC ,OD 能构成内半角.
【点睛】
本题考查了角的计算,角的和差,准确识图理清图中各角度之间的关系是解题的关键. 30.−10
【解析】
【分析】
分别按照一元一次方程的解法进行即可,即有去分母,去括号,移项,合并同类项,系数化成1.
【详解】
去括号得:2x−4−12x+3=9−9x ,
移项得:2x−12x+9x=9+4−3,
合并同类项得:−x=10,
解得:x=−10;
【点睛】
此题考查解一元一次方程,解题关键在于掌握运算法则.
四、压轴题
31.(1)3456;45678S S =+++=++++ ;(2) 方法不唯一,见解析;(3)方法不唯一,见解析
【解析】
【分析】
先找出前几项的钢管数,在推出第n 项的钢管数.
【详解】
(1)3456;45678S S =+++=++++
(2)方法不唯一,例如:
12S =+ 1233S =+++ 123444S =+++++ 12345555S =+++++++ (3)方法不唯一,例如:
()()12.....2S n n n n =++++++
()()
()()=.....12.....1112n n n n n n n n +++++++=+++ ()312
n n =+ 【点睛】
此题主要考察代数式的规律探索及求和,需要仔细分析找到规律.
32.(1)是;(2)5cm 或7.5cm 或10cm ;(3)10或
607. 【解析】
【分析】
(1)根据“2倍点”的定义即可求解;
(2)分点C 在中点的左边,点C 在中点,点C 在中点的右边三种情况,进行讨论求解即可;
(3)根据题意画出图形,P 应在Q 的右边,分别表示出AQ 、QP 、PB ,求出t 的范围.然后根据(2)分三种情况讨论即可.
【详解】
(1)∵整个线段的长是较短线段长度的2倍,∴线段的中点是这条线段的“2倍点”. 故答案为是;
(2)∵AB =15cm ,点C 是线段AB 的2倍点,∴AC =1513⨯
=5cm 或AC =1512⨯=7.5cm 或AC =1523
⨯=10cm . (3)∵点Q 是线段AP 的“2倍点”,∴点Q 在线段AP 上.如图所示:
由题意得:AP =2t ,BQ =t ,∴AQ =20-t ,QP =2t -(20-t )=3t -20,PB =20-2t .
∵PB =20-2t ≥0,∴t ≤10.
∵QP =3t -20≥0,∴t ≥
203,∴203≤t ≤10. 分三种情况讨论:
①当AQ =
13AP 时,20-t =13×2t ,解得:t =12>10,舍去; ②当AQ =
12AP 时,20-t =12×2t ,解得:t =10; ③当AQ =23AP 时,20-t =23×2t ,解得:t 607
; 答:t 为10或
607时,点 Q 是线段AP 的“2倍点”. 【点睛】
本题考查了一元一次方程的解法、线段的和差等知识点,题目需根据“2倍点”的定义分类讨论,理解“2倍点”的定义是解决本题的关键.
33.(1)DE=6;(2) DE=
2a ,理由见解析;(3)∠DOE=12∠AOB ,理由见解析 【解析】
试题分析:(1)由AC=4cm ,AB=12cm ,即可推出BC=8cm ,然后根据点D 、E 分别是AC 和BC 的中点,即可推出AD=DC=2cm ,BE=EC=4cm ,即可推出DE 的长度,
(2)设AC=acm ,然后通过点D 、E 分别是AC 和BC 的中点,即可推出DE=
12(AC+BC )=12AB=2
a cm ,即可推出结论, (3)分两种情况,OC 在∠AOB 内部和外部结果都是∠DOE=
12∠AOB 试题解析:
(1))∵AB=12cm ,
∴AC=4cm ,
∴BC=8cm ,
∵点D 、E 分别是AC 和BC 的中点,
∴CD=2cm ,CE=4cm ,
∴DE=6cm;
(2) 设AC=acm ,
∵点D 、E 分别是AC 和BC 的中点, ∴DE=CD+CE=12(AC+BC )=12
AB=6cm , ∴不论AC 取何值(不超过12cm ),DE 的长不变;
(3)①当OC 在∠AOB 内部时,如图所示:
∵OM平分∠AOC,ON平分∠BOC,
∴∠NOC=1
2
∠BOC,∠COM=
1
2
∠COA.
∵∠CON+∠COM=∠MON,
∴∠MON=1
2
(∠BOC+∠AOC)=
1
2
α;
②当OC在∠AOB外部时,如图所示:∵OM平分∠AOC,ON平分∠BOC,
∴∠MOC=1
2
(∠AOB+∠BOC),∠CON=
1
2
∠BOC.
∵∠MON+∠CON=∠MOC,
∴∠MON=∠MOC-∠CON=1
2
(AOB+∠BOC)-
1
2
∠BOC=
1
2
∠AOB=
1
2
α.
【点睛】本题主要考察角平分线和线段的中点的性质,关键在于认真的进行计算,熟练运用相关的性质定理.。