清华大学2000-2010信号与系统考研试题(整理经典版,免费)

合集下载

信号与系统复习题答案

信号与系统复习题答案

信号与系统复习题答案1. 信号的分类有哪些?信号可以分为连续时间信号和离散时间信号。

连续时间信号是指在时间上连续变化的信号,而离散时间信号是指在时间上以离散点变化的信号。

2. 什么是线性时不变系统?线性时不变系统是指满足叠加性和时间不变性的系统。

叠加性意味着系统对多个输入信号的响应等于对各个输入信号单独响应的和;时间不变性意味着系统对输入信号的响应不随时间变化。

3. 傅里叶变换的性质有哪些?傅里叶变换的性质包括线性、时移、频移、尺度、对称性、卷积定理等。

线性性质表明,信号的线性组合的傅里叶变换等于各个信号傅里叶变换的线性组合;时移性质表明,信号的时间平移会导致其傅里叶变换的相位变化;频移性质表明,信号的频率平移会导致其傅里叶变换的幅度变化;尺度性质表明,信号的尺度变化会导致其傅里叶变换的频率变化;对称性性质表明,实信号的傅里叶变换是共轭对称的;卷积定理表明,时域的卷积对应于频域的乘积。

4. 拉普拉斯变换与傅里叶变换的关系是什么?拉普拉斯变换是傅里叶变换的推广,它通过引入复频率变量s来扩展傅里叶变换的应用范围。

当s的虚部趋于无穷大时,拉普拉斯变换退化为傅里叶变换。

5. 什么是采样定理?采样定理指出,如果一个连续时间信号的频谱只包含在一定频率范围内,那么可以通过在一定采样率下对该信号进行采样来完全恢复原信号。

采样率必须大于信号最高频率的两倍,即奈奎斯特率。

6. 什么是系统的频率响应?系统的频率响应是指系统对不同频率的输入信号的响应。

它可以通过系统的传递函数在频域内进行分析,反映了系统对不同频率成分的放大或衰减情况。

7. 什么是系统的稳定性?系统的稳定性是指当输入信号为有界信号时,系统输出信号也保持有界的性质。

线性时不变系统可以通过其传递函数的极点位置来判断其稳定性。

8. 什么是系统的因果性?系统的因果性是指系统的输出在任何时刻只取决于当前和过去的输入,而不依赖于未来的输入。

因果系统的传递函数在频域内表现为左半平面的极点。

清华大学00到08信号与系统试题.

清华大学00到08信号与系统试题.

(1) 若 x(t)=u(t) , 求 e(∞) (2) 若 x(t)=sin(ω0 t + ψ0),求 e(t),y(t)的稳态解 八 已知 x(t)=u(t)-u(t-1),y(t)=u(t)-2u(t-1/2)+u(t-1) 1 求 x(t)与 y(t)的内积<x(t),y(t)> 2 画出 Rxy(τ)的图形,并标出关键点 3 画出 x(t)*y(t)的图形,并标出关键点 九 已知一长度为 N 的有限长序列的 DFT 为 X(k),求 x(n)的 Z 变换 十 x(t),y(t)是能量有限信号,证明 Rxy(τ)<={Rxx(0)]^1/2 [Ryy(0)]^1/2
1
清华大学 06 年信号与系统
七、 f(t)=f(t)U(t),F(jw)实部 R(w)=α/(α^2+w^2), 求 f(t) (缺过程扣分,提示:积分公式 八、 f(t)傅立叶变换 F(w)=2A τSa(wτ),g(t)=f(αt)和噪声信号 n(t)通过 f(t)的匹配 滤波器 噪声自相关函数 R(τ)=Nδ(τ) ①当只有 f(αt)通过匹配滤波器时,画出当α=1,1/2,2 时的输出波形 ②α≠1 时,f(αt)和 n(t)通过 f(t)的匹配滤波器时峰值信噪比有损失,请计算 α=1/2,2 时峰值信噪比损失 (可自定义峰值信噪比损失,但必须合理)
二、 (6 分)线性时不变系统的频率特性如图 1-(b)所示,系统的输 入如图 1-(a)所示,请给出系统的零状态响应波形图或解析表示。
自相关推导出来的帕斯瓦尔方程1给出一个反馈框图求hs2根据bibo稳定判断参数k1k2满足的约束条件3画出bibo稳定的hs的极点分布4输入etututt2求rt并且画图画图这个做得太少一个电感和电阻串联的滤波器1用冲击不变法求hn2用iir实现该数字滤波器2画出hjw的幅度谱凡是画图的都砸了3截取hn冲击响应的幅度不少于10的窗函数画fir结构1求输出yn的加法和乘法次数2用dft和fft推导一种快速算法不需要画蝶形图3估算这种方法的乘法和加法次数注

(完整word版)信号与系统专题练习题及答案

(完整word版)信号与系统专题练习题及答案

信号与系统专题练习题一、选择题1.设当t 〈3时,x(t)=0,则使)2()1(t x t x -+-=0的t 值为 C 。

A t>-2或t>-1 B t=1和t=2 C t>—1 D t 〉-22.设当t 〈3时,x (t)=0,则使)2()1(t x t x -⋅-=0的t 值为 D 。

A t>2或t 〉-1 B t=1和t=2 C t>—1 D t>—23.设当t<3时,x(t )=0,则使x (t/3)=0的t 值为 C 。

A t>3 B t=0 C t<9 D t=34.信号)3/4cos(3)(π+=t t x 的周期是 C 。

A π2 B π C 2/π D π/2 5.下列各表达式中正确的是 BA. )()2(t t δδ= B 。

)(21)2(t t δδ= C. )(2)2(t t δδ= D 。

)2(21)(2t t δδ=6. 已知系统的激励e(t)与响应r(t)的关系为:)1()(t e t r -= 则该系统为 B . A 线性时不变系统 B 线性时变系统 C 非线性时不变系统 D 非线性时变系统 7。

已知 系统的激励e(t )与响应r (t)的关系为:)()(2t e t r = 则该系统为 C .A 线性时不变系统B 线性时变系统C 非线性时不变系统D 非线性时变系统8。

⎰∞-=t d ττττδ2sin )( A 。

A 2u (t ) B )(4t δ C 4 D 4u (t) 10. dt t t )2(2cos 33+⋅⎰-δπ等于 B 。

A 0 B —1 C 2 D —211.线性时不变系统输出中的自由响应的形式由 A 决定A 系统函数极点的位置;B 激励信号的形式;C 系统起始状态;D 以上均不对。

12.若系统的起始状态为0,在x (t)的激励下,所得的响应为 D . A 强迫响应;B 稳态响应;C 暂态响应;D 零状态响应。

清华大学信号与系统2010(回忆版)真题

清华大学信号与系统2010(回忆版)真题

()()()()()()()()()3121242422010;122,,()109k ,Z f x x F j F j d f t f t dt F f t X δωωωππωωωω+∞+∞**-∞-∞==++⎰⎰信号与系统回忆版一、共十小题,每题6分1、求、试证(频率用f 的话应该没有系数1/2)并举一个具体的例子;3、离散数据的降抽样会出现的主要问题,如何解决;4、求可能情况,尽可能多;5、已知一个输出信号的傅氏变换,问输入信号的特征,具体忘了;6、已知傅氏系数求变()()()()()()222t ;7FFT 8ms e ,F ;9,10A (),(),X z F F e k s t x t dt j j σσωωω--∞-∞⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦=Φ⎰+换系数、画出用求自相关函数的框图;d 、,已知求dt 、问y t 是否线性变换;、拉氏变换的充分条件。

二、连续情况,二阶微分方程的求解,算常规题,具体忘了;三、已知幅度(相位)就是一个频域抽样重构的题目,一些具体问题只要清楚时域和频域抽样就没问题啦;四、离散情况,差分N N N 22N=9,jn t jm t jn t jm t n n m N m N n m NA ee A e e A ωωωω>>>+∑∑∑∑∑∑nn-N -N 2n -N 方程的求解,也算常规题,但是比较难算,具体忘了;五、信号被升余弦窗函数,矩形窗函数作用后频谱的特征;六、已知f (t )=B ,对,B 问他们是否正交并证明,等式f (t )=+B 是否成立并证明;七、一个FI R 的图,看起来非常烦,如果熟悉FI R 结构就很简单,应该是问到了能否实现高通,后面的问题也很简单。

信号与系统题库(完整版)

信号与系统题库(完整版)

信号与系统题目部分,(卷面共有200题,0.0分,各大题标有题量和总分) 一、选择题(7小题,共0.0分)[1]题图中,若h '(0)=1,且该系统为稳定的因果系统,则该系统的冲激响应()h t 为。

A 、231()(3)()5tt h t e e t ε-=+- B 、32()()()tt h t e e t ε--=+C 、3232()()55tt e t e t εε--+D 、3232()()55tt e t e t εε--+-[2]已知信号x[n]如下图所示,则x[n]的偶分量[]e x n 是。

[3]波形如图示,通过一截止角频率为50rad sπ,通带内传输值为1,相移为零的理想低通滤波器,则输出的频率分量为() A 、012cos 20cos 40C C t C t ππ++ B 、012sin 20sin 40C C t C t ππ++ C 、01cos 20C C t π+ D 、01sin 20C C t π+[4]已知周期性冲激序列()()T k t t kT δδ+∞=-∞=-∑的傅里叶变换为()δωΩΩ,其中2TπΩ=;又知111()2(),()()2T T f t t f t f t f t δ⎛⎫==++⎪⎝⎭;则()f t 的傅里叶变换为________。

A 、2()δωΩΩ B 、24()δωΩΩ C 、2()δωΩΩ D 、22()δωΩΩ[5]某线性时不变离散时间系统的单位函数响应为()3(1)2()kkh k k k εε-=--+,则该系统是________系统。

A 、因果稳定B 、因果不稳定C 、非因果稳定D 、非因果不稳定 [6]一线性系统的零输入响应为(23kk --+)u(k), 零状态响应为(1)2()k k u k -+,则该系统的阶数A 、肯定是二阶B 、肯定是三阶C 、至少是二阶D 、至少是三阶 [7]已知某系统的冲激响应如图所示则当系统的阶跃响应为。

清华大学2010年信号与系统试题

清华大学2010年信号与系统试题

五.(20 分)Fourier 变换描述信号 f (t ) 在 t (, ) 的全频谱特征。为了研究在
t [
T T , ] 区间上的频谱组成,定义短时 Fourier 变换(STFT), 2 2

T ,其中 T 为常数。 2 2|t | T 1 t T 已知有窗函数 g1 (t ) 1 ,| t | 和 g 2 (t ) [1 cos(2 )],| t | 请分析并画出两 T 2 2 T 2
F ( , w) f (t ) g (t )e jwt dt 其中 g (t ) 表示窗函数 g (t ) 0, | t |
种窗函数下的 STFT 的谱特征。
六.(20 分)如图所示的 FIR 滤波器结构图, 0 n N 1 。 1.请给出利用 DFT 和 IDFT 正确计算 x(n)和 y(n)互相关函数 R(n)的流程。 2.设 N 为偶函数,将 x(n)和 y(n)都后补 N/2 个零,再利用圆卷积计算补零后的互相关函数, 请问计算时哪些部分将混叠?哪些部分无混叠?

Z 1 Z 1

Z 1 Z 1

Z 1 Z 1
a0
a1

a2

a3

a4

1 ,求响应 y(n) , n 0 。 4
四.(20 分)已知一个线性时不变(LTI)系统的冲击响应 h(t ) 为实基本信号。现采用以下方法 重构 h(t ) :对该系统依次注入幅度为 1 的单频正弦信号,频率间隔为 0 ,当频率为
n0 , n 0,1, 2 时,记录系统输出的幅度 A(n0 ) 和输出与输入的相差 (n0 ) 。
①.请给出根据 A( n0 ) 和 (n0 ), (n 0,1, 2 ) 计算系统冲激响应的一种方法。 ②.当 h(t ) 是时限信号时, 能根据 A( n0 ) 和 ( n0 ) 在理论上精确计算 h(t ) 吗?为什么?条 件是什么?请用图形解释或者进行公式化解析解释。 ③. 当 h(t ) 是带限信号时,能采用 A( n0 ) 和 ( n0 ) 精确计算 h(t ) 吗?为什么?

信号与系统试题附答案

信号与系统试题附答案

信科0801《信号与系统》复习参考练习题一、单项选择题:14、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。

200 rad /s C 。

100 rad /s D 。

50 rad /s15、已知信号)(t f 如下图(a )所示,其反转右移的信号f 1(t) 是( )16、已知信号)(1t f 如下图所示,其表达式是( )A 、ε(t )+2ε(t -2)-ε(t -3)B 、ε(t -1)+ε(t -2)-2ε(t -3)C 、ε(t)+ε(t -2)-ε(t -3)D 、ε(t -1)+ε(t -2)-ε(t -3)17、如图所示:f (t )为原始信号,f 1(t)为变换信号,则f 1(t)的表达式是( )A 、f(-t+1)B 、f(t+1)C 、f(-2t+1)D 、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( )19。

信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( ) A 、2 B 、2)2(-t δ C 、3)2(-t δ D 、5)2(-t δ,则该系统是()>-系统的系统函数.已知2]Re[,651)(LTI 202s s s s s H +++= A 、因果不稳定系统 B 、非因果稳定系统C 、因果稳定系统D 、非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数 ?D 、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号?C 、冲激信号 ?D 、斜升信号23. 积分⎰∞∞-dt t t f )()(δ的结果为( )A )0(fB )(t f C.)()(t t f δ D.)()0(t f δ24. 卷积)()()(t t f t δδ**的结果为( )A.)(t δB.)2(t δC. )(t fD.)2(t f25. 零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差2A 、1-eB 、3eC 、3-eD 、127.信号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在28.已知连续系统二阶微分方程的零输入响应)(t y zi 的形式为t t Be Ae 2--+,则其2个特征根为() A 。

清华信号与系统历年考题00

清华信号与系统历年考题00

清华信号与系统历年考题00后4个班的限选课⼀、⼩题集合1.卷积;——图解法,30秒搞定2.LT;3.LT;4.FT;——积分特性⼆、给⽅框图,求系统函数等(书后原题4-43)。

三、求系统函数。

具体的忘了,系统中有个延时单元,输⼊是全波整流,输出是半波整流。

⽤LT作,主要考周期冲激信号的LT。

四、⼀LTI系统,h(t)=(Sa)^2,两周期⽅波信号分别通过,求时域响应。

解法:Sa函数的平⽅ <==> 理想低通的卷积,得到三⾓低通;周期⽅波 <==> 冲激序列。

算得上是最难的题了五、e(t)=1+cos(wt)经冲激抽样(不符合抽样定量),再理想低通滤波,求时域响应。

解法:FT,频域求解。

本⼈是5班课代表.刚从⼭⽼师那⾥回来,带来⼀些信息,供⼤家参考.⾸先声明,仅供参考,如有误导,概不负责.1.考试以⼭⽼师的笔记为主,课本上没有的笔记上有的可能要考,课本有的笔记上没有的基本不考.~~~~2.考试以基本概念为主.注意,有⼀道20分的问答题,分作五个⼩题.(⽼师说,这是他第⼀次出问答题.)没有填空之类,即,⼤部分是计算题(我猜测),⽽且⽼师说有结合计算的证明题. 忘了问计算题与留的习题的关系.希望以后去答疑的同学问⼀下.3.⽼师强调,概念第⼀,计算第⼆,技巧第三.估计,计算难度低,只要你思路正确,也就是1+1 的⽔平.忘了问复数计算问题(留数),请哪位去答疑的同学问⼀下.4.⽼师举例:a.现实的信号,可能不是带限的,在处理中如何保证信号的尽量不失真.(思路,从dft的加窗和抽样来考虑)b.带限信号和时限信号不能同时成⽴,问怎样理解.(思路,笔记上有详细的说明,说明笔记的重要性)5.关于滤波器.⽼师强调设计的重要性.列如:a.冲击相应不变法与双线性变换发(iir)的设计.(注意不考实现,但是⽼师说可能有综合题.)b.⽼师强调了双线性变换(iir)和fir.c.⽼师强调了fir中的加窗,说开卷考试问题就好办了.估计,可能要考五种窗函数.6.问及⽼师,上下册那⼀个重要.⽼师说,以他上课时说的重点为主.他说,fourier,z,和离散为重点.(其他也有可能是重点,望各位补充)7.问,课本量太⼤,不知怎么准备.答,要学会控制,抓住重点.8.问,试卷的容量.答,够你答的,但是两⼩时能够答完.9.强调,有确切数值解的题⽬不多,题⽬有弹性,也就是说,你看的可能容易,但是可能是个陷阱.10.书上的⽐较繁琐的公式⼤概不会考.~~~~~呵呵,就这么多,⽼师停和蔼的,有问必答,不过有时答⾮所问.(注意,如果想答疑,前往10-408,时间为今天下午和明天.因为⽼师后⼏天有会,可能没有时间.)机遇呀,希望⼤家把握.6.2001.6.16<<信号与系统>>B卷(⼭⽼师)以下版权属eehps所有,如有问题概不负责,仅供参考1:f(t)=f2(t)-j*f1(t),f2与f1成hilbert变换对已知F[f(2)]=F1(w),求F[f(t)]//笔记上有时域hilbert变换的系统函数H(w)=-jsgn(w)2:f(t)=e^-a|t|,(a>0) 先时域抽样后频域抽样A:证明等效时宽T与等效带宽B乘积为常数,若T单位为s带宽B单位Hz,求B*T=?//证明书上有,当B单位取Hz,B*T=1B:求原信号,时域抽样后的信号,频域抽样后的信号及他们的频谱C:问从频域抽样后的信号能否恢复原信号//看图就知道leD:应该加什么措施才能够恢复原信号//从加窗截断考虑3:x(n),0<=n<=N-1A:求X[k]=DFT{x(n)}//书上的定义B:将x(n)补零扩展N变成N1=k*N(k为⾃然数,k>1),记做x1(n),求DFT{x1(n)}与DFT{x(n)}的关系//在区间[0,N-1]上easy,其它没做,好像⽐较繁C:问这样扩展后能否提⾼频率分辨率4: x(t)=sin(t),y(t)=cos(t) (t在整个时域上)A:求x(t)关于y(t)的相关系数//书上有的,注意x(t),y(t)均是频率有限信号B:求x(t)和y(t)的互相关函数//注意x(t),y(t)均是频率有限信号就⾏了5:就是把上册书231页图4-42中的零极点对调了,要求画出幅频,相频图//⾃⼰看书le,⽐较简单6:电路图就是上策书221的图4-26(R=1欧,C=1F),要求⽤双线性变换法设计数字滤波器 A:问步长T怎么选取//看书B:求H(Z)C:双线性变换的主要问题?//书上有,主要是它是⼀个⾮线性变换,会引起失真D:给出⼀个⽅块图描述该系统E:⼤略画出幅频特性图7:问答题A:傅⽴叶变换中出现负频率1:为什么会出现负频率//上册书93⾃⼰找2:为什么只研究正频率//对称性了B:线性系统响应=零输⼊响应+零状态响应,为什么?//线性系统满⾜叠加定理C:怎样理解傅⽴叶变换在线性定常系统中的重要性D:DFT有快速算法FFT,本质原因?//书上⼀章的绪⾔有,变换矩阵的多余性E:傅⽴叶变换满⾜范数不变性,是任何范数还是特定的,并给出解释//笔记有leF:弱极限的定义//看笔记A卷1.计算sinx,cosx的相关系数和相关函数还有24分的问答题,怀疑送分?有:1。

信号与系统真题考研答案

信号与系统真题考研答案

信号与系统真题考研答案信号与系统真题考研答案信号与系统是电子信息工程专业中的一门重要课程,也是考研中的一道难题。

在考研复习过程中,真题是非常重要的参考资料。

本文将为大家提供一些信号与系统真题的详细解答,希望对考生们的复习有所帮助。

一、选择题1. 下列哪项不属于信号的基本特征?A. 幅度B. 频率C. 时域D. 相位答案: C. 时域解析: 信号的基本特征包括幅度、频率和相位,时域是信号的表示方式,不属于信号本身的特征。

2. 以下哪种信号不属于连续时间信号?A. 正弦信号B. 方波信号C. 阶跃信号D. 单位冲激信号答案: D. 单位冲激信号解析: 单位冲激信号是一种特殊的连续时间信号,它在t=0时刻取值为无穷大,其他时刻取值为0。

3. 下列哪个系统是线性时不变系统?A. y(t) = x(t) + 1B. y(t) = x(t^2)C. y(t) = x(t)e^tD. y(t) = x(t-1)答案: D. y(t) = x(t-1)解析: 线性时不变系统具有平移不变性,即输入信号延时,输出信号也会相应延时。

二、计算题1. 已知系统的单位冲激响应为h(t) = e^(-t)u(t),求系统的频率响应H(jω)。

答案: H(jω) = 1/(jω + 1)解析: 频率响应是系统的拉普拉斯变换,根据拉普拉斯变换的性质,将单位冲激响应进行拉普拉斯变换即可得到频率响应。

2. 已知系统的输入信号为x(t) = e^(-t)u(t),系统的单位冲激响应为h(t) = u(t-1),求系统的输出信号y(t)。

答案: y(t) = e^(-t)u(t-1)解析: 输出信号可以通过输入信号和单位冲激响应进行卷积运算得到。

三、应用题1. 一个系统的输入信号x(t) = sin(2πt) + cos(4πt),系统的单位冲激响应为h(t) = e^(-t)u(t),求系统的输出信号y(t)。

答案: y(t) = e^(-t)(sin(2πt) + cos(4πt))u(t)解析: 输出信号可以通过输入信号和单位冲激响应进行卷积运算得到。

2010年清华大学《信号与系统》考研真题详细回忆版

2010年清华大学《信号与系统》考研真题详细回忆版

+∞
−∞
f ( t ) g ( t − τ ) e− jωt dt
2t , T
其 中 g ( t ) 是 用 于 截 取 信 号 f ( t ) 局 部 特 性 的 窗函 数 。 若 有 g1 ( t ) 为 1 −
Байду номын сангаас
t<
T 2
;g
2
( t ) 为 2 1 + cos T

1
2π T t , t < 2

y ( 0− ) = 1

x ( t ) = sin t
(1) 求系统的单位冲激响应 h ( t )
zi
; (2) 求系统的零输入响应 y ( t ) ; (3) 求系统的稳态响应 y ( t ) ;
s
(4) 该系统是否 BIBO,为什么? 三.(15 分) 已知为测算一系统的单位冲激响应 h ( t ) ,其中 h ( t ) 为实函数,通过 依次输入幅度为 1 的单频正弦信号,其频率间隔为 ω0 ,频率为 nω0 , n = 1,2, 3,……,从输出端可知输出信号的幅度为 A ( nω0 ) ,其输出信号与输入信号的相 位差为 ϕ ( nω0 ) 。 (1) 试根据 A ( nω0 ) 和 ϕ ( nω0 ) 得出一种计算 h ( t ) 的方法。 (2) 若 h ( t ) 为时限信号,由 A ( nω0 ) 和 ϕ ( nω0 ) 能否从理论上精确算出 h ( t ) ,为什 么?(最好通过画图或者公式进行说明) (3) 若 h ( t ) 为带限信号,由 A ( nω0 ) 和 ϕ ( nω0 ) 能否精确算出 h ( t ) ,为什么? 四.(15 分) 已知 (1) 若 a0 = −2

信号与系统复习题(含答案)

信号与系统复习题(含答案)

.试题一一. 选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 。

A.非周期序列B.周期3=NC.周期8/3=ND. 周期24=N2、一连续时间系统y(t)= x(sint),该系统是 。

A.因果时不变B.因果时变C.非因果时不变D.非因果时变 3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u e t h t ,该系统是 。

A.因果稳定B.因果不稳定C.非因果稳定D. 非因果不稳定4、若周期信号x[n]是实信号和奇信号,则其傅立叶级数系数a k 是 。

A.实且偶B.实且为奇C.纯虚且偶D. 纯虚且奇 5、一信号x(t)的傅立叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x(t)为 。

A. t t 22sinB. tt π2sin C. t t 44sin D.t t π4sin6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为 。

A. ∑∞-∞=-k k )52(52πωδπ B. ∑∞-∞=-k k )52(25πωδπC. ∑∞-∞=-k k )10(10πωδπD. ∑∞-∞=-k k)10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n]奇部的傅立叶变换为 。

A.)}(Re{ωj e X j B. )}(Re{ωj e XC. )}(Im{ωj e X j D. )}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为 。

A. 500B. 1000C. 0.05D. 0.001 9、一信号x(t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t =,其傅立叶变换)(ωj G 收敛,则x(t)是 。

A. 左边B. 右边C. 双边D. 不确定10、一系统函数1}Re{1)(->+=s s e s H s,,该系统是 。

信号与系统考研习题与答案

信号与系统考研习题与答案

1. 理想低通滤波器是(C )A 因果系统B 物理可实现系统C 非因果系统D 响应不超前于激励发生的系统2. 某系统的系统函数为)(s H ,若同时存在频响函数)(ωj H ,则该系统必须满足条件(D ) A 时不变系统 B 因果系统 C 线性系统 D 稳定系统3一个LTI 系统的频率响应为3)2(1)(+=ωωj j H ,该系统可由(B ) A 三个一阶系统并联 B 三个一阶系统级联 C 一个二阶系统和一个一阶系统并联 D 以上全对 4.下列关于冲激函数性质的表达式不正确的是(A ) A )(1)(t aat δδ= B )()0()()(t f t t f δδ= C)()(t d tεττδ=⎰∞- D )()(t t δδ=-5. 6.7.微分方程f fy y y y 225)1()1()2()3(+=+++所描述系统的状态方程和输出方程为(A )A[]xy t f x X 012)(100512100010=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=• B []xy t f x X 012)(100215100010=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=•C []x y t f x X 210)(100512100010=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=•D []xy t f x X 210)(100215100010=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=•8. 满足傅氏级数收敛条件时,周期信号)(t f 的平均功率(D )A 大于各谐波分量平均功率之和B 不等于各谐波分量平均功率之和C 小于各谐波分量平均功率之和D 等于各谐波分量平均功率之和 9.连续时间信号)1000cos(]50)100sin([)(t tt t f ⨯=,该信号的频带为(B ) A 100 rad/s B 200 rad/s C 400rad/s D 50 rad/s10. 若)(t f 为实信号,下列说法中不正确的是(C ) A 该信号的幅度谱为偶对称 B 该信号的相位谱为奇对称C 该信号的频谱为实偶信号D 该信号的频谱的实部位偶函数,虚部位奇函数11.连续周期信号的频谱有(D )A 连续性、周期性B 连续性、收敛性C 离散性、周期性D 离散性、收敛性12. 如果周期函数满足)()(t x t x --=,则其傅氏级数中(C )A 只有余弦项B 只有奇次谐波项C 只有正弦项D 只有偶次谐波项13. 一个线性时不变得连续时间系统,其在某激励信号作用下的自由响应为)()(3t e e t t ε--+,强迫响应为)()1(2t e t ε--,则下面的说法正确的是(B )A 该系统一定是二阶系统B 该系统一定是稳定系统C 零输入响应中一定包含)()(3t e e t t ε--+D 零状态响应中一定包含)()1(2t e t ε--14.离散时间系统的差分方程为]1[2][4]1[][2-+=--n x n x n y n y ,则系统的单位抽样响应][n h 为(C )A )()21(2n u nB )1()21(2-n u nC )1()21(4)(2-+n u n nδ D )1()21(4-n u n15. )23(t x -的波形如图1所示,则)(t x 的波形应为 (A)二 1、 2、3、按照信号的能量或功率为有限值,信号可分为能量信号和功率信号。

清华大学《信号与系统》真题2010年

清华大学《信号与系统》真题2010年

清华大学《信号与系统》真题2010年(总分:99.99,做题时间:90分钟)一、{{B}}{{/B}}(总题数:2,分数:40.00)(1). 4.00)__________________________________________________________________________________________ 正确答案:(解:根据傅里叶变换与逆变换的定义,得到: [*]) 解析:(2).2(πt)·cos(πt)dt 。

(分数:4.00)__________________________________________________________________________________________ 正确答案:(解:根据常用傅里叶变换,可知F[Sa(πt)]=u(t+π)-u(t-π),再由卷积定理,可得: F[Sa 2(πt)]=[*][u(ω+π)-u(ω-π)]*[u(ω+π)-u(ω-π)] [*]又因为F[cos(πt)]=π[δ(ω+π)+δ(ω-π)],则由上题的结论,得到: [*]) 解析:(3).已知X(k)=DFT[x(n)],0≤n≤N -1,0≤k≤N -1,请用X(k)表示X(z),其中X(z)是x(n)的z 变换。

(分数:4.00)__________________________________________________________________________________________ 正确答案:(解:对于长度为N 的有限长序列,利用其DFT 的N 个样值,可以恢复其z 变换函数: [*] 其中,[*],是内插函数。

) 解析:(4).已知F(e-πt2)=e-πf2其中σ>0。

(分数:4.00)__________________________________________________________________________________________ 正确答案:(解:根据傅里叶变换尺度变换可知:[*] 所以:F[e -(t/σ)2]=[*]再由傅里叶变换微分性质可知,[*],所以:[*]) 解析:(5).一个系统的输出y(t)与输入x(t)的零状态条件下的关系为τ)x(τ)d τ,式中k(t,τ)是t 和τ的连续函数,请回答,该系统为线性系统吗?为什么?(分数:4.00)__________________________________________________________________________________________ 正确答案:(解:是。

《信号与系统》考研试题解答第一章信号与系统

《信号与系统》考研试题解答第一章信号与系统

第一章信号与系统一、单项选择题X1.1 (北京航空航天大学 2000 年考研题)试确定下列信号的周期:( 1) x(t )3cos 4t3;(A ) 2( B )( C )2(D )2( 2) x(k ) 2 cosk sin8k 2 cosk642(A ) 8 ( B ) 16 ( C )2 (D ) 4X1.2 (东南大学 2000 年考研题)下列信号中属于功率信号的是。

(A ) cost (t)(B ) e t (t)(C ) te t (t )t( D ) eX1.3 (北京航空航天大学 2000 年考研题)设 f(t)=0 ,t<3,试确定下列信号为 0 的 t 值:(1) f(1- t)+ f(2- t);(A ) t>-2 或 t>-1 ( B ) t=1 和 t=2(C ) t>-1( D ) t>-2(2) f(1- t) f(2- t) ;(A ) t>-2 或 t>-1 ( B ) t=1 和 t=2(C ) t>-1 ( D ) t>-2(3) ft ;3(A ) t>3 (B ) t=0 (C ) t<9 (D ) t=3X1.4 (浙江大学 2002 年考研题)下列表达式中正确的是 。

(A ) ( 2t )(t)( B ) ( 2t)1(t)2(C ) ( 2t )2 (t )( D )2 (t)1(2 )2X1.5 (哈尔滨工业大学 2002 年考研题)某连续时间系统的输入f( t) 和输出 y(t)满足y(t) f (t ) f (t 1) ,则该系统为。

(A )因果、时变、非线性 ( B )非因果、时不变、非线性 (C )非因果、时变、线性( D )因果、时不变、非线性X1.6 (东南大学 2001 年考研题)微分方程 y (t) 3y (t) 2 y(t) f (t 10) 所描述的系统为。

(A)时不变因果系统(B)时不变非因果系统(C)时变因果系统(D)时变非因果系统X1.7 (浙江大学2003 年考研题)y(k) f ( k 1) 所描述的系统不是。

信号与系统试题库史上最全(内含答案)

信号与系统试题库史上最全(内含答案)

信号与系统考试方式:闭卷 考试题型:1、简答题(5个小题),占30分;计算题(7个大题),占70分。

一、简答题:1.dtt df t f x e t y t )()()0()(+=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?[答案:非线性]2.)()(sin )('t f t ty t y =+试判断该微分方程表示的系统是线性的还是非线性的,是时变的还是非时变的?[答案:线性时变的]3.已知有限频带信号)(t f 的最高频率为100Hz ,若对)3(*)2(t f t f 进行时域取样,求最小取样频率s f =?[答案:400s f Hz =]4.简述无失真传输的理想条件。

[答案:系统的幅频特性为一常数,而相频特性为通过原点的直线]5.求[]⎰∞∞--+dt t t e t )()('2δδ的值。

[答案:3]6.已知)()(ωj F t f ↔,求信号)52(-t f 的傅立叶变换。

[答案:521(25)()22j f t e F j ωω--↔]7.已知)(t f 的波形图如图所示,画出)2()2(t t f --ε的波形。

[答案: ]8.已知线性时不变系统,当输入)()()(3t e e t x t t ε--+=时,其零状态响应为)()22()(4t e e t y t t ε--+=,求系统的频率响应。

[答案:())4)(2(52)3(++++ωωωωj j j j ]9.求象函数2)1(32)(++=s s s F ,的初值)0(+f 和终值)(∞f 。

[答案:)0(+f =2,0)(=∞f ]10.若LTI 离散系统的阶跃响应为)(k g ,求其单位序列响应。

其中:)()21()(k k g k ε=。

[答案:1111()()(1)()()()(1)()()(1)222k k k h k g k g k k k k k εεδε-=--=--=--]11.已知()1 1 , 0,1,20 , k f k else ==⎧⎨⎩ ,()2 1 , 0,1,2,30 , k k f k else -==⎧⎨⎩设()()()12f k f k f k =*,求()3?f =。

(完整版)信号与系统复习试题(含答案)

(完整版)信号与系统复习试题(含答案)

电气《信号与系统》复习参考练习题一、单项选择题:14、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。

200 rad /s C 。

100 rad /s D 。

50 rad /sf如下图(a)所示,其反转右移的信号f1(t) 是( d )15、已知信号)(tf如下图所示,其表达式是()16、已知信号)(1tA、ε(t)+2ε(t-2)-ε(t-3)B、ε(t-1)+ε(t-2)-2ε(t-3)C、ε(t)+ε(t-2)-ε(t-3)D、ε(t-1)+ε(t-2)-ε(t-3)17、如图所示:f(t)为原始信号,f1(t)为变换信号,则f1(t)的表达式是()A、f(-t+1)B、f(t+1)C、f(-2t+1)D、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( c )19。

信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ,则该系统是()>-系统的系统函数.已知2]Re[,651)(LTI 202s s s s s H +++= A 、因果不稳定系统 B 、非因果稳定系统C 、因果稳定系统D 、非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数D 、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号23. 积分⎰∞∞-dt t t f )()(δ的结果为( ) A )0(f B )(t f C.)()(t t f δ D.)()0(t f δ24. 卷积)()()(t t f t δδ**的结果为( )A.)(t δB.)2(t δC. )(t fD.)2(t f25. 零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应 D .全响应与强迫响应之差2A 、1-eB 、3eC 、3-e D 、1 27.信号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在28.已知连续系统二阶微分方程的零输入响应)(t y zi 的形式为t t Be Ae 2--+,则其2个特征根为( )A 。

2010年清华大学828信号与系统真题解答—水木京城教育

2010年清华大学828信号与系统真题解答—水木京城教育

水木京城考研—初试复试保过辅导

水木京城
2010年清华大学信号与系统(828)真题解析
2
f t
2

1 T

T 0
f t dt
2
1 T

T 0
f1 t + f 2 t d t
2

1 T


0
T 0
f t f t f * t + f * t f t f t dt 1 2 1 2 2 1
2
e
由尺度变换 e
t
2

2
e


f

2

2
e
2
2
(由 2 f )
由微分性质
d F e dt
d dt
Байду номын сангаас
e
2
t
j e
2
四、 2 0 分 已 知 一 个 线 性 时 不 变 ( LTI) 系 统 的 冲 激 响 应 h t 为 实 基 信 号 。 先 采 取 以 下 方 法 测 量 h t :
对 该 系 统 依 次 注 入 幅 度 为 1 的 单 频 正 弦 信 号 , 频 率 间 隔 为 0, 当 频 率 为 n 0 , n 0,1, 2...时 , 记 录
2

+
F1 F
* 2
d

1 2
+ +

+

+
f 1 t e
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
清华大学 05 年信号与系统
1 H(exp(jω))|ω=0 与 H(jΩ)|Ω=0 是否相等,并说明原因
2 若 h(t)=exp(-t)u(t),则采样间隔 T 应该如何选择,请定性定量说明 五 用双线性变换法设计数字滤波器
1 H(exp(jω))|ω=0 与 H(jΩ)|Ω=0 是否相等,并说明原因
二、 稳定信号 f(t)通过冲击响应为 h(t)的稳定系统,则零状态响应 y(t)是稳定的。请证 明之。
三、 │H(jw)│={2(w^2+9)/[(w^2+1)(w^2+100)]}^(1/2),求最小相位函数 H(s)
四、 一个串联型数字滤波器,框图给出,很简单,系数我都记得,不过不好画图,算了 。 ①计算 H(z),(要求有过程) ②指出串联型数字滤波器有何优缺点。
2 请推导出ω与Ω之间的关系
1-1
Fn 和 F(w)的物理意义
1-2
DFT 是否正交变换
1-3
FT 和 LT 的关系
1-4
fir 滤波器的时域对称性的表达式
2-1
希尔伯特正变换和反变换级联后是一个冲击
2-2
f(x)=e^(-x)u(x),求 f(ax)卷积 f(bx),a>0,b>0
(s^2+3s+3)/(s^2+2s+2)整体再乘 e^(-s)
<X,X>=K<x,x> 其中 K 为一常数 六.问答题
1)什么是 Gibbs 现象?存在的充要条件是什么?如何消除? 2)冲击响应不变法的映射关系式并画出映射图像 3)a 写出双线性变换公式 b 能不能由其变换唯一确定原 s 域的函数
c 结合 a 的公式双线性不变法会不会改变系统的属性 分析一下一下属性 如全通 最小相移 bibo
2.LT[f(t)]=?求 f(t) 3.电视调制测试信号 f(t)=A{m+c[u(t)-1)}cosw0t 求 F.T. 4. 5.已知 x(n)的 ZT X(z),证明 ZTx*(n)= X*(z*) 6.x(n)y(n)互相关函数的 Z.T.(Rxy)=X(z)Y(1/z) 二.|X(w)|为介于 1000pi-2000pi 的关于纵轴对称的三角波 w=1.5kpi 时最大值为 1
2-3
delta(t)+t*delta'(t)
2-4
给出 H(z)的表达式,求逆系统的冲击响应
2-5
证明一个 bibo 线性定常系统可以表为一个最小相位系统和全通系统级联
3-1
证明:实信号幅度谱和相位谱的奇偶性
3-2
证明:自相关推导出来的帕斯瓦尔方程
4
1/给出一个反馈框图,求 H(s)
2/根据 bibo 稳定,判断参数 K1 K2 满足的约束条件
九、20 分。共四问,属于新瓶装旧酒吧。 1、非递归 y(n)=(1/M) ,求系统函数,零极点分布特性,频响函数并作图。 2、递归设计函数 y(n)=ay(n-1)+bx(n),,问输入阶跃信号,a,b 取何值,系统 稳定。求系统函数。
所有考题均为网上搜集整理,感谢前人们做的贡献!所有试题均作学习交流之用,禁止用作商业用途!——Oxiang整理 感谢jehovah0121和cmczcs做的06信号答案,以及所有不知名的前人们!
五年专注考研专业课辅导
清华大学 2009 年信号与系统考研试题回忆
一、五小问,25 分 1、Sin(wt+3/4pi)的自相关函数(这个题跟书上的例题很相近,书上是 cos(wt)) 2、s 域到 z 域的映射关系 3、非最小相移系统(z-1.5)/(z-0.5)用全通函数与最小相
移函数表示,分别写出二者系统函数 4、给出一个 H(s)表达式,求滤波器函数 H(z)。 (可参考第八章课后题)
1/课后题目和例题一定要做熟,图和表一定要记熟 2/奥本海默的两本书一定要看熟,深入题和提高题就有比较多的原题
3/程佩清的数字信号处理也不错
1
2007 信号(回忆版)
欢迎补充 一.证明解答下列各题 1 输入信号 x(t)=u(t)-u(t-1) 通过系统函数为∑(-1)^nδ(t-n)e^-3t 的零状态响应 y(t) (1)求 y(t)及图形 (2)求 y(t)的拉式变换.
3/画出 bibo 稳定的 H(s)的极点分布
4/输入 e(t)=u(t)-u(t-T/2),求 r(t),并且画图(画图这个做得太少)
5/
一个电感和电阻串联的滤波器
1/用冲击不变法求 H(n)
2/用 IIR 实现该数字滤波器
2/画出 H(jw)的幅度谱(凡是画图的都砸了)
3/截取 h(n)冲击响应的幅度不少于 10%的窗函数,画 FIR 结构
五、 f(t)=exp(-αt)U(t),g(t)=exp(-βt)U(t) ①求相关系数ρ ②求互相关函数 Rfg()
六、 数字理想低通滤波器 Hd(e^jw)周期为 2π Hd1(e^jw)=exp(-jwα),│w│≤Wc;0,Wc<│w│<π ①把 Hd(e^jw)在频域展开成复指数形式,并求傅立叶系数 hd(n) ②选择 h(k)(k=-N,....0....N),使 Hd(e^jw)'=∑h(k)exp(jwkn)(k=-N,....0.... N) 证明 Hd(e^jw)'是 Hd(e^jw)的最小均方误差逼近 ③1,2 是 FIR 设计的实质,说明这种方法的缺点 如何改进?
1
清华大学 06 年信号与系统
七、 f(t)=f(t)U(t),F(jw)实部 R(w)=α/(α^2+w^2),求 f(t) (缺过程扣分,提示:积分公式 八、 f(t)傅立叶变换 F(w)=2AτSa(wτ),g(t)=f(αt)和噪声信号 n(t)通过 f(t)的匹配 滤波器 噪声自相关函数 R(τ)=Nδ(τ) ①当只有 f(αt)通过匹配滤波器时,画出当α=1,1/2,2 时的输出波形 ②α≠1 时,f(αt)和 n(t)通过 f(t)的匹配滤波器时峰值信噪比有损失,请计算 α=1/2,2 时峰值信噪比损失 (可自定义峰值信噪比损失,但必须合理)
4 设 F(ω):f(t)的付氏变换,证明 f(t)δ[T](t)的付氏变换是以ωs 为周期的函数,ωs=2 pi/T. 5 一离散系统的单位脉冲响应 h(n)=8δ(n)-8δ(n-2),试通过计算说明该系统是广义线性相 位的 6 已知 H(s)=(s^3-s+1)/(s^2-1), 该系统是否 BIBO 稳定的,并说明原因 三 设 f(t)是一个连续信号 1 写出用一系列矩形脉冲叠加逼近 f(t)的近似表达式 2 对上式取极限,证明 f(t)=f(t)*δ(t) 四t;=n<=7,h(n),0<=n<=1023
1/求输出 y(n)的加法和乘法次数
2/用 DFT 和 FFT 推导一种快速算法,不需要画蝶形图
3/估算这种方法的乘法和加法次数
注:程佩清的信号处理第 4 章第 10 节就有具体解法
7/
这道题在奥本海默数字信号处理有出现
定义 Wf,自相关宽度,wf=R(t)从负无穷到正无穷的积分除以 R(0)
1 画出采样后的图型 2 写出表达式的 FT 3 一般意义下 这样采样后 DFT 不考虑舍入误差情况下能不能准确得到等间隔 DFT 采样

五.已知 n 点 DCT ,IDCT 定义式
x(n)
0=<n=<N-1
y(n)= {
x(2N-1-n) N=<N=<2N-1
1)证明 W^(k+1/2)DFT[y(n)]=DCT[x(n)] W 下标是 2N 2)证明 X=(X1,X2,X3…XN) x=(x1,x2,x3…xn) X 为 x 的 DCT
f(t)=u(t+1/2)-u(t-1/2),R(t)是 f(t)的自相关
1/求 f(t)的 wf 大小 2/求 f(t)的能谱密度
总体上,题目不难,概念考得不是很深;看奥本的数字信号处理还是很有好处的
如果能把后面的题目都做会,那就不错了;郑君里课本的东西,好像考得不是很深入
虽然不知道我考得怎么样,估计因为计算问题会好差,我还是给点经验教训吧
5、F(w)是带限信号,h(t)为矩形信号。用 h(t-nT)(n 跑遍整个时域)进行抽样, 题目给出条件是满足采样定理的,求频域的采样函数。
二、八小问,40 分,最好简明,能用公式表示要用公式。 1、DTFT 的频域是周期的么?为什么? 2、白噪声通过匹配滤波器还白不白?为什么? 3、一个信号是带限还是不带限,或是二者皆有可能。为什么? 4、给了一个 H(z)= , 求冲击响应,若 求冲击响应。A,B 忘记具体数值,此题属 于常规题目,历年多次涉及。 5、6、全通系统经过双线性变换还是不是全通函数? 7、用 DFT 分析连续信号的步骤,并说明由此产生了什么效应,误差。 8、以下三至七各 10 分 三、求 f(t)的傅里叶变换,信号是三个三角函数,可以参考书上例题。 四、|H(jw)|2= 1/(1+w4),求其相应的最小相移函数,求最小相移函数的冲击响应。 五、全通函数的零极点分布特性,用关系式描述,要写出 s 域与 z 域的。
五年专注考研专业课辅导
六、
七、如果*表示卷积,@表示相关(原题的符号:圈中是“*”) 求证(f(t)*g(t))@(f(t)*g(t))=(f(t)@f(t))*(g(t)@g(t)) 八、15 分。共三问,具体的想不起来了,但是总的来说不难,特别是给了提示,只要 把提示的公式带进去,题目就迎刃而解了。
2
清华大学 05 年信号与系统
一 是非判断 1 hilbert 变换对不含直流分量的信号构成全通系统 2 全通系统是物理不可实现的 3 理想低通滤波器一定是线性相位的 4 理想低通滤波器是物理不可实现的 5 因为δ'=dδ/dt,所以δ(t)=∫(-∞,t)δ'(τ)dτ 6 H(z)是某离散系统的系统函数,H(z)、 1/H(z)在单位圆上及单位圆外解析,则该 系统是严格线性相位的 7 设 H(s)=A/[(s-p1)(s-p2)(s-p3)],输入为 x(t)u(t),则输出 y(t)=Aexp(p1 t)*exp(p2 t) * exp(p3 t)* x(t)u(t) 8 非线性系统的全响应一定等于零输入响应加上零状态响应 二 简答题 1 x(t)是逆因果信号,设它通过一个 BIBO 的非因果系统(冲击响应 h(t))的零状态响应 为 y(t),写出用 x,h 卷积表示 y(t)的表达式,并标明积分上下限。 2 命题:零输入响应与系统函数的零点无关。请判断该命题的对错,并说明原因。 3 设 F(t)=f(t)*δ[T](t) , δ[T](t)=∑δ(t-nT),证明 F(t)是以 T 为周期的函数
相关文档
最新文档