九年级数学期末试卷综合测试卷(word含答案)

合集下载

2021-2022学年门头沟区九年级第一学期数学期末测试(word版含答案)

2021-2022学年门头沟区九年级第一学期数学期末测试(word版含答案)

A门头沟区2021-2022学年度第一学期期末调研试卷九 年 级 数 学 2022.1一、选择题(本题共16分,每小题2分)第1- 8题均有四个选项,符合题意的选项只有..一个. 1.已知23a b =(0ab ≠),下列比例式成立的是 A .32a b=B .32a b =C .23a b =D .32b a = 2.抛物线2(3)+1=-y x 的顶点坐标是 A .()3,1-B .()3,1C .()3,1-D .()3,1--3. 已知⊙O 的半径为5,如果点P 到圆心O 的距离为8,那么点P 与⊙O 的位置关系是 A .点P 在⊙O 上B .点P 在⊙O 内C .点P 在⊙O 外D .无法确定4.在Rt △ABC 中,如果∠C = 90°,tan A = 2,那么sin A 的值是 A .23B .13CD 5.如图,线段AB 是⊙O 的直径,弦CD 丄AB 于E , 如果∠CAB = 20°,那么∠AOD 等于A .120°B .140°C .150°D .160°6. 如果将抛物线22y x =先向左平移2个单位,再向上平移3个单位后得到一条新的抛物线, 这条新的抛物线的表达式是 A .()2223y x =-+ B .()22+23y x =- C .()2223y x =--D .()2223y x =++7. 如果()11,A y 与()22,B y 都在函数1k y x-=的图象上,且12y y >,那么k 的取值范围是 A .k >1B .k <1C .k ≠1D .任意实数OD CB Ay xQ PBACOxyO –1–2–3–4123456–1–2–312348.如图,如果抛物线2144y x =-与x 轴交于A 、B 两点,点P 是以()0,3C 为圆心,2为半径的圆 上的一个动点,点Q 是线段P A 的中点,连接OQ , 那么线段OQ 的最大值是 A .3 B .412C .4D .72二、填空题(本题共16分,每小题2分) 9.如果23x y =,那么x y x+的值是 . 10.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是 米. 11.如果两个相似三角形的相似比是1:3,那么这两个相似三角形的周长比是 . 12.如图,扇形的圆心角∠AOB = 60°,半径为3cm .如果点C 、D 是AB 的三等分点,图中所有阴影部分的面积之和是cm 2.13.把二次函数的表达式223y x x =-+化为()2y a x h k =-+的形式为 . 14.写出一个图象位于第一,三象限的反比例函数的表达式 .15.《九章算术》是我国古代的数学名著,书中有这样的一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”.其意思是:“如图,现有直角三角形,勾(短直角边)长为8步, 股(长直角边)长为15步,问该直角三角形所能容纳的最大圆 的直径是多少?”.答:该直角三角形所能容纳的最大圆的直径..是 步. 16.函数2112y x x =+的图象如图所示,在下列结论中,① 该函数自变量x 的取值范围是0x ≠;② 该函数有最小值32; ③ 方程21132x x +=有三个根;④ 如果()11,x y 和()22,x y 是该函数图象上的两个点,当120x x <<时一定有12y y <. 所有正确结论的序号是 .ED CBA三、解答题(本题共68分,第17~22题每小题5分,23~26题每小题6分,第27~28题每小题7分)解答应写出文字说明、证明过程或演算步骤. 17.计算:(02sin 605π︒--.18.已知:如图,在△ABC 中,点D 在BC 上,点E 在AC 上,DE 与AB 不平行.添加一个条件 ,使得△CDE ∽△CAB ,然后再加以证明.19.已知:如图1,在△ABC 中,AB = AC .求作:⊙O ,使得⊙O 是△ABC 的外接圆.D AB CB C A图1 图2作法:① 如图2,作∠BAC 的平分线交BC 于D ;② 作线段AB 的垂直平分线EF ; ③ EF 与AD 交于点O ;④ 以点O 为圆心,以OB 为半径作圆. ∴ ⊙O 就是所求作的△ABC 的外接圆. 根据上述尺规作图的过程,回答以下问题:(1)使用直尺和圆规,依作法补全图2(保留作图痕迹); (2)完成下面的证明.证明:∵ AB = AC ,∠BAD =∠DAC ,∴ . ∵ AB 的垂直平分线EF 与AD 交于点O ,∴ OA = OB ,OB = OC .( )(填推理的依据) ∴ OA = OB = OC .∴ ⊙O 就是△ABC 的外接圆.DCBAD CBAPMF EC B A DyxAO20.已知二次函数2y ax bx c =++(a ≠0)图象上部分点横坐标、纵坐标的对应值如下表:x … 0 1 2 3 4 … y…-3-4-35…(1)求该二次函数的表达式;(2)直接写出该二次函数的图象与x 轴的交点坐标.21.已知:如图,在Rt △ABC 中,∠ACB = 90°,CD 是AB 边上的高.(1)求证:△ABC ∽△CBD ;(2)如果AC = 4,BC = 3,求BD 的长.22.如图,在平面直角坐标系xOy 中,一次函数2y x =-的图象与反比例函数ky x=的图象的一个交点 为()1,A n -.(1)求反比例函数ky x=的表达式; (2)如果P 是坐标轴上一点,且满足P A = OA ,直接写出点P 的坐标.23.“永定楼”是门头沟区的地标性建筑,某数学兴趣小组进行了测量它高度的社会实践活动.如图,他们先在点D 处用高1.5米的测角仪AD 测得塔顶M 的仰角为 30°,然后沿DF 方向前行70 m 到达点E 处,在点 E 处测得塔顶M 的仰角为60°. 求永定楼的高MF .(结果保留根号)24.在美化校园的活动中,某兴趣小组借助如图所示的直角墙角(墙角两边DC 和DA 足够长),用28 m长的篱笆围成一个矩形花园ABCD (篱笆只围AB 和BC 两边). 设AB = x m ,S 矩形ABCD = y m 2.(1)求y 与x 之间的关系式,并写出自变量的取值范围; (2)当矩形花园的面积为192 m 2时,求AB 的长;(3)如果在点P 处有一棵树(不考虑粗细),它与墙DC 和DA 的距离分别是15 m 和6 m ,如果要将这棵树围在矩形花园内部(含边界),直接写出矩形花园面积的最大值.OFED CBA25.如图,AB 为⊙O 的直径,C 为BA 延长线上一点,CD 是⊙O 的切线,D 为切点,OF ⊥AD 于点E ,交CD 于点F .(1)求证:∠ADC = ∠AOF ; (2)如果1sin 3C =,BD = 8,求EF 的长.26.在平面直角坐标系xOy 中,已知抛物线224y ax ax =-+(a >0).(1)求该抛物线的对称轴和顶点坐标(用含a 的代数式表示); (2)如果该抛物线的顶点恰好在x 轴上,求它的表达式;(3)如果()11,A m y -,()2,B m y ,()32,C m y +三点均在抛物线224y ax ax =-+上,且总有y 1>y 3>y 2,结合图象,直接写出m 的取值范围.27.在△ABC 中,∠BAC = 45°,CD ⊥AB 于点D ,AE ⊥BC 于点E ,连接DE .(1)如图1,当△ABC 为锐角三角形时,① 依题意补全图形,猜想∠BAE 与∠BCD 之间的数量关系并证明; ② 用等式表示线段AE ,CE ,DE 的数量关系,并证明.(2)如图2,当∠ABC 为钝角时,直接写出线段AE ,CE ,DE 的数量关系.CB ACBA图1 图228.如图,在平面直角坐标系xOy 中,()0,2C ,⊙C 的半径为1.如果将线段AB 绕原点O 逆时针旋转α(0°<α<180°)后的对应线段''A B 所在的直线与⊙C 相切,且切点在线段''A B 上,那么线段AB 就是⊙C 的“关联线段”,其中满足题意的最小α就是线段AB 与⊙C 的“关联角”.(1)如图1,如果()2,0A ,线段OA 是⊙C 的“关联线段”,那么它的“关联角”为 °. (2)如图2,如果()13,3A -、()12,3B -,()21,1A 、()23,2B ,()33,0A 、()33,2B -.那么⊙C 的“关联线段”有 (填序号,可多选). ① 线段A 1 B 1② 线段A 2 B 2③ 线段A 3 B 3(3)如图3,如果()1,0B 、(),0D t ,线段BD 是⊙C 的“关联线段”,那么t 的取值范围是 . (4)如图4,如果点M 的横坐标为m ,且存在以MC 的“关联线段”,那么m 的取值范围是 .图1图2图3 图4门头沟区2021-2022学年度第一学期期末调研九年级数学答案及评分参考2022.1一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)三、解答题(本题共68分,第17~22题每小题5分,23~26题每小题6分,第27~28题每小题7分) 17.(本小题满分5分) 解:原式=25 1.+-………………………………………………………………4分 4.……………………………………………………………………………5分18.(本小题满分5分)解:添加条件正确;…………………………………………………………………………2分 证明过程正确.…………………………………………………………………………5分19.(本小题满分5分)解:(1)作图正确;…………………………………………………………………………2分 (2)依据正确.…………………………………………………………………………5分20.(本小题满分5分)解:(1)∵设这个二次函数的表达式为23y ax bx .=+-由题意得,3034a b a b --=⎧⎨+-=-⎩…………………………………………………1分解得,12a b .=⎧⎨=-⎩∴223y x x .=--…………………………………………………………………3分 (2)()1,0-,()3,0.……………………………………………………………………5分21.(本小题满分5分)(1)证明:∵ ∠ACB = 90°,CD 是AB 边上的高,∴ ∠A C B =∠C D B = 90°.……………………………………………………1分 又∵ ∠B =∠B ,∴ △A B C ∽△C B D .…………………………………………………………2分(2)解:在Rt △ABC 中,∠ACB = 90°,AC = 4,BC = 3.∴ 由勾股定理得 A B =5.…………………………………………………………3分 ∵ △ABC ∽△CBD , ∴AB BC CB BD=.……………………………………………………………………4分 ∴ 223955BC BD AB ===.………………………………………………………5分22.(本小题满分5分)解(1)∵A (1-, n )在一次函数x y 2-=的图象上,∴n =2-×(1-)=2. ……………………………………………………………………1分 ∴点A 的坐标为(1-, 2). …………………………………………………………2分 ∵点A 在反比例函数xky =的图象上, ∴2-=k .∴反比例函数的解析式为xy 2-=. ………………………………………………3分 (2)点P 的坐标为(-2, 0)或(0, 4). …………………………………………………5分23.(本小题满分6分)解:根据题意,得 1.5CF BE AD ===,70AB DE ==.设MC 为x m . ……………………………………………………………………………1分 在Rt △MCB 中,tan =MCMBC BC∠,OFED CBA∴tan60x BC =︒. …………………………………………………………………2分同法可求AC .……………………………………………………………………3分∴70+. ………………………………………………………………………4分解得x =.……………………………………………………………………………5分∴ 1.5m MF MC CF =+=().答:永定楼的高为 1.5米. …………………………………………………………6分24.(本小题满分6分)解:(1)由题意得 ()22828.y x x x x =-=-+………………………………………………1分028.x <<…………………………………………………………………………2分(2)由题意得 228192.x x -+=…………………………………………………………3分解得1212,16.x x ==答:A B 的长为12米或16米.……………………………………………………5分 (3)当13x =时,面积的最大值为195米2.…………………………………………6分25.(本小题满分6分) 解:(1)连接OD .∵CD 是O 的切线, ∴OD CD ⊥.∴90ADC ODA ︒∠+∠=. ∵OF AD ⊥,∴90AOF DAO ∠+∠=︒. ∵ODA DAO ∠=∠,∴ADC AOF ∠=∠.………………………………………………………………3分 (2)设半径为r ,在Rt OCD ∆中,1sin 3C =, ∴13OD OC =. ∴OD r =,3OC r =.FA∵OA r =,∴2AC OC OA r =-=. ∵AB 为O 的直径, ∴90ADB ∠=︒. ∴OF BD ,∴12OE OA BD AB ==. ∴4OE =. ∵34OF OC BD BC ==, ∴6OF =.∴2EF OF OE =-=.……………………………………………………………6分26.(本小题满分6分)解:(1)由题意得()22241 4.y ax ax a x a =-+=--+∴ 对称轴为直线1x =,顶点坐标为()1,4.a -+………………………………2分 (2)∵抛物线的顶点恰好在x 轴上,∴40.a -+= 解得 4.a =∴ 抛物线的表达式为248 4.y x x =-+……………………………………………4分 (3)10.2m <<…………………………………………………………………………6分27.(本小题满分7分)解:(1)① 依题意,补全图形. ………………………………………………………1分猜想:∠B A E = ∠B C D. ……………………………………………………2分 证明:∵CD ⊥AB ,AE ⊥BC ,∴∠BAE +∠B = 90°,∠BCD +∠B = 90°.∴∠B A E = ∠B C D. …………………………………………………3分②线段AE ,CE ,DE 的数量关系:CE +DE = AE . ………………………4分 证明:如图,在AE 上截取AF = CE ,连接DF .∵∠BAC = 45°,CD ⊥AB , ∴ AD = CD.又∵∠BAE = ∠BCD,∴△ADF≌△CDE .∴DF = DE,∠ADF = ∠CDE.∵AB⊥CD,∴∠ADF+∠FDC = 90°. ∴∠CDE+∠FDC = ∠EDF = 90°.∴△EDF是等腰直角三角形.∴EF = DE2.∵AF + EF = AE,∴C E+D E=A E.…………………………………………………6分(2)线段AE,CE,DE的数量关系:CE DE = AE . ……………………………7分28.(本小题满分7分)解:(1)60°.………………………………………………………………………………2分(2)②,③.……………………………………………………………………………4分(3)t………………………………………………………………………………5分(4)2 4.m-<≤…………………………………………………………………………7分说明:若考生的解法与给出的解法不同,正确者可参照评分参考相应给分。

2020-2021学年甘肃省甘南州夏河县九年级(上)期末数学试卷(word,解析版)

2020-2021学年甘肃省甘南州夏河县九年级(上)期末数学试卷(word,解析版)

2020-2021学年甘肃省甘南州夏河县九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)“若a是实数,则|a|≥0”这一事件是()A.必然事件B.不可能事件C.不确定事件D.随机事件2.(3分)已知关于x的方程(a﹣3)x|a﹣1|+x﹣1=0是一元二次方程,则a的值是()A.3B.2C.﹣1或3D.﹣13.(3分)一枚质地均匀的立方体骰子的六个面上分别标有数字1、2、3、4、5、6,抛掷骰子一次,则朝上一面的数字为2的概率是()A.B.C.D.4.(3分)将抛物线y=x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=(x﹣2)2﹣1B.y=(x﹣2)2+1C.y=(x+2)2﹣1D.y=(x+2)2+1 5.(3分)函数y=kx2﹣4x+2的图象与x轴有公共点,则k的取值范围是()A.k<2B.k<2 且k≠0C.k≤2D.k≤2 且k≠0 6.(3分)已知正六边形的边长为2,则它的内切圆的半径为()A.1B.C.2D.27.(3分)如图,P A、PB切⊙O于点A、B,P A=10,CD切⊙O于点E,交P A、PB于C、D两点,则△PCD的周长是()A.10B.18C.20D.228.(3分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A'B'C,使点A'恰好落在AB上,则旋转角度为()A.90°B.60°C.45°D.30°9.(3分)如图,将矩形ABCD绕点A顺时针旋转到矩形AB'C'D'的位置,若旋转角为20°,则∠1为()A.120°B.110°C.150°D.160°10.(3分)已知二次函数y=(x﹣p)(x﹣q)+2,若m,n是关于x方程(x﹣p)(x﹣q)+2=0的两个根,则实数m,n,p,q的大小关系可能是()A.m<p<q<n B.m<p<n<q C.p<m<n<q D.p<m<q<n二、填空题(每小题3分,共12分)11.(3分)点P(2a+1,4)与P'(1,3b﹣1)关于原点对称,则2a+b=.12.(3分)一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为.13.(3分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是.14.(3分)如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF=.三、解答题(共78分)15.(5分)用适当的方法求解方程:x2+6x+5=0.16.(5分)如图,已知抛物线y=x2+x﹣6与x轴两个交点分别是A、B(点A在点B的左侧).(1)求A、B的坐标;(2)利用函数图象,写出y<0时,x的取值范围.17.(5分)如图所示,四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,AF=3,AB=7.(1)指出旋转中心和旋转角度;(2)求DE的长度.18.(5分)已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,求证:无论k为何值,此方程总有两个不等实根.19.(7分)某公司推出一款新产品,该产品的成本单价是80元,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系y=﹣5x+600.(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)销售单价x=元时,日销售利润w最大,最大值是元;(2)要实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?20.(7分)已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2、0.3.(1)试求出纸箱中蓝色球的个数;(2)小明向纸箱中再放进红色球若干个,小丽为了估计放入的红球的个数,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到红球的频率在0.5附近波动,请据此估计小明放入的红球的个数.21.(7分)如图所示,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B (4,2),C(3,5)(每个方格的边长均为1个单位长度)(1)请画出△A1B1C1,使△A1B1C1与△ABC关于原点对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出线段OB旋转到OB2扫过图形的面积.22.(7分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?23.(8分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.(1)证明:DE为⊙O的切线;(2)若BC=4,求DE的长.24.(10分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.25.(12分)如图,已知二次函数y=x2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.(1)求抛物线的表达式;(2)抛物线的对称轴上有一动点P,求出P A+PD的最小值;(3)若抛物线上有一动点Q,使△ABQ的面积为6,求Q点坐标.2020-2021学年甘肃省甘南州夏河县九年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)“若a是实数,则|a|≥0”这一事件是()A.必然事件B.不可能事件C.不确定事件D.随机事件【分析】根据必然事件、不可能事件、随机事件的概念和绝对值的定义可正确解答.【解答】解:因为数轴上表示数a的点与原点的距离叫做数a的绝对值,因为a是实数,所以|a|≥0.故选:A.2.(3分)已知关于x的方程(a﹣3)x|a﹣1|+x﹣1=0是一元二次方程,则a的值是()A.3B.2C.﹣1或3D.﹣1【分析】根据一元二次方程的定义得出a﹣3≠0且|a﹣1|=2,再求出a即可.【解答】解:∵关于x的方程(a﹣3)x|a﹣1|+x﹣1=0是一元二次方程,∴a﹣3≠0且|a﹣1|=2,解得:a=﹣1,故选:D.3.(3分)一枚质地均匀的立方体骰子的六个面上分别标有数字1、2、3、4、5、6,抛掷骰子一次,则朝上一面的数字为2的概率是()A.B.C.D.【分析】让朝上一面的数字是2的情况数除以总情况数6即为所求的概率.【解答】解:∵抛掷六个面上分别刻有的1,2,3,4,5,6的骰子有6种结果,其中朝上一面的数字为2的只有1种,∴朝上一面的数字为2的概率为,故选:A.4.(3分)将抛物线y=x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=(x﹣2)2﹣1B.y=(x﹣2)2+1C.y=(x+2)2﹣1D.y=(x+2)2+1【分析】根据二次函数图象的平移规律(左加右减,上加下减)进行解答即可.【解答】解:原抛物线的顶点为(0,0),向左平移2个单位,再向下平移1个单位,那么新抛物线的顶点为(﹣2,﹣1).可设新抛物线的解析式为:y=﹣3(x﹣h)2+k,代入得:y=(x+2)2﹣1,化成一般形式得:y=﹣3x2﹣6x﹣5.故选:C.5.(3分)函数y=kx2﹣4x+2的图象与x轴有公共点,则k的取值范围是()A.k<2B.k<2 且k≠0C.k≤2D.k≤2 且k≠0【分析】先根据二次函数的定义得到k≠0,再根据抛物线与x轴的交点问题得到△=(﹣4)2﹣4k×2≥0,然后解不等式即可得到k的值.【解答】解:∵函数y=kx2﹣4x+2,∴当k=0时,函数y=kx2﹣4x+2是一次函数,与x轴有一个交点为(,0),当k≠0时,函数y=kx2﹣4x+2是二次函数,∵二次函数y=kx2﹣4x+2的图象与x轴有公共点,∴△=(﹣4)2﹣4k×2≥0,解得k≤2,综上所述,k的取值范围是k≤2.故选:C.6.(3分)已知正六边形的边长为2,则它的内切圆的半径为()A.1B.C.2D.2【分析】根据题意画出图形,利用正六边形中的等边三角形的性质求解即可.【解答】解:如图,连接OA、OB,OG;∵六边形ABCDEF是边长为2的正六边形,∴△OAB是等边三角形,∴OA=AB=2,∴OG=OA•sin60°=2×=,∴边长为2的正六边形的内切圆的半径为.故选:B.7.(3分)如图,P A、PB切⊙O于点A、B,P A=10,CD切⊙O于点E,交P A、PB于C、D两点,则△PCD的周长是()A.10B.18C.20D.22【分析】根据切线长定理得出P A=PB=10,CA=CE,DE=DB,求出△PCD的周长是PC+CD+PD=P A+PB,代入求出即可.【解答】解:∵P A、PB切⊙O于点A、B,CD切⊙O于点E,∴P A=PB=10,CA=CE,DE=DB,∴△PCD的周长是PC+CD+PD=PC+AC+DB+PD=P A+PB=10+10=20.故选:C.8.(3分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A'B'C,使点A'恰好落在AB上,则旋转角度为()A.90°B.60°C.45°D.30°【分析】先利用互余得到∠A=60°,再根据旋转的性质得CA′=CA,∠ACA′等于旋转角,然后判断△ACA′为等边三角形得到∠ACA′=60°,从而得到旋转角的度数.【解答】解:∵∠ACB=90°,∠ABC=30°,∴∠A=60°,∵△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,∴CA′=CA,∠ACA′等于旋转角,∴△ACA′为等边三角形,∴∠ACA′=60°,即旋转角度为60°.故选:B.9.(3分)如图,将矩形ABCD绕点A顺时针旋转到矩形AB'C'D'的位置,若旋转角为20°,则∠1为()A.120°B.110°C.150°D.160°【分析】设C′D′与BC交于点E,根据旋转的角度结合矩形的性质可得出∠BAD′的度数,再由四边形内角和为360°即可得出∠BED′的度数,根据对顶角相等即可得出结论【解答】解:设C′D′与BC交于点E,如图所示.∵旋转角为20°,∴∠DAD′=20°,∴∠BAD′=90°﹣∠DAD′=70°.∵∠BAD′+∠B+∠BED′+∠D′=360°,∴∠BED′=360°﹣70°﹣90°﹣90°=110°,∴∠1=∠BED′=110°.故选:B.10.(3分)已知二次函数y=(x﹣p)(x﹣q)+2,若m,n是关于x方程(x﹣p)(x﹣q)+2=0的两个根,则实数m,n,p,q的大小关系可能是()A.m<p<q<n B.m<p<n<q C.p<m<n<q D.p<m<q<n 【分析】根据二次函数y=(x﹣p)(x﹣q)+2,m,n是关于x方程(x﹣p)(x﹣q)+2=0的两个根,利用二次函数的性质和方程的知识,可以得到m,n,p,q的大小关系,从而可以解答本题.【解答】解:∵二次函数y=(x﹣p)(x﹣q)+2,∴该函数开口向上,当x=p或x=q时,y=2,∵m,n是关于x方程(x﹣p)(x﹣q)+2=0的两个根,∴p、q一定一个最大,一个最小,m、n一定处于p、q中间,故选:C.二、填空题(每小题3分,共12分)11.(3分)点P(2a+1,4)与P'(1,3b﹣1)关于原点对称,则2a+b=﹣3.【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【解答】解:∵点P(2a+1,4)与P'(1,3b﹣1)关于原点对称,∴2a+1=﹣1,3b﹣1=﹣4,解得:2a=﹣2,b=﹣1,∴2a+b=﹣2﹣1=﹣3,故答案为:﹣3.12.(3分)一个三角形的两边长分别为3和6,第三边长是方程x2﹣10x+21=0的根,则三角形的周长为16.【分析】首先求出方程的根,再根据三角形三边关系定理,确定第三边的长,进而求其周长.【解答】解:解方程x2﹣10x+21=0得x1=3、x2=7,∵3<第三边的边长<9,∴第三边的边长为7.∴这个三角形的周长是3+6+7=16.故答案为:16.13.(3分)如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是.【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.【解答】解:∵总面积为3×3=9,其中阴影部分面积为4××1×2=4,∴飞镖落在阴影部分的概率是,故答案为:.14.(3分)如图,已知Rt△ABC中,∠ACB=90°,AC=6,BC=4,将△ABC绕直角顶点C顺时针旋转90°得到△DEC.若点F是DE的中点,连接AF,则AF=5.【分析】根据旋转的性质,EC=BC=4,DC=AC=6,∠ACD=∠ACB=90°,由点F 是DE的中点,可求出EG、GF,因为AE=AC﹣EC=2,可求出AG,然后运用勾股定理求出AF.【解答】解:作FG⊥AC,根据旋转的性质,EC=BC=4,DC=AC=6,∠ACD=∠ACB=90°,∵点F是DE的中点,∴FG∥CD,∴GF=CD=AC=3,EG=EC=BC=2,∵AC=6,EC=BC=4,∴AE=2,∴AG=4,根据勾股定理,AF=5.三、解答题(共78分)15.(5分)用适当的方法求解方程:x2+6x+5=0.【分析】利用因式分解后求解可得.【解答】解:x2+6x+5=0,(x+5)(x+1)=0,∴x+5=0或x+1=0,∴x1=﹣5,x2=﹣1.16.(5分)如图,已知抛物线y=x2+x﹣6与x轴两个交点分别是A、B(点A在点B的左侧).(1)求A、B的坐标;(2)利用函数图象,写出y<0时,x的取值范围.【分析】(1)令y=0代入y=x2+x﹣6即可求出x的值,此时x的值分别是A、B两点的横坐标.(2)根据图象可知:y<0是指x轴下方的图象,根据A、B两点的坐标即可求出x的范围.【解答】21.解:(1)令y=0,即x2+x﹣6=0解得x=﹣3或x=2,∵点A在点B的左侧∴点A、B的坐标分别为(﹣3,0)、(2,0)(2)∵当y<0时,x的取值范围为:﹣3<x<217.(5分)如图所示,四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,AF=3,AB=7.(1)指出旋转中心和旋转角度;(2)求DE的长度.【分析】(1)根据旋转的性质,点A为旋转中心,对应边AB、AD的夹角为旋转角;(2)根据旋转的性质可得AE=AF,AD=AB,再根据DE=AD﹣AE计算即可得到答案.【解答】解:(1)根据正方形的性质可知,△AFD≌△AEB,∠DAB=90°,可得旋转中心为点A,旋转角为90°或270°;(2)∵△AFD≌△AEB,∴AD=AB=7,AE=AF=3,∴DE=AD﹣AE=7﹣3=4.18.(5分)已知关于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,求证:无论k为何值,此方程总有两个不等实根.【分析】根据Δ=[﹣(2k+1)]2﹣4×1×(4k﹣3)=4(k﹣)2+4>0判断即可.【解答】解:∵Δ=[﹣(2k+1)]2﹣4×1×(4k﹣3)=4k2﹣12k+13=4(k﹣)2+4>0,∴无论k为何值,此方程总有两个不等实根.19.(7分)某公司推出一款新产品,该产品的成本单价是80元,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系y=﹣5x+600.(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)销售单价x=100元时,日销售利润w最大,最大值是2000元;(2)要实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【分析】(1)根据题意列出有关利润w与销售单价x之间的二次函数,配方后即可确定最值;(2)根据销售利润不低于3750元列出不等式即可确定正确的答案.【解答】解:(1)w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∵﹣5<0,∴当x=100时,w取得最大值,最大值是2000;故答案为:100,2000;(2)设成本单价为a圆,当x=100时,w=(﹣5×90+600)(90﹣a)≥3750,解得,a≤65,答:该产品的成本单价应不超过65元.20.(7分)已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2、0.3.(1)试求出纸箱中蓝色球的个数;(2)小明向纸箱中再放进红色球若干个,小丽为了估计放入的红球的个数,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到红球的频率在0.5附近波动,请据此估计小明放入的红球的个数.【分析】(1)蓝色球的个数等于总个数乘以摸到蓝色球的概率即可;因为摸到红球的频率在0.5附近波动,所以摸出红球的概率为0.5,再设出红球的个数,根据概率公式列方程解答即可.【解答】解:(1)由已知得纸箱中蓝色球的个数为:100×(1﹣0.2﹣0.3)=50(个)(2)设小明放入红球x个根据题意得:,解得:x=60(个).经检验:x=60是所列方程的根答:小明放入的红球的个数为60.21.(7分)如图所示,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B (4,2),C(3,5)(每个方格的边长均为1个单位长度)(1)请画出△A1B1C1,使△A1B1C1与△ABC关于原点对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出线段OB旋转到OB2扫过图形的面积.【分析】(1)根据△A1B1C1与△ABC关于原点对称进行作图即可;(2)根据△ABC绕点O逆时针旋转90°,即可得到旋转后得到的△A2B2C2,依据扇形的面积计算公式,即可得到线段OB旋转到OB2扫过图形的面积.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求.∵OB==2,∠BOB2=90°,线段OB旋转到OB2扫过图形的面积为=5π.22.(7分)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【分析】(1)利用原46000﹣22000=24000米2的工作时间﹣现46000﹣22000=24000米2的工作时间=4天这一等量关系列出分式方程求解即可;(2)根据矩形的面积和为56平方米列出一元二次方程求解即可.【解答】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:﹣=4解得:x=2000,经检验,x=2000是原方程的解.答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为a米,根据题意得,(20﹣3a)(8﹣2a)=56,解得:a=2或a=(不合题意,舍去).答:人行道的宽为2米.23.(8分)如图,已知等腰三角形ABC的底角为30°,以BC为直径的⊙O与底边AB交于点D,过D作DE⊥AC,垂足为E.(1)证明:DE为⊙O的切线;(2)若BC=4,求DE的长.【分析】(1)连接OD,由平行线的判定定理可得OD∥AC,利用平行线的性质得∠ODE =∠DEA=90°,可得DE为⊙O的切线;(2)连接CD,由BC为直径,利用圆周角定理可得∠ADC=90°,由∠A=30°,AC =BC=4,利用锐角三角函数可得DE.【解答】(1)证明:连接OD,∵OD=OB,∴∠ODB=∠B,∵AC=BC,∴∠A=∠B,∴∠ODB=∠A,∴OD∥AC,∴∠ODE=∠DEA=90°,∴DE为⊙O的切线;(2)解:连接CD,∵BC为直径,∴∠ADC=90°,∵∠A=30°,又∵AC=BC=4,∴AD=AC•cos30°=4×=2,∴DE=AD=.24.(10分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为180件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.【分析】(1)根据“当每件的销售价每增加1元,每天的销售数量将减少10件”,即可解答;(2)根据等量关系“利润=(售价﹣进价)×销量”列出函数关系式,根据二次函数的性质,即可解答.【解答】解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件),故答案为:180;(2)由题意得:y=(x﹣40)[200﹣10(x﹣50)]=﹣10x2+1100x﹣28000=﹣10(x﹣55)2+2250∴每件销售价为55元时,获得最大利润;最大利润为2250元.25.(12分)如图,已知二次函数y=x2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.(1)求抛物线的表达式;(2)抛物线的对称轴上有一动点P,求出P A+PD的最小值;(3)若抛物线上有一动点Q,使△ABQ的面积为6,求Q点坐标.【分析】(1)首先把A(﹣3,0),D(﹣2,﹣3)代入y=x2+bx+c,解方程组可得b、c 的值,进而可得函数解析式;(2)根据抛物线对称轴x=﹣1,D(﹣2,﹣3),C(0,﹣3)可得C、D关于x轴对称,连接AC与对称轴的交点就是点P,然后利用勾股定理可得答案;(3)设点Q坐标(m,m2+2m﹣3),令y=0,可得x2+2x﹣3=0,解方程可得AB的长,进而得出Q点纵坐标,进而可得Q点坐标.【解答】解:(1)因为二次函数y=x2+bx+c的图象经过A(﹣3,0),D(﹣2,﹣3),所以,解得.所以一次函数解析式为y=x2+2x﹣3;(2)∵抛物线对称轴x=﹣1,D(﹣2,﹣3),C(0,﹣3),∴C、D关于x轴对称,连接AC与对称轴的交点就是点P,此时P A+PD=P A+PC=AC===3;(3)设点Q坐标(m,m2+2m﹣3),令y=0,x2+2x﹣3=0,x=﹣3或1,∴点B(1,0),则AB=4,∵三角形ABP的面积为6,∴Q点到AB的距离为3,故当Q点纵坐标为3时,3=x2+2x﹣3,解得:x=﹣1±,符合题意的Q点坐标为:(﹣1+,3),(﹣1﹣,3),当Q点纵坐标为﹣3时,﹣3=x2+2x﹣3,解得:x=0或﹣2,符合题意的Q点坐标为:(0,﹣3),(﹣2,﹣3).综上所述:符合题意的Q点坐标为:(﹣1+,3),(﹣1﹣,3),(0,﹣3),(﹣2,﹣3).。

浙教版九年级数学上册期末数学试卷(word解析版)

浙教版九年级数学上册期末数学试卷(word解析版)

九年级第一学期期末数学试卷一、选择题(本题有10小题,每小题4分,共40分.)1.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.2.下列事件中,是必然事件的是()A.射击运动员射击一次,命中靶心B.掷一次骰子,向上一面的点数是6C.经过有交通信号灯的路口,恰好遇到红灯D.将油滴在水中,油浮在水上面3.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)4.用配方法解方程x2+1=8x,变形后的结果正确的是()A.(x+4)2=15B.(x+4)2=17C.(x﹣4)2=15D.(x﹣4)2=17 5.用直角尺检查某圆弧形工件,根据下列检查的结果,能判断该工件一定是半圆的是()A.B.C.D.6.已知正六边形的边长为4,则这个正六边形外接圆的半径为()A.2B.C.D.47.正比例函数y=kx与反比例函数(k是常数,且k≠0)在同一平面直角坐标系的图象可能是()A.B.C.D.8.某服装店在“元旦”期间搞促销活动,一款服装原价400元,连续两次降价a%后售价为225元,下列所列方程中,正确的是()A.400(1+a%)2=225B.400(1﹣2a%)=225C.400(1﹣a%)2=225D.400(1﹣a2%)=2259.已知二次函数y=﹣x2+2x+a(a<0),当x=n时,y>0,则当x=n﹣2时,y的取值范围为()A.y>0B.y<0C.y=0D.不能确定10.对于平面上的点P和一条线l,点P与线l上各点的连线中,最短的线段的长度叫做点P 到线l的距离,记为d(P,l).以边长为6的正方形ABCD各边组成的折线为l,若d(P,l)=2,则满足这样条件的所有P点组成的图形(实线图)是()A.B.C.D.二、填空题(本大题共6小题,每小题5分,共30分.在答题卷的相应空格上填上正确的答案.)11.抛物线y=x2﹣1与y轴的交点坐标是.12.如图是用计算机模拟抛掷一枚啤酒瓶盖试验的结果.由此可以推断,抛掷该啤酒瓶盖一次,“凸面向上”的概率是(精确到0.001).13.如图,把一个半径为24cm的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是cm.14.已知反比例函数y=,若y>﹣1,则x的取值范围是.15.如图,在一块长22m,宽为14m的矩形空地内修建三条宽度相等的小路,其余部分种植花草.若花草的种植面积为240m2,则小路宽为m.16.如图,在Rt△ABC中,∠BAC=90°,AB=AC.把△ABC绕点B逆时针旋转得到△DBE,连接AE.当旋转角α(0°≤α≤180°)为度时,AE∥BC.三、解答题(本题有8小题,共80分.第17∼20题每题8分,第21题10分,第22,23题每题12分,第24题14分.)17.解方程:(1)5x(x﹣3)=2(x﹣3);(2)x2﹣4x+5=0.18.小明和爸爸玩“石头”、“剪刀”、“布”的游戏.游戏规则:每局游戏每人用一只手可以出石头、剪刀、布三种手势中的一种;石头赢剪刀,剪刀赢布,布赢石头;若两人出相同手势,则算平局.(1)在一局游戏中,小明决定出“剪刀”,求他赢爸爸的概率;(2)用列举法求一局游戏中两人出现平局的概率.19.如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上,∠BED=30°.(1)求∠AOD的度数;(2)若OA=2,求AB的长.20.一条抛物线由抛物线y=2x2平移得到,对称轴为直线x=﹣1,并且经过点(1,1).(1)求该抛物线的解析式,并指出其顶点坐标;(2)该抛物线由抛物线y=2x2经过怎样平移得到?21.如图,在边长为1的正方形网格中,线段AB绕某点顺时针旋转90°得到线段A1B1,点A与点A1是对应点,点B与点B1是对应点.(1)在图中画出旋转中心O(保留画图痕迹);(2)求旋转过程中点A经过的路径长.22.如图,取一根长1米的质地均匀木杆,用细绳绑在木杆的中点O处并将其吊起来,在中点的左侧距离中点30cm处挂一个重9.8牛的物体,在中点O右侧用一个弹簧秤向下拉,使木杆保持平衡,改变弹簧秤与中点O的距离L(单位:cm),看弹簧秤的示数F(单位:牛,精确到0.1牛)有什么变化.小慧在做此《数学活动》时,得到下表的数据:L/cm510152025303540F/牛58.860.219.614.711.89.88.47.4结果老师发现其中有一个数据明显有错误.(1)你认为当L=cm时所对应的F数据是明显错误的;(2)在已学过的函数中选择合适的模型求出F与L的函数关系式;(3)若弹簧秤的最大量程是60牛,求L的取值范围.23.如图,在⊙O中,弦AB与半径OA形成的夹角∠A=60°,OA=2,点C是优弧上的一动点,切线CD与射线AB相交于点D.(1)∠O与∠D满足的数量关系是;(2)当∠D=90°时,求阴影部分的面积;(3)当∠AOC是多少度时,△BCD为等腰三角形?通过推理说明理由.24.蔗糖是决定杨梅果实中糖度的主要成分.某果农种植东魁杨梅,5月26日检测到杨梅果实中的蔗糖含量为2%.从5月27日开始到6月1日,测量出蔗糖含量数据,并根据这些数据建立蔗糖含量变化率y(蔗糖含量变化率=当天的蔗糖含量﹣上一天的蔗糖含量/上一天的蔗糖含量×100%)与生长天数x(x=0表示5月26日)的函数关系是:y=﹣0.0021x2+0.063x﹣0.21.根据这一函数模型解决下列问题:(1)这种杨梅果实中蔗糖含量增长最快的是哪一天?请说明理由;(2)求出这种杨梅果实中蔗糖含量在哪一天最高;(3)当蔗糖含量高时,杨梅口感最好.计划用6天时间采摘完这批杨梅,请给这位果农提出采摘日期的合理化建议.参考答案一、选择题(本题有10小题,每小题4分,共40分.每小题有且只有一个答案正确,请在答题卷上填涂正确答案的代号,选错、多选和不选都不得分.)1.下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,也是中心对称图形.故选:A.2.下列事件中,是必然事件的是()A.射击运动员射击一次,命中靶心B.掷一次骰子,向上一面的点数是6C.经过有交通信号灯的路口,恰好遇到红灯D.将油滴在水中,油浮在水上面【分析】根据随机事件,必然事件,不可能事件的特点判断即可.解:A.射击运动员射击一次,命中靶心,这是随机事件,故A不符合题意;B.掷一次骰子,向上一面的点数是6,这是随机事件,故B不符合题意;C.经过有交通信号灯的路口,恰好遇到红灯,这是随机事件,故C不符合题意;D.将油滴在水中,油浮在水上面,这是必然事件,故D符合题意;故选:D.3.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标,从而得出对称轴.解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.4.用配方法解方程x2+1=8x,变形后的结果正确的是()A.(x+4)2=15B.(x+4)2=17C.(x﹣4)2=15D.(x﹣4)2=17【分析】先移项得到x2﹣8x=﹣1,然后进行配方得到(x﹣4)2=15,据此选项正确选项.解:∵x2+1=8x,∴x2﹣8x=﹣1,∴x2﹣8x+16﹣16=﹣1,∴(x﹣4)2=15,故选:C.5.用直角尺检查某圆弧形工件,根据下列检查的结果,能判断该工件一定是半圆的是()A.B.C.D.【分析】根据90°的圆周角所对的弦是直径进行判断.解:因为90°的圆周角所对的弦是直径,所以选项B中的圆弧为半圆形.故选:B.6.已知正六边形的边长为4,则这个正六边形外接圆的半径为()A.2B.C.D.4【分析】如图,求出圆心角∠AOB=60°,得到△OAB为等边三角形,即可解决问题.解:如图,AB为⊙O内接正六边形的一边;则∠AOB==60°,∵OA=OB,∴△OAB为等边三角形,∴AO=AB=4.∴这个正六边形外接圆的半径为4,故选:D.7.正比例函数y=kx与反比例函数(k是常数,且k≠0)在同一平面直角坐标系的图象可能是()A.B.C.D.【分析】因为k的符号不明确,所以应分两种情况讨论.解:k>0时,函数y=kx与y=同在一、三象限,C选项符合;k<0时,函数y=kx与y=同在二、四象限,无此选项.故选:C.8.某服装店在“元旦”期间搞促销活动,一款服装原价400元,连续两次降价a%后售价为225元,下列所列方程中,正确的是()A.400(1+a%)2=225B.400(1﹣2a%)=225C.400(1﹣a%)2=225D.400(1﹣a2%)=225【分析】利用经过两次降价后的价格=原价×(1﹣每次降价的百分数)2,即可得出关于a的一元二次方程,此题得解.解:依题意得:400(1﹣a%)2=225,故选:C.9.已知二次函数y=﹣x2+2x+a(a<0),当x=n时,y>0,则当x=n﹣2时,y的取值范围为()A.y>0B.y<0C.y=0D.不能确定【分析】根据抛物线的对称轴是直线x=1和二次函数的性质解答.解:由二次函数y=﹣x2+2x+a(a<0)知抛物线与x轴有两个交点.∴Δ=22+4a>0.又∵该抛物线的对称轴是直线x=1且当x=n时,y>0,∴0<n<2.∴n﹣2<0,∴当x=n﹣2时,y的取值范围为y<0.故选:B.10.对于平面上的点P和一条线l,点P与线l上各点的连线中,最短的线段的长度叫做点P 到线l的距离,记为d(P,l).以边长为6的正方形ABCD各边组成的折线为l,若d(P,l)=2,则满足这样条件的所有P点组成的图形(实线图)是()A.B.C.D.【分析】首先根据题目给的信息,可以确定正方形内外都有满足条件的点,可排除A选项,再比较BCD选项的不同点进行分析即可选出答案.解:根据题目条件,此正方形内外均有满足d(P,l)=2的点,因此可排除A选项,其次,正方形内部满足d(P,l)=2的点应是一个小正方形,可排除D选项,最后,正方形外部满足d(P,l)=2的点4个角落应是圆弧形,可排除B选项,故选:C.二、填空题(本大题共6小题,每小题5分,共30分.在答题卷的相应空格上填上正确的答案.)11.抛物线y=x2﹣1与y轴的交点坐标是(0,﹣1).【分析】将x=0代入抛物线解析式,求出相应的y的值,即可得到抛物线y=x2﹣1与y轴解:∵抛物线y=x2﹣1,∴当x=0时,y=﹣1,即抛物线y=x2﹣1与y轴的交点坐标是(0,﹣1),故答案为:(0,﹣1).12.如图是用计算机模拟抛掷一枚啤酒瓶盖试验的结果.由此可以推断,抛掷该啤酒瓶盖一次,“凸面向上”的概率是0.440(精确到0.001).【分析】根据多次重复试验中事件发生的频率估计事件发生的概率即可.解:由图知,随着抛掷次数的逐渐增大,“凸面向上”的频率逐渐稳定在常数0.440附近,所以可以推断,抛掷该啤酒瓶盖一次,“凸面向上”的概率是0.440,故答案为:0.440.13.如图,把一个半径为24cm的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是8cm.【分析】设圆锥底面半径为rcm,利用弧长公式得到2πr=,然后解关于r 的方程即可.解:设圆锥底面半径为rcm,根据题意得2πr=,解得r=8,即圆锥底面半径是8cm.故答案为:8.14.已知反比例函数y=,若y>﹣1,则x的取值范围是x<﹣3或x>0.【分析】由k的值,可以得到该函数图象在第几象限,从而可以得到相应的不等式,从而可以得到x的取值范围.解:∵y=,∴该函数图象在第一、三象限,当x<0时,y<0;当x>0时,y>0;∴当y>﹣1时,则>﹣1,x<0,解得,x<﹣3或x>0,故答案为:x<﹣3或x>0.15.如图,在一块长22m,宽为14m的矩形空地内修建三条宽度相等的小路,其余部分种植花草.若花草的种植面积为240m2,则小路宽为2m.【分析】设小路宽为xm,则种植花草部分的面积等同于长(22﹣x)m,宽(14﹣x)m的矩形的面积,根据花草的种植面积为240m2,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论.解:设小路宽为xm,则种植花草部分的面积等同于长(22﹣x)m,宽(14﹣x)m的矩形的面积,依题意得:(22﹣x)(14﹣x)=240,整理得:x2﹣36x+68=0,解得:x1=2,x2=34(不合题意,舍去).故答案为:2.16.如图,在Rt△ABC中,∠BAC=90°,AB=AC.把△ABC绕点B逆时针旋转得到△DBE,连接AE.当旋转角α(0°≤α≤180°)为30或150度时,AE∥BC.【分析】分两种情形:如图1中,过点E作EQ⊥BC于点Q,根点A作AP⊥BC于点P.证明EQ=BE,可得∠EBQ=30°,如图2中,当AE∥BC时,同法可证∠EBQ=30°,解:如图1中,过点E作EQ⊥BC于点Q,根点A作AP⊥BC于点P.∵AB=AC,AP⊥BC,∴BP=PC,∴AP=BC,∵AE∥BC,AP⊥BC,EQ⊥BC,∴EQ=AP=BC,∵BE=BC,∴EQ=BE,∴∠EBC=30°,如图2中,当AE∥BC时,同法可证∠EBQ=30°,∴∠CBE=180°﹣30°=150°,故答案为:30或150.三、解答题(本题有8小题,共80分.第17∼20题每题8分,第21题10分,第22,23题每题12分,第24题14分.)17.解方程:(1)5x(x﹣3)=2(x﹣3);(2)x2﹣4x+5=0.【分析】(1)方程移项后,利用因式分解法求出解即可;(2)法1:方程利用公式法求出解即可;法2:方程利用配方法求出解即可.解:(1)移项得:5x(x﹣3)﹣2(x﹣3)=0,分解因式得:(5x﹣2)(x﹣3)=0,所以5x﹣2=0或x﹣3=0,解得:x1=,x2=3;(2)法1:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=16﹣20=﹣4<0,∴原方程无实数根;法2:方程整理得:x2﹣4x=﹣5,配方得:x2﹣4x+4=﹣1,即(x﹣2)2=﹣1<0,则此方程无实数根.18.小明和爸爸玩“石头”、“剪刀”、“布”的游戏.游戏规则:每局游戏每人用一只手可以出石头、剪刀、布三种手势中的一种;石头赢剪刀,剪刀赢布,布赢石头;若两人出相同手势,则算平局.(1)在一局游戏中,小明决定出“剪刀”,求他赢爸爸的概率;(2)用列举法求一局游戏中两人出现平局的概率.【分析】(1)直接由概率公式求解即可;(2)用列表法列举出9种等可能结果,其中一局游戏中两人出现平局的结果有3种,再由概率公式求解即可.解:(1)在一局游戏中,小明决定出“剪刀”,则他赢爸爸的概率为;(2)列表如下:石头剪刀布石头(石头,石头)(石头,剪刀)(石头,布)剪刀(剪刀,石头)(剪刀,剪刀)(剪刀,布)布(布,石头)(布,剪刀)(布,布)总共有9种等可能结果,其中一局游戏中两人出现平局的结果有3种,即(石头,石头)、(剪刀,剪刀)、(布,布),∴一局游戏中两人出现平局的概率为=.19.如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上,∠BED=30°.(1)求∠AOD的度数;(2)若OA=2,求AB的长.【分析】(1)连接OB,由∠DEB=30°,推出∠DOB=60°,由OD⊥AB,根据垂径定理即可推出∠AOD=60°;(2)根据(1)所推出的结论,求出OC=1,利用勾股定理求出AC,可得结论.解:(1)连接OB,则∠BOD=2∠BED=2×30°=60°,∵OD⊥AB∴∠AOD=∠BOD=60°;(2)∵OD⊥AB,∠AOD=60°,∴∠OAC=30°,∴OC=OA=2=1,∴AC=,∴AB=2AC=2.20.一条抛物线由抛物线y=2x2平移得到,对称轴为直线x=﹣1,并且经过点(1,1).(1)求该抛物线的解析式,并指出其顶点坐标;(2)该抛物线由抛物线y=2x2经过怎样平移得到?【分析】(1)根据平移的规律平移后的抛物线为y=2(x+1)2+k,代入点(1,1),即可求出解析式;(2)由抛物线的顶点式即可求得顶点坐标,根据左加右减,上加下减可得出答案.解:(1)设所求抛物线为y=2(x+1)2+k,∵过(1,1),则1=2(1+1)2+k,解得k=﹣7,∴所求抛物线为y=2(x+1)2﹣7;∴顶点坐标是(﹣1,﹣7).(2)所求抛物线y=2(x+1)2﹣7是由抛物线y=2x2向左平移1个单位长度,再向下平移7个单位长度得到.21.如图,在边长为1的正方形网格中,线段AB绕某点顺时针旋转90°得到线段A1B1,点A与点A1是对应点,点B与点B1是对应点.(1)在图中画出旋转中心O(保留画图痕迹);(2)求旋转过程中点A经过的路径长.【分析】(1)根据旋转的性质可得,点O为线段AA1、BB1的垂直平分线的交点;(2)根据弧长公式计算即可.解:(1)画出线段AA1、BB1的垂直平分线,交点即为点O,(2)由勾股定理得,OA==2,∴点A经过的路线长为.22.如图,取一根长1米的质地均匀木杆,用细绳绑在木杆的中点O处并将其吊起来,在中点的左侧距离中点30cm处挂一个重9.8牛的物体,在中点O右侧用一个弹簧秤向下拉,使木杆保持平衡,改变弹簧秤与中点O的距离L(单位:cm),看弹簧秤的示数F(单位:牛,精确到0.1牛)有什么变化.小慧在做此《数学活动》时,得到下表的数据:L/cm510152025303540F/牛58.860.219.614.711.89.88.47.4结果老师发现其中有一个数据明显有错误.(1)你认为当L=10cm时所对应的F数据是明显错误的;(2)在已学过的函数中选择合适的模型求出F与L的函数关系式;(3)若弹簧秤的最大量程是60牛,求L的取值范围.【分析】(1)根据表格数据,可发现L与F的乘积为定值294,从而可得答案;(2)根据FL=294,可得F与L的函数解析式;(3)根据弹簧秤的最大量程是60牛,即可得到结论.解:(1)根据杠杆原理知F•L=30×9.8.当L=10cm时,F=29.4牛顿.所以表格中数据错了;(2)根据杠杆原理知F•L=30×9.8.∴F与L的函数关系式为:;(3)当F=60牛时,由得L=4.9,根据反比例函数的图象与性质可得L≥4.9,∵由题意可知L≤50,∴L的取值范围是4.9cm≤L≤50cm.23.如图,在⊙O中,弦AB与半径OA形成的夹角∠A=60°,OA=2,点C是优弧上的一动点,切线CD与射线AB相交于点D.(1)∠O与∠D满足的数量关系是∠O+∠D=210°;(2)当∠D=90°时,求阴影部分的面积;(3)当∠AOC是多少度时,△BCD为等腰三角形?通过推理说明理由.【分析】(1)根据切线性质得:∠C=90°,进而根据四边形内角是360°可求得结果;(2)连接OB,BC,可推出△AOB是等边三角形.进而得出∠BOC=∠AOC﹣∠AOB=60°.从而求得S扇形OBC,连接BC,则△BOC是等边三角形,从而求出∠BCD,进而计算出△BCD的面积,进一步求得结果;(3)设∠AOC=x,连接BC,在上任取一点Q,连接AQ,CQ,可求得∠CBD=,由(1)可得:∠D=210°﹣x,当BD=BC时,从而2∠D+∠DBC=180°,从而求得,当CD=BC和当BD=CD时,同样方法求得结果.解:(1)∵DC是⊙O的切线,∴∠C=90°,∵∠O+∠A+∠D+∠C=360°,∴∠O+60°+∠D+90°=360°,∴∠O+∠D=210°,故答案是:∠O+∠D=210°;(2)如图1,连接OB,BC,∵∠D=90°,∠AOC+∠D=210°,∴∠AOC=120°.∵∠A=60°,OA=OB,∴△AOB是等边三角形.∴∠BOC=∠AOC﹣∠AOB=60°.∴S扇形OBC=,连接BC,则△BOC是等边三角形,∴∠BCD=30°,在Rt△BCD中,BD=,∴CD=,∴==,∵S△BOC==,∴S四边形BOCD=S△BCD+S△BOC=,∴S阴=S四边形BOCD﹣S扇形OBC=;(3)如图2,设∠AOC=x,连接BC,在上任取一点Q,连接AQ,CQ,∵=,∴∠Q==,∵点A、B、C、Q共圆,∴∠CBD=∠Q=,由(1)可得:∠D=210°﹣x,当BD=BC时,∴∠D=∠BCD,由∠D+∠BCD+∠CBD=180°得,2∠D+∠DBC=180°,∴2(210°﹣x)+=180°,∴x=160°,即:∠BOC=160°,当CD=BC时,∴∠D=∠DBC,∴210°﹣x=,∴x=140°,当BD=CD时,即:∠BOC=140°,∴∠DBC=∠DCB,∴2∠DBC+∠D=180°,∴2×+(210°﹣x)=180°,综上所述,∠AOC为140°或160°.24.蔗糖是决定杨梅果实中糖度的主要成分.某果农种植东魁杨梅,5月26日检测到杨梅果实中的蔗糖含量为2%.从5月27日开始到6月1日,测量出蔗糖含量数据,并根据这些数据建立蔗糖含量变化率y(蔗糖含量变化率=当天的蔗糖含量﹣上一天的蔗糖含量/上一天的蔗糖含量×100%)与生长天数x(x=0表示5月26日)的函数关系是:y=﹣0.0021x2+0.063x﹣0.21.根据这一函数模型解决下列问题:(1)这种杨梅果实中蔗糖含量增长最快的是哪一天?请说明理由;(2)求出这种杨梅果实中蔗糖含量在哪一天最高;(3)当蔗糖含量高时,杨梅口感最好.计划用6天时间采摘完这批杨梅,请给这位果农提出采摘日期的合理化建议.【分析】(1)求出顶点横坐标即可得答案;(2)求出y=0时x的值,即可得答案;(3)在杨梅果实中蔗糖含量最高的6天采摘,而当x>26时,含糖量降低的速度比x=23时上升的速度快,解可得到答案.解:(1)∵y=﹣0.0021x2+0.063x﹣0.21=﹣0.0021(x﹣15)2+0.2625,∴在第15天,即6月10日,这种杨梅果实中蔗糖含量增长最快;(2)当蔗糖含量比前一天增加时,y>0,当蔗糖含量比前一天减少时,y<0,∴先要求使y=0时对应的x的值,当y=0时,﹣0.0021x2+0.063x﹣0.21=0,整理得:x2﹣30x+100=0,解这个方程得:x1=15﹣5,x2=15+526.18,∵x是整数,x=26时,y>0,蔗糖含量比第25天增加;而当x=27时,y<0,蔗糖含量比第26天减少;∴这种杨梅果实中蔗糖含量从增加到减少的临界时间是第26天,即6月21日这种杨梅果实中蔗糖含量最高;(3)根据(2)知,当4≤x≤26时,随着时间增加,蔗糖含量增加,大约当x=26时,杨梅果实中蔗糖含量最高,当x≥27时,蔗糖含量随着时间的增加而降低,根据二次函数的性质,当x>26时,比x=23离对称轴x=15远,∴当x>26时,含糖量降低的速度比x=23时上升的速度快,∴在第23,24,25,26,27,28天(即6月18日——6月23日)采摘可以保证蔗糖含量高,口感好,建议在这几天采摘.。

九年级上册吉林数学期末试卷综合测试(Word版 含答案)

九年级上册吉林数学期末试卷综合测试(Word版 含答案)

九年级上册吉林数学期末试卷综合测试(Word 版 含答案)一、选择题1.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 722.下图是甲、乙两人2019年上半年每月电费支出的统计,则他们2019年上半年月电费支出的方差2S 甲和2S 乙的大小关系是( )A .2S 甲>2S 乙 B .2S 甲=2S 乙 C .2S 甲<2S 乙 D .无法确定 3.下列方程有两个相等的实数根是( )A .x 2﹣x +3=0B .x 2﹣3x +2=0C .x 2﹣2x +1=0D .x 2﹣4=04.某班7名女生的体重(单位:kg )分别是35、37、38、40、42、42、74,这组数据的众数是( ) A .74B .44C .42D .405.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上面的数字大于4的概率是( ) A .12B .13C .23D .166.关于2,6,1,10,6这组数据,下列说法正确的是( ) A .这组数据的平均数是6 B .这组数据的中位数是1 C .这组数据的众数是6 D .这组数据的方差是10.27.已知⊙O 的半径为1,点P 到圆心的距离为d ,若关于x 的方程x 2-2x+d=0有实数根,则点P ( )A .在⊙O 的内部B .在⊙O 的外部C .在⊙O 上D .在⊙O 上或⊙O 内部8.已知a 是方程x 2+3x ﹣1=0的根,则代数式a 2+3a+2019的值是( )A .2020B .﹣2020C .2021D .﹣20219.已知一组数据共有20个数,前面14个数的平均数是10,后面6个数的平均数是15,则这20个数的平均数是( ) A .23B .1.15C .11.5D .12.510.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A .144(1﹣x )2=100 B .100(1﹣x )2=144 C .144(1+x )2=100 D .100(1+x )2=144 11.在4张相同的小纸条上分别写上数字﹣2、0、1、2,做成4支签,放在一个盒子中,搅匀后从中任意抽出1支签(不放回),再从余下的3支签中任意抽出1支签,则2次抽出的签上的数字的和为正数的概率为( ) A .14B .13C .12D .2312.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且∠D =40°,则∠PCA 等于( )A .50°B .60°C .65°D .75°二、填空题13.如图,⊙O 是△ABC 的外接圆,∠A =30°,BC =4,则⊙O 的直径为___.14.如图,A 、B 、C 是⊙O 上三点,∠ACB =30°,则∠AOB 的度数是_____.15.已知线段4AB =,点P 是线段AB 的黄金分割点(AP BP >),那么线段AP =______.(结果保留根号)16.某企业2017年全年收入720万元,2019年全年收入845万元,若设该企业全年收入的年平均增长率为x ,则可列方程____.17.若x 1,x 2是一元二次方程2x 2+x -3=0的两个实数根,则x 1+x 2=____.18.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表,x 6.17 6.18 6.19 6.20y﹣0.03﹣0.010.020.04则方程ax2+bx+c=0的一个解的范围是_____.19.在▱ABCD中,∠ABC的平分线BF交对角线AC于点E,交AD于点F.若ABBC=35,则EFBF的值为_____.20.如图,点G为△ABC的重心,GE∥AC,若DE=2,则DC=_____.21.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m个白球和4个黑球,使得摸到白球的概率为35,则m=__.22.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm=,扇形的圆心角120θ=,则该圆锥的母线长l为___cm.23.将抛物线y=-5x2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.24.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是2S甲、2S乙,且22S S>甲乙,则队员身高比较整齐的球队是_____.三、解答题25.5G 网络比4G 网络的传输速度快10倍以上,因此人们对5G 产品充满期待.华为集团计划2020年元月开始销售一款5G 产品.根据市场营销部的规划,该产品的销售价格将随销售月份的变化而变化.若该产品第x 个月(x 为正整数)销售价格为y 元/台,y 与x 满足如图所示的一次函数关系:且第x 个月的销售数量p (万台)与x 的关系为1p x =+.(1)该产品第6个月每台销售价格为______元;(2)求该产品第几个月的销售额最大?该月的销售价格是多少元/台?(3)若华为董事会要求销售该产品的月销售额不低于27500万元,则预计销售部符合销售要求的是哪几个月?(4)若每销售1万台该产品需要在销售额中扣除m 元推广费用,当68x ≤≤时销售利润最大值为22500万元时,求m 的值.26.(1)如图①,在△ABC 中,AB =m ,AC =n (n >m ),点P 在边AC 上.当AP = 时,△APB ∽△ABC ;(2)如图②,已知△DEF (DE >DF ),请用直尺和圆规在直线DF 上求作一点Q ,使DE 是线段DF 和DQ 的比例项.(保留作图痕迹,不写作法)27.某校七年级一班和二班各派出10名学生参加一分钟跳绳比赛,成绩如下表:(1)两个班级跳绳比赛成绩的众数、中位数、平均数、方差如下表:表中数据a = ,b = ,c = .(2)请用所学的统计知识,从两个角度比较两个班跳绳比赛的成绩. 28.解方程: (1)x 2+4x ﹣21=0 (2)x 2﹣7x ﹣2=029.如图,C 是直径AB 延长线上的一点,CD 为⊙O 的切线,若∠C =20°,求∠A 的度数.30.如图,在矩形ABCD 中,AB=2,E 为BC 上一点,且BE=1,∠AED=90°,将AED 绕点E 顺时针旋转得到A ED ''△,A′E 交AD 于P , D′E 交CD 于Q ,连接PQ ,当点Q 与点C 重合时,AED 停止转动. (1)求线段AD 的长;(2)当点P 与点A 不重合时,试判断PQ 与A D ''的位置关系,并说明理由; (3)求出从开始到停止,线段PQ 的中点M 所经过的路径长.31.如图,在平面直角坐标系中,一次函数y =12x +2的图象与y 轴交于A 点,与x 轴交于B 点,⊙P 5P 在x 轴上运动.(1)如图1,当圆心P 的坐标为(1,0)时,求证:⊙P 与直线AB 相切;(2)在(1)的条件下,点C 为⊙P 上在第一象限内的一点,过点C 作⊙P 的切线交直线AB 于点D ,且∠ADC =120°,求D 点的坐标;(3)如图2,若⊙P 向左运动,圆心P 与点B 重合,且⊙P 与线段AB 交于E 点,与线段BO 相交于F 点,G 点为弧EF 上一点,直接写出12AG +OG 的最小值 . 32.数学概念若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 . (2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB DC = ②如图②,BC BD =深入思考(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法: ①直角三角形的内心是它的等角点; ②等腰三角形的内心和外心都是它的等角点; ③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题; 【详解】解:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC , ∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH , ∴S 平行四边形ABCD =6 S △AGH , ∴S △AGH :ABCD S 平行四边形=1:6, ∵E 、F 分别是边BC 、CD 的中点,∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFCABCDSS =四边形,∴1176824AGHEFCABCDSSS +=+=四边形=7∶24, 故选B. 【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.2.A解析:A 【解析】 【分析】方差的大小反映数据的波动大小,方差越小,数据越稳定,根据题意可判断乙的数据比甲稳定,所以乙的方差小于甲. 【详解】解:由题意可知,乙的数据比甲稳定,所以2S 甲>2S 乙 故选:A 【点睛】本题考查方差的定义与意义,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.3.C解析:C 【解析】 【分析】先根据方程求出△的值,再根据根的判别式的意义判断即可. 【详解】 A 、x 2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程没有实数根,故本选项不符合题意; B 、x 2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有两个不相等的实数根,故本选项不符合题意; C 、x 2﹣2x+1=0, △=(﹣2)2﹣4×1×1=0,所以方程有两个相等的实数根,故本选项符合题意; D 、x 2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有两个不相等的实数根,故本选项不符合题意; 故选:C . 【点睛】本题考查了根的判别式,能熟记根的判别式的意义是解此题的关键.4.C解析:C 【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C. 考点:众数.5.B解析:B 【解析】 【分析】直接得出朝上面的数字大于4的个数,再利用概率公式求出答案. 【详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次, ∴共有6种情况,其中朝上面的数字大于4的情况有2种, ∴朝上一面的数字是朝上面的数字大于4的概率为:2163=, 故选:B . 【点睛】本题考查简单的概率求法,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键.6.C解析:C 【解析】 【分析】先把数据从小到大排列,然后根据算术平均数,中位数,众数的定义得出这组数据的平均数、中位数、众数,再利用求方差的计算公式求出这组数据的方差,再逐项判定即可. 【详解】解:数据从小到大排列为:1,2,6,6,10, 中位数为:6; 众数为:6;平均数为:()112661055⨯++++=;方差为:()()()()()2222211525656510510.45⎡⎤⨯-+-+-+-+-=⎣⎦.故选:C . 【点睛】本题考查的知识点是平均数,中位数,众数,方差的概念定义,熟记定义以及方差公式是解此题的关键.7.D解析:D【解析】【分析】先根据条件x 2 -2x+d=0有实根得出判别式大于或等于0,求出d的范围,进而得出d与r 的数量关系,即可判断点P和⊙O的关系..【详解】解:∵关于x的方程x 2 -2x+d=0有实根,∴根的判别式△=(-2) 2 -4×d≥0,解得d≤1,∵⊙O的半径为r=1,∴d≤r∴点P在圆内或在圆上.故选:D.【点睛】本题考查了点和圆的位置关系,由点到圆心的距离和半径的数量关系对点和圆的位置关系作出判断是解答此题的重要途径,即当d>r时,点在圆外,当d=r时,点在圆上,当d<r 时,点在圆内.8.A解析:A【解析】【分析】根据一元二次方程的解的定义,将a代入已知方程,即可求得a2+3a的值,然后再代入求值即可.【详解】解:根据题意,得a2+3a﹣1=0,解得:a2+3a=1,所以a2+3a+2019=1+2019=2020.故选:A.【点睛】此题考查的是一元二次方程的解,掌握一元二次方程解的定义是解决此题的关键9.C解析:C【解析】【分析】由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数.【详解】解:由题意得:(10×14+15×6)÷20=11.5,故选:C.【点睛】此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可..10.D解析:D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选D.点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.11.C解析:C【解析】【分析】画树状图展示所有12种等可能的结果数,再找出2次抽出的签上的数字和为正数的结果数,最后根据概率公式计算即可.【详解】根据题意画图如下:共有12种等情况数,其中2次抽出的签上的数字的和为正数的有6种,则2次抽出的签上的数字的和为正数的概率为612=12;故选:C.【点睛】本题考查列表法与树状图法、概率计算题,解题的关键是画树状图展示出所有12种等可能的结果数及准确找出2次抽出的签上的数字和为正数的结果数,12.C解析:C【解析】【分析】根据切线的性质,由PD切⊙O于点C得到∠OCD=90°,再利互余计算出∠DOC=50°,由∠A=∠ACO,∠COD=∠A+∠ACO,所以1252A COD∠=∠=︒,然后根据三角形外角性质计算∠PCA的度数.【详解】解:∵PD切⊙O于点C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠DOC=90°﹣40°=50°,∵OA=OC,∴∠A=∠ACO,∵∠COD=∠A+∠ACO,∴1252A COD∠=∠=︒,∴∠PCA=∠A+∠D=25°+40°=65°.故选C.【点睛】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形外角性质等知识;熟练掌握切线的性质与三角形外角性质是解题的关键.二、填空题13.8【解析】【分析】连接OB,OC,依据△BOC是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O的直径为8.【详解】解:如图,连接OB,OC,∵∠A=30°,∴∠BOC=解析:8【解析】【分析】连接OB,OC,依据△BOC是等边三角形,即可得到BO=CO=BC=BC=4,进而得出⊙O的直径为8.【详解】解:如图,连接OB,OC,∵∠A=30°,∴∠BOC=60°,∴△BOC是等边三角形,又∵BC=4,∴BO=CO=BC=BC=4,∴⊙O的直径为8,故答案为:8.【点睛】本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.14.60°【解析】【分析】直接利用圆周角定理,即可求得答案.【详解】∵A、B、C是⊙O上三点,∠ACB=30°,∴∠AOB的度数是:∠AOB =2∠ACB=60°.故答案为:60°.【点解析:60°【解析】【分析】直接利用圆周角定理,即可求得答案.【详解】∵A、B、C是⊙O上三点,∠ACB=30°,∴∠AOB的度数是:∠AOB=2∠ACB=60°.故答案为:60°.【点睛】考查了圆周角定理的运用,同弧或等弧所对的圆周角等于圆心角的一半.15.【解析】【分析】根据黄金比值为计算即可.【详解】解:∵点P 是线段AB 的黄金分割点(AP>BP )∴故答案为:.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.解析:2【解析】【分析】计算即可. 【详解】解:∵点P 是线段AB 的黄金分割点(AP>BP )∴AP 2AB ==故答案为:2.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.16.720(1+x )2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x ,根据2017年全年收入720万元,2019 解析:720(1+x )2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x ,根据2017年全年收入720万元,2019年全年收入845万元,即可得出方程.【详解】解:设该企业全年收入的年平均增长率为x ,则2018的全年收入为:720×(1+x )2019的全年收入为:720×(1+x )2.那么可得方程:720(1+x )2=845.故答案为:720(1+x )2=845.【点睛】本题考查了一元二次方程的运用,解此类题的关键是掌握等量关系式:增长后的量=增长前的量×(1+增长率).17.【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═故答案为.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1解析:1 2 -【解析】【分析】直接利用根与系数的关系求解.【详解】解:根据题意得x1+x2═12 ba-=-故答案为12 -.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程两个为x1,x2,则x1+x2=ba-,x1•x2=ca.18.18<x<6.19【解析】【分析】根据表格中自变量、函数的值的变化情况,得出当y=0时,相应的自变量的取值范围即可.【详解】由表格数据可得,当x=6.18时,y=﹣0.01,当x=6.19解析:18<x<6.19【解析】【分析】根据表格中自变量、函数的值的变化情况,得出当y=0时,相应的自变量的取值范围即可.【详解】由表格数据可得,当x =6.18时,y =﹣0.01,当x =6.19时,y =0.02,∴当y =0时,相应的自变量x 的取值范围为6.18<x <6.19,故答案为:6.18<x <6.19.【点睛】本题考查了用图象法求一元二次方程的近似根,解题的关键是找到y 由正变为负时,自变量的取值即可.19..【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD∥BC,∴∠AFB=∠EBC,∵B 解析:38.【解析】【分析】根据平行四边形的性质和角平分线的性质,得出边的关系,进而利用相似三角形的性质求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AFB =∠EBC ,∵BF 是∠ABC 的角平分线,∴∠EBC =∠ABE =∠AFB ,∴AB =AF , ∴35AB AF BC BC ==, ∵AD ∥BC ,∴△AFE ∽△CBE , ∴35AF EF BC BE ==, ∴38EF BF =;故答案为:38.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知平行四边形的性质、角平分线的性质及相似三角形的判定定理.20.【解析】【分析】根据重心的性质可得AG:DG=2:1,然后根据平行线分线段成比例定理可得==2,从而求出CE,即可求出结论.【详解】∵点G为△ABC的重心,∴AG:DG=2:1,∵GE解析:【解析】【分析】根据重心的性质可得AG:DG=2:1,然后根据平行线分线段成比例定理可得CEDE=AGDG=2,从而求出CE,即可求出结论.【详解】∵点G为△ABC的重心,∴AG:DG=2:1,∵GE∥AC,∴CEDE=AGDG=2,∴CE=2DE=2×2=4,∴CD=DE+CE=2+4=6.故答案为:6.【点睛】此题考查的是重心的性质和平行线分线段成比例定理,掌握重心的性质和平行线分线段成比例定理是解决此题的关键.21.5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,解得m=5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公解析:5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,10m 3610m 45+=+++ 解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公式列出方程是解题的关键.22.【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长cm ,设圆锥的母线长为,则: ,解得,故答案为.【点睛】本解析:【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长224ππ=⨯=cm ,设圆锥的母线长为R ,则:1204180R ππ⨯=, 解得6R =,故答案为6.【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为: 180n r π. 23.y =-5(x+2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x2先向左平移2个单位长度,再解析:y =-5(x +2)2-3【解析】【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【详解】解:∵抛物线y=-5x 2先向左平移2个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(-2,-3),∴所得到的新的抛物线的解析式为y=-5(x+2)2-3.故答案为:y=-5(x+2)2-3.【点睛】本题考查了二次函数图象与几何变换,掌握平移的规律:左加右减,上加下减是关键.24.乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵,∴队员身解析:乙【解析】【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵22S S 甲乙,∴队员身高比较整齐的球队是乙,故答案为:乙.【点睛】本题考查方差.解题关键在于知道方差是用来衡量一组数据波动大小的量三、解答题25.(1)4500元;(2)7,4000;(3)4、5、6、7、8、9、10;(4)90007. 【解析】【分析】(1)利用待定系数法将(2,6500),(4,5500)代入y=kx+b 求k,b 确定表达式,求当x=6时的y 值即可;(2)求销售额w 与x 之间的函数关系式,利用二次函数的最大值问题求解;(3)分三种情况讨论假设6月份,7月份,8月份的最大销售为22500万元时,求相应的m 值,再分别求出此时另外两月的总利润,通过比较作出判断.【详解】设y=kx+b,根据图象将(2,6500),(4,5500)代入得, 2650045500k b k b , 解得,5007500k b ,∴y= -500x+7500,当x=6时,y= -500×6+7500=4500元;(2)设销售额为z 元,z=yp=( -500x+7500 )(x+1)= -500x 2+7000x+7500= -500(x-7)2+32000,∵z 与x 成二次函数,a= -500<0,开口向下,∴当x=7时,z 有最大值,当x=7时,y=-500×7+7500=4000元.答:该产品第7个月的销售额最大,该月的销售价格是4000元/台.(3)z 与x 的图象如图的抛物线当y=27500时,-500(x-7)2+32000=27500,解得,x 1=10,x 2=4∴预计销售部符合销售要求的是4,5,6,7,8,9,10月份.(4)设总利润为W= -500x 2+7000x+7500-m(x+1)= -500x 2+(7000-m)x+7500-m,第一种情况:当x=6时,-500×62+(7000-m) ×6+7500-m=22500, 解得,m=90007, 此时7月份的总利润为-500×72+(7000-90007) ×7+7500-90007≈17714<22500, 此时8月份的总利润为-500×82+(7000-90007) ×8+7500-90007≈19929<22500, ∴当m=90007时,6月份利润最大,且最大值为22500万元. 第二种情况:当x=7时,-500×72+(7000-m) ×7+7500-m=22500,解得,m=1187.5 ,此时6月份的总利润为-500×62+(7000-1187.5) ×6+7500-1187.5=23187.5>22500,∴当m=1187.5不符合题意,此种情况不存在.第三种情况:当x=8时,-500×82+(7000-m) ×8+7500-m=22500,解得,m=1000 ,此时7月份的总利润为-500×72+(7000-1000) ×7+7500-1000=24000>22500,∴当m=1000不符合题意,此种情况不存在.∴当68x ≤≤时销售利润最大值为22500万元时,此时m=90007. 【点睛】本题考查二次函数的实际应用,最大利润问题,利用二次函数的最值性质是解决实际问题的重要途径. 26.(1)2m n;(2)见解析. 【解析】【分析】(1)根据相似三角形的判定方法进行分析即可;(2)直接利用相似三角形的判定方法以及结合做一角等于已知角进而得出答案.【详解】(1)解:要使△APB ∽△ABC 成立,∠A 是公共角,则AB AC AC AP =,即m n n AP =,∴AP=2m n.(2)解:作∠DEQ =∠F,如图点Q 就是所求作的点【点睛】本题考查了相似变换,正确掌握相似三角形的判定方法是解题的关键.27.解:(1)a =135,b =134.5,c =1.6;(2)①从众数(或中位数)来看,一班成绩比二班要高,所以一班的成绩好于二班;②一班和二班的平均成绩相同,说明他们的水平相当;③一班成绩的方差小于二班,说明一班成绩比二班稳定.【解析】【分析】(1)根据表中数据和中位数的定义、平均数和方差公式进行计算可求出表中数据; (2)从不同角度评价,标准不同,会得到不同的结果.【详解】解:(1)由表可知,一班135出现次数最多,为5次,故众数为135;由于表中数据为从小到大依次排列,所以处于中间位置的数为134和135,中位数为1341352+=134.5; 根据方差公式:s 2=()()()()()2222211321351341355135135213613513713510⎡⎤-+-+-+-+-⎣⎦=1.6,∴a =135,b =134.5,c =1.6; (2)①从众数看,一班一分钟跳绳135的人数最多,二班一分钟跳绳134的人数最多;所以一班的成绩好于二班;②从中位数看,一班一分钟跳绳135以上的人数比二班多;③从方差看,S 2一<S 2二;一班成绩波动小,比较稳定;④从最好成绩看,二班速度最快的选手比一班多一人;⑤一班和二班的平均成绩相同,说明他们的水平相当.【点睛】此题是一道实际问题,不仅考查了统计平均数、中位数、众数和方差的定义,更考查了同学们应用知识解决问题的发散思维能力.28.(1)x 1=3,x 2=﹣7;(2)x 1757+x 2757-【解析】【分析】(1)根据因式分解法解方程即可;(2)根据公式法解方程即可.【详解】解:(1)x2+4x﹣21=0(x﹣3)(x+7)=0解得x1=3,x2=﹣7;(2)x2﹣7x﹣2=0∵△=49+8=57∴x=7572±解得x1=757+,x2=757-.【点睛】本题考查了解一元二次方程,其方法有直接开平方法、公式法、配方法、因式分解法,根据一元二次方程特点选择合适的方法是解题的关键.29.35°【解析】【分析】连接OD,根据切线的性质得∠ODC=90°,根据圆周角定理即可求得答案.【详解】连接OD,∵CD为⊙O的切线,∴∠ODC=90°,∴∠DOC=90°﹣∠C=70°,由圆周角定理得,∠A=12∠DOC=35°.【点睛】本题考查了切线的性质和圆周角定理,有圆的切线时,常作过切点的半径.30.(1)5;(2)PQ∥A D'',理由见解析;(35【解析】【分析】(1)求出AE5ABE∽△DEA,由AD AEAE BE=可求出AD的长;(2)过点E作EF⊥AD于点F,证明△PEF∽△QEC,再证△EPQ∽△A'ED',可得出∠EPQ=∠EA'D',则结论得证; (3)由(2)知PQ ∥A ′D ′,取A ′D ′的中点N ,可得出∠PEM 为定值,则点M 的运动路径为线段,即从AD 的中点到DE 的中点,由中位线定理可得出答案.【详解】解:(1)∵AB =2,BE =1,∠B =90°, ∴AE =22AB BE +=2221+=5,∵∠AED =90°,∴∠EAD+∠ADE =90°,∵矩形ABCD 中,∠ABC =∠BAD =90°,∴∠BAE+∠EAD =90°,∴∠BAE =∠ADE ,∴△ABE ∽△DEA ,∴AD AE AE BE=, ∴515=, ∴AD =5;(2)PQ ∥A ′D ′,理由如下:∵5,5AD AE ==,∠AED =90° ∴22DE DA AE =-=225(5)-=25,∵AD =BC =5,∴EC =BC ﹣BE =5﹣1=4,过点E 作EF ⊥AD 于点F ,则∠FEC =90°,∵∠A'ED'=∠AED =90°,∴∠PEF =∠CEQ ,∵∠C =∠PFE =90°,∴△PEF ∽△QEC ,∴2142EP EF EQ EC ===,∵51225EA EAED ED''===,∴EP EA EQ ED''=,∴PQ∥A′D′;(3)连接EM,作MN⊥AE于N,由(2)知PQ∥A′D′,∴∠EPQ=∠A′=∠EAP,又∵△PEQ为直角三角形,M为PQ中点,∴PM=ME,∴∠EPQ=∠PEM,∵∠EPF=∠EAP+∠AEA′,∠NEM=∠PEM+∠AEA′∴∠EPF=∠NEM,又∵∠PFE=∠ENM﹣90°,∴△PEF∽△EMN,∴NM EMEF PE==PQ2PE为定值,又∵EF=AB=2,∴MN为定值,即M的轨迹为平行于AE的线段,∵M初始位置为AD中点,停止位置为DE中点,∴M的轨迹为△ADE的中位线,∴线段PQ的中点M所经过的路径长=1AE2=5.【点睛】本题考查了矩形的性质,相似三角形的判定与性质,勾股定理,平行线的判定,中位线定理等知识,熟练掌握相似三角形的判定与性质是解题的关键.31.(1)见解析;(2)D 233);(337【解析】【分析】(1)连接PA,先求出点A和点B的坐标,从而求出OA、OB、OP和AP的长,即可确定点A在圆上,根据相似三角形的判定定理证出△AOB∽△POA,根据相似三角形的性质和等量代换证出PA⊥AB,即可证出结论;(2)连接PA,PD,根据切线长定理可求出∠ADP=∠PDC=12∠ADC=60°,利用锐角三角函数求出AD,设D(m,12m+2),根据平面直角坐标系中任意两点之间的距离公式求出m的值即可;(3)在BA上取一点J,使得BJ=5,连接BG,OJ,JG,根据相似三角形的判定定理证出△BJG∽△BGA,列出比例式可得GJ=12AG,从而得出12AG+OG=GJ+OG,设J点的坐标为(n,12n+2),根据平面直角坐标系中任意两点之间的距离公式求出n,从而求出OJ的长,然后根据两点之间线段最短可得GJ+OG≥OJ,即可求出结论.【详解】(1)证明:如图1中,连接PA.∵一次函数y=12x+2的图象与y轴交于A点,与x轴交于B点,∴A(0,2),B(﹣4,0),∴OA=2,OB=4,∵P(1,0),∴OP=1,∴OA2=OB•OP,225+=OA OP∴OAOP=OBOA,点A在圆上∵∠AOB=∠AOP=90°,∴△AOB∽△POA,∴∠OAP=∠ABO,∵∠OAP+∠APO=90°,∴∠ABO+∠APO=90°,∴∠BAP=90°,∴PA⊥AB,∴AB是⊙P的切线.(2)如图1﹣1中,连接PA,PD.∵DA,DC是⊙P的切线,∠ADC=120°,∴∠ADP=∠PDC=12∠ADC=60°,∴∠APD=30°,∵∠PAD=90°∴AD=PA•tan30°=153,设D(m,12m+2),∵A(0,2),∴m2+(12m+2﹣2)2=159,解得m=±33,∵点D在第一象限,∴m 23,∴D(33,33+2).(3)在BA上取一点J,使得BJ5,连接BG,OJ,JG.∵OA=2,OB=4,∠AOB=90°,∴AB22OA OB+2224+5∵BG5BJ5,∴BG2=BJ•BA,∴BGBJ=BABG,∵∠JBG=∠ABG,∴△BJG∽△BGA,∴JGAG=BGAB=12,∴GJ=12 AG,∴12AG+OG=GJ+OG,∵BJ 5,设J点的坐标为(n,12n+2),点B的坐标为(-4,0)∴(n+4)2+(12n+2)2=54,解得:n=-3或-5(点J在点B右侧,故舍去)∴J(﹣3,12),∴OJ22132⎛⎫+ ⎪⎝⎭37∵GJ+OG≥OJ,∴12AG+OG37∴12AG+OG37故答案为2. 【点睛】 此题考查的是一次函数与圆的综合大题,掌握相似三角形的判定及性质、切线的判定及性质、切线长定理、勾股定理、锐角三角函数和两点之间线段最短是解决此题的关键.32.(1)100、130或160;(2)选择①或②,理由见解析;(3)见解析;(4)③⑤【解析】【分析】(1)根据“等角点”的定义,分类讨论即可;(2)①根据在同圆中,弧和弦的关系和同弧所对的圆周角相等即可证明;②弧和弦的关系和圆的内接四边形的性质即可得出结论;(3)根据垂直平分线的性质、等边三角形的性质、弧和弦的关系和同弧所对的圆周角相等作图即可;(4)根据“等角点”和“强等角点”的定义,逐一分析判断即可.【详解】(1)(i )若APB ∠=BPC ∠时,∴BPC ∠=APB ∠=100°(ii )若BPC CPA ∠=∠时, ∴12BPC CPA ∠=∠=(360°-APB ∠)=130°; (iii )若APB ∠=CPA ∠时,BPC ∠=360°-APB ∠-CPA ∠=160°, 综上所述:BPC ∠=100°、130°或160°故答案为:100、130或160.(2)选择①:连接,PB PC∵DB DC =∴=DB DC∴BPD CPD ∠=∠∵180APB BPD ∠+∠=,180APC CPD ∠+∠=∴APB APC ∠=∠∴P 是ABC ∆的等角点.选择②连接,PB PC∵BC BD =∴BC BD =∴BDC BPD ∠=∠∵四边形PBDC 是圆O 的内接四边形,。

2022-2023学年北京市房山区九年级(上)期末数学试卷(word,解析版)

2022-2023学年北京市房山区九年级(上)期末数学试卷(word,解析版)

2022-2023学年北京市房山区九年级(上)期末数学试卷一、选择题(本题共8道小题,每小题2分,共16分)1.(2分)如图,在△ABC中,DE∥BC,如果AD=3,BD=6,AE=2,那么AC的值为()A.4B.6C.8D.92.(2分)在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么cos A的值为()A.B.C.D.3.(2分)把二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列变形正确的是()A.y=(x+1)2+3B.y=(x﹣2)2+3C.y=(x﹣1)2+5D.y=(x﹣1)2+3 4.(2分)如图,点A、B、C是⊙O上的三点,∠BAC=25°,则∠BOC的度数是()A.30°B.40°C.50°D.60°5.(2分)堤的横断面如图.堤高BC是5米,迎水斜坡AB的长时13米,那么斜坡AB的坡度是()A.1:3B.1:2.6C.1:2.4D.1:26.(2分)点A(x1,y1),B(x2,y2)是反比例函数的图象上的两点,如果x1<x2<0,那么y1,y2的大小关系是()A.y1<y2<0B.y2<y1<0C.y1>y2>0D.y2>y1>07.(2分)道路施工部门在铺设如图所示的管道时,需要先按照其中心线计算长度后再备料.图中的管道中心线的长为(单位:m)()A.B.C.D.8.(2分)如图,在平面直角坐标系xOy中,A,B两点同时从原点O出发,点A以每秒2个单位长的速度沿x轴的正方向运动,点B以每秒1个单位长的速度沿y轴的正方向运动,设运动时间为t秒,以AB为直径作圆,圆心为点P.在运动的过程中有如下5个结论:①∠ABO的大小始终不变;②⊙P始终经过原点O;③半径AP的长是时间t的一次函数;④圆心P的运动轨迹是一条抛物线;⑤AB始终平行于直线.其中正确的有()A.①②③④B.①②⑤C.②③⑤D.①②③⑤二、填空题(本题共8道小题,每小题2分,共16分)9.(2分)二次函数y=(x+1)2﹣2图象的顶点坐标为.10.(2分)如图,平面直角坐标系中,若反比例函数的图象过点A和点B,则a的值为.11.(2分)在正方形网格中,△ABC的位置如图所示,则sin∠ABC为.12.(2分)抛物线y=x2﹣2x+m与x轴只有一个交点,则m的值为.13.(2分)丽丽的圆形镜子摔碎了,她想买一个同样大小的镜子.为了测算圆形镜子的半径,如图,她将直角三角尺的直角顶点C放在破损的圆形镜子的圆框上,两直角边分别与圆框交于A,B两点,测得CA为8cm,CB为6cm,则该圆形镜子的半径是cm.14.(2分)如图,在矩形ABCD中,若AB=2,BC=4,且,则EF的长为.15.(2分)《九章算术》是中国传统数学重要的著作之一,奠定了中国传统数学的基本框架.其中卷九中记载了一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“如右图,今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆(内切圆)的直径是多少步?”根据题意,该内切圆的直径为步.16.(2分)在平面直角坐标系xOy中,以点P(t,0)为圆心,单位长1为半径的圆与直线y=kx﹣2相切于点M,直线y=kx﹣2与y轴交于点N,当MN取得最小值时,k的值为.三、解答题(本题共12道小题,共68分.17,18,20,21每题5分;其余每题6分)17.(5分)2cos30°+sin45°﹣tan60°.18.(5分)抛物线y=﹣x2+bx+c过点(0,﹣3)和(2,1).(1)求b,c的值;(2)直接写出当x取何值时,函数y随x的增大而增大.19.(6分)如图,△ABC中,AB=AC=5,sin∠ABC=.(1)求BC的长.(2)BE是AC边上的高,请你补全图形,并求BE的长.20.(5分)下面是晓雨同学设计的“过圆外一点作已知圆的切线”的尺规作图的过程.已知:如图,⊙O及⊙O外一点P.求作:过点P的⊙O的切线PD(D为切点).作法:①连接PO与⊙O交于点A,延长PO与⊙O交于点B;②以点O为圆心,AB长为半径作弧;以点P为圆心,PO长为半径作弧,在PO上方两弧交于点C;③连接OC,PC,OC与⊙O交于点D;④作直线PD.则直线PD即为所求作的⊙O的切线.请你根据晓雨同学的作法,完成以下问题:(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成以下证明过程:证明:由作图可知,OC=AB,PC=PO,点为线段CO中点,∴PD⊥OC()又∵点D在⊙O上,∴PD是⊙O切线()21.(5分)如图,割线PB与⊙O交于点A,B,割线PC过圆心O,且∠CPB=30°.若PC=13,⊙O的半径OA=5,求弦AB的长.22.(6分)中央电视塔是一座现代化的标志性建筑,其外观优美,造型独特,在观光塔上眺望,北京风景尽收眼底.一次数学活动课上,某校老师带领学生去测量电视塔的高度.如图,在点C处用高1.5m的测角仪CD测得塔尖A的仰角为37°,向塔的方向前进128m 到达F处,在F处测得塔尖A的仰角为45°,请你求出中央电视塔AB的高度(结果精确到1m).(参考数据:sin37°≈,cos37°≈,tan37°≈,sin53°≈,cos53°≈,tan53°≈.)23.(6分)在历史的长河中,很多文物难免损耗或破碎断裂,而文物修复师能运用自身拥有的多门学科的专业知识去修复破损的文物,使其重获新生.如图1,某文物修复师在修复一件破碎的古代瓷器束口盏(盏口原貌为圆形)的时候,仅凭一块碎片就初步推算出了该文物原貌口径的尺寸.如图2是文物修复师根据碎片的切面画出的几何图形.碎片的边缘是圆弧,表示为弧AB,测得弧所对的弦长AB为12.8cm,弧中点到弦的距离为2cm.设弧AB所在圆的圆心为O,半径OC⊥AB于D,连接OB.求这个盏口半径OB 的长(精确到0.1cm).24.(6分)如图,平面直角坐标系xOy中,反比例函数y=(x<0)的图象经过点A(﹣1,4),一次函数y=﹣x+2的图象与反比例函数y=(x<0)的图象交于点B.(1)求m的值;(2)点C(x C,y C)是y=(x<0)图象上任意一点,过点C作y轴的垂线交y轴于点D,过点C作x轴的垂线交直线y=﹣x+2于点E.①当x C=﹣2时,判断CD与CE的数量关系,并说明理由;②当CE≥CD时,直接写出x C的取值范围.25.(6分)如图,AB是⊙O的直径,直线MC与⊙O相切于点C.过点B作BD⊥MC于D,线段BD与⊙O相交于点E.(1)求证:BC是∠ABD的平分线;(2)若AB=10,BE=6,求BC的长.26.(6分)在平面直角坐标系中,已知抛物线y=ax2﹣4ax+3(a≠0).(1)求抛物线的对称轴;(2)抛物线上存在两点A(2﹣t,y1),B(2+2t,y2),若y1>y2,请判断此时抛物线有最高点还是最低点,并说明理由;(3)在(2)的条件下,抛物线上有三点(1,m),(2,n),(5,p),当mnp≥0时,求a的取值范围.27.(6分)已知△ABC为等腰直角三角形,∠BAC=90°,AB=2.点D为平面上一点,使得∠BDA=90°.点P为BC中点,连接DP.(1)如图,点D为△ABC内一点.①猜想∠BDP的大小;②写出线段AD,BD,PD之间的数量关系,并证明;(2)直接写出线段CD的最大值.28.(6分)在平面直角坐标系xOy中,已知一条开口向上的抛物线,连接此抛物线上关于对称轴对称的两点A,B(A点在B点左侧),以AB为直径作⊙M.取线段AB下方的抛物线部分和线段AB上方的圆弧部分(含端点A,B),组成一个封闭图形,我们称这种图形为“抛物圆”,其中线段AB叫做“横径”,线段AB的垂直平分线被“抛物圆”截得的线段叫做“纵径”,规定“纵径”长度和“横径”长度的比值叫做此“抛物圆”的“扁度”.(1)已知抛物线y=x2.①若点A横坐标为﹣2,则得到的“抛物圆”的“横径”长为,“纵径”长为;②若点A横坐标为t,用t表示此“抛物圆”的“纵径”长,并求出当它的“扁度”为2时t的值;(2)已知抛物线y=x2﹣2ax+a2+a,若点A在直线y=﹣4ax+a上,求“抛物圆”的“扁度”不超过3时a的取值范围.2022-2023学年北京市房山区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共8道小题,每小题2分,共16分)1.(2分)如图,在△ABC中,DE∥BC,如果AD=3,BD=6,AE=2,那么AC的值为()A.4B.6C.8D.9【分析】根据平行线分线段成比例定理列出比例式,代入计算求出EC,结合图形计算得到答案.【解答】解:∵DE∥BC,∴=,即=,解得,EC=4,∴AC=AE+EC=2+4=6,故选:B.2.(2分)在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么cos A的值为()A.B.C.D.【分析】根据勾股定理求出斜边AB的长,根据余弦的概念求出cos A.【解答】解:∠C=90°,BC=3,AC=4,由勾股定理得,AB==5,∴cos A==,故选:A.3.(2分)把二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列变形正确的是()A.y=(x+1)2+3B.y=(x﹣2)2+3C.y=(x﹣1)2+5D.y=(x﹣1)2+3【分析】利用配方法整理即可得解.【解答】解:y=x2﹣2x+4,=x2﹣2x+1+3,=(x﹣1)2+3.故选:D.4.(2分)如图,点A、B、C是⊙O上的三点,∠BAC=25°,则∠BOC的度数是()A.30°B.40°C.50°D.60°【分析】根据圆周角定理得出∠COB=2∠CAB,代入求出即可.【解答】解:∵对的圆心角为∠COB,对的圆周角为∠CAB,∠BAC=25°,∴∠COB=2∠CAB=50°,故选:C.5.(2分)堤的横断面如图.堤高BC是5米,迎水斜坡AB的长时13米,那么斜坡AB的坡度是()A.1:3B.1:2.6C.1:2.4D.1:2【分析】坡度=垂直距离÷水平距离.【解答】解:由勾股定理得:AC=12米.则斜坡AB的坡度=BC:AC=5:12=1:2.4.故选:C.6.(2分)点A(x1,y1),B(x2,y2)是反比例函数的图象上的两点,如果x1<x2<0,那么y1,y2的大小关系是()A.y1<y2<0B.y2<y1<0C.y1>y2>0D.y2>y1>0【分析】根据k的值判断此函数图象所在的象限,再根据x1<x2<0判断出A(x1,y1)、B(x2,y2)所在的象限,根据此函数的增减性即可解答.【解答】解:∵反比例函数y=的图象在一,三象限,在每一象限内y随x的增大而减小,∵x1<x2<0,∴A(x1,y1)、B(x2,y2)两点均位于第三象限,∴y2<y1<0.故选:B.7.(2分)道路施工部门在铺设如图所示的管道时,需要先按照其中心线计算长度后再备料.图中的管道中心线的长为(单位:m)()A.B.C.D.【分析】根据弧长公式求出答案即可.【解答】解:图中的管道中心线的长为=(m),故选:B.8.(2分)如图,在平面直角坐标系xOy中,A,B两点同时从原点O出发,点A以每秒2个单位长的速度沿x轴的正方向运动,点B以每秒1个单位长的速度沿y轴的正方向运动,设运动时间为t秒,以AB为直径作圆,圆心为点P.在运动的过程中有如下5个结论:①∠ABO的大小始终不变;②⊙P始终经过原点O;③半径AP的长是时间t的一次函数;④圆心P的运动轨迹是一条抛物线;⑤AB始终平行于直线.其中正确的有()A.①②③④B.①②⑤C.②③⑤D.①②③⑤【分析】①由题意得:OA=2t,OB=t,则tan∠ABO=,即可求解;②AB是圆P的直径,则AB所对的圆周角为90°,即∠AOB=90°,即可求解;③AP==t,即可求解;④由③知,点P(t,t),即可求解;⑤求出直线AB的表达式为:y=﹣x+t,即可求解.【解答】解:①由题意得:OA=2t,OB=t,则tan∠ABO=,∴∠ABO的大小始终不变,正确;②∵AB是圆P的直径,则AB所对的圆周角为90°,即∠AOB=90°,∴⊙P始终经过原点O,正确;③由点A、B的坐标,根据中点坐标公式得:点P(t,t),则AP==t,即AP的长度是时间t的一次函数,正确;④由③知,点P(t,t),则点P在直线y=x上,故④错误;⑤设直线AB的表达式为:y=kx+b,则,解得:,故直线AB的表达式为:y=﹣x+t,∵AB始终平行于直线,正确,故选:D.二、填空题(本题共8道小题,每小题2分,共16分)9.(2分)二次函数y=(x+1)2﹣2图象的顶点坐标为(﹣1,﹣2).【分析】直接根据二次函数的性质解答即可.【解答】解:二次函数y=(x+1)2﹣2图象的顶点坐标为:(﹣1,﹣2).故答案为:(﹣1,﹣2).10.(2分)如图,平面直角坐标系中,若反比例函数的图象过点A和点B,则a的值为.【分析】利用反比例函数图象上点的坐标特征得到﹣3=﹣2a,然后解关于a的方程即可.【解答】解:∵反比例函数y=(k≠0)的图象经过点A(1,﹣3)和点B(﹣2,a),∴﹣3=﹣2a,解得a=,故答案为:.11.(2分)在正方形网格中,△ABC的位置如图所示,则sin∠ABC为.【分析】在Rt△ABD中,先利用勾股定理求出AB的长,然后利用锐角三角函数的定义进行计算即可解答.【解答】解:如图:在Rt△ABD中,AD=1,BD=3,∴AB===,∴sin∠ABC===,故答案为:.12.(2分)抛物线y=x2﹣2x+m与x轴只有一个交点,则m的值为1.【分析】由抛物线y=x2﹣2x+m与x轴只有一个交点可知,对应的一元二次方程x2﹣2x+m =0,根的判别式Δ=b2﹣4ac=0,由此即可得到关于m的方程,解方程即可求得m的值.【解答】解:∵抛物线y=x2﹣2x+m与x轴只有一个交点,∴Δ=0,∴b2﹣4ac=22﹣4×1×m=0;∴m=1.故答案为:1.13.(2分)丽丽的圆形镜子摔碎了,她想买一个同样大小的镜子.为了测算圆形镜子的半径,如图,她将直角三角尺的直角顶点C放在破损的圆形镜子的圆框上,两直角边分别与圆框交于A,B两点,测得CA为8cm,CB为6cm,则该圆形镜子的半径是5cm.【分析】连接AB,由圆周角定理得AB为圆形镜子的直径,再由勾股定理求出AB的长,即可得出结论.【解答】解:如图,连接AB,∵∠ACB=90°,∴AB为圆形镜子的直径,∵CA=8cm,CB=6cm,∴AB===10(cm),∴圆形镜子的半径为×10=5(cm),故答案为:5.14.(2分)如图,在矩形ABCD中,若AB=2,BC=4,且,则EF的长为.【分析】先根据矩形的性质得到AD∥BC,∠BAD=90°,则可判断△AEF∽△CBF,根据相似三角形的性质得到===,则可计算出AE=1,接着利用勾股定理计算出BE,然后利用=求出EF的长.【解答】解:∵四边形ABCD为矩形,∴AD∥BC,∠BAD=90°,∵AE∥BC,∴△AEF∽△CBF,∴===,∴AE=BC=×4=1,在Rt△ABE中,BE===,∵=,∴=,∴EF=BE=.故答案为:.15.(2分)《九章算术》是中国传统数学重要的著作之一,奠定了中国传统数学的基本框架.其中卷九中记载了一个问题:“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“如右图,今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆(内切圆)的直径是多少步?”根据题意,该内切圆的直径为6步.【分析】根据勾股定理求出直角三角形的斜边,根据直角三角形的内切圆的半径的求法确定出内切圆半径,得到直径.【解答】解:根据勾股定理得:斜边AB==17,∴内切圆直径=8+15﹣17=6(步),故答案为:6.16.(2分)在平面直角坐标系xOy中,以点P(t,0)为圆心,单位长1为半径的圆与直线y=kx﹣2相切于点M,直线y=kx﹣2与y轴交于点N,当MN取得最小值时,k的值为或﹣.【分析】连接PN,在y=kx﹣2中,得N(0,﹣2),即得MN==,故PN最小时,MN最小,此时PN⊥x轴,即t=0,P与O重合,过M作MK⊥x轴于K,由含30°角的直角三角形三边关系可得M(﹣,﹣),再用待定系数法解得k=﹣,由对称性当M'在第四象限时,k=.【解答】解:连接PN,如图:在y=kx﹣2中,令x=0得y=﹣2,∴N(0,﹣2),∵MN与⊙P相切,∴∠MNP=90°,∴MN==,∴PN最小时,MN最小,此时PN⊥x轴,即t=0,P与O重合,过M作MK⊥x轴于K,如图:∵PM=1,PN=2,∠PMN=90°,∴∠PNM=30°,∴∠MPN=60°,∴∠MPK=30°,∴KM=PM=,PK=KM=,∴M(﹣,﹣),把M(﹣,﹣)代入y=kx﹣2得:﹣=﹣k﹣2,解得k=﹣,由对称性可得,当M'在第四象限时,k=,故答案为:或﹣.三、解答题(本题共12道小题,共68分.17,18,20,21每题5分;其余每题6分)17.(5分)2cos30°+sin45°﹣tan60°.【分析】将特殊角的三角函数值代入求解.【解答】解:原式=2×+×﹣=1.18.(5分)抛物线y=﹣x2+bx+c过点(0,﹣3)和(2,1).(1)求b,c的值;(2)直接写出当x取何值时,函数y随x的增大而增大.【分析】(1)把(0,﹣3)和(2,1)代入抛物线,得出方程组,求出方程组的解即可;(2)根据(1)中bc的值得出抛物线的解析式,求出其顶点坐标,根据抛物线的性质即可得出结论.【解答】解:(1)∵抛物线y=﹣x2+bx+c过点(0,﹣3)和(2,1),∴,解得,(2)由(1)知,b=4,c=﹣3,∵抛物线的解析式为y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴顶点坐标为:(2,1),∵a=﹣1<0,∴抛物线开口向下,∴当x<2时,函数y随x的增大而增大.19.(6分)如图,△ABC中,AB=AC=5,sin∠ABC=.(1)求BC的长.(2)BE是AC边上的高,请你补全图形,并求BE的长.【分析】(1)过点A作AD⊥BC,垂足为D,利用等腰三角形的性质可得BC=2BD,然后在Rt△ABD中,利用锐角三角函数的定义可求出BD的长,从而进行计算即可解答;(2)利用(1)的结论可得sin∠ABC=sin∠ACB=,然后Rt△BEC中,利用锐角三角函数的定义进行计算即可解答.【解答】解:(1)过点A作AD⊥BC,垂足为D,∵AB=AC=5,AD⊥BC,∴BC=2BD,在Rt△ABD中,sin∠ABC=,∴AD=AB•sin∠ABC=5×=2,∴BD===,∴BC=2BD=2,∴BC的长为2;(2)如图:∵∠ABC=∠ACB,∴sin∠ABC=sin∠ACB=,在Rt△BEC中,BC=2,∴BE=BC•sin∠ACB=2×=,∴BE的长为.20.(5分)下面是晓雨同学设计的“过圆外一点作已知圆的切线”的尺规作图的过程.已知:如图,⊙O及⊙O外一点P.求作:过点P的⊙O的切线PD(D为切点).作法:①连接PO与⊙O交于点A,延长PO与⊙O交于点B;②以点O为圆心,AB长为半径作弧;以点P为圆心,PO长为半径作弧,在PO上方两弧交于点C;③连接OC,PC,OC与⊙O交于点D;④作直线PD.则直线PD即为所求作的⊙O的切线.请你根据晓雨同学的作法,完成以下问题:(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成以下证明过程:证明:由作图可知,OC=AB,PC=PO,点D为线段CO中点,∴PD⊥OC(三线合一)又∵点D在⊙O上,∴PD是⊙O切线(过半径的外端且垂直于半径的直线是圆的切线)【分析】(1)根据题中的步骤画图;(2)根据切线的判断求解.【解答】解:(1)如图:PD即为所求;(2)证明:由作图可知,OC=AB,PC=PO,点D为线段CO中点,∴PD⊥OC(三线合一),又∵点D在⊙O上,∴PD是⊙O切线(过半径的外端且垂直于半径的直线是圆的切线),故答案为:D,三线合一,过半径的外端且垂直于半径的直线是圆的切线.21.(5分)如图,割线PB与⊙O交于点A,B,割线PC过圆心O,且∠CPB=30°.若PC=13,⊙O的半径OA=5,求弦AB的长.【分析】由垂径定理得到AH=BH,由勾股定理可求AH的长,于是可求AB的长.【解答】解:作OH⊥AB于H,∴AH=BH,∵PC=13,⊙O的半径OA=OC=5,∴PO=PC﹣OC=13﹣5=8,∵∠CPB=30°,∴OH=PO=4,∵AH2=AO2﹣OH2,∴AH2=52﹣42,∴AH=3,∴AB=2AH=6.22.(6分)中央电视塔是一座现代化的标志性建筑,其外观优美,造型独特,在观光塔上眺望,北京风景尽收眼底.一次数学活动课上,某校老师带领学生去测量电视塔的高度.如图,在点C处用高1.5m的测角仪CD测得塔尖A的仰角为37°,向塔的方向前进128m 到达F处,在F处测得塔尖A的仰角为45°,请你求出中央电视塔AB的高度(结果精确到1m).(参考数据:sin37°≈,cos37°≈,tan37°≈,sin53°≈,cos53°≈,tan53°≈.)【分析】根据题意可得:DE=CF=128米,CD=EF=GB=1.5米,∠AGD=90°,设AG=x米,然后在Rt△AGC中,利用锐角三角函数的定义求出EG的长,从而求出DG 的长,再在Rt△AGD中,利用锐角三角函数的定义列出关于x的方程,进行计算即可解答.【解答】解:由题意得:DE=CF=128米,CD=EF=GB=1.5米,∠AGD=90°,设AG=x米,在Rt△AGC中,∠AEG=45°,∴EG==x(米),∴DG=GE+DE=(128+x)米,在Rt△AGD中,∠ADG=37°,∴tan37°==≈,解得:x=384,经检验:x=384是原方程的根,∴AB=AG+BG=384+1.5≈386(米),∴中央电视塔AB的高度约为386米.23.(6分)在历史的长河中,很多文物难免损耗或破碎断裂,而文物修复师能运用自身拥有的多门学科的专业知识去修复破损的文物,使其重获新生.如图1,某文物修复师在修复一件破碎的古代瓷器束口盏(盏口原貌为圆形)的时候,仅凭一块碎片就初步推算出了该文物原貌口径的尺寸.如图2是文物修复师根据碎片的切面画出的几何图形.碎片的边缘是圆弧,表示为弧AB,测得弧所对的弦长AB为12.8cm,弧中点到弦的距离为2cm.设弧AB所在圆的圆心为O,半径OC⊥AB于D,连接OB.求这个盏口半径OB 的长(精确到0.1cm).【分析】由垂径定理得BD=6.4cm,设这个盏口半径OB的长为rcm,则OD=(r﹣2)cm,然后在Rt△BOD中,由勾股定理得出方程,解方程即可.【解答】解:由题意得:AB=12.8cm,OC⊥AB,∴AD=BD=AB=6.4cm,设这个盏口半径OB的长为rcm,则OD=(r﹣2)cm,在Rt△BOD中,由勾股定理得:6.42+(r﹣2)2=r2,解得:r=11.24,答:这个盏口半径OB的长为11.24cm.24.(6分)如图,平面直角坐标系xOy中,反比例函数y=(x<0)的图象经过点A(﹣1,4),一次函数y=﹣x+2的图象与反比例函数y=(x<0)的图象交于点B.(1)求m的值;(2)点C(x C,y C)是y=(x<0)图象上任意一点,过点C作y轴的垂线交y轴于点D,过点C作x轴的垂线交直线y=﹣x+2于点E.①当x C=﹣2时,判断CD与CE的数量关系,并说明理由;②当CE≥CD时,直接写出x C的取值范围.【分析】(1)把点A的坐标代入到反比例函数解析式即可得m的值;(2)①确定点C的坐标为(﹣2,2),点E的坐标为(﹣2,4),即可求解;②设t=x C,当x>1﹣时,则点C在E的上方,当CE≥CD时,即﹣+t﹣2≥﹣t,即可求解;当CE≥CD时,即﹣t+2≥﹣t,即可求解.【解答】解:(1)把点A(﹣1,4)代入得:4=,解得:m=﹣4;(2)①CD=CE,理由如下:由(1)可得,反比例函数解析式为:y=,∴当x=﹣2时,y=2,∴点C的坐标为(﹣2,2),∵过点C作y轴的垂线交y轴于点D,∴CD=2,∵过点C作x轴的垂线交直线y=﹣x+2于点E,∴当x=﹣2时,y=4,∴点E的坐标为(﹣2,4),∴CE=2,∴CD=CE;②设t=x C,联立y=和x=﹣x+2并解得:x=1,当x>1﹣时,则点C在E的上方,当CE≥CD时,即﹣+t﹣2≥﹣t,解得:1﹣<t≤﹣1,当x<1﹣时,则点C在E的下方,当CE≥CD时,即﹣t+2≥﹣t,解得:t≤﹣2,综上,1﹣<x C≤﹣1或x C≤﹣2.25.(6分)如图,AB是⊙O的直径,直线MC与⊙O相切于点C.过点B作BD⊥MC于D,线段BD与⊙O相交于点E.(1)求证:BC是∠ABD的平分线;(2)若AB=10,BE=6,求BC的长.【分析】(1)连接OC,根据切线的性质得到∠OCM=90°,得到OC∥BD,根据平行线的性质、等腰三角形的性质证明结论;(2)连接AC,连接AE交OC于点F,根据勾股定理求出AE,进而求出AF,然后求出AC,最后求出BC的长.【解答】(1)证明:连接OC,∵直线MC与⊙O相切于点C∴∠OCM=90°,∵BD⊥CD,∴∠BDM=90°,∴∠OCM=∠ADM,∴OC∥BD,∴∠DBC=∠BCO,∵OA=OC,∴∠BCO=∠CBO,∴∠DBC=∠CBA,即BC是∠ABD的平分线;(2)连接AC,连接AE交OC于点F,∵AB为直径,∴∠AEB=90°,∴AE==8,由(1)知OC∥BD,O为AB的中点,∴AF=4,∴OF==3,∴CF=OC﹣OF=2,∴AC==2,∴BC==4.26.(6分)在平面直角坐标系中,已知抛物线y=ax2﹣4ax+3(a≠0).(1)求抛物线的对称轴;(2)抛物线上存在两点A(2﹣t,y1),B(2+2t,y2),若y1>y2,请判断此时抛物线有最高点还是最低点,并说明理由;(3)在(2)的条件下,抛物线上有三点(1,m),(2,n),(5,p),当mnp≥0时,求a的取值范围.【分析】(1)由抛物线的对称轴x=﹣,即可求解;(2)由y1>y2知:点A离对称轴的距离比点B离对称轴的距离大,即可求解;(3)确定(1,n)为抛物线的最高点,得到m、p同号,进而求解.【解答】解:(1)抛物线的对称轴x=﹣=﹣=2;(2)当a>0时,由y1>y2知:点A离对称轴的距离比点B离对称轴的距离大,即|2﹣t﹣2|>|2+2t﹣2|,即|t|<0,无解;当a<0时,同理可得:|2﹣t﹣2|<|2+2t﹣2|,即|t|>0,∴a<0,即抛物线有最高点;(3)由(1,m),(5,p)知,m=a﹣4a+3=3﹣3a,p=25a﹣20a+3=5a+3,由(2)知,a<0,则(1,n)为抛物线的最高点,若n≤0,则m、n均为负数,与mnp≥0不符,故n>0,则m、p同号,即,解得:﹣≤a≤1,而a<0,∴﹣≤a<0.27.(6分)已知△ABC为等腰直角三角形,∠BAC=90°,AB=2.点D为平面上一点,使得∠BDA=90°.点P为BC中点,连接DP.(1)如图,点D为△ABC内一点.①猜想∠BDP的大小;②写出线段AD,BD,PD之间的数量关系,并证明;(2)直接写出线段CD的最大值.【分析】(1)①通过证明点A,点B,点P,点D四点共圆,可得∠BAP=∠BDP=45°;②由“SAS”可证△APD≌△BPH,可得BH=AD,即可求解;(2)由题意可得点D在以AB为半径的圆上运动,则点D在CO的延长线时,CD有最大值,即可求解.【解答】解:(1)①如图,连接AP,∵△ABC为等腰直角三角形,∠BAC=90°,点P是BC的中点,∴AP=BP=CP,AP⊥BP,∠BAP=∠ABC=45°,∴∠APB=∠ADB=90°,∴点A,点B,点P,点D四点共圆,∴∠BAP=∠BDP=45°;②BD=AD+PD,理由如下:如图,过点P作PH⊥PD,交BD于H,∵PH⊥PD,∠BDP=45°,∴∠DPH=∠APB=90°,∠BDP=∠DHP=45°,∴∠BPH=∠APD,PD=PH,又∵BP=AP,∴△APD≌△BPH(SAS),∴BH=AD,∵PD=PH,∠DPH=90°,∴HD=DP,∴BD=BH+HD=AD+DP;(2)如图,取AB的中点O,连接OC,∴AO=OB=1,∴CO===,∵∠ADB=90°,∴点D在以AB为半径的圆上运动,∴点D在CO的延长线时,CD有最大值,即CD的最大值为+1.28.(6分)在平面直角坐标系xOy中,已知一条开口向上的抛物线,连接此抛物线上关于对称轴对称的两点A,B(A点在B点左侧),以AB为直径作⊙M.取线段AB下方的抛物线部分和线段AB上方的圆弧部分(含端点A,B),组成一个封闭图形,我们称这种图形为“抛物圆”,其中线段AB叫做“横径”,线段AB的垂直平分线被“抛物圆”截得的线段叫做“纵径”,规定“纵径”长度和“横径”长度的比值叫做此“抛物圆”的“扁度”.(1)已知抛物线y=x2.①若点A横坐标为﹣2,则得到的“抛物圆”的“横径”长为4,“纵径”长为6;②若点A横坐标为t,用t表示此“抛物圆”的“纵径”长,并求出当它的“扁度”为2时t的值;(2)已知抛物线y=x2﹣2ax+a2+a,若点A在直线y=﹣4ax+a上,求“抛物圆”的“扁度”不超过3时a的取值范围.【分析】(1)①点A(﹣2,4),则点B(2,4),得到半径R=AM=2,则AB=4,求出RN=RM+OM=4+2=6,即可求解;②若点A横坐标为t,则点A(t,t2),则点B(﹣t,t2),参考①即可求解;(2)联立y=x2﹣2ax+a2+a和y=﹣4ax+a并解得:x=﹣a,得到A(﹣a,4a2+a),进而求解.【解答】解:(1)①如图,设线段AB的垂直平分线被“抛物圆”截得的线段为RN,则点N(O)重合,点A(﹣2,4),则点B(2,4),则圆M的半径R=AM=2,则AB=4,由点B的坐标知,OM=4,则RN=RM+OM=4+2=6,故答案为:4,6;②若点A横坐标为t,则点A(t,t2),则点B(﹣t,t2),则圆M的直径为﹣t﹣t=﹣2t,则RN=﹣t+t2,则,解得:t=0(舍去)或﹣3,即t=﹣3;(2)由抛物线的表达式知,其顶点坐标为(a,a),即点N(a,a),联立y=x2﹣2ax+a2+a和y=﹣4ax+a并解得:x=﹣a,当x=﹣a时,y=﹣4ax+a=4a2+a,即点A(﹣a,4a2+a),则点B(3a,4a2+a),则AB=4a,圆M的半径为2a,则RN=2a+(4a2+a﹣a)=4a2+2a,则,解得:a.。

九年级上册惠州数学期末试卷(Word版 含解析)

九年级上册惠州数学期末试卷(Word版 含解析)

九年级上册惠州数学期末试卷(Word 版 含解析) 一、选择题 1.已知34a b =(0a ≠,0b ≠),下列变形错误的是( ) A .34a b = B .34a b = C .43b a = D .43a b =2.如图,在Rt ABC ∆中,AC BC =,52AB =,以AB 为斜边向上作Rt ABD ∆,90ADB ∠=︒.连接CD ,若7CD =,则AD 的长度为( )A .32或42B .3或4C .22或42D .2或43.如图,AB 是⊙O 的弦,半径OC ⊥AB ,D 为圆周上一点,若BC 的度数为50°,则∠ADC 的度数为 ( )A .20°B .25°C .30°D .50° 4.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 5.如图,点A 、B 、C 是⊙O 上的三点,∠BAC = 40°,则∠OBC 的度数是( )A .80°B .40°C .50°D .20° 6.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°7.下列图形,是轴对称图形,但不是中心对称图形的是( )A .B .C .D .8.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( )A .43B .23C .334D .3229.一元二次方程230x x k -+=的一个根为2x =,则k 的值为( )A .1B .2C .3D .410.13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( )A .方差B .众数C .平均数D .中位数 11.如图,BC 是O 的直径,A ,D 是O 上的两点,连接AB ,AD ,BD ,若70ADB ︒∠=,则ABC ∠的度数是( )A .20︒B .70︒C .30︒D .90︒12.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s 2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( )A .平均分不变,方差变大B .平均分不变,方差变小C .平均分和方差都不变D .平均分和方差都改变二、填空题13.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为_____.14.如图,点A 、B 分别在y 轴和x 轴正半轴上滑动,且保持线段AB =4,点D 坐标为(4,3),点A 关于点D 的对称点为点C ,连接BC ,则BC 的最小值为_____.15.若记[]x 表示任意实数的整数部分,例如:[]4.24=,21⎡⎤=⎣⎦,…,则123420192020⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤-+-+⋅⋅⋅⋅⋅⋅+-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦(其中“+”“-”依次相间)的值为______.16.已知线段4AB =,点P 是线段AB 的黄金分割点(AP BP >),那么线段AP =______.(结果保留根号)17.某校五个绿化小组一天的植树的棵数如下:9,10,12,x ,8.已知这组数据的平均数是10,那么这组数据的方差是_____.18.已知关于x 的方程230x mx m ++=的一个根为-2,则方程另一个根为__________.19.如图,45AOB ∠=,点P 、Q 都在射线OA 上,2OP =,6OQ =,M 是射线OB 上的一个动点,过P 、Q 、M 三点作圆,当该圆与OB 相切时,其半径的长为__________.20.若m 是关于x 的方程x 2-2x-3=0的解,则代数式4m-2m 2+2的值是______.21.如图,将二次函数y =12(x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.22.已知234x y z x z y+===,则_______ 23.如图,在□ABCD 中,E 、F 分别是AD 、CD 的中点,EF 与BD 相交于点M ,若△DEM 的面积为1,则□ABCD 的面积为________.24.如图,Rt △ABC 中,∠ACB =90°,BC =3,tan A =34,将Rt △ABC 绕点C 顺时针旋转90°得到△DEC ,点F 是DE 上一动点,以点F 为圆心,FD 为半径作⊙F ,当FD =_____时,⊙F 与Rt △ABC 的边相切.三、解答题25.如图,AC 为圆O 的直径,弦AD 的延长线与过点C 的切线交于点B ,E 为BC 中点,AC= 43,BC=4.(1)求证:DE 为圆O 的切线;(2)求阴影部分面积.26.在平面直角坐标系中,二次函数y=ax 2+bx+c(a≠0)的顶点A (-3,0),与y 轴交于点B(0,4),在第一象限内有一点P (m,n),且满足4m+3n=12.(1)求二次函数解析式.(2)若以点P 为圆心的圆与直线AB 、x 轴相切,求点P 的坐标.(3)若点A 关于y 轴的对称点为点A′,点C 在对称轴上,且2∠CBA+∠PA′O=90◦.求点C 的坐标.27.如图,在矩形ABCD 中,E 是BC 上一点,连接AE ,将矩形沿AE 翻折,使点B 落在CD 边F 处,连接AF ,在AF 上取一点O,以点O 为圆心,OF 为半径作⊙O 与AD 相切于点P .AB=6,BC=33(1)求证:F 是DC 的中点.(2)求证:AE=4CE.(3)求图中阴影部分的面积.28.如图,在△ABC 中,AB =AC =13,BC =10,求tan B 的值.29.如图,已知ABC ∆中,3045ABC ACB ∠=︒∠=︒,,8AB =.求ABC ∆的面积.30.(1)如图①,AB 为⊙O 的直径,点P 在⊙O 上,过点P 作PQ ⊥AB ,垂足为点Q .说明△APQ ∽△ABP ;(2)如图②,⊙O 的半径为7,点P 在⊙O 上,点Q 在⊙O 内,且PQ =4,过点Q 作PQ 的垂线交⊙O 于点A 、B .设PA =x ,PB =y ,求y 与x 的函数表达式.31.如图①,抛物线y=x2﹣(a+1)x+a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积为6.(1)求这条抛物线相应的函数表达式;(2)在抛物线上是否存在一点P,使得∠POB=∠CBO,若存在,请求出点P的坐标;若不存在,请说明理由;(3)如图②,M是抛物线上一点,N是射线CA上的一点,且M、N两点均在第二象限内,A、N是位于直线BM同侧的不同两点.若点M到x轴的距离为d,△MNB的面积为2d,且∠MAN=∠ANB,求点N的坐标.cm,那么这个三角形的32.如果一个直角三角形的两条直角边的长相差2cm,面积是242两条直角边分别是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据两内项之积等于两外项之积对各项分析判断即可得解.【详解】解:由34a b =,得出,3b=4a, A.由等式性质可得:3b=4a ,正确;B.由等式性质可得:4a=3b ,错误;C. 由等式性质可得:3b=4a ,正确;D. 由等式性质可得:4a=3b ,正确.故答案为:B.【点睛】本题考查的知识点是等式的性质,熟记等式性质两内项之积等于两外项之积是解题的关键. 2.A解析:A【解析】【分析】利用A 、B 、C 、D 四点共圆,根据同弧所对的圆周角相等,得出ADC ABC ∠∠=,再作AE CD ⊥,设AE=DE=x ,最后利用勾股定理求解即可.【详解】解:如图所示,∵△ABC 、△ABD 都是直角三角形,∴A,B,C,D 四点共圆,∵AC=BC ,∴BAC ABC 45∠∠==︒,∴ADC ABC 45∠∠==︒,作AE CD ⊥于点E,∴△AED 是等腰直角三角形,设AE=DE=x,则AD 2x =,∵CD=7,CE=7-x,∵AB 52=∴AC=BC=5,在Rt△AEC 中,222AC AE EC =+,∴()22257x x =+-解得,x=3或x=4,∴AD ==. 故答案为:A.【点睛】本题考查的知识点是勾股定理的综合应用,解题的关键是根据题目得出四点共圆,作出合理辅助线,在圆内利用勾股定理求解. 3.B解析:B【解析】【分析】利用圆心角的度数等于它所对的弧的度数得到∠BOC=50°,利用垂径定理得到=AC BC ,然后根据圆周角定理计算∠ADC 的度数.【详解】∵BC 的度数为50°,∴∠BOC=50°,∵半径OC ⊥AB ,∴=AC BC ,∴∠ADC=12∠BOC=25°. 故选B .【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理和圆周角定理. 4.A解析:A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 5.C解析:C【解析】∵∠BOC=2∠BAC ,∠BAC=40°∴∠BOC=80°,∵OB=OC,∴∠OBC=∠OCB=(180°-80°)÷2=50°故选C.6.D解析:D【解析】【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【详解】∵BC是⊙O的切线,∴∠ABC=90°,∴∠A=90°-∠ACB=40°,由圆周角定理得,∠BOD=2∠A=80°,故选D.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.7.A解析:A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A.是轴对称图形,不是中心对称图形,符合题意;B.不是轴对称图形,是中心对称图形,不符合题意;C. 是轴对称图形,是中心对称图形,不符合题意;D. 是轴对称图形,是中心对称图形,不符合题意;故选:A.【点睛】本题考查的知识点是识别轴对称图形与中心对称图形,需要注意的是轴对称图形是关于对称轴成轴对称;中心对称图形是关于某个点成中心对称.8.C解析:C【解析】【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角32,从而可得出面积.【详解】解:由题意可得出圆的半径为1,∵△ABC为正三角形,AO=1,AD BC⊥,BD=CD,AO=BO,∴1DO2=,32AD=,∴223BD OB OD=-=,∴BC3=∴1333322ABCS=⨯=.故选:C.【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.9.B解析:B【解析】【分析】将x=2代入方程即可求得k的值,从而得到正确选项.【详解】解:∵一元二次方程x2-3x+k=0的一个根为x=2,∴22-3×2+k=0,解得,k=2,故选:B.【点睛】本题考查一元二次方程的解,解题的关键是明确一元二次方程的解一定使得原方程成立.10.D解析:D【解析】【分析】由于有13名同学参加歌咏比赛,要取前6名参加决赛,故应考虑中位数的大小.【详解】共有13名学生参加比赛,取前6名,所以小红需要知道自己的成绩是否进入前六.我们把所有同学的成绩按大小顺序排列,第7名学生的成绩是这组数据的中位数,所以小红知道这组数据的中位数,才能知道自己是否进入决赛.故选D .【点睛】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.11.A解析:A【解析】【分析】连接AC ,如图,根据圆周角定理得到90BAC ︒∠=,70ACB ADB ︒∠=∠=,然后利用互余计算ABC ∠的度数.【详解】连接AC ,如图,∵BC 是O 的直径,∴90BAC ︒∠=,∵70ACB ADB ︒∠=∠=,∴907020ABC ︒︒︒∠=-=.故答案为20︒.故选A .【点睛】本题考查圆周角定理和推论,解题的关键是掌握圆周角定理和推论.12.B解析:B【解析】【分析】根据平均数、方差的定义计算即可.【详解】∵小亮的成绩和其它39人的平均数相同,都是90分,∴40人的平均数是90分,∵39人的方差为41,小亮的成绩是90分,40人的平均分是90分,∴40人的方差为[41×39+(90-90)2]÷40<41,∴方差变小,∴平均分不变,方差变小故选B.【点睛】本题考查了平均数与方差,熟练掌握定义是解题关键.二、填空题13.12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG 为△E解析:12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF ABGF GD==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【详解】∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF GD==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故答案为:12.【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.14.6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.解析:6【解析】【分析】取AB的中点E,连接OE,DE,OD,依据三角形中位线定理即可得到BC=2DE,再根据O,E,D在同一直线上时,DE的最小值等于OD-OE=3,即可得到BC的最小值等于6.【详解】解:如图所示,取AB的中点E,连接OE,DE,OD,由题可得,D是AC的中点,∴DE是△ABC的中位线,∴BC=2DE,∵点D坐标为(4,3),∴OD22345,∵Rt△ABO中,OE=12AB=12×4=2,∴当O,E,D在同一直线上时,DE的最小值等于OD﹣OE=3,∴BC的最小值等于6,故答案为:6.【点睛】本题主要考查了勾股定理,三角形三条边的关系,直角三角形斜边上中线的性质以及三角形中位线定理的运用,解决问题的关键是掌握直角三角形斜边上中线的性质以及三角形中位线定理.15.-22【解析】【分析】先确定的整数部分的规律,根据题意确定算式的运算规律,再进行实数运算. 【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数解析:-22【解析】【分析】2020的整数部分的规律,根据题意确定算式-+-+⋅⋅⋅⋅⋅⋅+-的运算规律,再进行实数运算. 【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数据1,2,3,4……2020中,算术平方根是1的有3个,算术平方根是2的有5个,算数平方根是3的有7个,算数平方根是4的有9个,…其中432=1849,442=1936,452=2025,所以在、⋅⋅⋅⋅⋅⋅中,算术平方根依次为1,2,3……43的个数分别为3,5,7,9……个,均为奇数个,最大算数平方根为44的有85个,所以-+-+⋅⋅⋅⋅⋅⋅+-=1-2+3-4+…+43-44= -22 【点睛】本题考查自定义运算,通过正整数的算术平方根的整数部分出现的规律,找到算式中相同加数的个数及符号的规律,方能进行运算.16.【解析】【分析】根据黄金比值为计算即可.【详解】解:∵点P 是线段AB 的黄金分割点(AP>BP )∴故答案为:.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.解析:2【解析】【分析】根据黄金比值为12计算即可. 【详解】解:∵点P 是线段AB 的黄金分割点(AP>BP )∴AP 2AB ==故答案为:2.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.17.2【解析】【分析】首先根据平均数确定x的值,再利用方差公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],计算方差即可.【详解】∵组数据的平均数是10,∴(9+10+12+x+8解析:2【解析】【分析】首先根据平均数确定x的值,再利用方差公式S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],计算方差即可.【详解】∵组数据的平均数是10,∴15(9+10+12+x+8)=10,解得:x=11,∴S2=15[[(9﹣10)2+(10﹣10)2+(12﹣10)2+(11﹣10)2+(8﹣10)2],=15×(1+0+4+1+4),=2.故答案为:2.【点睛】本题考查了方差,一般地设n个数据,x1,x2,…x n的平均数为x,则方差S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18.6【解析】【分析】将方程的根-2代入原方程求出m的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:6解析:6【解析】【分析】将方程的根-2代入原方程求出m 的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:24120x x --=,解方程得:122,6x x =-=.故答案为:6.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.19.【解析】【分析】圆C 过点P 、Q ,且与相切于点M ,连接CM ,CP ,过点C 作CN⊥PQ 于N 并反向延长,交OB 于D ,根据等腰直角三角形的性质和垂径定理,即可求出ON 、ND 、PN ,设圆C 的半径为r ,再解析:4223-【解析】【分析】圆C 过点P 、Q ,且与OB 相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D ,根据等腰直角三角形的性质和垂径定理,即可求出ON 、ND 、PN ,设圆C 的半径为r ,再根据等腰直角三角形的性质即可用r 表示出CD 、NC ,最后根据勾股定理列方程即可求出r .【详解】解:如图所示,圆C 过点P 、Q ,且与OB 相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D∵2OP =,6OQ =,∴PQ=OQ -OP=4根据垂径定理,PN=122PQ = ∴ON=PN +OP=4在Rt △OND 中,∠O=45°∴ON=ND=4,∠NDO=∠O=45°,=设圆C 的半径为r ,即CM=CP=r∵圆C 与OB 相切于点M ,∴∠CMD=90°∴△CMD 为等腰直角三角形∴CM=DM=r ,=∴NC=ND -CD=4根据勾股定理可得:NC 2+PN 2=CP 2即()22242r -+=解得:12r r +==DM >OD ,点M 不在射线OB 上,故舍去)故答案为:.【点睛】此题考查的是等腰直角三角形的判定及性质、垂径定理、勾股定理和切线的性质,掌握垂径定理和勾股定理的结合和切线的性质是解决此题的关键.20.-4【解析】【分析】先由方程的解的含义,得出m2-2m-3=0,变形得m2-2m=3,再将要求的代数式提取公因式-2,然后将m2-2m=3代入,计算即可.【详解】解:∵m 是关于x 的方程x2解析:-4【解析】【分析】先由方程的解的含义,得出m 2-2m-3=0,变形得m 2-2m=3,再将要求的代数式提取公因式-2,然后将m 2-2m=3代入,计算即可.【详解】解:∵m 是关于x 的方程x 2-2x-3=0的解,∴m 2-2m-3=0,∴m 2-2m=3,∴4m-2m 2+2= -2(m 2-2m )+2= -2×3+2= -4.故答案为:-4.【点睛】本题考查了利用一元二次方程的解的含义在代数式求值中的应用,明确一元二次方程的解的含义并将要求的代数式正确变形是解题的关键.21.y=0.5(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC解析:y=0.5(x-2)2+5【解析】解:∵函数y=12(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=12(1﹣2)2+1=112,n=12(4﹣2)2+1=3,∴A(1,112),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,112),∴AC=4﹣1=3.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=3AA′=12,∴AA′=4,即将函数y=12(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=12(x﹣2)2+5.故答案为y=0.5(x﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题的关键.22.2【解析】【分析】设,分别用k表示x、y、z,然后代入计算,即可得到答案.【详解】解:根据题意,设,∴,,,∴;故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的解析:2【解析】【分析】 设234x y z k ===,分别用k 表示x 、y 、z ,然后代入计算,即可得到答案. 【详解】 解:根据题意,设234x y z k ===, ∴2x k =,3y k =,4z k =, ∴2423x z k k y k++==; 故答案为:2.【点睛】本题考查了比例的性质,解题的关键是掌握比例的性质,正确用k 来表示x 、y 、z. 23.16【解析】【分析】【详解】延长EF 交BC 的延长线与H,在平行四边形ABCD 中,∵AD=BC,AD ∥BC∴△DEF ∽△CHF, △DEM ∽△BHM∴ ,∵F 是CD 的中点∴DF解析:16【解析】【分析】【详解】延长EF 交BC 的延长线与H,在平行四边形ABCD 中,∵AD=BC,AD ∥BC∴△DEF ∽△CHF, △DEM ∽△BHM ∴DE DF CH CF = ,2()DEM BMHS DE S BH ∆∆= ∵F 是CD 的中点∴DF=CF∴DE=CH∵E 是AD 中点∴AD=2DE∴BC=2DE∴BC=2CH∴BH=3CH∵1DEM S ∆= ∴211()3BMH S ∆= ∴9BMH S ∆=∴9CFH BCFM S S ∆+=四边形∴9DEF BCFM S S ∆+=四边形∴9DME DFM BCFM S S S ∆∆++=四边形∴19BCD S ∆+=∴8BCD S ∆=∵四边形ABCD 是平行四边形∴2816ABCD S =⨯=四边形故答案为:16.24.或【解析】【分析】如图1,当⊙F 与Rt △ABC 的边AC 相切时,切点为H ,连接FH ,则HF ⊥AC ,解直角三角形得到AC =4,AB =5,根据旋转的性质得到∠DCE =∠ACB =90°,DE =AB =5解析:209或145【解析】【分析】 如图1,当⊙F 与Rt △ABC 的边AC 相切时,切点为H ,连接FH ,则HF ⊥AC ,解直角三角形得到AC =4,AB =5,根据旋转的性质得到∠DCE =∠ACB =90°,DE =AB =5,CD =AC =4,根据相似三角形的性质得到DF =209;如图2,当⊙F 与Rt △ABC 的边AC 相切时,延长DE 交AB 于H ,推出点H 为切点,DH 为⊙F 的直径,根据相似三角形的性质即可得到结论.【详解】如图1,当⊙F 与Rt △ABC 的边AC 相切时,切点为H , 连接FH ,则HF ⊥AC ,∴DF =HF , ∵Rt △ABC 中,∠ACB =90°,BC =3,tan A =BC AC =34, ∴AC =4,AB =5,将Rt △ABC 绕点C 顺时针旋转90°得到△DEC ,∴∠DCE =∠ACB =90°,DE =AB =5,CD =AC =4,∵FH ⊥AC ,CD ⊥AC ,∴FH ∥CD ,∴△EFH ∽△EDC ,∴FH CD =EF DE , ∴4DF =55DF , 解得:DF =209; 如图2,当⊙F 与Rt △ABC 的边AC 相切时,延长DE 交AB 于H ,∵∠A=∠D,∠AEH=∠DEC∴∠AHE=90°,∴点H为切点,DH为⊙F的直径,∴△DEC∽△DBH,∴DEBD=CDDH,∴57=4DH,∴DH=285,∴DF=145,综上所述,当FD=209或145时,⊙F与Rt△ABC的边相切,故答案为:209或145.【点睛】本题考查了切线的判定和性质,相似三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.三、解答题25.(1)证明见解析;(2)S阴影32π【解析】【分析】(1)根据斜边中线等于斜边一半得到DE=CE,再利用切线的性质得到∠BCO=90°,最后利用等量代换即可证明,(2)根据S阴影=2S△ECO-S扇形COD即可求解.【详解】(1)连接DC、DO.因为AC 为圆O 直径,所以∠ADC=90°,则∠BDC=90°,因为E 为Rt △BDC 斜边BC 中点, 所以DE=CE=BE=12BC , 所以∠DCE=∠EDC,因为OD=OC ,所以∠DCO=∠CDO.因为BC 为圆O 切线,所以BC ⊥AC ,即∠BCO=90°,所以∠ODE=∠ODC+∠EDC=∠OCD+∠DCE=∠BCO=90°,所以ED ⊥OD ,所以DE 为圆O 的切线.(2)S 阴影=2S △ECO -S扇形COD =3-2π 【点睛】本题主要考查切线的性质和判定及扇形面积的计算,掌握切线的判定定理及扇形的面积公式是解题的关键.26.(1)24(3)9y x =+;(2)P(1511,2411);(3)C(-3,-5)或 (-3,2513) 【解析】【分析】(1)设顶点式,将B 点代入即可求;(2)根据4m+3n=12确定点P 所在直线的解析式,再根据内切线的性质可知P 点在∠BAO 的角平分线上,求两线交点坐标即为P 点坐标;(3)根据角之间的关系确定C 在∠DBA 的角平分线与对称轴的交点或∠ABO 的角平分线与对称轴的交点,通过求角平分线的解析式即可求.【详解】(1)∵抛物线的顶点坐标为A(-3,0),设二次函数解析式为y=a(x+3)2,将B (0,4)代入得,4=9a∴a=49 ∴24(3)9y x =+ (2)如图 ∵P (m,n),且满足4m+3n=12∴443n m =-+ ∴点P 在第一象限的443y x =-+上, ∵以点P 为圆心的圆与直线AB 、x 轴相切,∴点P 在∠BAO 的角平分线上,∠BAO 的角平分线:y=1322x +, ∴134=4223x x +-+, ∴x=1511,∴y=2411∴P(1511,2411)(3)C(-3,-5)或 (-3,2513)理由如下: 如图,A ´(3,0),可得直线L A ´B 的表达式为443y x =-+ , ∴P 点在直线A ´B 上,∵∠PA ´O=∠ABO=∠BAG, 2∠CBA+∠PA′O=90°,∴2∠CBA=90°-∠PA′O=∠GAB,在对称轴上取点D,使∠DBA=∠DAB,作BE ⊥AG 于G 点,设D点坐标为(-3,t)则有(4-t)2+32=t2t=25 8,∴D(-3,25 8),作∠DBA的角平分线交AG于点C即为所求点,设为C1∠DBA的角平分线BC1的解析式为y=913x+4,∴C1的坐标为 (-3, 25 13);同理作∠ABO的角平分线交AG于点C即为所求,设为C2,∠ABO的角平分线BC2的解析式为y=3x+4,∴C2的坐标为(-3,-5).综上所述,点C的坐标为(-3, 2513)或(-3,-5).【点睛】本题考查了二次函数与图形的结合,涉及的知识点角平分线的解析式的确定,切线的性质,勾股定理及图象的交点问题,涉及知识点较多,综合性较强,根据条件,结合图形找准对应知识点是解答此题的关键.27.(1)见解析;(2)见解析;(3)2【解析】【分析】(1)易求DF长度即可判断;(2)通过30°角所对的直角边等于斜边一半证得AE=2EF,EF=2CE即可得;(3)先证明△OFG为等边三角形,△OPG为等边三角形,即可确定扇形圆心角∠POG和∠GOF的大小均为60°,所以两扇形面积相等,通过割补法得出最后阴影面积只与矩形OPDH和△OGF有关,根据面积公式求出两图形面积即可.【详解】(1)∵AF=AB=6,AD=BC=∴DF=3,∴CF=DF=3,∴F是CD的中点(2)∵AF=6, DF=3,∴∠DAF=30°,∴∠EAF=30◦ ,∴AE=2EF;∴∠EFC=30◦ ,EF=2CE,∴AE=4CE(3)如图,连接OP,OG,作OH⊥FG,∵∠AFD=60°,OF=OG,∴△OFG为等边三角形,同理△OPG为等边三角形,∴∠POG=∠FOG=60°,OH=32OG ,∴S扇形OPG=S扇形OGF,∴S阴影=(S矩形OPDH-S扇形OPG-S△OGH)+(S扇形OGF-S△OFG)=S矩形OPDH-32S△OFG=313 2323222,即图中阴影部分的面积2.【点睛】本题考查了正方形的性质,等边三角形的性质及解直角三角形,涉及知识点较多,综合性较强,根据条件,结合图形找准对应知识点是解答此题的关键.28.12 5【解析】【分析】过A点作AD⊥BC,将等腰三角形转化为直角三角形,利用勾股定理求AD,利用锐角三角函数的定义求∠B的正切值.【详解】过点A作AD⊥BC,垂足为D,∵AB=AC=13,BC=10,∴BD=DC=12BC=5,∴AD222213512AB BD-=-=,在Rt△ABD中,∴tan B125 ADBD==.【点睛】本题考查了勾股定理,等腰三角形的性质和三角函数的应用,关键是将问题转化到直角三角形中求解,并且要熟练掌握好边角之间的关系.29.8+83【解析】【分析】过点A作AD⊥BC,垂足为点D,构造直角三角形,利用三角函数值分别求出AD、BD、CD 的值即可求三角形面积.【详解】解:过点A 作AD ⊥BC ,垂足为点D ,在Rt △ADB 中,∵sin AD ABC AB ∠=, ∴sin AD AB ABC =⋅∠= 1842⨯= ∵cos BD ABC AB∠=, ∴3cos 8432BD AB ABC =⋅∠=⨯= 在Rt △ADC 中,∵45ACB ︒∠=,∴45CAD ︒∠=,∴AD =DC =4∴ 111()(443)4883222ABC S BC AD BD CD AD ∆=⋅=+⋅=⨯+⨯=+【点睛】本题考查的知识点是利用勾股定理求三角形面积,通过作辅助线构造直角三角形结合三角函数值是解此题的关键.30.(1)见解析;(2)56y x=【解析】【分析】(1)根据圆周角定理可证∠APB =90°,再根据相似三角形的判定方法:两角对应相等,两个三角形相似即可求证结论;(2)连接PO ,并延长PO 交⊙O 于点C ,连接AC ,根据圆周角定理可得∠PAC =90°,∠C =∠B ,求得∠PAC =∠PQB ,根据相似三角形的性质即可得到结论.【详解】(1)如图①所示:∵AB 为⊙O 的直径∴∠APB =90°又∵PQ ⊥AB∴∠AQP =90°∴∠AQP =∠APB又∵∠PAQ =∠BAP∴△APQ ∽△ABP .(2)如图②,连接PO ,并延长PO 交⊙O 于点C ,连接AC .∵PC 为⊙O 的直径∴∠PAC =90°又∵PQ ⊥AB∴∠PQB =90°∴∠PAC =∠PQB又∵∠C =∠B (同弧所对的圆周角相等) ∴△PAC ∽△PQB∴=PA PC PQ PB又∵⊙O 的半径为7,即PC =14,且PQ =4,PA =x ,PB =y∴144x y = ∴56y x =. 【点睛】 本题考查相似三角形的判定及其性质,圆周角定理及其推论,解题的关键是综合运用所学知识.31.(1)y =x 2+2x ﹣3;(2)存在,点P 坐标为113331322⎛+ ⎝⎭或53715337-+-⎝⎭;(3)点N 的坐标为(﹣4,1) 【解析】【分析】(1)分别令y =0 ,x =0,可表示出A 、B 、C 的坐标,从而表示△ABC 的面积,求出a 的值继而即可得二次函数解析式;(2)如图①,当点P 在x 轴上方抛物线上时,平移BC 所在的直线过点O 交x 轴上方抛物线于点P ,则有BC ∥OP ,此时∠POB =∠CBO ,联立抛物线得解析式和OP 所在直线的解析式解方程组即可求解;当点P 在x 轴下方时,取BC 的中点D ,易知D 点坐标为(12,32-),连接OD 并延长交x 轴下方的抛物线于点P ,由直角三角形斜边中线定理可知,OD =BD ,∠DOB =∠CBO 即∠POB =∠CBO ,联立抛物线的解析式和OP 所在直线的解析式解方程组即可求解.(3)如图②,通过点M 到x 轴的距离可表示△ABM 的面积,由S △ABM =S △BNM ,可证明点A 、点N 到直线BM 的距离相等,即AN ∥BM ,通过角的转化得到AM =BN ,设点N 的坐标,表示出BN 的距离可求出点N .【详解】(1)当y =0时,x 2﹣(a +1)x +a =0,解得x 1=1,x 2=a ,当x =0,y =a∴点C 坐标为(0,a ),∵C (0,a )在x 轴下方∴a <0∵点A 位于点B 的左侧,∴点A 坐标为(a ,0),点B 坐标为(1,0),∴AB =1﹣a ,OC =﹣a ,∵△ABC 的面积为6, ∴()()1162a a --=, ∴a 1=﹣3,a 2=4(因为a <0,故舍去),∴a =﹣3,∴y =x 2+2x ﹣3;(2)设直线BC :y =kx ﹣3,则0=k ﹣3,∴k =3;①当点P 在x 轴上方时,直线OP 的函数表达式为y =3x ,则2323y x y x x =⎧⎨=+-⎩,∴11x y ⎧=⎪⎪⎨⎪=⎪⎩,22x y ⎧=⎪⎪⎨⎪=⎪⎩,∴点P坐标为⎝⎭; ②当点P 在x 轴下方时,直线OP 的函数表达式为y =﹣3x ,则2323y x y x x =-⎧⎨=+-⎩ ∴1153715337y x ⎧-+=⎪⎪⎨-⎪=⎪⎩,2253715337y x ⎧--=⎪⎪⎨+⎪=⎪⎩,∴点P 坐标为53715337,22⎛⎫-+- ⎪ ⎪⎝⎭, 综上可得,点P 坐标为1133313,22⎛⎫++ ⎪ ⎪⎝⎭或53715337,22⎛⎫-+- ⎪ ⎪⎝⎭;(3)如图,过点A 作AE ⊥BM 于点E ,过点N 作NF ⊥BM 于点F ,设AM 与BN 交于点G ,延长MN 与x 轴交于点H ;∵AB =4,点M 到x 轴的距离为d ,∴S △AMB =114222AB d d d ⨯⨯⨯== ∵S △MNB =2d ,∴S △AMB =S △MNB ,∴1122BM AE BM NF ⨯=⨯, ∴AE =NF ,∵AE ⊥BM ,NF ⊥BM ,∴四边形AEFN 是矩形,∴AN ∥BM ,∵∠MAN =∠ANB ,∴GN =GA ,∵AN ∥BM , ∴∠MAN =∠AMB ,∠ANB =∠NBM ,∴∠AMB =∠NBM ,∴GB =GM ,∴GN +GB =GA +GM 即BN =MA ,在△AMB 和△NBM 中AMB NB AM NB MB BM M =⎧=∠∠⎪⎨⎪⎩=∴△AMB ≌△NBM (SAS ),∴∠ABM =∠NMB ,∵OA =OC =3,∠AOC =90°,∴∠OAC =∠OCA =45°,又∵AN ∥BM ,∴∠ABM =∠OAC =45°,∴∠NMB =45°,∴∠ABM +∠NMB =90°,∴∠BHM =90°,∴M 、N 、H 三点的横坐标相同,且BH =MH ,∵M 是抛物线上一点,∴可设点M 的坐标为(t ,t 2+2t ﹣3),∴1﹣t =t 2+2t ﹣3,∴t 1=﹣4,t 2=1(舍去),∴点N 的横坐标为﹣4,可设直线AC :y =kx ﹣3,则0=﹣3k ﹣3,∴k =﹣1,∴y =﹣x ﹣3,当x =﹣4时,y =﹣(﹣4)﹣3=1,∴点N 的坐标为(﹣4,1).【点睛】本题主要考查二次函数的图象与性质,还涉及到全等三角形的判定及其性质、三角形面积公式等知识点,综合性较强,解题的关键是熟练掌握二次函数的图象与性质.32.一条直角边的长为 6cm ,则另一条直角边的长为8cm .【解析】【分析】可设较短的直角边为未知数x ,表示出较长的边,根据直角三角形的面积为24列出方程求正数解即可.【详解】解:设一条直角边的长为xcm ,则另一条直角边的长为(x+2)cm .根据题意列方程,得1(2)242x x •+=. 解方程,得:x 1=6,x 2=8-(不合题意,舍去).∴一条直角边的长为 6cm ,则另一条直角边的长为8cm .【点睛】本题考查一元二次方程的应用;用到的知识点为:直角三角形的面积等于两直角边积的一半.。

九年级上册数学 期末试卷综合测试卷(word含答案)

九年级上册数学 期末试卷综合测试卷(word含答案)

九年级上册数学 期末试卷综合测试卷(word 含答案) 一、选择题 1.sin 30°的值为( )A .3B .32C .12D .222.如图,某水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m ,则应水坡面AB 的长度是( )A .100mB .1003mC .150mD .503m3.已知Rt △ABC 中,∠C=900,AC=2,BC=3,则下列各式中,正确的是( )A .2sin 3B =; B .2cos 3B =;C .2tan 3B =;D .以上都不对;4.关于2,6,1,10,6这组数据,下列说法正确的是( )A .这组数据的平均数是6B .这组数据的中位数是1C .这组数据的众数是6D .这组数据的方差是10.25.如图,ABC △内接于⊙O ,30BAC ∠=︒,8BC = ,则⊙O 半径为( )A .4B .6C .8D .12 6.一个扇形的半径为4,弧长为2π,其圆心角度数是( ) A .45B .60C .90D .180 7.如图,抛物线2144y x =-与x 轴交于A 、B 两点,点P 在一次函数6y x =-+的图像上,Q 是线段PA 的中点,连结OQ ,则线段OQ 的最小值是( )A .22 B .1 C .2 D .2 8.O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是( )A .相交B .相切C .相离D .无法确定 9.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π-10.已知1x =是方程220x ax ++=的一个根,则方程的另一个根为( ) A .-2 B .2 C .-3D .3 11.如图是二次函数y =ax 2+bx+c 图象的一部分,图象过点A(﹣3,0),对称轴为直线x =﹣1,下列结论:①b 2>4ac ;②2a+b =0;③a+b+c >0;④若B(﹣5,y 1)、C(﹣1,y 2)为函数图象上的两点,则y 1<y 2.其中正确结论是( )A .②④B .①③④C .①④D .②③12.如图,△ABC 中AB 两个顶点在x 轴的上方,点C 的坐标是(﹣1,0),以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A′B′C′,且△A′B′C′与△ABC 的位似比为2:1.设点B 的对应点B′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+C .1(1)2a --D .1(3)2a -+ 二、填空题13.150°的圆心角所对的弧长是5πcm ,则此弧所在圆的半径是______cm .14.O 的半径为4,圆心O 到直线l 的距离为2,则直线l 与O 的位置关系是______.15.某同学想要计算一组数据105,103,94,92,109,85的方差20S ,在计算平均数的过程中,将这组数据中的每一个数都减去100,得到一组新数据5,3,-6,-8,9,-15,记这组新数据的方差为21S ,则20S ______21S (填“>”、“=”或“<”).16.从地面垂直向上抛出一小球,小球的高度h (米)与小球运动时间t (秒)之间的函数关系式是h=12t ﹣6t 2,则小球运动到的最大高度为________米;17.如图,在平面直角坐标系中,直线l :28y x =+与坐标轴分别交于A ,B 两点,点C 在x 正半轴上,且OC =O B .点P 为线段AB (不含端点)上一动点,将线段OP 绕点O 顺时针旋转90°得线段OQ ,连接CQ ,则线段CQ 的最小值为___________.18.关于x 的方程220kx x --=的一个根为2,则k =______.19.如图,123////l l l ,直线a 、b 与1l 、2l 、3l 分别相交于点A 、B 、C 和点D 、E 、F .若AB=3,BC=5,DE=4,则EF 的长为______.20.已知圆锥的底面半径是3cm ,母线长是5cm ,则圆锥的侧面积为_____cm 2.(结果保留π)21.将一枚标有数字1、2、3、4、5、6的均匀正方体骰子抛掷一次,则向上一面数字为奇数的概率等于_____.22.若一个圆锥的侧面展开图是一个半径为3cm ,圆心角为120°的扇形,则该圆锥的底面半径为__________cm .23.若关于x 的一元二次方程22(1)0k x x k -+-=的一个根为1,则k 的值为__________.24.如图,二次函数y =x (x ﹣3)(0≤x ≤3)的图象,记为C 1,它与x 轴交于点O ,A 1;将C 1点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;……若P (2020,m )在这个图象连续旋转后的所得图象上,则m =_____.三、解答题25.如图,四边形ABCD 内接于⊙O ,AC 为⊙O 的直径,D 为AC 的中点,过点D 作DE ∥AC ,交BC 的延长线于点E .(1)判断DE 与⊙O 的位置关系,并说明理由;(2)若CE =163,AB =6,求⊙O 的半径.26.某校举行秋季运动会,甲、乙两人报名参加100 m 比赛,预赛分A 、B 、C 三组进行,运动员通过抽签决定分组.(1)甲分到A 组的概率为 ;(2)求甲、乙恰好分到同一组的概率.27.如图,有一路灯杆AB (底部B 不能直接到达),在灯光下,小华在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己的影长FG =4m .如果小华的身高为1.5m ,求路灯杆AB 的高度.28.如图,AB 是⊙O 的直径,AE 平分∠BAF ,交⊙O 于点E ,过点E 作直线ED ⊥AF ,交AF的延长线于点D ,交AB 的延长线于点C .(1)求证:CD 是⊙O 的切线;(2)∠C =45°,⊙O 的半径为2,求阴影部分面积.29.计算(1)02020318(1)2⎛⎫-+- ⎪⎝⎭ (2)2430x x -+=30.如图,AB 是⊙O 的直径,弦DE 垂直平分半径OA ,C 为垂足,弦DF 与半径OB 相交于点P ,连结EF 、EO ,若DE=23,∠DPA=45°.(1)求⊙O 的半径;(2)求图中阴影部分的面积.31.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.32.如图,直线y =x ﹣1与抛物线y =﹣x 2+6x ﹣5相交于A 、D 两点.抛物线的顶点为C ,连结AC .(1)求A ,D 两点的坐标;(2)点P 为该抛物线上一动点(与点A 、D 不重合),连接PA 、PD .①当点P的横坐标为2时,求△PAD的面积;②当∠PDA=∠CAD时,直接写出点P的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:sin 30°=1 2故选C【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.2.A解析:A【解析】∵堤坝横断面迎水坡AB的坡比是13,∴BCAC3,∵BC=50,∴3,∴()2222AC+BC503+50100==(m).故选A 3.C解析:C【解析】【分析】根据勾股定理求出AB ,根据锐角三角函数的定义求出各个三角函数值,即可得出答案.【详解】 如图:由勾股定理得:22222133AC BC ++==,所以cosB=313BC AB =,sinB=21233AC AC tanB AB BC === ,所以只有选项C 正确; 故选:C .【点睛】此题考查锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键. 4.C解析:C【解析】【分析】先把数据从小到大排列,然后根据算术平均数,中位数,众数的定义得出这组数据的平均数、中位数、众数,再利用求方差的计算公式求出这组数据的方差,再逐项判定即可.【详解】解:数据从小到大排列为:1,2,6,6,10,中位数为:6;众数为:6;平均数为:()112661055⨯++++=; 方差为:()()()()()2222211525656510510.45⎡⎤⨯-+-+-+-+-=⎣⎦. 故选:C .【点睛】本题考查的知识点是平均数,中位数,众数,方差的概念定义,熟记定义以及方差公式是解此题的关键.5.C解析:C【解析】【分析】连接OB ,OC ,根据圆周角定理求出∠BOC 的度数,再由OB =OC 判断出△OBC 是等边三角形,由此可得出结论.【详解】解:连接OB ,OC ,∵∠BAC =30°,∴∠BOC =60°.∵OB =OC ,BC =8, ∴△OBC 是等边三角形,∴OB =BC =8.故选:C.【点睛】本题考查的是圆周角定理以及等边三角形的判定和性质,根据题意作出辅助线,构造出等边三角形是解答此题的关键.6.C解析:C【解析】【分析】根据弧长公式即可求出圆心角的度数.【详解】解:∵扇形的半径为4,弧长为2π,∴42180n ππ⨯=解得:90n =,即其圆心角度数是90︒故选C .【点睛】 此题考查的是根据弧长和半径求圆心角的度数,掌握弧长公式是解决此题的关键.7.A解析:A【解析】【分析】先求得A 、B 两点的坐标,设()6P m m -,,根据之间的距离公式列出2PB 关于m 的函数关系式,求得其最小值,即可求得答案.【详解】令0y =,则21404x -=, 解得:4x =±,∴A 、B 两点的坐标分别为:()()4040A B -,、,,设点P 的坐标为()6m m -,, ∴()()2222246220522(5)2PB m m m m m =-+-=-+=-+,∵20>,∴当5m =时,2PB 有最小值为:2,即PB 有最小值为:2,∵A 、B 为抛物线的对称点,对称轴为y 轴,∴O 为线段AB 中点,且Q 为AP 中点,∴1222OQ PB ==. 故选:A .【点睛】本题考查了二次函数与一次函数的综合问题,涉及到的知识有:两点之间的距离公式,三角形中位线的性质,二次函数的最值问题,利用两点之间的距离公式求得2PB 的最小值是解题的关键.8.A解析:A【解析】【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l 与O 的位置关系是相交.【详解】∵⊙O 的半径为5,圆心O 到直线的距离为3,∴直线l 与⊙O 的位置关系是相交. 故选A .【点睛】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.9.D解析:D【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A 作AD ⊥BC 于D ,∵△ABC 是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD ⊥BC ,∴BD=CD=1,∴△ABC 的面积为12BC•AD=122⨯ S 扇形BAC =2602360π⨯=23π,∴莱洛三角形的面积S=3×23π﹣﹣, 故选D .【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键. 10.B解析:B【解析】【分析】根据一元二次方程根与系数的关系求解.【详解】设另一根为m ,则1•m=2,解得m=2.故选B .【点睛】考查了一元二次方程根与系数的关系.根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a.要求熟练运用此公式解题. 11.C解析:C【解析】【分析】根据抛物线与x 轴有两个交点可得△=b 2﹣4ac>0,可对①进行判断;由抛物线的对称轴可得﹣2b a=﹣1,可对②进行判断;根据对称轴方程及点A 坐标可求出抛物线与x 轴的另一个交点坐标,可对③进行判断;根据对称轴及二次函数的增减性可对④进行判断;综上即可得答案.【详解】∵抛物线与x 轴有两个交点,∴b 2﹣4ac >0,即:b 2>4ac ,故①正确,∵二次函数y =ax 2+bx+c 的对称轴为直线x =﹣1, ∴﹣2b a=﹣1,∴2a=b,即:2a﹣b=0,故②错误.∵二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,∴二次函数与x轴的另一个交点的坐标为(1,0),∴当x=1时,有a+b+c=0,故结论③错误;④∵抛物线的开口向下,对称轴x=﹣1,∴当x<﹣1时,函数值y随着x的增大而增大,∵﹣5<﹣1则y1<y2,则结论④正确故选:C.【点睛】本题主要考查二次函数图象与系数的关系,对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△=b2-4ac决定:△>0时,抛物线与x轴有2个交点;△= 0时,抛物线与x轴有1个交点;△<0时,抛物线与x轴没有交点.12.D解析:D【解析】【分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.二、填空题13.6;【解析】解:设圆的半径为x,由题意得:=5π,解得:x=6,故答案为6.点睛:此题主要考查了弧长计算,关键是掌握弧长公式l= (弧长为l ,圆心角度数为n ,圆的半径为R ).解析:6;【解析】解:设圆的半径为x ,由题意得:150180x π =5π,解得:x =6,故答案为6. 点睛:此题主要考查了弧长计算,关键是掌握弧长公式l =180n R π (弧长为l ,圆心角度数为n ,圆的半径为R ). 14.相交【解析】【分析】由圆的半径为4,圆心O 到直线l 的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l 与O 的位置关系是相交.【详解】解:∵⊙O 的半径为4,圆心O 到直线L 的解析:相交【解析】【分析】由圆的半径为4,圆心O 到直线l 的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l 与O 的位置关系是相交.【详解】解:∵⊙O 的半径为4,圆心O 到直线L 的距离为2,∵4>2,即:d <r ,∴直线L 与⊙O 的位置关系是相交.故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d <r ,则直线与圆相交;若d>r ,则直线与圆相离;若d=r ,则直线与圆相切.15.=【解析】【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数解析:=【解析】【分析】根据一组数据中的每一个数据都加上或减去同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.【详解】解:∵一组数据中的每一个数据都加上或减去同一个非零常数,它的平均数都加上或减去这一个常数,两数进行相减,方差不变,∴2201S S =故答案为:=.【点睛】本题考查的知识点是数据的平均数与方差,需要记忆的是如果将一组数据中的每一个数据都加上同一个非零常数,那么这组数据的方差不变,但平均数要变,且平均数增加这个常数.16.6【解析】【分析】现将函数解析式配方得,即可得到答案.【详解】,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开 解析:6【解析】【分析】现将函数解析式配方得221266(1)6h tt t =--=+﹣,即可得到答案. 【详解】 221266(1)6h t t t =--=+﹣,∴当t=1时,h 有最大值6.故答案为:6.【点睛】此题考查最值问题,确定最值时需现将函数解析式配方为顶点式,再根据开口方向确定最值.17.【解析】【分析】在OA上取使,得,则,根据点到直线的距离垂线段最短可知当⊥AB时,CP 最小,由相似求出的最小值即可.【详解】解:如图,在OA上取使,∵,∴,在△和△QOC中,,解析:455【解析】【分析】在OA上取'C使'OC OC=,得'OPC OQC≅,则CQ=C'P,根据点到直线的距离垂线段最短可知当'PC⊥AB时,CP最小,由相似求出C'P的最小值即可.【详解】解:如图,在OA上取'C使'OC OC=,∵90AOC POQ∠=∠=︒,∴'POC QOC∠=∠,在△'POC和△QOC中,''OP OQPOC QOCOC OC=⎧⎪∠=∠⎨⎪=⎩,∴△'POC≌△QOC(SAS),∴'PC QC=∴当'PC最小时,QC最小,过'C点作''C P⊥AB,∵直线l:28y x=+与坐标轴分别交于A,B两点,∴A坐标为:(0,8);B点(-4,0),∵'4OC OC OB ===,∴AB =''4AC OA OC =-=. ∵'''OB C P sin BAO AB AC ∠==, ''4C P =,∴''C P =∴线段CQ【点睛】 本题主要考查了一次函数图像与坐标轴的交点及三角形全等的判定和性质、垂线段最短等知识,解题的关键是正确寻找全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题.18.1【解析】【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k 的方程,从而求得k 的值.【详解】把x =2代入方程得:4k −2−2=0,解得k =1故解析:1【解析】【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k 的方程,从而求得k 的值.【详解】把x =2代入方程得:4k−2−2=0,解得k =1故答案为:1.【点睛】本题主要考查了方程的根的定义,是一个基础的题目.19.【解析】【分析】直接根据平行线分线段成比例定理即可得.,,,,解得,故答案为:.【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键. 解析:203【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】123////l l l ,AB DE BC EF∴=, 3,5,4AB BC DE ===,345EF∴=, 解得203EF =, 故答案为:203. 【点睛】 本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键. 20.15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm ,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.故答案为:15π.本题考解析:15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=12×6π×5=15πcm2.故答案为:15π.【点睛】本题考查的知识点圆锥的侧面积公式,牢记公式是解此题的关键.21..【解析】【分析】根据概率公式计算概率即可.【详解】∵在正方体骰子中,朝上的数字共有6种,为奇数的情况有3种,分别是:1,3,5,∴朝上的数字为奇数的概率是=;故答案为:.【点睛】解析:12.【解析】【分析】根据概率公式计算概率即可.【详解】∵在正方体骰子中,朝上的数字共有6种,为奇数的情况有3种,分别是:1,3,5,∴朝上的数字为奇数的概率是36=12;故答案为:12.【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键.22.1【解析】【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径.【详解】该圆锥的底面半径=故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇解析:1【解析】【分析】(1)根据180n R l π=,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2C r π=,求圆锥底面半径. 【详解】该圆锥的底面半径=()1203=11802cm ππ⋅⋅ 故答案为:1.【点睛】 圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.23.0【解析】把x =1代入方程得,,即,解得.此方程为一元二次方程,,即,故答案为0.解析:0【解析】把x =1代入方程得,2110k k -+-=,即20k k -=,解得120,1k k ==.此方程为一元二次方程,∴-≠,k10k≠,即1∴=k0.故答案为0.24.【解析】【分析】x(x﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A2=A2A3=…=A67 3A674=3,所以抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),然解析:【解析】【分析】x(x﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A2=A2A3=…=A673A674=3,所以抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),然后计算自变量为2020对应的函数值即可.【详解】当y=0时,x(x﹣3)=0,解得x1=0,x2=3,则A1(3,0),∵将C1点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……∴OA1=A1A2=A2A3=…=A673A674=3,∴抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),把P(2020,m)代入得m=﹣(2020﹣2019)(2020﹣2022)=2.故答案为2.【点睛】本题考查图形类规律,解题的关键是掌握图形类规律的基本解题方法.三、解答题25.(1)DE与⊙O相切;理由见解析;(2)4.【解析】【分析】(1)连接OD,由D为AC的中点,得到AD CD=,进而得到AD=CD,根据平行线的性质得到∠DOA=∠ODE=90°,求得OD⊥DE,于是得到结论;(2)连接BD,根据四边形对角互补得到∠DAB=∠DCE,由AD CD=得到∠DAC=∠DCA =45°,求得△ABD∽△CDE,根据相似三角形的性质即可得到结论.【详解】(1)解:DE与⊙O相切证:连接OD,在⊙O中∵D为AC的中点∴AD CD=∴AD=DC∵AD=DC,点O是AC的中点∴OD⊥AC∴∠DOA=∠DOC=90°∵DE∥AC∴∠DOA=∠ODE=90°∵∠ODE=90°∴OD⊥DE∵OD⊥DE,DE经过半径OD的外端点D ∴DE与⊙O相切.(2)解:连接BD∵四边形ABCD是⊙O的内接四边形∴∠DAB+∠DCB=180°又∵∠DCE+∠DCB=180°∴∠DAB=∠DCE∵AC为⊙O的直径,点D、B在⊙O上,∴∠ADC=∠ABC=90°∵AD CD,∴∠ABD=∠CBD=45°∵AD=DC,∠ADC=90°∴∠DAC=∠DCA=45°∵DE∥AC∴∠DCA=∠CDE=45°在△ABD和△CDE中∵∠DAB=∠DCE,∠ABD=∠CDE=45°∴△ABD∽△CDE∴ABCD=ADCE∴6 CD=163AD∴AD=DC=42, CE=163,AB=6,在Rt△ADC中,∠ADC=90°,AD=DC=42,∴AC=22AD DC=8∴⊙O的半径为4.【点睛】本题考查了直线与圆的位置关系,等腰直角三角形的性质,圆周角定理,相似三角形的判定和性质,正确的识别图形是解题的关键.26.(1)13;(2)13【解析】【分析】(1)直接利用概率公式求出甲分到A组的概率;(2)将所有情况列出,找出满足条件:甲、乙恰好分到同一组的情况有几种,计算出概率.【详解】解:(1)13(2)甲乙两人抽签分组所有可能出现的结果有:(A,A)、(A,B)、(A,C)、(B,A)、(B,B)、(B,C)、(C,A)、(C,B)、(C,C)共有9种,它们出现的可能性相同.所有的结果中,满足“甲乙分到同一组”(记为事件A)的结果有3种,所以P(A)=13.【点睛】此题主要考查了树状图法求概率,正确利用列举出所有可能并熟练掌握概率公式是解题关键.27.路灯杆AB的高度是6m.【解析】【分析】在同一时刻物高和影长成正比,根据相似三角形的性质即可解答.【详解】解:∵CD ∥EF ∥AB , ∴可以得到△CDF ∽△ABF ,△ABG ∽△EFG ,∴,CD DF FE FG AB BF AB BG==, 又∵CD =EF , ∴DF FG BF BG=, ∵DF =3m ,FG =4m ,BF =BD +DF =BD +3,BG =BD +DF +FG =BD +7,∴3437DB BD =++, ∴BD =9,BF =9+3=12,∴1.5312AB =, 解得AB =6. 答:路灯杆AB 的高度是6m .【点睛】考查了相似三角形的应用和中心投影.只要是把实际问题抽象到相似三角形中,利用相似三角形的性质对应边成比例就可以求出结果.28.(1)见解析;(2)2-2π 【解析】【分析】(1)若要证明CD 是⊙O 的切线,只需证明CD 与半径垂直,故连接OE ,证明OE ∥AD 即可;(2)根据等腰直角三角形的性质和扇形的面积公式即可得到结论.【详解】解:(1)连接OE .∵OA =OE ,∴∠OAE =∠OEA ,又∵∠DAE =∠OAE ,∴∠OEA =∠DAE ,∴OE ∥AD ,∴∠ADC =∠OEC ,∵AD ⊥CD ,∴∠ADC =90°,故∠OEC =90°.∴OE ⊥CD ,∴CD 是⊙O 的切线;(2)∵∠C =45°,∴△OCE 是等腰直角三角形,∴CE =OE =2,∠COE =45°,∴阴影部分面积=S △OCE ﹣S 扇形OBE =12⨯2×2﹣2452360π⨯=2﹣2π. 【点睛】本题综合考查了圆与三角形,涉及了切线的判定、等腰三角形的性质、扇形的面积,灵活的将图形与已知条件相结合是解题的关键.29.(1)2;(2)13x =,21x =【解析】【分析】(1)按照开立方,零指数幂,正整数指数幂的法则计算即可;(2)用因式分解法解一元二次方程即可.【详解】(1)解:原式=2112-+=(2)解:(3)(1)0x x --=30x -=或10x -=123,1x x ∴==【点睛】本题主要考查实数的混合运算和解一元二次方程,掌握实数混合运算的法则和因式分解法是解题的关键.30.(1) 2 ;(2)π-2.【解析】【分析】(1)因为AB ⊥DE ,求得CE 的长,因为DE 平分AO ,求得CO 的长,根据勾股定理求得⊙O 的半径(2)连结OF ,根据S 阴影=S 扇形– S △EOF 求得【详解】解:(1)∵直径AB ⊥DE∴132CE DE == ∵DE 平分AO ∴1122CO AO OE == 又∵90OCE ︒∠=∴30CEO ︒∠=在Rt △COE 中,2OE =∴⊙O 的半径为2(2)连结OF在Rt △DCP 中,∵45DPC ︒∠=∴904545D ︒︒︒∠=-=∴290EOF D ︒∠=∠=∵2902360OWF S ππ=⨯⨯=扇形 ∴S 阴影=2π-【点睛】 本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了扇形的面积公式、圆周角定理和含30度的直角三角形三边的关系.31.(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元.【解析】【分析】(1)由题意得出本次调查的样本容量是6118530+++=,由众数的定义即可得出结果;(2)由加权平均数公式即可得出结果;(3)由总人数乘以平均数即可得出答案.【详解】(1)本次调查的样本容量是6118530+++=,这组数据的众数为10元;故答案为30,10;(2)这组数据的平均数为6511108155201230⨯+⨯+⨯+⨯=(元); (3)估计该校学生的捐款总数为600127200⨯=(元).【点睛】此题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.本题也考查了平均数、中位数、众数的定义以及利用样本估计总体的思想.32.(1)A (1,0),D (4,3);(2)①当点P 的横坐标为2时,求△PAD 的面积;②当∠PDA =∠CAD 时,直接写出点P 的坐标.【解析】【分析】(1)由于A 、D 是直线直线y =x ﹣1与抛物线y =﹣x 2+6x ﹣5的交点,要求两个交点的坐标,需可联立方程组求解;(2)①要求△PAD 的面积,可以过P 作PE ⊥x 轴,与AD 相交于点E ,求得PE ,再用△PAE 和△PDE 的面积和求得结果;②分两种情况解答:过D 点作DP ∥AC ,与抛物线交于点P ,求出AC 的解析式,进而得PD 的解析式,再解PD 的解析式与抛物线的解析式联立方程组,便可求得P 点坐标;当P 点在AD 上方时,延长DP 与y 轴交于F 点,过F 点作FG ∥AC 与AD 交于点G ,则∠CAD =∠FGD =∠PDA ,则FG =FD ,设F 点坐标为(0,m ),求出G 点的坐标(用m 表示),再由FG =FD ,列出m 的方程,便可求得F 点坐标,从而求出DF 的解析式,最后解DF 的解析式与抛物线的解析式联立的方程组,便可求得P 点坐标.【详解】(1)联立方程组2165y x y x x =-⎧⎨=-+-⎩, 解得,1110x y =⎧⎨=⎩,2243x y =⎧⎨=⎩, ∴A (1,0),D (4,3),(2)①过P 作PE ⊥x 轴,与AD 相交于点E ,∵点P 的横坐标为2,∴P(2,3),E(2,1),∴PE=3﹣1=2,∴()112(41)22PAD D AS PE x x=-=⨯⨯-=3;②过点D作DP∥AC,与抛物线交于点P,则∠PDA=∠CAD,∵y=-x2+6x-5=-(x-3)2+4,∴C(3,4),设AC的解析式为:y=kx+b(k≠0),∵A(1,0),∴34k bk b+⎧⎨+⎩==,∴22kb⎧⎨-⎩==,∴AC的解析式为:y=2x-2,设DP的解析式为:y=2x+n,把D(4,3)代入,得3=8+n,∴n=-5,∴DP的解析式为:y=2x-5,联立方程组22565y xy x x-⎧⎨-+-⎩==,解得,1015xy⎧⎨-⎩==,2243xy⎧⎨⎩==,∴此时P(0,-5),当P点在直线AD上方时,延长DP,与y轴交于点F,过F作FG∥AC,FG与AD交于点G,则∠FGD=∠CAD=∠PDA ,∴FG=FD ,设F (0,m ),∵AC 的解析式为:y=2x-2,∴FG 的解析式为:y=2x+m ,联立方程组21y x m y x +⎧⎨-⎩==, 解得,12x m y m --⎧⎨--⎩==, ∴G (-m-1,-m-2),∴()()22122m m +++()2163m +-, ∵FG=FD , ()()22122m m +++()2163m +- ∴m=-5或1,∵F 在AD 上方,∴m >-1,∴m=1,∴F (0,1),设DF 的解析式为:y=qx+1(q≠0),把D (4,3)代入,得4q+1=3,∴q=12, ∴DF 的解析式为:y=12x+1,联立方程组211265y x y x x ⎧+⎪⎨⎪-+-⎩== ∴1143x y ⎧⎨⎩==,223274x y ⎧⎪⎪⎨⎪⎪⎩==, ∴此时P 点的坐标为(32,74), 综上,P 点的坐标为(0,-5)或(32,74). 【点睛】本题是一次函数、二次函数、三角形的综合题,主要考查了一次函数的性质,二次函数的图象与性质,三角形的面积计算,平行线的性质,待定系数法,难度较大,第(2)小题,关键过P 作x 轴垂线,将所求三角形的面积转化成两个三角形的面积和进行解答;第(3)小题,分两种情况解答,不能漏解,考虑问题要全面.。

九年级上册平顶山数学期末试卷综合测试卷(word含答案)

九年级上册平顶山数学期末试卷综合测试卷(word含答案)

九年级上册平顶山数学期末试卷综合测试卷(word 含答案) 一、选择题 1.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A .34B .14C .13D .122.如图,AB 是⊙O 的弦,半径OC ⊥AB ,D 为圆周上一点,若BC 的度数为50°,则∠ADC 的度数为 ( )A .20°B .25°C .30°D .50° 3.若25x y =,则x y y +的值为( ) A .25 B .72C .57D .75 4.如图,已知正五边形ABCDE 内接于O ,连结,BD CE 相交于点F ,则BFC ∠的度数是( )A .60︒B .70︒C .72︒D .90︒ 5.如图,已知O 的内接正方形边长为2,则O 的半径是( )A .1B .2C 2D .226.sin30°的值是( )A .12B 2C 3D .17.△ABC 的外接圆圆心是该三角形( )的交点.A .三条边垂直平分线B .三条中线C .三条角平分线D .三条高 8.方程x 2﹣3x =0的根是( )A .x =0B .x =3C .10x =,23x =-D .10x =,23x = 9.如图在△ABC 中,点D 、E 分别在△ABC 的边AB 、AC 上,不一定能使△ADE 与△ABC 相似的条件是( )A .∠AED=∠BB .∠ADE=∠C C .AD DE AB BC = D .AD AE AC AB = 10.把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( ) A .向左平移1个单位,再向下平移1个单位B .向左平移1个单位,再向上平移1个单位C .向右平移1个单位,再向上平移1个单位D .向右平移1个单位,再向下平移1个单位 11.将二次函数y =x 2的图象沿y 轴向上平移2个单位长度,再沿x 轴向左平移3个单位长度,所得图象对应的函数表达式为( )A .y =(x +3)2+2B .y =(x ﹣3)2+2C .y =(x +2)2+3D .y =(x ﹣2)2+312.如图所示的网格是正方形网格,则sin A 的值为( )A .12B 2C .35D .45二、填空题13.如图,点A 、B 、C 是⊙O 上的点,且∠ACB =40°,阴影部分的面积为2π,则此扇形的半径为______.14.圆锥的母线长为5cm ,高为4cm ,则该圆锥的全面积为_______cm 2.15.若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为______.16.已知点P 是线段AB 的黄金分割点,PA >PB ,AB =4 cm ,则PA =____cm .17.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.18.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.19.若32x y =,则x y y+的值为_____. 20.已知关于x 的一元二次方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是________.21.如图,直线y=12x ﹣2与x 轴、y 轴分别交于点A 和点B ,点C 在直线AB 上,且点C 的纵坐标为﹣1,点D 在反比例函数y=k x 的图象上,CD 平行于y 轴,S △OCD =52,则k 的值为________.22.如图,123////l l l ,直线a 、b 与1l 、2l 、3l 分别相交于点A 、B 、C 和点D 、E 、F .若AB=3,BC=5,DE=4,则EF 的长为______.23.某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m n 个数据的平均数等于______.24.已知234x y z x z y+===,则_______ 三、解答题25.新建马路需要在道路两旁安装路灯、种植树苗.如图,某道路一侧路灯AB 在两棵同样高度的树苗CE 和DF 之间,树苗高2 m ,两棵树苗之间的距离CD 为16 m ,在路灯的照射下,树苗CE 的影长CG 为1 m ,树苗DF 的影长DH 为3 m ,点G 、C 、B 、D 、H 在一条直线上.求路灯AB 的高度.26.某公司研制出新产品,该产品的成本为每件2400元.在试销期间,购买不超过10件时,每件销售价为3000元;购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为2600元。

九年级上册吉安数学期末试卷综合测试卷(word含答案)

九年级上册吉安数学期末试卷综合测试卷(word含答案)

九年级上册吉安数学期末试卷综合测试卷(word 含答案)一、选择题1.如果两个相似多边形的面积比为4:9,那么它们的周长比为() A .2:3B .2:3C .4:9D .16:812.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( ) A .平均数 B .方差 C .中位数 D .极差 3.二次函数y =x 2﹣6x 图象的顶点坐标为( )A .(3,0)B .(﹣3,﹣9)C .(3,﹣9)D .(0,﹣6)4.如图,在平面直角坐标系xOy 中,点A 为(0,3),点B 为(2,1),点C 为(2,-3).则经画图操作可知:△ABC 的外心坐标应是( )A .()0,0B .()1,0C .()2,1--D .()2,05.如图,在△ABC 中,点D 、E 分别在边BA 、CA 的延长线上,ABAD=2,那么下列条件中能判断DE ∥BC 的是( )A .12AE EC = B .2ECAC= C .12DE BC = D .2ACAE= 6.某天的体育课上,老师测量了班级同学的身高,恰巧小明今日请假没来,经过计算得知,除了小明外,该班其他同学身高的平均数为172cm ,方差为k 2cm ,第二天,小明来到学校,老师帮他补测了身高,发现他的身高也是172cm ,此时全班同学身高的方差为'k 2cm ,那么'k 与k 的大小关系是( )A .'k k >B .'k k <C .'k k =D .无法判断7.如图示,二次函数2y x mx =-+的图像与x 轴交于坐标原点和()4,0,若关于x 的方程20x mx t -+=(t 为实数)在15x <<的范围内有解,则t 的取值范围是( )A .53t -<<B .5t >-C .34t <≤D .54t -<≤8.如图1,在菱形ABCD 中,∠A =120°,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a +b 的值为( )A .73B .234+C .1433D .22339.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .233π-B .233π-C .3π-D .3π-10.有一组数据:4,6,6,6,8,9,12,13,这组数据的中位数为( ) A .6 B .7 C .8 D .9 11.抛物线y =(x ﹣2)2+3的顶点坐标是( )A .(2,3)B .(﹣2,3)C .(2,﹣3)D .(﹣2,﹣3)12.已知函数2y x bx c =-++的部分图像如图所示,若0y >,则的取值范围是( )A .41x -<<B .21x -<<C .31x -<<D .31x x <->或二、填空题13.已知扇形半径为5cm ,圆心角为60°,则该扇形的弧长为________cm . 14.已知三点A (0,0),B (5,12),C (14,0),则△ABC 内心的坐标为____. 15.当a≤x≤a+1时,函数y=x 2﹣2x+1的最小值为1,则a 的值为_____. 16.已知实数,,a b c 满足0a ≠,且0a b c -+=,930a b c ++=,则抛物线2y ax bx c =++图象上的一点(2,4)-关于抛物线对称轴对称的点为__________.17.如图,ABC ∆是O 的内接三角形,45BAC ∠=︒,BC 的长是54π,则O 的半径是__________.18.二次函数2y ax bx c =++的图象如图所示,若点()11,A y ,()23,B y 是图象上的两点,则1y ____2y (填“>”、“<”、“=”).19.如图,123////l l l ,直线a 、b 与1l 、2l 、3l 分别相交于点A 、B 、C 和点D 、E 、F .若AB=3,BC=5,DE=4,则EF 的长为______.20.若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m +2020的值为_____. 21.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=,则该圆锥的母线长l 为___cm .22.已知关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根,则这两个相等实数根的和为_____.23.若二次函数24y x x =-的图像在x 轴下方的部分沿x 轴翻折到x 轴上方,图像的其余部分保持不变,翻折后的图像与原图像x 轴上方的部分组成一个形如“W ”的新图像,若直线y =-2x +b 与该新图像有两个交点,则实数b 的取值范围是__________24.如图,点O 为正六边形ABCDEF 的中心,点M 为AF 中点,以点O 为圆心,以OM 的长为半径画弧得到扇形MON ,点N 在BC 上;以点E 为圆心,以DE 的长为半径画弧得到扇形DEF ,把扇形MON 的两条半径OM ,ON 重合,围成圆锥,将此圆锥的底面半径记为r 1;将扇形DEF 以同样方法围成的圆锥的底面半径记为r 2,则r 1:r 2=_____.三、解答题25.如图,二次函数2y x bx c =-++的图像经过()0,3M ,()2,5N --两点.(1)求该函数的解析式;(2)若该二次函数图像与x轴交于A、B两点,求ABM∆的面积;∆周长最短时,求点P的坐标.(3)若点P在二次函数图像的对称轴上,当MNP26.已知二次函数y=x2-22mx+m2+m-1(m为常数).(1)求证:不论m为何值,该二次函数的图像与x轴总有两个公共点;(2)将该二次函数的图像向下平移k(k>0)个单位长度,使得平移后的图像经过点(0,-2),则k的取值范围是.27.如图,AB是⊙O的直径,弦CD⊥AB于点H,点F是AD上一点,连接AF交CD的延长线于点E.(1)求证:△AFC∽△ACE;(2)若AC=5,DC=6,当点F为AD的中点时,求AF的值.28.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的顶点A(-3,0),与y轴交于点B (0,4),在第一象限内有一点P(m,n),且满足4m+3n=12.(1)求二次函数解析式.(2)若以点P为圆心的圆与直线AB、x轴相切,求点P的坐标.(3)若点A关于y轴的对称点为点A′,点C在对称轴上,且2∠CBA+∠PA′O=90◦.求点C的坐标.29.为了提高学生对毒品危害性的认识,我市相关部门每个月都要对学生进行“禁毒知识应知应会”测评.为了激发学生的积极性,某校对达到一定成绩的学生授予“禁毒小卫士”的荣誉称号.为了确定一个适当的奖励目标,该校随机选取了七年级20名学生在5月份测评的成绩,数据如下:收集数据:90 91 89 96 90 98 90 97 91 98 99 97 91 88 90 97 95 90 95 88(1)根据上述数据,将下列表格补充完整.整理、描述数据:成绩/分888990919596979899学生人数2132121数据分析:样本数据的平均数、众数和中位数如下表:平均数众数中位数9391得出结论:(2)根据所给数据,如果该校想确定七年级前50%的学生为“良好”等次,你认为“良好”等次的测评成绩至少定为分.数据应用:(3)根据数据分析,该校决定在七年级授予测评成绩前30%的学生“禁毒小卫士”荣誉称号,请估计评选该荣誉称号的最低分数,并说明理由.30.如图,⊙O的直径为AB,点C在⊙O上,点D,E分别在AB,AC的延长线上,DE⊥AE,垂足为E,∠A=∠CDE.(1)求证:CD是⊙O的切线;(2)若AB=4,BD=3,求CD的长.31.已知二次函数y=-x2+bx+c(b,c为常数)的图象经过点(2,3),(3,0).(1)则b=,c=;(2)该二次函数图象与y轴的交点坐标为,顶点坐标为;(3)在所给坐标系中画出该二次函数的图象;(4)根据图象,当-3<x<2时,y的取值范围是.32.已知,如图,在平面直角坐标系中,直线122y x =-- 与x 轴交于点A ,与y 轴交于点B ,抛物线212y x bx c =++经过A 、B 两点,与x 轴的另一个交点为C . (1)直接写出点A 和点B 的坐标; (2)求抛物线的函数解析式;(3)D 为直线AB 下方抛物线上一动点;①连接DO 交AB 于点E ,若DE :OE=3:4,求点D 的坐标;②是否存在点D ,使得∠DBA 的度数恰好是∠BAC 度数2倍,如果存在,求点D 的坐标,如果不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据面积比为相似比的平方即可求得结果.【详解】解:∵两个相似多边形的面积比为4:9,∴它们的周长比为2.3故选B.【点睛】本题主要考查图形相似的知识点,解此题的关键在于熟记两个相似多边形的面积比为其相似比的平方.2.C解析:C【解析】【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键.3.C解析:C【解析】【分析】将二次函数解析式变形为顶点式,进而可得出二次函数的顶点坐标.【详解】解:∵y=x2﹣6x=x2﹣6x+9﹣9=(x﹣3)2﹣9,∴二次函数y=x2﹣6x图象的顶点坐标为(3,﹣9).故选:C.【点睛】此题主要考查二次函数的顶点,解题的关键是熟知二次函数的图像与性质.4.C解析:C【解析】外心在BC的垂直平分线上,则外心纵坐标为-1.故选C.5.D解析:D 【解析】 【分析】 只要证明AC ABAE AD=,即可解决问题. 【详解】 解:A. 12AE EC = ,可得AE :AC=1:1,与已知2AB AD=不成比例,故不能判定 B.2ECAC =,可得AC :AE=1:1,与已知2AB AD=不成比例,故不能判定; C 选项与已知的2ABAD=,可得两组边对应成比例,但夹角不知是否相等,因此不一定能判定; 12DE BC = D.2AC ABAE AD ==,可得DE//BC , 故选D. 【点睛】本题考查平行线的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.B解析:B 【解析】 【分析】设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1,根据平均数的定义可知:算上小明后,平均身高仍为172cm ,然后根据方差公式比较大小即可. 【详解】解:设该班的人数有n 人,除小明外,其他人的身高为x 1,x 2……x n-1, 根据平均数的定义可知:算上小明后,平均身高仍为172cm 根据方差公式:()()()22212111721721721n k x x x n -⎡⎤=-+-++-⎣⎦-()()()()2222'1211172172172172172n x x k x n -⎡⎤=-+-++-+-⎣⎦()()()2221211172172172n x x x n -⎡⎤=-+-++-⎣⎦∵111n n <- ∴()()()()()()222222121121111721721721721721721n n x x x x x x n n --⎡⎤⎡⎤-+-++-<-+-++-⎣⎦⎣⎦-即'k k < 故选B . 【点睛】此题考查的是比较方差的大小,掌握方差公式是解决此题的关键.7.D解析:D 【解析】 【分析】首先将()4,0代入二次函数,求出m ,然后利用根的判别式和求根公式即可判定t 的取值范围. 【详解】将()4,0代入二次函数,得2440m -+=∴4m =∴方程为240x x t -+=∴42x ±=∵15x << ∴54t -<≤ 故答案为D . 【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.8.C解析:C 【解析】 【分析】由A 、C 关于BD 对称,推出PA =PC ,推出PC +PE =PA +PE ,推出当A 、P 、E 共线时,PE +PC 的值最小,观察图象可知,当点P 与B 重合时,PE +PC =6,推出BE =CE =2,AB =BC =4,分别求出PE +PC 的最小值,PD 的长即可解决问题. 【详解】解:∵在菱形ABCD 中,∠A =120°,点E 是BC 边的中点, ∴易证AE ⊥BC , ∵A 、C 关于BD 对称, ∴PA =PC , ∴PC +PE =PA +PE ,∴当A 、P 、E 共线时,PE +PC 的值最小,即AE 的长. 观察图象可知,当点P 与B 重合时,PE +PC =6,∴BE=CE=2,AB=BC=4,∴在Rt△AEB中,BE=23,∴PC+PE的最小值为23,∴点H的纵坐标a=23,∵BC∥AD,∴AD PDBE PB==2,∵BD=43,∴PD=2834333⨯=,∴点H的横坐标b=833,∴a+b=83143 23+=;故选C.【点睛】本题考查动点问题的函数图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.9.B解析:B【解析】【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【详解】连接BD,∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD3,∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯⨯ =233π-. 故选B . 10.B解析:B【解析】【分析】先把这组数据按顺序排列:4,6,6,6,8,9,12,13,根据中位数的定义可知:这组数据的中位数是6,8的平均数.【详解】∵一组数据:4,6,6,6,8,9,12,13,∴这组数据的中位数是()6821427+÷÷==,故选:B .【点睛】本题考查中位数的计算,解题的关键是熟练掌握中位数的求解方法:先将数据按大小顺序排列,当数据个数为奇数时,最中间的那个数据是中位数,当数据个数为偶数时,居于中间的两个数据的平均数才是中位数.11.A解析:A【解析】【分析】根据抛物线的顶点式可直接得到顶点坐标.【详解】解:y =(x ﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A .【点睛】本题考查了二次函数的顶点式与顶点坐标,顶点式y=(x-h )2+k ,顶点坐标为(h ,k ),对称轴为直线x=h ,难度不大.12.C解析:C【解析】【分析】根据抛物线的对称性确定抛物线与x 轴的另一个交点为(−3,0),然后观察函数图象,找出抛物线在x 轴上方的部分所对应的自变量的范围即可.【详解】∵y =ax 2+bx +c 的对称轴为直线x =−1,与x 轴的一个交点为(1,0),∴抛物线与x 轴的另一个交点为(−3,0),∴当−3<x <1时,y >0.故选:C .【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据函数对称轴找到抛物线与x 轴的交点.二、填空题13.【解析】【分析】直接利用弧长公式进行计算.【详解】解:由题意得:=,故答案是:【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键. 解析:53π 【解析】【分析】 直接利用弧长公式180n R l π=进行计算. 【详解】 解:由题意得:605180l π==53π, 故答案是:53π 【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键. 14.(6,4).【解析】【分析】作BQ⊥AC 于点Q ,由题意可得BQ=12,根据勾股定理分别求出BC 、AB 的长,继而利用三角形面积,可得△OAB 内切圆半径,过点P 作PD⊥AC 于D ,PF⊥AB 于F ,P解析:(6,4).【解析】【分析】作BQ ⊥AC 于点Q ,由题意可得BQ=12,根据勾股定理分别求出BC 、AB 的长,继而利用三角形面积,可得△OAB 内切圆半径,过点P 作PD ⊥AC 于D ,PF ⊥AB 于F ,PE ⊥BC 于E ,设AD=AF=x ,则CD=CE=14-x ,BF=13-x ,BE=BC-CE=15-(14-x )=1+x ,由BF=BE 可得13-x=1+x ,解之求出x 的值,从而得出点P 的坐标,即可得出答案.【详解】解:如图,过点B 作BQ ⊥AC 于点Q ,则AQ=5,BQ=12,∴AB=2213AQ BQ +=,CQ=AC-AQ=9,∴BC=2215BQ CQ +=设⊙P 的半径为r ,根据三角形的面积可得:r=14124141315⨯=++ 过点P 作PD ⊥AC 于D ,PF ⊥AB 于F ,PE ⊥BC 于E ,设AD=AF=x ,则CD=CE=14-x ,BF=13-x ,∴BE=BC-CE=15-(14-x )=1+x ,由BF=BE 可得13-x=1+x ,解得:x=6,∴点P 的坐标为(6,4),故答案为:(6,4).本题主要考查勾股定理、三角形的内切圆半径公式及切线长定理,根据三角形的内切圆半径公式及切线长定理求出点P的坐标是解题的关键.15.2或﹣1【解析】【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【详解】当y=1时,有x解析:2或﹣1【解析】【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【详解】当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故答案为:2或﹣1.【点睛】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.16.【解析】【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【详解】解:∵,,∴点(-1,0)与(3,0)在抛物线上,∴抛物线的对称轴是直线:x=1,∴点关于直线x=解析:(4,4)【解析】【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.解:∵0a b c -+=,930a b c ++=,∴点(-1,0)与(3,0)在抛物线2y ax bx c =++上,∴抛物线的对称轴是直线:x =1,∴点(2,4)-关于直线x =1对称的点为:(4,4).故答案为:(4,4).【点睛】本题考查了二次函数的性质和二次函数图象上点的坐标特征,属于常考题型,根据题意判断出点(-1,0)与(3,0)在抛物线上、熟练掌握抛物线的对称性是解题的关键.17.【解析】【分析】连接OB 、OC ,如图,由圆周角定理可得∠BOC 的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB 、OC ,如图,∵,∴∠BOC=90°,∵的长是,∴,解得: 解析:52【解析】【分析】连接OB 、OC ,如图,由圆周角定理可得∠BOC 的度数,然后根据弧长公式即可求出半径.【详解】解:连接OB 、OC ,如图,∵45BAC ∠=︒,∴∠BOC =90°,∵BC 的长是54π, ∴9051804OB ππ⋅=, 解得:52OB =. 故答案为:52.【点睛】本题考查了圆周角定理和弧长公式,属于基本题型,熟练掌握上述基本知识是解答的关键.18.>【解析】【分析】利用函数图象可判断点,都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断与的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点,都在对称轴右侧的抛物线解析:>【解析】【分析】利用函数图象可判断点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,然后根据二次函数的性质可判断1y 与2y 的大小.【详解】解:∵抛物线的对称轴在y 轴的左侧,且开口向下,∴点()11,A y ,()23,B y 都在对称轴右侧的抛物线上,∴1y >2y .故答案为>.【点睛】本题考查二次函数图象上点的坐标特征,二次函数的性质.解决本题的关键是判断点A 和点B 都在对称轴的右侧.19.【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】,,,,解得,故答案为:.【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键. 解析:203【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】123////l l l ,AB DE BC EF∴=, 3,5,4AB BC DE ===,345EF∴=, 解得203EF =, 故答案为:203. 【点睛】 本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键. 20.2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m ﹣1=0,∴2m2﹣3m =1,∴原式=3(2m2﹣3m )+2020=3+2020=2解析:2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m 2﹣3m ﹣1=0,∴2m 2﹣3m =1,∴原式=3(2m 2﹣3m )+2020=3+2020=2023.故答案为:2023.【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.21.【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长cm ,设圆锥的母线长为,则: ,解得,故答案为.【点睛】本解析:【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长224ππ=⨯=cm ,设圆锥的母线长为R ,则:1204180R ππ⨯=, 解得6R =,故答案为6.【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为: 180n r π. 22.2【解析】【分析】根据根的判别式,令,可得,解方程求出b =﹣2a ,再把b 代入原方程,根据韦达定理:即可.【详解】当关于x 的一元二次方程ax2+bx+5a =0有两个正的相等的实数根时, ,即解析:【解析】【分析】根据根的判别式,令=0∆,可得2220=0b a -,解方程求出b =﹣,再把b 代入原方程,根据韦达定理:12b x x a+=-即可. 【详解】当关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根时, =0∆,即2220=0b a -,解得b =﹣a 或b =(舍去),原方程可化为ax 2﹣+5a =0,则这两个相等实数根的和为故答案为:【点睛】本题考查一元二次方程根的判别式和韦达定理,解题的关键是熟练掌握根的判别式和韦达定理。

广东省揭阳市2021-2022学年九年级上学期期末考试数学试题(Word版含答案)

广东省揭阳市2021-2022学年九年级上学期期末考试数学试题(Word版含答案)

2021-2022学年广东省揭阳市普宁市九年级(上)期末数学试卷一、选择题(本大题10小题,每小题3分,共30分。

)在每小题列出的四个选项中,只有一个正确选项,请将正确答案写在答题卷的相应位置。

1.(3分)如图所示的几何体的左视图是()A.B.C.D.2.(3分)如图,已知直线AB∥CD∥EF,BD=2,DF=4,则的值为()A.B.C.D.13.(3分)已知Rt△ABC中,∠C=90°,AC=2,BC=3,那么下列各式中正确的是()A.sin A=B.tan A=C.tan B=D.cos B=4.(3分)将二次函数y=(x﹣1)2的图象向左平移1个单位长度,再向上平移2个单位后,所得图象的函数解析式是()A.y=(x﹣2)2+2B.y=(x﹣2)2﹣2C.y=x2﹣2D.y=x2+25.(3分)对于一元二次方程x2﹣5x+c=0来说,当c=时,方程有两个相等的实数根,若将c的值在的基础上减小,则此时方程根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.只有一个实数根6.(3分)如图,线段AB∥CD,连接AD,BC交于点O,若CD=2AB,则下列选项中错误的是()A.△AOB∽△DOCB.C.D.7.(3分)下列说法中正确的是()A.矩形的对角线平分每组对角B.菱形的对角线相等且互相垂直C.有一组邻边相等的矩形是正方形D.对角线互相垂直的四边形是菱形8.(3分)某口袋里现有12个红球和若干个绿球(两种球除颜色外,其余完全相同),某同学随机的从该口袋里摸出一球,记下颜色后放回,共试验600次,其中有300次是红球,估计绿球个数为()A.8B.10C.12D.149.(3分)如图,小明在学校操场A处测得旗杆的仰角∠DAC为30°,沿AC方向行进10米至B处,测得仰角∠DBC为45°,则旗杆的高度DC是()A.5(+1)米B.(﹣1)米C.10米D.(10+)米10.(3分)一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()A.B.C.D.二、填空题(本大题7小题,每小题4分,共28分)请将下列各题的正确答案写在答题卷的相应位置。

内江市2020-2021学年度九年级第一学期期末考试数学试题(word版,有解答)

内江市2020-2021学年度九年级第一学期期末考试数学试题(word版,有解答)

内江市2020—2021学年度第一学期九年级期末考试数 学第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的A 、B 、C 、D 四个选项中,只有一项是符合题目要求的)1. 下列各组二次根式中,属于同类二次根式的是( ) A. 3与18 B. 63与28 C 5.0与32 D.12与72 2. 下列计算正确的是( )A.2)2(-=-2 B. 532=+ C. 2332=⨯ D. 22223=-3. 用配方法解方程x 2+6x+4=0时,原方程变形为( )A. (x+3)2=9B. (x+3)2=13C. (x+3)2=5D. (x+3)2=44. 如图,某小区计划在一个长80米,宽36米的长方形场地ABCD 上,修建三条同样宽的道路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,若使每块草坪的面积都为260平方米,求道路的宽度. 设道路 宽度为x 米,则根据题意可列方程为( )A. (80-2x )(36-x )=260×6B. 36×80-2×36x -80x =260×6C. (36-2x )(80-x )=260D. (80-2x )(36-x )=265. 下列时间中是不可能事件的是( ) A. 抛掷一枚硬币50次,出现正面的次数为40次B. 从一个装有30只黑球的不透明袋子中摸出一个球为黑球C. 抛掷一枚质地均匀的普通正方体骰子两次,出现点数之和等于13D. 从一副没有大小王的扑克牌中任意抽出一张牌恰为黑桃K6. 在△ABC 中,∠C=90º,AB=10,tanA=43,则BC 的长为( ) A. 27 B. 6 C. 8 D. 107. 如图,商用手扶梯AB 的坡比为1:3,已知扶梯的长 AB 为12米,则小明乘坐扶梯从B 处到A 处上升的高度AC 为( ) A. 6米 B. 8米 C. 10米 D. 12米8. 如图,四边形ABCD 与四边形EFGH 位似,位似中心点 是O ,OE:EA=32,则S 四边形EFGH : S 四边形ABCD =( ) A. 94 B. 254 C. 32 D. 52 9. 当b -c =3时,关于的一元二次方程2x 2-bx+c =0的根的情况为( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定10.已知-1<a <0,化简4)1(4)1(22+---+a a a a 的结果是( ) C A B A D B CD C A BEFGH OA. a 2-B. -2aC. 2aD. a2 11.如图,在四边形ABCD 中,P 是对角线BD 的中点, 点E 、F 分别是AB 、CD 的中点,AD=BC ,∠EPF=140º,∠EFP=( ) A. 50º B. 40º C. 30º D. 20º 12.如图,在正方形ABCD 中,E 为BC 中点,连接AE , DF ⊥AE 于点F ,连接CF ,FG ⊥CF 于点G ,下列结论:①CF=CD ;②G 为AD 中点;③△DCF ∽△AGF ;④AF:EF=2:3. 其中正确结论的个数是( )A. 1B. 2C. 3D. 4 第Ⅱ卷(非选择题 共72分) 二、填空题(本大题共4小题,每小题4分,共16分.) 13.二次根式21-x 中x 的取值范围是_______. 14.如图,点O 为正方形的中心,点E 、F 分别在正方形的边上, 且∠EOF=90º,随机地往图中投一粒米,则米粒落在图中阴影部分的概率为_________. 15. 已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD=______. 16.观察下列一组方程:①x 2-x =0;②x 2-3x +2=0;③x 2-5x +6=0;④x 2-7x +12=0;·······它们的根有一定的规律,都是两个连续的自然数.我们称这类一元二次方程为“连根一元二次方程”. 若x 2+kx +56=0也是“连根一元二次方程”,则k 的值为______,第n 个方程为 .三、解答题(本大题共6小题,共56分,解答时应写出必要的文字说明或演算步骤.)17.(本小题满分10分)(1)计算:.30tan 6)20213(212745sin 02︒+-+-︒ (2)解方程:(x -3)2=2(x -3).18.(本小题满分8分)如图,在正方形ABCD 中,E 为BC 边的中点,连接DE ,过点E 作EF ⊥ED 交AB 于点G 、交DA 的延长线于点F. (1)求证:△ECD ∽△DEF ;(2)若CD=4,求AF 的长.A F DB EC F E O B E CF A DF CG E A B D D E A F B C P19.(本小题满分8分)某数学小组为调查某学校周五放学时学生的回家方式,随机抽取了部分学生进行调查,所有被调查的学生都需从“A(乘坐电动车)、B(乘坐普通公交车或地铁)、C(乘坐学校的定制公交车)、D(乘坐家庭汽车)、E(步行或其他)”这五种方式中选择最常用的一种,随后该数学小组将所有调查结果整理后绘制成如图不完整的扇形统计图和条形统计图,请结合统计图回答下列问题:(1)本次调查中一共调查了 名学生;扇形统计图中,E 选项对应的圆心角是 度;(2)请将条形统计图补充完整;(3)若甲、乙两名学生放学时从A 、B 、C 三种方式中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两名学生恰好选择同一种交通工具回家的概率.20.(本小题满分9分)某校数学兴趣小组借助无人机测量一条河流的宽度CD.如图所示,一架水平飞行的无人机在A 处测得正前方河流的左岸C 处的俯角为α,无人机沿水平线AF 方向继续飞行50米至B 处,测得正前方河流的右岸D 处的俯角为30°. 线段AM 的长为无人机距地面的铅直高度,点M 、C 、D 在同一直线上. 其中tan α=2,MC=503米.(1)求无人机的飞行高度AM ;(结果保留根号) (2)求河流的宽度CD.(结果精确到1米,参考数据:2≈1.41,3≈1.73)选项 30 A B C D E 60 20 100 80 60 40 20 0 人数 40 A C B 30% D E α A B F 30° M C D21.(本小题满分9分)因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一,深圳著名旅游“网红打卡地”东部华侨城景区在2019年春节长假期间,共接待游客达20万人次,预计在2021年春节长假期间,将接待游客达28.8万人次.(1)求东部华侨城景区2019至2021年春节长假期间接待游客人次的年平均增长率;(2)东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯. 2021年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?22.(本小题满分12分)如图,在△ABC中,∠ACB=90º,CD⊥AB,垂足为D.(1)图1中共有对相似三角形,写出来分别为;(2)已知AB=5,AC=4,请你求出CD的长;(3)在(2)的情况下,如果以AB为轴,CD为y轴,点D为坐标原点O,建立直角坐标系(如图2),若点P从C点出发,以每秒1个单位的速度沿线段CB运动,点Q从B 点出发,以每秒1个单位的速度沿线段BA运动,其中一点最先到达线段的端点时,两点即刻同时停止运动;设运动时间为t秒,是否存在点P,使以点B、P、Q为顶点的三角形与△ABC相似?若存在,请求出点P的坐标;若不存在,请说明理由.CA D B图1yCA OB x图2内江市2020—2021学年度第一学期九年级期末考试数学解析第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分,在每小题给出的A 、B 、C 、D 四个选项中,只有一项是符合题目要求的)1. 下列各组二次根式中,属于同类二次根式的是( ) A. 3与18 B. 63与28 C 5.0与32 D.12与72 解析:考查二次根式的化简及同类二次根式的定义. 难度:★A. 2318=;B. 7363=,7228=;C. 2215.0=,63132=;D. 3212=,2672=. 故选B . 2. 下列计算正确的是( ) A.2)2(-=-2 B. 532=+ C.2332=⨯ D. 22223=- 解析:考查二次根式的有关运算. 难度:★ A. 2)2(2=-;B. 2与3不是同类二次根式,不能加减;C. 632=⨯;故选D .3. 用配方法解方程x 2+6x+4=0时,原方程变形为( )A. (x+3)2=9B. (x+3)2=13C. (x+3)2=5D. (x+3)2=4解析:考查配方法解方程. 难度:★根据等式性质,得x 2+6x+9=5,(x+3)2=5. 故选C .4. 如图,某小区计划在一个长80米,宽36米的长方形场地ABCD 上,修建三条同样宽的道路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,若使每块草坪的面积都为260平方米,求道路的宽度. 设道路 宽度为x 米,则根据题意可列方程为( )A. (80-2x )(36-x )=260×6B. 36×80-2×36x -80x =260×6C. (36-2x )(80-x )=260D. (80-2x )(36-x )=26 解析:考查列一元二次方程解应用题. 难度:★★由题意,用平移的思路(如右图)得到长(80-2x )米、宽(36-x )米的矩形草坪,选A .5. 下列时间中是不可能事件的是( )A. 抛掷一枚硬币50次,出现正面的次数为40次B. 从一个装有30只黑球的不透明袋子中摸出一个球为黑球C. 抛掷一枚质地均匀的普通正方体骰子两次,出现点数之和等于13D. 从一副没有大小王的扑克牌中任意抽出一张牌恰为黑桃K解析:考查“统计与概率”的事件分类. 难度:★A.“抛掷一枚硬币50次,出现正面的次数为40次”是随机事件;B.“从一个装有30只黑球的不透明袋子中摸出一个球为黑球”是必然事件;D.“从一副没有大小王的扑克牌中任意抽出一张牌恰为黑桃K ”是随机事件;质地均匀的普通正方体骰子点数最大是6,所以C.“抛掷一枚质地均匀的正方体骰子两次,出现点数之和等于13”是不可能事件. 故选C .6. 在△ABC 中,∠C=90º,AB=10,tanA=43,则BC 的长为( ) AD B CA. 27B. 6C. 8D. 10 解析:考查对直角三角形性质的综合应用. 难度:★★ 如图,因为在Rt △ACB 中,∠C=90º,tan ∠A=43, 设BC=3k ,AC=4k ,则由勾股定理得AB=5k =10,解得k =2,则BC=3×2=6,故选B .7. 如图,商用手扶梯AB 的坡比为1:3,已知扶梯的长 AB 为12米,则小明乘坐扶梯从B 处到A 处上升的高度AC 为( ) A. 6米 B. 8米 C. 10米 D. 12米解析:考查对直角三角形性质的综合应用. 难度:★★由题意得在Rt △ACB 中,∠C=90º,tan ∠ABC=33,则∠ABC=30º. 而AB=12米,则AC=21AB=21×12=6米. 故选A . 8. 如图,四边形ABCD 与四边形EFGH 位似,位似中心点 是O ,OE:EA=32,则S 四边形EFGH : S 四边形ABCD =( ) A. 94 B. 254 C. 32 D. 52 解析:主要考查“位似图形的面积比等于位似比的平方”. 难度:★由OE:EA=32,得OE:OA=52. 而四边形ABCD 与四边形EFGH 位似, 则S 四边形EFGH : S 四边形ABCD =254)52(2=,故选B . 9. 当b -c =3时,关于的一元二次方程2x 2-bx+c =0的根的情况为( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 无法确定解析:主要考查等式性质、代数式的变形及一元二次方程根的判别式. 难度:★★由b -c =3变形得b =3+c ,代入Δ=(-b )2-8c=(3+c )2-8c=c 2-2c +9=(c -1)2+8.无论c 为何实数,(c -1)2≥0,则(c -1)2+8恒为正数,即Δ>0. 故选A .10.如图,在四边形ABCD 中,P 是对角线BD 的中点, 点E 、F 分别是AB 、CD 的中点,AD=BC ,∠EPF =140º,∠EFP=( ) A. 50º B. 40º C. 30º D. 20º解析:考查三角形的中位线性质、等边对等角及三角形内角和定理. 难度:★★由E 、F 、P 分别是AB 、CD 、BD 的中点,得PE 、PF 分别是BC 、AD 的中位线,则PE=0.5BC ,PF=0.5AD. 又AD=BC ,则PE=PF. 而∠EPF=140º,则∠EFP=(180º-140º)÷2=20º. 故选D .11.已知-1<a <0,化简4)1(4)1(22+---+aa a a 的结果是( ) A. a 2- B. -2a C. 2a D. a2 B C A C A B D C A B E F G H O D EA FBC P解析:考查实数的比较、代数式的恒等变形及二次根式的化简. 难度:★★★由-1<a <0,得-1<a 1<0且a 1<a ,得a+a 1<0,a -a 1>0. 则.211)1()1(4)1(4)1(2222a a a a a a a a a a a a a =++-=+--=+---+故选C . 12.如图,在正方形ABCD 中,E 为BC 中点,连接AE , DF ⊥AE 于点F ,连接CF ,FG ⊥CF 于点G ,下列结论:①CF=CD ;②G 为AD 中点;③△DCF ∽△AGF ; ④AF:EF=2:3. 其中正确结论的个数是( )A. 1B. 2C. 3D. 4解析:考查图形综合应用,主要有相似三角形、全等三角形、 直角三角形、等腰三角形、正方形的有关知识. 难度:★★★由已知,依次可得Rt △ABE 中,BE:AB:AE=1:2:5;△DFA ∽△ABE ;AF:DF:AD=1:2:5;过点C 作CH ⊥DF 于点H ,易得△CHD ≌△DFA ,进而得DH=FH ,故①CF=CD 成立;又FG ⊥CF ,则∠CFH=∠GFA ,而∠CFH=∠CDH ,∠CDH=∠GAF ,所以∠GFA=∠GAF ,得GA=GF ,同理得GD=GF ,则GA=GD ,故②G 为AD 中点成立;得③△DCF ∽△AGF 成立;设正方形的边长为2,则AE=5,AF=55252=,EF=AE -AF=553, 故④AF:EF=2:3成立. 故选D .第Ⅱ卷(非选择题 共72分)二、填空题(本大题共4小题,每小题4分,共16分,请讲最后答案直接填在题中的横线上.)13.二次根式21-x 中x 的取值范围是_______. 解析:考查二次根式的存在性. 难度:★.由21-x ≥0且x -2≠0,得x -2>0,即x >2. 14.如图,点O 为正方形的中心,点E 、F 分别在正方形的边上,且∠EOF=90º,随机地往图中投一粒米,则米粒落在图中阴影部分的概率为_________. 解析:考查正方形的中心对称性及概率问题. 难度:★. 如图,米粒落在图中阴影部分的概率为25%.15.已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD=______. 解析:主要考查相似多边形的性质及一元二次方程的求解. 难度:★★★.由题意得四边形ABEF 为正方形.设FD=x ,则AD=(1+x ).由四边形EFDC 与矩形ABCD 相似,得AD:AB=CD:DF ,即(1+x ):1=1:x ,整理得x 2+x -1=0,解得x =251±-(251--舍去),则AD=2511251+=++-. A F D B E CF CG EA B DH F O16.观察下列一组方程:①x 2-x =0;②x 2-3x +2=0;③x 2-5x +6=0;④x 2-7x +12=0;·······它们的根有一定的规律,都是两个连续的自然数.我们称这类一元二次方程为“连根一元二次方程”. 若x 2+kx +56=0也是“连根一元二次方程”,则k 的值为______,第n 个方程为 . 解析:考查阅读理解能力. 难度:★★★由“连根一元二次方程”的定义k 的值为-7-8=-15;一次项系数依次为:-1=-(1+0);-3=-(2+1);-5=-(3+2);-7=-(4+3);·······;常数项依次为:0=1×0;2=2×1;6=3×2;12=4×3;·······;所以第n 个方程为x 2-(n +n -1)x +n (n -1)=0,即x 2-(2n -1)x +n 2-n =0.三、解答题(本大题共6小题,共56分,解答时应写出必要的文字说明或演算步骤.)17.(本小题满分10分)(1)计算:.30tan 6)20213(212745sin 02︒+-+-︒ (2)解方程:(x -3)2=2(x -3). 解:原式=33612133)22(2⨯+⨯+- 解:(x -3)2-2(x -3)=0 =32213321++- (x -3)(x -3-2)=0 =31- x -3=0,x -5=0x 1=3,x 2=518.(本小题满分8分)某数学小组为调查某学校周五放学时学生的回家方式,随机抽取了部分学生进行调查,所有被调查的学生都需从“A(乘坐电动车)、B(乘坐普通公交车或地铁)、C(乘坐学校的定制公交车)、D(乘坐家庭汽车)、E(步行或其他)”这五种方式中选择最常用的一种,随后该数学小组将所有调查结果整理后绘制成如图不完整的扇形统计图和条形统计图,请结合统计图回答下列问题:(1)本次调查中一共调查了 名学生;扇形统计图中,E 选项对应的圆心角是 度;(2)请将条形统计图补充完整;(3)若甲、乙两名学生放学时从A 、B 、C 三种方式中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两名学生恰好选择同一种交通工具回家的概率.解:(1)总人数是60÷30%=200人,E 选项对应的圆心角是360×40÷200=72度;(2)C(乘坐学校的定制公交车)有200-20-60-30-40=50人,如图;(3)画树状图如右图: 开始共有9个等可能的结果,其中甲、乙两名学生恰好选择同一种 交通工具回家的结果有3个, 甲 A B C∴甲、乙两名学生恰好选择同一种交通工具回家的概率为93,即31. 乙 A B C A B C A B C A C B 30% D E 选项 30 A B C D E 60 20 100 80 60 40 20 0 人数 40 5019.(本小题满分8分)如图,在正方形ABCD 中,E 为BC 边的中点,连接DE ,过点E 作EF ⊥ED 交AB 于点G 、交DA 的延长线于点F. (1)求证:△ECD ∽△DEF ;(2)若CD=4,求AF 的长.(1)证明:∵四边形ABCD 是正方形,EF ⊥ED ,∴∠C=∠FED=90º. ∵BC ∥AD ,∴∠CED=∠EDF,∴△ECD ∽△DEF.(2)解:∵四边形ABCD 是正方形, ∴∠C=90º,AD=BC=CD=4.∵E 为BC 的中点,∴CE=0.5BC=2. 在Rt △DCE 中,由勾股定理得DE=.5242CD CE 2222=+=+∵△ECD ∽△DEF ,∴CE:DE=DE:DF ,∴DF :5252:2=,解得DF=10.∵AD=4,∴AF=DF -AD=10-4=6.20.(本小题满分9分)某校数学兴趣小组借助无人机测量一条河流的宽度CD.如图所示,一架水平飞行的无人机在A 处测得正前方河流的左岸C 处的俯角为α,无人机沿水平线AF 方向继续飞行50米至B 处,测得正前方河流的右岸D 处的俯角为30°. 线段AM 的长为无人机距地面的铅直高度,点M 、C 、D 在同一直线上. 其中tan α=2,MC=503米.(1)求无人机的飞行高度AM ;(结果保留根号) (2)求河流的宽度CD.(结果精确到1米,参考数据:2≈1.41,3≈1.73)解:过点B 作BN ⊥MD 于点N.由题意可知,∠ACM=α,∠BDM=30°,AB=MN=50. (1)在Rt △AMC 中,tan ∠ACM=tan α=2,MC=503,∴AM=2MC=1003,即BN=1003.答:无人机的飞行高度AM 为1003米.(2)在Rt △BND 中,∵tan ∠BDN=tan30°=DN BN , ∴DN=1003÷33=300,∴DM=DN+MN=300+50=350, ∴CD=DM -MC=350-503≈264.答:河流的宽度CD 约为264米.21.(本小题满分9分)因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一,深圳著名旅游“网红打卡地”东部华侨城景区在2019年春节长假期间,共接待游客达20万人次,预计在2021年春节长假期间,将接待游客达28.8万人次.B E CF A D α A B F 30° M N C D(1)求东部华侨城景区2019至2021年春节长假期间接待游客人次的年平均增长率;(2)东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯. 2021年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?解:(1)设年平均增长率为x ,由题意得20(1+x )2=28.8,解得x 1=20%,x 2=-2.2(舍去).答:华侨城景区2019至2021年春节长假期间接待游客人次的年平均增长率为20%.(2)设每杯售价定为a 元,由题意得(a -6)[300+30(25-a )]=6300,解得a 1=21,a 2=20∴为了让顾客获得最大优惠,a 应取20.答:每杯售价定为20元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额.22.(本小题满分12分)如图,在△ABC 中,∠ACB=90º,CD ⊥AB ,垂足为D.(1)图1中共有 对相似三角形,写出来分别为 ;(2)已知AB=5,AC=4,请你求出CD 的长;(3)在(2)的情况下,如果以AB 为轴,CD 为y 轴,点D 为坐标原点O ,建立直角坐标系(如图2),若点P 从C 点出发,以每秒1个单位的速度沿线段CB 运动,点Q 从B 点出发,以每秒1个单位的速度沿线段BA 运动,其中一点最先到达线段的端点时,两点即刻同时停止运动;设运动时间为t 秒,是否存在点P ,使以点B 、P 、Q 为顶点的三角形与△ABC 相似?若存在,请求出点P 的坐标;若不存在,请说明理由. 解:(1)3;△ABC ∽△ACD ,△ABC ∽△CBD ,△ACD ∽△CBD .(2)∵在Rt △ACB 中,∠ACB=90º,AB=5,AC=4, ∴BC=.345AC AB 2222=-=-∵S △ABC =21AB·CD=21AC·BC , ∴CD=512AB BC AC =⋅. (3)存在点P ,使以点B 、P 、Q 为顶点的三角形与△ 理由如下:在△BOC 中,∵∠COB=90º,BC=3,OC=2.4,∴OB=1.8 分两种情况:①当∠BQP=90º时,如图2①,此时△PQB ∽△,∴BC BQ AB BP =, ∴353t t =-, 解得t =89,即BQ=CP=89, ∴BP=BC -CP=3-89=815. A O B x 图2① C A D B 图1 C y P Q在△BPQ 中,由勾股定理得PQ=,23)89()815(BQ BP 2222=-=- OQ=OB -BQ=-5989=4027. ∴点P 的坐标为(4027,23); ②当∠BPQ=90º时,如图2②,此时△QPB ∽△ACB , ∴AB BQ BC BP =, ∴533t t =-, 解得t =815,即BQ=CP=815, ∴BP=BC -CP=3-815=89. 过点P 作PE ⊥x 轴于点E.∵△QPB ∽△ACB ,∴AB BQ CO PE =, 即PE:512=815:5,∴PE=109. 在△BPE 中,BE=,4027)109()89(PE PB 2222=-=- ∴OE=OB -BE=-594027=89, ∴点P 的坐标为(89,109), 综上可得,点P 的坐标为(4027,23);(89,109). A O B x图2② C y P Q E。

2020-2021学年上学期广东省深圳市南山区期末考试九年级数学试卷 (Word版 含解析)

2020-2021学年上学期广东省深圳市南山区期末考试九年级数学试卷  (Word版 含解析)

广东省深圳市南山区2020-2021学年九年级(上)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上)。

1.如图,这是由5个大小相同的正方体搭成的几何体,该几何体的左视图()A.B.C.D.2.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形3.在一个不透明的口袋中,装有若干个红球和3个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中红球的个数大约是()A.20个B.16个C.15个D.12个4.一元二次方程x2+2x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根5.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′位似比是1:2,已知△ABC的面积是10,则△A′B′C′的面积是()A.10B.20C.40D.806.关于反比例函数y=﹣,下列说法不正确的是()A.函数图象分别位于第二、四象限B.函数图象关于原点成中心对称C.函数图象经过点(﹣6,﹣2)D.当x<0时,y随x的增大而增大7.如图.AB∥CD∥EF,AF、BE交于点G,下列比例式错误的是()A.B.C.D.8.如图,已知点A是反比例函数y=(x>0)的图象上一点,AB∥x轴交另一个反比例函数y=(x>0)的图象于点B,C为x轴上一点,若S△ABC=2,则k的值为()A.4B.2C.3D.19.如图,在菱形ABCD中,对角线AC、BD交于点O,且AC=6,BD=8,过A点作AE垂直BC,交BC于点E,则的值为()A.B.C.D.10.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下面四个结论:①CF=2AF;②AD=CD;③DF=DC;④△AEF∽△CAB;⑤S四边形CDEF=S△ABF.其中正确的结论有()A.2个B.3个C.4个D.5个二、填空题(本题有5小题,每小题3分,共15分.把答案填在答题卡上).11.已知==,且a+b﹣2c=6,则a的值为.12.小王同学想利用树影测量校园内的树高.他在某一时刻测得小树高为1.5米时,其影长为1.2米,当他测量教学楼旁的一棵大树的影长时,因大树靠近教学楼,有一部分影子在墙上.经测量,地面部分影长为6.4米,墙上影长为1.4米,那么这棵大树高约为米.13.设m、n是方程x2+x﹣1001=0的两个实数根,则m2+2m+n的值为.14.如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=4,AD=3,则CF的长为.15.如图,在平面直角坐标系中,矩形ABCD的顶点A、D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y =(k>0,x>0)的图象经过矩形对角线的交点E.若点A(2,0)、D(0,4),则反比例函数的解析式为.三、解答题:(16题6分,17题6分,18题7分,19题8分,20题9分,21题9分,22题10分,共计55分)16.解下列方程:(1)2(x﹣2)2=x2﹣4.(2)2x2﹣4x﹣1=0.17.甲、乙、丙、丁四位同学参加校田径运动会4×100米接力跑比赛,因为丁的速度最快,所以由他负责跑最后一棒,其他三位同学的跑步顺序随机安排.(1)请用画树状图或列表的方法表示甲、乙、丙三位同学所有的跑步顺序;(2)请求出正好由丙将接力棒交给丁的概率.18.如图,在菱形ABCD中,E为对角线BD上一点,且AE=DE,连接CE.(1)求证:CE=DE.(2)当BE=2,CE=1时,求菱形的边长.19.某商店准备销售一种多功能旅行背包,计划从厂家以每个30元的价格进货,经过市场发现当每个背包的售价为40元时,月均销量为280个,售价每增长2元,月均销量就相应减少20个.(1)若使这种背包的月均销量不低于130个,每个背包售价应不高于多少元?(2)在(1)的条件下,当该这种书包销售单价为多少元时,销售利润是3120元?(3)这种书包的销售利润有可能达到3700元吗?若能,请求出此时的销售单价;若不能,请说明理由.20.如图,在平面直角坐标系中,直线y=3x+b经过点A(﹣1,0),与y轴正半轴交于B点,与反比例函数y=(x>0)交于点C,且BC=2AB,BD∥x轴交反比例函数y=(x>0)于点D,连接AD.(1)求b、k的值;(2)求△ABD的面积;(3)若E为射线BC上一点,设E的横坐标为m,过点E作EF∥BD,交反比例函数y=(x>0)的图象于点F,且EF=BD,求m的值.21.问题背景如图(1),在四边形ABCD中,∠B+∠D=180°,AB=AD,∠BAD=α,以点A为顶点作一个角,角的两边分别交BC,CD于点E,F,且∠EAF=α,连接EF,试探究:线段BE,DF,EF之间的数量关系.(1)特殊情景在上述条件下,小明增加条件“当∠BAD=∠B=∠D=90°时”如图(2),小明很快写出了:BE,DF,EF之间的数量关系为.(2)类比猜想类比特殊情景,小明猜想:在如图(1)的条件下线段BE,DF,EF之间的数量关系是否仍然成立?若成立,请你帮助小明完成证明;若不成立,请说明理由.(3)解决问题如图(3),在△ABC中,∠BAC=90°,AB=AC=4,点D,E均在边BC上,且∠DAE=45°,若BD=,请直接写出DE的长.22.(1)证明推断:如图(1),在正方形ABCD中,点E、Q分别在边BC、AB上,DQ⊥AE于点O,点G、F分别在边CD、AB上,GF⊥AE.①填空:DQ AE(填“>”“<”或“=”);②推断的值为;(2)类比探究:如图(2),在矩形ABCD中,=k(k为常数).将矩形ABCD沿GF折叠,使点A落在BC 边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE交GF于点O.试探究GF与AE之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP,当k=时,若=,GF=2,求CP的长.参考答案与试题解析一.选择题(共10小题)1.如图,这是由5个大小相同的正方体搭成的几何体,该几何体的左视图()A.B.C.D.【分析】找到从几何体的左边看所得到的图形即可.【解答】解:左视图有2列,每列小正方形数目分别为2,1.故选:A.2.下列命题是假命题的是()A.四个角相等的四边形是矩形B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形D.对角线垂直的平行四边形是菱形【分析】根据矩形的判定对A、B进行判断;根据菱形的判定方法对C、D进行判断.【解答】解:A、四个角相等的四边形是矩形,为真命题,故A选项不符合题意;B、对角线相等的平行四边形是矩形,为真命题,故B选项不符合题意;C、对角线垂直的平行四边形是菱形,为假命题,故C选项符合题意;D、对角线垂直的平行四边形是菱形,为真命题,故D选项不符合题意.故选:C.3.在一个不透明的口袋中,装有若干个红球和3个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中红球的个数大约是()A.20个B.16个C.15个D.12个【分析】利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【解答】解:设红球有x个,根据题意得,3:(3+x)=1:5,解得x=12,经检验:x=12是原分式方程的解,所以估计盒子中红球的个数大约有12个,故选:D.4.一元二次方程x2+2x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】先计算出根的判别式△的值,根据△的值就可以判断根的情况.【解答】解:∵在方程x2+2x﹣1=0中,△=22﹣4×1×(﹣1)=8>0,∴方程x2+2x﹣1=0有两个不相等的实数根.故选:A.5.△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′位似比是1:2,已知△ABC的面积是10,则△A′B′C′的面积是()A.10B.20C.40D.80【分析】根据位似变换的性质得到△ABC∽△A′B′C′,根据相似三角形的面积比等于相似比的平方是解题的关键.【解答】解:∵△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′位似比是1:2,∴△ABC∽△A′B′C′,相似比为1:2,∴=()2=,∵△ABC的面积是10,∴△A′B′C′的面积是40,故选:C.6.关于反比例函数y=﹣,下列说法不正确的是()A.函数图象分别位于第二、四象限B.函数图象关于原点成中心对称C.函数图象经过点(﹣6,﹣2)D.当x<0时,y随x的增大而增大【分析】根据反比例函数图象上点的坐标特征对C进行判断;根据反比例函数的性质对A、B、D进行判断.【解答】解:反比例函数y=﹣,k=12<0,A、函数图象分别位于第二、四象限,故本选项说法正确;B、函数图象关于原点成中心对称,故本选项说法正确;C、函数图象经过点(﹣6,2),故本选项说法不正确;D、当k<0,双曲线的两支分别位于第二、四象限,在每一象限内y随x的增大而增大,故本选项说法正确;故选:C.7.如图.AB∥CD∥EF,AF、BE交于点G,下列比例式错误的是()A.B.C.D.【分析】根据平行线分线段成比例定理进行判断即可.【解答】解:A、由AB∥CD∥EF,则,所以A选项的结论正确;B、由AB∥CD∥EF,则,所以B选项的结论正确;C、由AB∥CD∥EF,则,所以C选项的结论正确;D、由AB∥CD∥EF,则,所以D选项的结论错误;故选:D.8.如图,已知点A是反比例函数y=(x>0)的图象上一点,AB∥x轴交另一个反比例函数y=(x>0)的图象于点B,C为x轴上一点,若S△ABC=2,则k的值为()A.4B.2C.3D.1【分析】由点A是反比例函数y=的图象上,可得S△AOD=3,根据等底同高的三角形面积相等可得S△AOB=S=2,进而求出S△BOD=1,再根据点B在反比例函数y=(x>0)的图象上,求出S△BOD=1,进而求出k △ACB的值.【解答】解:延长AB交y轴于点D,连接OA、OB,∵点A是反比例函数y=(x>0)的图象上,AB∥x轴,∴S△AOD=|k|=×6=3,S△AOB=S△ACB=2,∴S△BOD=S△AOD﹣S△AOB=3﹣2=1,又∵点B在反比例函数y=(x>0)的图象上,∴S△BOD=|k|=1,∴k=2,k=﹣2(舍去),故选:B.9.如图,在菱形ABCD中,对角线AC、BD交于点O,且AC=6,BD=8,过A点作AE垂直BC,交BC于点E,则的值为()A.B.C.D.【分析】利用菱形的性质即可计算得出BC的长,再根据面积法即可得到AE的长,最后根据勾股定理进行计算,即可得到BE的长,进而得出结论.【解答】解:∵四边形ABCD是菱形,∴CO=AC=3,BO=BD=4,AO⊥BO,∴BC===5,∵S菱形ABCD=AC•BD=BC×AE,∴AE==.在Rt△ABE中,BE===,∴CE=BC﹣BE=5﹣=,∴的值为,故选:C.10.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下面四个结论:①CF=2AF;②AD=CD;③DF=DC;④△AEF∽△CAB;⑤S四边形CDEF=S△ABF.其中正确的结论有()A.2个B.3个C.4个D.5个【分析】依据△AEF∽△CBF,即可得出CF=2AF;依据△BAE∽△ADC,即可得到AD=CD;过D作DM ∥BE交AC于N,依据DM垂直平分CF,即可得出DF=DC;依据∠EAC=∠ACB,∠ABC=∠AFE=90°,即可得到△AEF∽△CAB;设△AEF的面积为s,则△ABF的面积为2s,△CEF的面积为2s,△CDE的面积为3s,四边形CDEF的面积为5s,进而得出S四边形CDEF=S△ABF.【解答】解:∵AD∥BC,∴△AEF∽△CBF,∴,∵AE=AD=BC,∴=,∴CF=2AF,故①正确;设AE=a,AB=b,则AD=2a,∵BE⊥AC,∠BAD=90°,∴∠ABE=∠ADC,而∠BAE=∠ADC=90°,∴△BAE∽△ADC,∴,即b=a,∴AD=CD,故②正确;如图,过D作DM∥BE交AC于N,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故④正确;如图,连接CE,由△AEF∽△CBF,可得,设△AEF的面积为s,则△ABF的面积为2s,△CEF的面积为2s,∴△ACE的面积为3s,∵E是AD的中点,∴△CDE的面积为3s,∴四边形CDEF的面积为5s,∴S四边形CDEF=S△ABF,故⑤正确.故选:D.二.填空题(共5小题)11.已知==,且a+b﹣2c=6,则a的值为12.【分析】直接利用已知比例式假设出a,b,c的值,进而利用a+b﹣2c=6,得出答案.【解答】解:∵==,∴设a=6x,b=5x,c=4x,∵a+b﹣2c=6,∴6x+5x﹣8x=6,解得:x=2,故a=12.故答案为:12.12.小王同学想利用树影测量校园内的树高.他在某一时刻测得小树高为1.5米时,其影长为1.2米,当他测量教学楼旁的一棵大树的影长时,因大树靠近教学楼,有一部分影子在墙上.经测量,地面部分影长为6.4米,墙上影长为1.4米,那么这棵大树高约为9.4米.【分析】根据在同一时刻,不同物体的物高和影长成比例计算.【解答】解:设这棵大树高为x,根据平行投影特点:在同一时刻,不同物体的物高和影长成比例.可得树高比影长为=1.25,则有==0.8,解可得:x=9.4米.13.设m、n是方程x2+x﹣1001=0的两个实数根,则m2+2m+n的值为1000.【分析】由于m、n是方程x2+x﹣1001=0的两个实数根,根据根与系数的关系可以得到m+n=﹣1,并且m2+m ﹣1001=0,然后把m2+2m+n可以变为m2+m+m+n,把前面的值代入即可求出结果【解答】解:∵m、n是方程x2+x﹣1001=0的两个实数根,∴m+n=﹣1,并且m2+m﹣1001=0,∴m2+m=1001,∴m2+2m+n=m2+m+m+n=1001﹣1=1000.故答案为:1000.14.如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=4,AD=3,则CF的长为.【分析】根据矩形的性质可得出AB∥CD,进而可得出∠F AE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD,利用相似三角形的性质可得出==2,利用勾股定理可求出AC的长度,再结合CF =•AC,即可求出CF的长.【解答】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠F AE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.15.如图,在平面直角坐标系中,矩形ABCD的顶点A、D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y =(k>0,x>0)的图象经过矩形对角线的交点E.若点A(2,0)、D(0,4),则反比例函数的解析式为y =.【分析】根据平行于x轴的直线上任意两点纵坐标相同,可设B(x,4).利用矩形的性质得出E为BD中点,∠DAB=90°.根据线段中点坐标公式得出E(x,4).由勾股定理得出AD2+AB2=BD2,列出方程22+42+(x ﹣2)2+42=x2,求出x,得到E点坐标,即可求得反比例函数的解析式.【解答】解:∵BD∥x轴,D(0,4),∴B、D两点纵坐标相同,都为4,∴可设B(x,4).∵矩形ABCD的对角线的交点为E,∴E为BD中点,∠DAB=90°.∴E(x,4).∵∠DAB=90°,∴AD2+AB2=BD2,∵A(2,0),D(0,4),B(x,4),∴22+42+(x﹣2)2+42=x2,解得x=10,∴E(5,4).∵反比例函数y=(k>0,x>0)的图象经过点E,∴k=5×4=20,∴反比例函数的解析式为y=故答案为y=.三.解答题16.解下列方程:(1)2(x﹣2)2=x2﹣4.(2)2x2﹣4x﹣1=0.【分析】(1)先移项得到2(x﹣2)2﹣(x﹣2)(x+2)=0,然后利用因式分解法解方程;(4)利用配方法解方程即可.【解答】解:(1)2(x﹣2)2﹣(x﹣2)(x+2)=0,(x﹣2)(2x﹣4﹣x﹣2)=0,所以x1=2,x2=6;(2)x2﹣2x=,x2﹣2x+1=+1,即(x﹣1)2=,∴x﹣1=±,所以x1=1+,x2=1﹣.17.甲、乙、丙、丁四位同学参加校田径运动会4×100米接力跑比赛,因为丁的速度最快,所以由他负责跑最后一棒,其他三位同学的跑步顺序随机安排.(1)请用画树状图或列表的方法表示甲、乙、丙三位同学所有的跑步顺序;(2)请求出正好由丙将接力棒交给丁的概率.【分析】(1)画树状图即可得出答案;(2)共有6个等可能的结果,正好由丙将接力棒交给丁的结果有2个,再由概率公式求解即可.【解答】解:(1)画树状图如图:(2)由(1)得:共有6个等可能的结果,正好由丙将接力棒交给丁的结果有2个,∴正好由丙将接力棒交给丁的概率为=.18.如图,在菱形ABCD中,E为对角线BD上一点,且AE=DE,连接CE.(1)求证:CE=DE.(2)当BE=2,CE=1时,求菱形的边长.【分析】(1)证△ABE≌△CBE(SAS),即可得出结论;(2)连接AC交BD于H,先由菱形的性质可得AH⊥BD,BH=DH,AH=CH,求出BH、EH的长,由勾股定理求出AH的长,再由勾股定理求出AB的长,即可得出结果.【解答】(1)证明:∵四边形ABCD是菱形,∴∠ABE=∠CBE,AB=CB,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴AE=CE,∵AE=DE,∴CE=DE;(2)解:如图,连接AC交BD于H,∵四边形ABCD是菱形,∴AH⊥BD,BH=DH,AH=CH,∵CE=DE=AE=1,∴BD=BE+DE=2+1=3,∴BH=BD=,EH=BE﹣BH=2﹣=,在Rt△AHE中,由勾股定理得:AH===,在Rt△AHB中,由勾股定理得:AB===,∴菱形的边长为.19.某商店准备销售一种多功能旅行背包,计划从厂家以每个30元的价格进货,经过市场发现当每个背包的售价为40元时,月均销量为280个,售价每增长2元,月均销量就相应减少20个.(1)若使这种背包的月均销量不低于130个,每个背包售价应不高于多少元?(2)在(1)的条件下,当该这种书包销售单价为多少元时,销售利润是3120元?(3)这种书包的销售利润有可能达到3700元吗?若能,请求出此时的销售单价;若不能,请说明理由.【分析】(1)设每个背包的售价为x元,则月均销量为(280﹣×20)个,根据月均销量不低于130个,即可得出关于x的一元一次不等式,解之取其最大值即可得出结论;(2)根据总利润=每个的利润×月均销量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(3)根据总利润=每个的利润×月均销量,即可得出关于x的一元二次方程,由根的判别式△=﹣36<0,即可得出这种书包的销售利润不能达到3700元.【解答】解:(1)设每个背包的售价为x元,则月均销量为(280﹣×20)个,依题意,得:280﹣×20≥130,解得:x≤55.答:每个背包售价应不高于55元.(2)依题意,得:(x﹣30)(280﹣×20)=3120,整理,得:x2﹣98x+2352=0,解得:x1=42,x2=56(不合题意,舍去).答:当该这种书包销售单价为42元时,销售利润是3120元.(3)依题意,得:(x﹣30)(280﹣×20)=3700,整理,得:x2﹣98x+2410=0.∵△=(﹣98)2﹣4×1×2410=﹣36<0,∴该方程无解,∴这种书包的销售利润不能达到3700元.20.如图,在平面直角坐标系中,直线y=3x+b经过点A(﹣1,0),与y轴正半轴交于B点,与反比例函数y=(x>0)交于点C,且BC=2AB,BD∥x轴交反比例函数y=(x>0)于点D,连接AD.(1)求b、k的值;(2)求△ABD的面积;(3)若E为射线BC上一点,设E的横坐标为m,过点E作EF∥BD,交反比例函数y=(x>0)的图象于点F,且EF=BD,求m的值.【分析】(1)作CH⊥y轴于点H,把点A坐标代入直线解析式中求出b,求出点B坐标,再用相似三角形的性质求出CH、BH,求出点C坐标,即可求出k;(2)先求出点D坐标,求出BD,根据三角形的面积公式计算,得到答案;(3)先求出EF=2,设出点E坐标,分0<m<2、m>2两种情况,表示出点F坐标,根据反比例函数图象上点的坐标特征建立方程求解,即可得出结论.【解答】解:(1)作CH⊥y轴于点H,∵直线y=3x+b经过点A(﹣1,0),∴﹣1×3+b=0,解得,b=3,对于直线y=3x+3,当x=0时,x=3,∴点B的坐标为(0,3),即OB=3,∵CH∥OA,∴△AOB∽△CHB,∴==,即==,解得,CH=2,BH=6,∴OH=OB+BH=9,∴点C的坐标为(2,9),∴k=2×9=18;(2)∵BD∥x轴,∴点D的纵坐标为3,∴点D的横坐标为=6,即BD=6,∴△ABD的面积=×6×3=9;(3)EF=BD=×6=2,设E(m,3m+3),当0<m<2时,点F的坐标为(m+2,3m+3),∵点F在反比例函数y=上,∴(m+2)(3m+3)=18,解得,m1=﹣4(舍去),m2=1,当m>2时,点F的坐标为(m﹣2,3m+3),∵点F在反比例函数y=上,∴(m﹣2)(3m+3)=18,解得,m3=(舍去),m4=,综上所述,m的值为1或.21.问题背景如图(1),在四边形ABCD中,∠B+∠D=180°,AB=AD,∠BAD=α,以点A为顶点作一个角,角的两边分别交BC,CD于点E,F,且∠EAF=α,连接EF,试探究:线段BE,DF,EF之间的数量关系.(1)特殊情景在上述条件下,小明增加条件“当∠BAD=∠B=∠D=90°时”如图(2),小明很快写出了:BE,DF,EF之间的数量关系为BE+DF=EF.(2)类比猜想类比特殊情景,小明猜想:在如图(1)的条件下线段BE,DF,EF之间的数量关系是否仍然成立?若成立,请你帮助小明完成证明;若不成立,请说明理由.(3)解决问题如图(3),在△ABC中,∠BAC=90°,AB=AC=4,点D,E均在边BC上,且∠DAE=45°,若BD=,请直接写出DE的长.【分析】(1)将△ABE绕点A逆时针旋转90°,得到△ADG,据此知AE=AG,BE=DG,∠BAE=∠DAG.证△AFE≌△AFG得EF=FG,从而得出答案;(2)将△ABE绕点A逆时针旋转α得到△ADH,知∠ABE=∠ADH,∠BAE=∠DAH,AE=AH,BE=DH,证△AEF≌△AHF得EF=FH=DF+DH=DF+BE;(3)将△AEC绕点A顺时针旋转90°,得到△AE′B,连接DE′.据此知BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,由AB=AC=4知∠ABC+∠ABE′=90°,即∠E′BD=90°,从而得E′B2+BD2=E′D2.易证△AE′D≌△AED得DE=DE′,根据DE2=BD2+EC2可得答案.【解答】解:(1)BE+DF=EF,如图1,将△ABE绕点A逆时针旋转90°,得到△ADG,∵∠ADC=∠B=∠ADG=90°,∴∠FDG=180°,即点F,D,G共线.由旋转可得AE=AG,BE=DG,∠BAE=∠DAG.∵∠BAE+∠DAF=∠BAD﹣∠EAF=90°﹣45°=45°,∴∠DAG+∠DAF=45°,∴∠EAF=∠F AG,∴△AFE≌△AFG(SAS),∴EF=FG.又∵FG=DG+DF=BE+DF,∴BE+DF=EF,故答案为:BE+DF=EF.(2)成立.证明:如图2,将△ABE绕点A逆时针旋转α得到△ADH,可得∠ABE=∠ADH,∠BAE=∠DAH,AE=AH,BE=DH.∵∠B+∠ADC=180°,∴∠ADH+∠ADC=180°,∴点C,D,H在同一直线上.∵∠BAD=α,∠EAF=α,∴∠BAE+∠F AD=α,∴∠DAH+∠F AD=α,∴∠F AH=∠EAF,又∵AF=AF,∴△AEF≌△AHF(SAS),∴EF=FH=DF+DH=DF+BE;(3)DE=,如图3,将△AEC绕点A顺时针旋转90°,得到△AE′B,连接DE′.可得BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,在Rt△ABC中,∵AB=AC=4,∴∠ABC=∠ACB=45°,BC=4,∴∠ABC+∠ABE′=90°,即∠E′BD=90°,∴E′B2+BD2=E′D2.易证△AE′D≌△AED,∴DE=DE′,∴DE2=BD2+EC2,即DE2=,解得.22.(1)证明推断:如图(1),在正方形ABCD中,点E、Q分别在边BC、AB上,DQ⊥AE于点O,点G、F分别在边CD、AB上,GF⊥AE.①填空:DQ=AE(填“>”“<”或“=”);②推断的值为1;(2)类比探究:如图(2),在矩形ABCD中,=k(k为常数).将矩形ABCD沿GF折叠,使点A落在BC 边上的点E处,得到四边形FEPG,EP交CD于点H,连接AE交GF于点O.试探究GF与AE之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP,当k=时,若=,GF=2,求CP的长.【分析】(1)①由正方形的性质得AB=DA,∠ABE=90°=∠DAH.所以∠HAO+∠OAD=90°,又知∠ADO+∠OAD=90°,所以∠HAO=∠ADO,于是△ABE≌△DAH,可得AE=DQ.②证明四边形DQFG是平行四边形即可解决问题.(2)结论:=k.如图2中,作GM⊥AB于M.证明:△ABE∽△GMF即可解决问题.(3)如图2中,作PM⊥BC交BC的延长线于M.利用相似三角形的性质求出PM,CM即可解决问题.【解答】(1)①解:∵四边形ABCD是正方形,∴AB=DA,∠ABE=90°=∠DAQ.∴∠QAO+∠OAD=90°.∵AE⊥DQ,∴∠ADO+∠OAD=90°.∴∠QAO=∠ADO.∴△ABE≌△DAQ(ASA),∴AE=DQ.故答案是:=;②解:∵DQ⊥AE,FG⊥AE,∴DQ∥FG,∵FQ∥DG,∴四边形DQFG是平行四边形,∴FG=DQ,∵AE=DQ,∴FG=AE,∴=1.故答案为:1.(2)解:结论:=k.理由:如图2中,作GM⊥AB于M.∵AE⊥GF,∴∠AOF=∠GMF=∠ABE=90°,∴∠BAE+∠AFO=90°,∠AFO+∠FGM=90°,∴∠BAE=∠FGM,∴△ABE∽△GMF,∴=,∵∠AMG=∠D=∠DAM=90°,∴四边形AMGD是矩形,∴GM=AD,∴===k.(3)解:如图2中,作PM⊥BC交BC的延长线于M.由=,可以假设BE=3k,BF=4k,EF=AF=5k,∵=,FG=2,∴AE=3,∴(3k)2+(9k)2=(3)2,∴k=1或﹣1(舍弃),∴BE=3,AB=9,∵BC:AB=2:3,∴BC=6,∴BE=CE=3,AD=PE=BC=6,∵∠EBF=∠FEP=∠PME=90°,∴∠FEB+∠PEM=90°,∠PEM+∠EPM=90°,∴∠FEB=∠EPM,∴△FBE∽△EMP,∴==,∴==,∴EM=,PM=,∴CM=EM﹣EC=﹣3=,∴PC==.。

九年级数学上册期末试卷测试卷(含答案解析)

九年级数学上册期末试卷测试卷(含答案解析)

九年级数学上册期末试卷测试卷(含答案解析)一、选择题1.已知抛物线221y ax x =+-与x 轴没有交点,那么该抛物线的顶点所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限2.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 723.在平面直角坐标系中,如图是二次函数y =ax 2+bx +c (a ≠0)的图象的一部分,给出下列命题:①a +b +c =0;②b >2a ;③方程ax 2+bx +c =0的两根分别为﹣3和1;④b 2﹣4ac >0,其中正确的命题有( )A .1个B .2个C .3个D .4个 4.若x=2y ,则x y 的值为( ) A .2 B .1 C .12 D .135.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( ) A .265cm π B .290cm π C .2130cm π D .2155cm π6.分别写有数字﹣4,0,﹣1,6,9,2的六张卡片,除数字外其它均相同,从中任抽一张,则抽到偶数的概率是( )A .16B .13C .12D .237.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该 企业一年中应停产的月份是( )A .1月,2月B .1月,2月,3月C .3月,12月D .1月,2月,3月,12月8.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2) 9.点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( )A .321y y y >>B .312y y y >=C .123y y y >>D .123y y y => 10.二次函数y =3(x +4)2﹣5的图象的顶点坐标为( ) A .(4,5)B .(﹣4,5)C .(4,﹣5)D .(﹣4,﹣5) 11.二次函数y =x 2﹣2x +1与x 轴的交点个数是( ) A .0B .1C .2D .3 12.若二次函数y =x 2+4x +n 的图象与x 轴只有一个公共点,则实数n 的值是( ) A .1 B .3C .4D .6 二、填空题 13.二次函数23(1)2y x =-+图象的顶点坐标为________.14.已知二次函数222y x x -=-,当-1≤x≤4时,函数的最小值是__________.15.已知一组数据:4,4,m ,6,6的平均数是5,则这组数据的方差是______.16.O 的半径为4,圆心O 到直线l 的距离为2,则直线l 与O 的位置关系是______.17.设x 1、x 2是关于x 的方程x 2+3x -5=0的两个根,则x 1+x 2-x 1•x 2=________.18.某企业2017年全年收入720万元,2019年全年收入845万元,若设该企业全年收入的年平均增长率为x ,则可列方程____.19.抛物线y=(x ﹣2)2﹣3的顶点坐标是____.20.如图,抛物线2143115y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点,⊙B 的圆心为B ,半径是1,点P 是直线AC 上的动点,过点P 作⊙B 的切线,切点是Q ,则切线长PQ 的最小值是__.21.当21x -≤≤时,二次函数22()1y x m m =--++有最大值4,则实数m 的值为________.22.已知 x 1、x 2 是关于 x 的方程 x 2+4x -5=0的两个根,则x 1 + x 2=_____.23.若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m +2020的值为_____.24.如图,在△ABC 中,P 是AB 边上的点,请补充一个条件,使△ACP ∽△ABC ,这个条件可以是:___(写出一个即可),三、解答题25.(1)如图①,在△ABC中,AB=m,AC=n(n>m),点P在边AC上.当AP=时,△APB∽△ABC;(2)如图②,已知△DEF(DE>DF),请用直尺和圆规在直线DF上求作一点Q,使DE是线段DF和DQ的比例项.(保留作图痕迹,不写作法)26.(1)如图,已知AB、CD是大圆⊙O的弦,AB=CD,M是AB的中点.连接OM,以O为圆心,OM为半径作小圆⊙O.判断CD与小圆⊙O的位置关系,并说明理由;(2)已知⊙O,线段MN,P是⊙O外一点.求作射线PQ,使PQ被⊙O截得的弦长等于MN.(不写作法,但保留作图痕迹)27.从﹣1,﹣3,2,4四个数字中任取一个,作为点的横坐标,不放回,再从中取一个数作为点的纵坐标,组成一个点的坐标.请用画树状图或列表的方法列出所有可能的结果,并求该点在第二象限的概率.28.抛物线y=﹣x2+bx+c的对称轴为直线x=2,且顶点在x轴上.(1)求b、c的值;(2)画出抛物线的简图并写出它与y轴的交点C的坐标;(3)根据图象直接写出:点C关于直线x=2对称点D的坐标;若E(m,n)为抛物线上一点,则点E关于直线x=2对称点的坐标为(用含m、n的式子表示).29.在平面直角坐标系中,已知抛物线经过A(﹣2,0),B(0,﹣2),C(1,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.30.如图,在▱ABCD中,点E是边AD上一点,延长CE到点F,使∠FBC=∠DCE,且FB 与AD相交于点G.(1)求证:∠D=∠F;(2)用直尺和圆规在边AD上作出一点P,使△BPC∽△CDP,并加以证明.(作图要求:保留痕迹,不写作法.)的顶点坐标分别为A(6,4),B(4,0),C 31.如图,在平面直角坐标系中,ABC(2,0).(1)在y 轴左侧,以O 为位似中心,画出111A B C ∆,使它与ABC ∆的相似比为1:2; (2)根据(1)的作图,111tan A B C ∠= .32.小亮晚上在广场散步,图中线段AB 表示站立在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P 表示照明灯的位置.(1)请你在图中画出小亮站在AB 处的影子BE ;(2)小亮的身高为1.6m ,当小亮离开灯杆的距离OB 为2.4m 时,影长为1.2m ,若小亮离开灯杆的距离OD =6m 时,则小亮(CD )的影长为多少米?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题目信息可知当y=0时,20a 21x x =+-,此时0<,可以求出a 的取值范围,从而可以确定抛物线顶点坐标的符号,继而可以确定顶点所在的象限.【详解】解:∵抛物线2y a 21x x =+-与x 轴没有交点,∴2a 210x x +-=时无实数根;即,24440b ac a =-=+<,解得,a 1<-,又∵2y a 21x x =+-的顶点的横坐标为:2102a a -=->; 纵坐标为:()414104a a a a⨯----=<; 故抛物线的顶点在第四象限.故答案为:D.【点睛】本题考查的知识点是抛物线与坐标轴的交点问题,解题的关键是根据抛物线与x 轴无交点得出2a 210x x +-=时无实数根,再利用根的判别式求解a 的取值范围.2.B解析:B【解析】【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题;【详解】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC ,∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH ,∴S 平行四边形ABCD =6 S △AGH ,∴S △AGH :ABCD S 平行四边形=1:6,∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFC ABCD S S =四边形,∴1176824AGH EFCABCD S S S +=+=四边形=7∶24, 故选B.【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.3.C解析:C【解析】【分析】根据二次函数的图象可知抛物线开口向上,对称轴为x =﹣1,且过点(1,0),根据对称轴可得抛物线与x 轴的另一个交点为(﹣3,0),把(1,0)代入可对①做出判断;由对称轴为x =﹣1,可对②做出判断;根据二次函数与一元二次方程的关系,可对③做出判断,根据根的判别式解答即可.【详解】由图象可知:抛物线开口向上,对称轴为直线x =﹣1,过(1,0)点,把(1,0)代入y =ax 2+bx +c 得,a +b +c =0,因此①正确;对称轴为直线x =﹣1,即:﹣2b a=﹣1,整理得,b =2a ,因此②不正确; 由抛物线的对称性,可知抛物线与x 轴的两个交点为(1,0)(﹣3,0),因此方程ax 2+bx +c =0的两根分别为﹣3和1;故③是正确的;由图可得,抛物线有两个交点,所以b 2﹣4ac >0,故④正确;故选C .【点睛】考查二次函数的图象和性质,抛物线通常从开口方向、对称轴、顶点坐标、与x 轴,y 轴的交点,以及增减性上寻找其性质.4.A解析:A【解析】【分析】将x=2y 代入x y 中化简后即可得到答案. 【详解】将x=2y 代入x y得: 22x y y y ==, 故选:A.【点睛】此题考查代数式代入求值,正确计算即可.5.B解析:B【解析】【分析】先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案.【详解】解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=.故选:B.【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.6.D解析:D【解析】【分析】根据概率公式直接计算即可.【详解】解:在这6张卡片中,偶数有4张, 所以抽到偶数的概率是46=23, 故选:D .【点睛】本题主要考查了随机事件的概率,随机事件A 的概率P (A )=事件A 可能出现的结果数÷所有可能出现的结果数,灵活利用概率公式是解题的关键.7.D解析:D【解析】【分析】【详解】当-n 2+15n -36≤0时该企业应停产,即n 2-15n+36≥0,n 2-15n+36=0的两个解是3或者12,根据函数图象当n ≥12或n ≤3时n 2-15n+36≥0,所以1月,2月,3月,12月应停产.故选D8.D解析:D【解析】【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ),∴抛物线2(1)2y x =-+的顶点坐标是(1,2).故选D .9.D解析:D【解析】试题分析:∵22y x x c =-++,∴对称轴为x=1,P 2(3,2y ),P 3(5,3y )在对称轴的右侧,y 随x 的增大而减小,∵3<5,∴23y y >,根据二次函数图象的对称性可知,P 1(﹣1,1y )与(3,2y )关于对称轴对称,故123y y y =>,故选D .考点:二次函数图象上点的坐标特征.10.D解析:D【解析】【分析】根据二次函数的顶点式即可直接得出顶点坐标.【详解】∵二次函数()2345y x +=-∴该函数图象的顶点坐标为(﹣4,﹣5),故选:D .【点睛】本题考查二次函数的顶点坐标,解题的关键是掌握二次函数顶点式()2y a x h k =-+的顶点坐标为(h ,k ). 11.B解析:B【解析】由△=b 2-4ac=(-2)2-4×1×1=0,可得二次函数y=x 2-2x+1的图象与x 轴有一个交点.故选B .12.C解析:C【解析】【分析】二次函数y =x 2+4x +n 的图象与x 轴只有一个公共点,则240b ac =-=⊿,据此即可求得.【详解】∵1a =,4b =,c n =,根据题意得:2244410b ac n =-=⨯⨯=⊿﹣,解得:n =4,故选:C .【点睛】本题考查了抛物线与x 轴的交点,二次函数2y ax bx c =++(a ,b ,c 是常数,a ≠0)的交点与一元二次方程20ax bx c ++=根之间的关系.24b ac =-⊿决定抛物线与x 轴的交点个数.⊿>0时,抛物线与x 轴有2个交点;0=⊿时,抛物线与x 轴有1个交点;⊿<0时,抛物线与x 轴没有交点.二、填空题13.【解析】【分析】二次函数(a≠0)的顶点坐标是(h ,k ).【详解】解:根据二次函数的顶点式方程知,该函数的顶点坐标是:(1,2). 故答案为:(1,2).【点睛】本题考查了二次函数的性解析:()1,2【解析】【分析】二次函数2()y a x h k =-+(a≠0)的顶点坐标是(h ,k ).【详解】解:根据二次函数的顶点式方程23(1)2y x =-+知,该函数的顶点坐标是:(1,2). 故答案为:(1,2).【点睛】本题考查了二次函数的性质和二次函数的三种形式,解答该题时,需熟悉二次函数的顶点式方程2()y a x h k =-+中的h ,k 所表示的意义. 14.-3【解析】【分析】根据题意和二次函数的性质可以求得当−1≤x≤4时,函数的最小值.【详解】解:∵二次函数,∴该函数的对称轴是直线x =1,当x >1时,y 随x 的增大而增大,当x <1时,y 随 解析:-3【解析】 【分析】根据题意和二次函数的性质可以求得当−1≤x ≤4时,函数的最小值. 【详解】解:∵二次函数222y x x -=-,∴该函数的对称轴是直线x =1,当x >1时,y 随x 的增大而增大,当x <1时,y 随x 的增大而减小, ∵−1≤x≤4,∴当x =1时,y 取得最小值,此时y =-3, 故答案为:-3. 【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.15.8 【解析】 【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为: (表示样本的平均数,n 表示样本数据的个数,S2表示方差.) 【详解】解:∵4,4,,6,6的平均数是5, ∴4+4解析:8 【解析】 【分析】根据平均数是5,求m 值,再根据方差公式计算,方差公式为:2222121n Sx xx xx xn(x 表示样本的平均数,n 表示样本数据的个数,S 2表示方差.) 【详解】解:∵4,4,m ,6,6的平均数是5, ∴4+4+m+6+6=5×5, ∴m=5,∴这组数据为4,4,m ,6,6, ∴22222214545556565=0.85S,即这组数据的方差是0.8. 故答案为:0.8. 【点睛】本题考查样本的平均数和方差的定义,掌握定义是解答此题的关键.16.相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的解析:相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的距离为2,∵4>2,即:d<r,∴直线L与⊙O的位置关系是相交.故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d<r,则直线与圆相交;若d>r,则直线与圆相离;若d=r,则直线与圆相切.17.2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x2是关于 x 的方程x2+3x-5=0的两个根,根据根与系数的关系,得,x1+x2=解析:2【解析】【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x2是关于 x 的方程x2+3x-5=0的两个根,根据根与系数的关系,得,x1+x2=-3,x1x2=-5,则 x1+x2-x1x2=-3-(-5)=2,故答案为2.【点睛】本题考查了一元二次方程的根与系数的关系,求出x1+x2=-3,x1x2=-5是解题的关键.18.720(1+x)2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x,根据2017年全年收入720万元,2019 解析:720(1+x)2=845.【解析】【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果该企业全年收入的年平均增长率为x,根据2017年全年收入720万元,2019年全年收入845万元,即可得出方程.【详解】解:设该企业全年收入的年平均增长率为x,则2018的全年收入为:720×(1+x)2019的全年收入为:720×(1+x)2.那么可得方程:720(1+x)2=845.故答案为:720(1+x)2=845.【点睛】本题考查了一元二次方程的运用,解此类题的关键是掌握等量关系式:增长后的量=增长前的量×(1+增长率).19.(2,﹣3)【解析】【分析】根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).【详解】抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)【点睛】本题解析:(2,﹣3)【解析】【分析】根据:对于抛物线y=a(x﹣h)2+k的顶点坐标是(h,k).【详解】抛物线y=(x﹣2)2﹣3的顶点坐标是(2,﹣3).故答案为(2,﹣3)本题考核知识点:抛物线的顶点. 解题关键点:熟记求抛物线顶点坐标的公式.20.【解析】 【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可. 【详解】 令中y=0,得x1=【解析】 【分析】先根据解析式求出点A 、B 、C 的坐标,求出直线AC 的解析式,设点P 的坐标,根据过点P 作⊙B 的切线,切点是Q 得到PQ 的函数关系式,求出最小值即可. 【详解】令21115y x =-中y=0,得x 1x 2∴直线AC的解析式为1y =-, 设P (x ,313x ), ∵过点P 作⊙B 的切线,切点是Q ,BQ=1 ∴PQ 2=PB 2-BQ 2,2+(313x )2-1, =24283753x x , ∵43a =0<, ∴PQ 2有最小值24283475()3326443,∴PQ 【点睛】此题考查二次函数最小值的实际应用,求动线段的最小值,需构建关于此线段的函数解析式,利用二次函数顶点坐标公式求最值,此题找到线段PQ 、BQ 、PB 之间的关系式是解题21.2或 【解析】 【分析】求出二次函数对称轴为直线x=m ,再分m <-2,-2≤m≤1,m >1三种情况,根据二次函数的增减性列方程求解即可. 【详解】解:二次函数的对称轴为直线x=m ,且开口向下,解析:2或3- 【解析】 【分析】求出二次函数对称轴为直线x=m ,再分m <-2,-2≤m≤1,m >1三种情况,根据二次函数的增减性列方程求解即可. 【详解】解:二次函数22()1y x m m =--++的对称轴为直线x=m ,且开口向下, ①m <-2时,x=-2取得最大值,-(-2-m )2+m 2+1=4, 解得74m =-, 724->-, ∴不符合题意,②-2≤m≤1时,x=m 取得最大值,m 2+1=4, 解得3m =±, 所以3m =-,③m >1时,x=1取得最大值,-(1-m )2+m 2+1=4, 解得m=2,综上所述,m=2或3-时,二次函数有最大值. 故答案为:2或3-. 【点睛】本题考查了二次函数的最值,熟悉二次函数的性质及图象能分类讨论是解题的关键.22.-4 【解析】 【分析】根据根与系数的关系即可求解. 【详解】∵x1、x2 是关于 x 的方程 x2+4x5=0的两个根,∴x1 x2=-=-4,故答案为:-4.【点睛】此题主要考解析:-4【解析】【分析】根据根与系数的关系即可求解.【详解】∵x1、x2是关于 x 的方程 x2+4x-5=0的两个根,∴x1+ x2=-41=-4,故答案为:-4.【点睛】此题主要考查根与系数的关系,解题的关键是熟知x1+ x2=-ba.23.2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2解析:2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2023.故答案为:2023.【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.24.∠ACP=∠B(或).【解析】【分析】由于△ACP与△ABC有一个公共角,所以可利用两组对应边的比相等且夹角对应相等的两个三角形相似或有两组角对应相等的两个三角形相似进行添加条件.【详解】解析:∠ACP=∠B(或AP ACAC AB=).【解析】【分析】由于△ACP与△ABC有一个公共角,所以可利用两组对应边的比相等且夹角对应相等的两个三角形相似或有两组角对应相等的两个三角形相似进行添加条件.【详解】解:∵∠PAC=∠CAB,∴当∠ACP=∠B时,△ACP∽△ABC;当AP ACAC AB=时,△ACP∽△ABC.故答案为:∠ACP=∠B(或AP ACAC AB=).【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似:有两组角对应相等的两个三角形相似.三、解答题25.(1)2mn;(2)见解析.【解析】【分析】(1)根据相似三角形的判定方法进行分析即可;(2)直接利用相似三角形的判定方法以及结合做一角等于已知角进而得出答案.【详解】(1)解:要使△APB∽△ABC成立,∠A是公共角,则AB ACAC AP=,即m nn AP=,∴AP=2mn.(2)解:作∠DEQ=∠F,如图点Q就是所求作的点【点睛】本题考查了相似变换,正确掌握相似三角形的判定方法是解题的关键.26.(1)相切,证明见解析;(2)答案见解析【解析】【分析】(1)过点O作ON⊥CD,连接OA,OC,根据垂径定理及其推论可得∠AMO=∠ONC=90°,AM=CN,从而求证△AOM≌△CON,从而判定CD与小圆O的位置关系;(2)在圆O上任取一点A,以A为圆心,MN为半径画弧,交圆O于点B,过点O做AB的垂线,交AB于点C,然后以点O为圆心,OC为半径画圆,连接PO,取PO的中点D,以点D为圆心,OD为半径画圆,交以OC为半径的圆于点E,连接PE,交以OA为半径的圆于F,H两点,FH即为所求.【详解】解:(1)过点O作ON⊥CD,连接OA,OC∵AB、CD是大圆⊙O的弦,AB=CD,M是AB的中点,ON⊥CD∴∠AMO=∠ONC=90°,AM=12AB,CN12CD,∴AM=CN又∵OA=OC∴△AOM≌△CON∴ON=OM∴CD与小圆O相切(2)如图FH即为所求【点睛】本题考查垂径定理及其推论,全等三角形的判定和性质,以及利用垂径定理作图,掌握相关知识灵活应用是本题的解题关键.27.表见解析,1 3【解析】【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式求解可得.【详解】解:列表如下:﹣3﹣124﹣3﹣﹣﹣(﹣1,﹣3)(2,﹣3)(4,﹣3)﹣1(﹣3,﹣1)﹣﹣﹣(2,﹣1)(4,﹣1)2(﹣3,2)(﹣1,2)﹣﹣﹣(4,2)4(﹣3,4)(﹣1,4)(2,4)﹣﹣﹣∴该点在第二象限的概率为412=13.【点睛】本题主要考查了列表法或树状图法求概率,熟练的用列表法或树状图法列出所有的情况数是解题的关键.28.(1)b=4,c=﹣4;(2)见解析,(0,﹣4);(3)(4,﹣4),(4﹣m,n)【解析】【分析】(1)根据图象写出抛物线的顶点式,化成一般式即可求得b、c;(2)利用描点法画出图象即可,根据图象得到C(0,﹣4);(3)根据图象即可求得.【详解】解:(1)∵抛物线y=﹣x2+bx+c的对称轴为直线x=2,且顶点在x轴上,∴顶点为(2,0),∴抛物线为y=﹣(x﹣2)2=﹣x2+4x﹣4,∴b=4,c=﹣4;(2)画出抛物线的简图如图:点C的坐标为(0,﹣4);(3)∵C(0,﹣4),∴点C关于直线x=2对称点D的坐标为(4,﹣4);若E(m,n)为抛物线上一点,则点E关于直线x=2对称点的坐标为(4﹣m,n),故答案为(4,﹣4),(4﹣m,n).【点睛】本题主要考查了二次函数的图像及其对称性,熟练掌握二次函数的图像与性质是解题的关键.29.(1)y=x2+x﹣2;(2)S=﹣m2﹣2m(﹣2<m<0),S的最大值为1;(3)点Q 坐标为:(﹣2,2)或(﹣515或(﹣155)或(2,﹣2).【解析】【分析】(1)设此抛物线的函数解析式为:y=ax2+bx+c,将A,B,C三点代入y=ax2+bx+c,列方程组求出a、b、c的值即可得答案;(2)如图1,过点M作y轴的平行线交AB于点D,M点的横坐标为m,且点M在第三象限的抛物线上,设M点的坐标为(m,m2+m﹣2),﹣2<m<0,由A、B坐标可求出直线AB的解析式为y=﹣x﹣2,则点D的坐标为(m,﹣m﹣2),即可求出MD的长度,进一步求出△MAB的面积S关于m的函数关系式,根据二次函数的性质即可求出其最大值;(3)设P(x,x2+x﹣2),分情况讨论,①当OB为边时,根据平行四边形的性质知PQ∥OB,且PQ=OB,则Q(x,﹣x),可列出关于x的方程,即可求出点Q的坐标;②当BO为对角线时,OQ∥BP,A与P应该重合,OP=2,四边形PBQO为平行四边形,则BQ=OP=2,Q横坐标为2,即可写出点Q的坐标.【详解】(1)设此抛物线的函数解析式为:y=ax2+bx+c,将A(﹣2,0),B(0,﹣2),C(1,0)三点代入,得4202a b cca b c-+=⎧⎪=-⎨⎪++=⎩,解得:112 abc=⎧⎪=⎨⎪=-⎩,∴此函数解析式为:y=x2+x﹣2.(2)如图,过点M作y轴的平行线交AB于点D,∵M点的横坐标为m,且点M在第三象限的抛物线上,∴设M点的坐标为(m,m2+m﹣2),﹣2<m<0,设直线AB的解析式为y=kx﹣2,把A(﹣2,0)代入得,-2k-2=0,解得:k=﹣1,∴直线AB的解析式为y=﹣x﹣2,∵MD∥y轴,∴点D的坐标为(m,﹣m﹣2),∴MD=﹣m﹣2﹣(m2+m﹣2)=﹣m2﹣2m,∴S△MAB=S△MDA+S△MDB=12 MD•OA=12×2(m2﹣2m)=﹣m2﹣2m=﹣(m+1)2+1,∵﹣2<m<0,∴当m=﹣1时,S△MAB有最大值1,综上所述,S关于m的函数关系式是S=﹣m2﹣2m(﹣2<m<0),S的最大值为1.(3)设P(x,x2+x﹣2),①如图,当OB为边时,根据平行四边形的性质知PQ∥OB,且PQ=OB,∴Q的横坐标等于P的横坐标,∵直线的解析式为y=﹣x,则Q(x,﹣x),由PQ=OB,得|﹣x﹣(x2+x﹣2)|=2,即|﹣x2﹣2x+2|=2,当﹣x2﹣2x+2=2时,x1=0(不合题意,舍去),x2=﹣2,∴Q(﹣2,2),当﹣x2﹣2x+2=﹣2时,x1=﹣1+5,x2=﹣1﹣5,∴Q(﹣1+5,1﹣5)或(﹣1﹣5,1+5),②如图,当BO为对角线时,OQ∥BP,∵直线AB的解析式为y=-x-2,直线OQ的解析式为y=-x,∴A与P重合,OP=2,四边形PBQO为平行四边形,∴BQ=OP=2,点Q的横坐标为2,把x=2代入y=﹣x得y=-2,∴Q(2,﹣2),综上所述,点Q的坐标为(﹣2,2)或(﹣515155(2,﹣2).【点睛】本题是对二次函数的综合考查,有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,熟练掌握二次函数的性质把运用分类讨论的思想是解题关键.30.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据四边形ABCD是平行四边形可得AD∥BC,∠FGE=FBC,再根据已知∠FBC=∠DCE,进而可得结论;(2)作三角形FBC的外接圆交AD于点P即可证明.【详解】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC∴∠FGE=∠FBC∵∠FBC=∠DCE,∴∠FGE=∠DCE∵∠FEG=∠DEC∴∠D=∠F.(2)如图所示:点P 即为所求作的点.证明:作BC 和BF 的垂直平分线,交于点O ,作△FBC 的外接圆,连接BO 并延长交AD 于点P ,∴∠PCB =90°∵AD ∥BC∴∠CPD =∠PCB =90°由(1)得∠F =∠D∵∠F =∠BPC∴∠D =∠BPC∴△BPC ∽△CDP .【点睛】此题主要考查圆的综合应用,解题的关键是熟知平行四边形的性质、外接圆的性质及相似三角形的判定与性质.31.(1)见解析;(2)-2【解析】【分析】(1)连接AO 并延长至1A ,使1AO 2AO ,同理作出点B ,C 的对应点,再顺次连接即可;(2)先根据图象找出三点的坐标,再利用正切函数的定义求解即可.【详解】(1)如图;(2)根据题意可得出()13,2A --,()12,0B -,()11,0C -, 设11A B 与x 轴的夹角为α,∴()111tan tan 180αtan α2A BC ∠=-=-=-.【点睛】本题考查的知识点是在坐标系中画位似图形,掌握位似图形的关于概念是解此题的关键.32.(1)如图,BE 为所作;见解析;(2)小亮(CD )的影长为3m .【解析】【分析】(1)根据光是沿直线传播的道理可知在小亮由B 处沿BO 所在的方向行走到达O 处的过程中,连接PA 并延长交直线BO 于点E ,则可得到小亮站在AB 处的影子;(2)根据灯的光线与人、灯杆、地面形成的两个直角三角形相似解答即可.【详解】(1)如图,连接PA 并延长交直线BO 于点E ,则线段BE 即为小亮站在AB 处的影子:(2)延长PC 交OD 于F ,如图,则DF 为小亮站在CD 处的影子,AB =CD =1.6,OB =2.4,BE =1.2,OD =6,∵AB ∥OP ,∴△EBA ∽△EOP , ∴,AB EB OP EO =即1.6 1.2,1.2 2.4OP =+ 解得OP =4.8,∵CD ∥OP ,∴△FCD∽△FPO,∴CD FDOP FO=,即1.64.86FDFD=+,解得FD=3答:小亮(CD)的影长为3m.【点睛】本题考查的是相似三角形的判定及性质,解答此题的关键是根据题意画出图形,构造出相似三角形,再根据相似三角形的性质解答.。

2020-2021学年甘肃省金昌市龙门学校九年级(上)期末数学试卷(word,解析版)

2020-2021学年甘肃省金昌市龙门学校九年级(上)期末数学试卷(word,解析版)

2020-2021学年甘肃省金昌市龙门学校九年级(上)期末数学试卷一、选择题:(每小题3分,共30分)1.(3分)下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.2.(3分)一元二次方程x2+2x+3=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定3.(3分)若将函数y=2x2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是()A.y=2(x﹣1)2﹣3B.y=2(x﹣1)2+3C.y=2(x+1)2﹣3D.y=2(x+1)2+34.(3分)下列事件中是不可能事件的是()A.三角形内角和小于180°B.两实数之和为正C.买体育彩票中奖D.抛一枚硬币2次都正面朝上5.(3分)若函数为反比例函数,则m=()A.1B.0C.0或﹣1D.﹣16.(3分)如果两个相似三角形的相似比为3:2,那么它们的面积比是()A.2:3B.3:2C.9:4D.4:97.(3分)如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3B.2.5C.4D.3.58.(3分)如图,AB是⊙O的直径,点C,D在⊙O上.若∠D=50°,则∠BAC等于()A.25°B.40°C.50°D.55°9.(3分)若点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x1<x3C.x2<x3<x1D.x3<x2<x1 10.(3分)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2B.3:1C.1:1D.1:2二、填空题:(每小题4分,共32分.)11.(4分)已知反比例函数(k是常数,k≠1)的图象有一支在第四象限,那么k 的取值范围是.12.(4分)已知一个正六边形的半径为5,则这个正六边形的边长是.13.(4分)如果,那么=.14.(4分)若两个相似三角形对应边的比为3:5,则它们周长的比为.15.(4分)已知扇形的圆心角为90°,半径为6cm,则用该扇形围成的圆锥的侧面积为cm.16.(4分)二次函数y=ax2+bx+c的图象如图所示,则方程ax2+bx+c=0的两根为.17.(4分)一个不透明的袋子中,装有除颜色外完全相同的10个球,其中2个红球,3个绿球,5个黄球,若从中随机摸出一个球,摸到黄球的概率是.18.(4分)如图,A为反比例函数图象上一点,AB垂直x轴于点B,若S△AOB=5,则k=.三、解答题(共88分)19.(6分)如图是一块残缺的圆轮片,点A、B、C在上,请用尺规作图法作出所在的⊙O.(保留作图痕迹,不写作法)20.(8分)已知:如图,DE∥BC交BA的延长线于D,交CA的延长线于E,AD=4,DB =12,DE=3.求BC的长.21.(8分)已知函数y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时,y=4;当x=2时,y=5.(1)求y与x的函数关系式;(2)当x=﹣2时,求函数y的值.22.(8分)一次函数y=kx+b(k≠0)与反比例函数y=(k≠0)的图象交于A(﹣2,1),B(1,n)两点.求:(1)△ABO的面积;(2)根据图象,直接写出满足kx+b>的解集.23.(8分)如图,甲、乙两人在玩转盘游戏时,准备了两个可以自由转动的转盘A,B,每个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为0时,甲获胜;数字之和为1时,乙获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止.(1)用画树状图或列表法求乙获胜的概率;(2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由.24.(10分)如图,小华在地面上放置一个平面镜E来测量铁塔AB的高度,镜子与铁塔的距离EB=20m,镜子与小华的距离ED=2m时,小华刚好从镜子中看到铁塔顶端点A.已知小华的眼睛距地面的高度CD=1.5m,求:铁塔AB的高度.25.(10分)如图,在△ABC中,∠A=90°,AB=AC=2,⊙O是的内切圆,它与AB、BC、CA分别相切于点D、E、F.求⊙O的半径.26.(10分)如图,AB是半圆O的直径,点P是BA延长线上一点,PC是⊙O的切线,切点为C,过点B作BD⊥PC交PC的延长线于点D,连接BC.求证:(1)∠PBC=∠CBD;(2)BC2=AB•BD.27.(10分)已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若∠CAB=120°,⊙O的半径等于5,求线段BC的长.28.(10分)抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线与y轴交于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.2020-2021学年甘肃省金昌市龙门学校九年级(上)期末数学试卷参考答案与试题解析一、选择题:(每小题3分,共30分)1.(3分)下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称的定义得出结论即可.【解答】解:由题意知,A、C选项中的图形是轴对称图形,D选项中的图形既不是轴对称也不是中心对称图形,B选项是中心对称图形,故选:B.2.(3分)一元二次方程x2+2x+3=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【分析】根据方程的系数结合根的判别式即可得出Δ=﹣8<0,由此即可得出结论.【解答】解:∵在方程x2+2x+3=0中,Δ=22﹣4×1×3=﹣8<0,∴该方程无解.故选:C.3.(3分)若将函数y=2x2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是()A.y=2(x﹣1)2﹣3B.y=2(x﹣1)2+3C.y=2(x+1)2﹣3D.y=2(x+1)2+3【分析】易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【解答】解:原抛物线的顶点为(0,0),向左平移1个单位,再向上平移3个单位,那么新抛物线的顶点为(﹣1,3);可设新抛物线的解析式为y=(x﹣h)2+k,代入得:y=2(x+1)2+3,故选:D.4.(3分)下列事件中是不可能事件的是()A.三角形内角和小于180°B.两实数之和为正C.买体育彩票中奖D.抛一枚硬币2次都正面朝上【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、三角形的内角和小于180°是不可能事件,故A符合题意;B、两实数之和为正是随机事件,故B不符合题意;C、买体育彩票中奖是随机事件,故C不符合题意;D、抛一枚硬币2次都正面朝上是随机事件,故D不符合题意;故选:A.5.(3分)若函数为反比例函数,则m=()A.1B.0C.0或﹣1D.﹣1【分析】根据反比例y=kx﹣1(k≠0)的定义解答即可.【解答】解:∵函数为反比例函数,∴m2+m=0,m≠0,∴m=﹣1.故选:D.6.(3分)如果两个相似三角形的相似比为3:2,那么它们的面积比是()A.2:3B.3:2C.9:4D.4:9【分析】根据相似三角形的面积比等于相似比的平方解决问题即可.【解答】解:∵两个相似三角形的相似比是3:2,∴这两个相似三角形的面积比=9:4,故选:C.7.(3分)如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3B.2.5C.4D.3.5【分析】连接OA,根据垂径定理得到AP=AB,利用勾股定理得到答案.【解答】解:连接OA,∵AB⊥OP,∴AP==3,∠APO=90°,又OA=5,∴OP===4,故选:C.8.(3分)如图,AB是⊙O的直径,点C,D在⊙O上.若∠D=50°,则∠BAC等于()A.25°B.40°C.50°D.55°【分析】求出∠ABC,证明∠ACB=90°即可解决问题.【解答】解:∵AB是直径,∴∠ACB=90°,∵∠ABC=∠ADC=50°,∴∠BAC=90°﹣50°=40°,故选:B.9.(3分)若点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x1<x3C.x2<x3<x1D.x3<x2<x1【分析】根据反比例函数图象上点的坐标特征,将A、B、C三点的坐标代入反比例函数的解析式y=,分别求得x1,x2,x3的值,然后再来比较它们的大小.【解答】解:∵点A(x1,﹣6),B(x2,﹣2),C(x3,2)在反比例函数y=的图象上,∴x1=﹣2,x2=﹣6,x3=6;又∵﹣6<﹣2<6,∴x2<x1<x3;故选:B.10.(3分)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于()A.3:2B.3:1C.1:1D.1:2【分析】根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.【解答】解:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.二、填空题:(每小题4分,共32分.)11.(4分)已知反比例函数(k是常数,k≠1)的图象有一支在第四象限,那么k 的取值范围是k<2.【分析】由于反比例函数y=的图象有一支在第二象限,可得k﹣1<0,求出k的取值范围即可.【解答】解:∵反比例函数y=的图象有一支在第二象限,∴k﹣2<0,解得k<2.故答案为:k<2.12.(4分)已知一个正六边形的半径为5,则这个正六边形的边长是5.【分析】根据正六边形的特点,通过连接半径,结合等腰三角形的有关知识解决.【解答】解:如图,连接OA、OB.∴OA=OB=5,∠AOB=60°,∴AB=5,故答案为:5.13.(4分)如果,那么=.【分析】由,可设x=2k,y=3k,z=4k,代入,即可求得答案.【解答】解:∵,∴设x=2k,y=3k,z=4k,∴==.故答案为:.14.(4分)若两个相似三角形对应边的比为3:5,则它们周长的比为3:5.【分析】根据相似三角形对应边的比叫相似比,周长的比等于相似比解答.【解答】解:∵两个相似三角形对应边的比为3:5,∴两个相似三角形的相似比为3:5,∴它们周长比为3:5.故答案为:3:5.15.(4分)已知扇形的圆心角为90°,半径为6cm,则用该扇形围成的圆锥的侧面积为9πcm.【分析】利用圆锥的侧面展开图为一扇形和扇形的面积公式计算.【解答】解:该扇形围成的圆锥的侧面积==9π(cm2).故答案为9π.16.(4分)二次函数y=ax2+bx+c的图象如图所示,则方程ax2+bx+c=0的两根为x1=﹣1,x2=3.【分析】结合图象得到抛物线与x轴的一交点坐标为(﹣1,0),对称轴方程为x=1,则抛物线与x轴的另一交点坐标与(﹣1,0)关于直线x=1对称.【解答】解:∵抛物线与x轴的一交点坐标为(﹣1,0),对称轴方程为x=1,∴抛物线与x轴的另一交点坐标与(﹣1,0)关于直线x=1对称,∴抛物线与x轴的另一交点坐标(3,0).∴方程ax2+bx+c=0的两根为:x1=﹣1,x2=3.故答案是:x1=﹣1,x2=3.17.(4分)一个不透明的袋子中,装有除颜色外完全相同的10个球,其中2个红球,3个绿球,5个黄球,若从中随机摸出一个球,摸到黄球的概率是0.5.【分析】利用概率公式即可求得答案.【解答】解:摸到黄球的概率为:=0.5.故答案为:0.5.18.(4分)如图,A为反比例函数图象上一点,AB垂直x轴于点B,若S△AOB=5,则k=﹣10.【分析】利用三角形的面积表示出点A的横纵坐标的积,进而根据点A所在象限得到k 的值.【解答】解:设A的坐标为(x,y),∵S△AOB=5,∴|xy|=5,∴|xy|=10,∵点A在第二象限,∴k=xy=﹣10,故答案为﹣10.三、解答题(共88分)19.(6分)如图是一块残缺的圆轮片,点A、B、C在上,请用尺规作图法作出所在的⊙O.(保留作图痕迹,不写作法)【分析】因为点A、B、C在上,所以线段AB、BC是所在的⊙O的两条弦,而弦的垂直平分线经过圆心,则作出AB、BC的垂直平分线的交点即可得到所求的圆的圆心,连接圆心和点C得到的线段就是该圆的一条半径,即可作出这个圆.【解答】解:如图,分别作AB、BC的垂直平分线MN、PQ交于点O,连接OC,以O 为圆心、OC长为半径作圆,⊙O所在的圆.理由:∵点A、B、C在上,∴AB、BC是所在的⊙O的两条弦,∴⊙O的圆心在AB的垂直平分线上,也在BC的垂直平分线上,∴AB、BC的垂直平分线的交点就是⊙O的圆心,∴以O为圆心,以OC为半径的圆是所在的⊙O.20.(8分)已知:如图,DE∥BC交BA的延长线于D,交CA的延长线于E,AD=4,DB =12,DE=3.求BC的长.【分析】由DE∥BC得到∠B=∠D,∠C=∠E,根据相似三角形的判定得到△ABC∽△ADE,利用相似的性质得,而AD=4,DB=12,DE=3,则AB=DB﹣AD,然后代入进行计算即可得到BC的长.【解答】解:∵DE∥BC,∴∠B=∠D,∠C=∠E,∴△ABC∽△ADE,∴,∵AD=4,DB=12,DE=3∴,∴BC=6.21.(8分)已知函数y=y1+y2,y1与x成正比例,y2与x成反比例,且当x=1时,y=4;当x=2时,y=5.(1)求y与x的函数关系式;(2)当x=﹣2时,求函数y的值.【分析】(1)首先根据y1与x成正比例,y2与x成反比例,且当x=1时,y=4;当x=2时,y=5,求出y1和y2与x的关系式,进而求出y与x的关系式,(2)根据(1)问求出的y与x之间的关系式,令x=﹣2,即可求出y的值.【解答】解:(1)由题意,设y1=k1x(k1≠0),y2=(k2≠0),则y=k1x+,因为当x=1时,y=4;当x=2时,y=5,所以有解得k1=2,k2=2.因此y=2x+.(2)当x=﹣2时,y=2×(﹣2)﹣1=﹣5.22.(8分)一次函数y=kx+b(k≠0)与反比例函数y=(k≠0)的图象交于A(﹣2,1),B(1,n)两点.求:(1)△ABO的面积;(2)根据图象,直接写出满足kx+b>的解集.【分析】(1)根据题意可以求得k的值,从而可以求得点B的坐标,求出直线AB的解析式,得到点C的坐标,从而可以求得△ABO的面积;(2)观察图象求得即可.【解答】解:(1)∵反比例函数y=(k≠0)的图象过点A(﹣2,1),B(1,n)两点,∴k=﹣2×1=1×n,∴k=﹣2,n=﹣2,∴点B(1,﹣2),∵一次函数y=kx+b(k≠0)过点A(﹣2,1),点B(1,﹣2),∴,解得,∴y=﹣x﹣1,当y=0时,0=﹣x﹣1,得x=﹣1,∴y=﹣x﹣1与x轴的交点C为(﹣1,0),∵点A(﹣2,1),点B(1,﹣2),∴△ABO的面积是+=;(2)由图象可知,kx+b>的解集为x<﹣2或0<x<1.23.(8分)如图,甲、乙两人在玩转盘游戏时,准备了两个可以自由转动的转盘A,B,每个转盘被分成面积相等的几个扇形,并在每一个扇形内标上数字.游戏规则:同时转动两个转盘,当转盘停止后,指针所指区域的数字之和为0时,甲获胜;数字之和为1时,乙获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向某一区域为止.(1)用画树状图或列表法求乙获胜的概率;(2)这个游戏规则对甲、乙双方公平吗?请判断并说明理由.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出甲乙获胜的概率,比较即可.【解答】解:(1)列表:由列表法可知:会产生12种结果,它们出现的机会相等,其中和为1的有3种结果.∴P(乙获胜)=;(2)公平.∵P(乙获胜)=,P(甲获胜)=.∴P(乙获胜)=P(甲获胜)∴游戏公平.24.(10分)如图,小华在地面上放置一个平面镜E来测量铁塔AB的高度,镜子与铁塔的距离EB=20m,镜子与小华的距离ED=2m时,小华刚好从镜子中看到铁塔顶端点A.已知小华的眼睛距地面的高度CD=1.5m,求:铁塔AB的高度.【分析】根据反射定律可以推出∠1=∠2,所以可得△BAE∽△DCE,再根据相似三角形的性质解答.【解答】解:结合光的反射原理得:∠CED=∠AEB.在Rt△CED和Rt△AEB中,∵∠CDE=∠ABE=90°,∠CED=∠AEB,∴Rt△CED∽Rt△AEB,∴,即,解得AB=15(m).答:铁塔AB的高度是15m.25.(10分)如图,在△ABC中,∠A=90°,AB=AC=2,⊙O是的内切圆,它与AB、BC、CA分别相切于点D、E、F.求⊙O的半径.【分析】首先连接OD、OE,进而利用切线的性质得出∠ODA=∠OF A=∠A=90°,进而得出四边形ODAF是正方形,再利用勾股定理求出⊙O的半径.【解答】解:连接OD、OE,∵⊙O是△ABC的内切圆,切点为D、E、F,∴∠ODA=∠OF A=∠A=90°,又∵OD=OF,∴四边形ODAF是正方形,设OD=AD=AF=r,则BE=BD=CF=CE=2﹣r,在△ABC中,∠A=90°,∴BC==2,又∵BC=BE+CE,∴(2﹣r)+(2﹣r)=2,得:r=2﹣,∴⊙O的半径是2﹣.26.(10分)如图,AB是半圆O的直径,点P是BA延长线上一点,PC是⊙O的切线,切点为C,过点B作BD⊥PC交PC的延长线于点D,连接BC.求证:(1)∠PBC=∠CBD;(2)BC2=AB•BD.【分析】(1)连接OC,由PC为圆O的切线,利用切线的性质得到OC垂直于PC,再由BD垂直于PD,得到一对直角相等,利用同位角相等两直线平行得到OC与BD平行,进而得到一对内错角相等,再由OB=OC,利用等边对等角得到一对角相等,等量代换即可得证;(2)连接AC,由AB为圆O的直径,利用圆周角定理得到∠ACB为直角,利用两对角相等的三角形相似得到三角形ABC与三角形CBD相似,利用相似三角形对应边成比例,变形即可得证.【解答】证明:(1)连接OC,∵PC与圆O相切,∴OC⊥PC,即∠OCP=90°,∵BD⊥PD,∴∠BDP=90°,∴∠OCP=∠PDB,∴OC∥BD,∴∠BCO=∠CBD,∵OB=OC,∴∠PBC=∠BCO,∴∠PBC=∠CBD;(2)连接AC,∵AB为圆O的直径,∴∠ACB=90°,∴∠ACB=∠CDB=90°,∵∠ABC=∠CBD,∴△ABC∽△CBD,∴=,则BC2=AB•BD.27.(10分)已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)若∠CAB=120°,⊙O的半径等于5,求线段BC的长.【分析】(1)先连接OD、AD,由于AB是直径以及AB=AC,易证BD=CD,而OA=OB,从而可知OD是△ABC的中位线,那么OD∥AC,再结合DE⊥AC,易证∠ODE=∠CED=90°,即DE是⊙O的切线;(2)由⊙O半径是5,可知AB=10,而△ABC是等腰三角形,且AD⊥BC,利用等腰三角形三线合一定理可知∠CAD=∠BAD=60°,在Rt△ADB中,易求BD,进而可求BC.【解答】解:如右图所示,连接OD、AD.∵AB是直径,∴∠BDA=∠CDA=90°,又∵AB=AC,∴BD=CD,∵OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴∠ODE=∠CED=90°,∴DE是⊙O的切线;(2)∵⊙O半径是5,∴AB=10,∵△ABC是等腰三角形,且AD⊥BC,∴∠CAD=∠BAD=60°,在Rt△ADB中,BD=sin60°•AB=5,∴BC=10.28.(10分)抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线与y轴交于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.【分析】(1)将点A、点B的坐标代入可求出b、c的值,继而可得出该抛物线的解析式;(2)连接BC,则BC与对称轴的交点,即是点Q的位置,求出直线BC的解析式后,可得出点Q的坐标.【解答】解(1)把A(1,0)、B(﹣3,0)代入抛物线解析式可得:,解得:故抛物线的解析式为y=﹣x2﹣2x+3.(2)存在.由题意得,点B与点A关于抛物线的对称轴对称,连接BC,则BC与抛物线对称轴的交点是点Q的位置,设直线BC解析式为y=kx+b,把B(﹣3,0)、C(0,3)代入得:,解得:,则直线BC的解析式为y=x+3,令Q X=﹣1 得Q y=2,故点Q的坐标为:(﹣1,2).。

九年级上册安庆数学期末试卷测试卷 (word版,含解析)

九年级上册安庆数学期末试卷测试卷 (word版,含解析)

九年级上册安庆数学期末试卷测试卷 (word 版,含解析)一、选择题1.如图,四边形ABCD 内接于O ,若40A ∠=︒,则C ∠=( )A .110︒B .120︒C .135︒D .140︒2.sin 30°的值为( ) A .3B .32C .12D .223.已知一元二次方程2330p p --=,2330q q --=,则p q +的值为( ) A .3-B .3C .3-D .34.在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,46.则这组数据的中位数为( ) A .42B .45C .46D .485.如图,AB 是⊙O 的弦,半径OC ⊥AB ,D 为圆周上一点,若BC 的度数为50°,则∠ADC 的度数为 ( )A .20°B .25°C .30°D .50°6.如图,在△ABC 中,点D 、E 分别在边BA 、CA 的延长线上,ABAD=2,那么下列条件中能判断DE ∥BC 的是( )A .12AE EC = B .2ECAC= C .12DE BC = D .2ACAE= 7.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 8.某中学篮球队12名队员的年龄情况如下: 年龄(单位:岁)14 15 16 17 18 人数15321则这个队队员年龄的众数和中位数分别是( ) A .15,16B .15,15C .15,15.5D .16,159.如图,AB 为⊙O 的直径,点C 、D 在⊙O 上,∠BAC=50°,则∠ADC 为( )A .40°B .50°C .80°D .100°10.如图,BC 是O 的直径,A ,D 是O 上的两点,连接AB ,AD ,BD ,若70ADB ︒∠=,则ABC ∠的度数是( )A .20︒B .70︒C .30︒D .90︒11.若关于x 的一元二次方程240kx x -+=有实数根,则k 的取值范围是( ) A .16k ≤B .116k ≤C .1,16k ≤且0k ≠ D .16,k ≤ 且0k ≠ 12.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,连接AB ,若∠B =25°,则∠P 的度数为( )A .25°B .40°C .45°D .50°二、填空题13.圆锥的母线长为5cm ,高为4cm ,则该圆锥的全面积为_______cm 2.14.如图,△ABC 周长为20cm ,BC=6cm,圆O 是△ABC 的内切圆,圆O 的切线MN 与AB 、CA 相交于点M 、N ,则△AMN 的周长为________cm.15.如图,直线l 经过⊙O 的圆心O ,与⊙O 交于A 、B 两点,点C 在⊙O 上,∠AOC =30°,点P 是直线l 上的一个动点(与圆心O 不重合),直线CP 与⊙O 相交于点Q ,且PQ =OQ ,则满足条件的∠OCP 的大小为_______.16.把抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是__________.17.小刚身高1.7m ,测得他站立在阳光下的影子长为0.85m ,紧接着他把手臂竖直举起,测得影子长为1.1m ,那么小刚举起的手臂超出头顶的高度为________m .18.如图,ABO 三个顶点的坐标分别为(24),(60),(00)A B ,,,,以原点O 为位似中心,把这个三角形缩小为原来的12,可以得到A B O ''△,已知点B '的坐标是30(,),则点A '的坐标是______.19.当21x -≤≤时,二次函数22()1y x m m =--++有最大值4,则实数m 的值为________.20.“上升数”是一个数中右边数字比左边数字大的自然数(如:34,568,2469等).任取一个两位数,是“上升数”的概率是_________ .21.若⊙O 的直径是4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是_________.22.有4根细木棒,它们的长度分别是2cm 、4cm 、6cm 、8cm .从中任取3根恰好能搭成一个三角形的概率是_____.23.如图,⊙O 的内接四边形ABCD 中,∠A=110°,则∠BOD 等于________°.24.如图,二次函数y=x(x﹣3)(0≤x≤3)的图象,记为C1,它与x轴交于点O,A1;将C1点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……若P(2020,m)在这个图象连续旋转后的所得图象上,则m=_____.三、解答题25.某校为了丰富学生课余生活,计划开设以下社团:A.足球、B.机器人、C.航模、D.绘画,学校要求每人只能参加一个社团小丽和小亮准备随机报名一个项目.(1)求小亮选择“机器人”社团的概率为______;(2)请用树状图或列表法求两人至少有一人参加“航模”社团的概率.26.已知函数y=ax2+bx+c(a≠0,a、b、c为常数)的图像经过点A(-1,0)、B(0,2).(1)b=(用含有a的代数式表示),c=;(2)点O是坐标原点,点C是该函数图像的顶点,若△AOC的面积为1,则a=;(3)若x>1时,y<5.结合图像,直接写出a的取值范围.27.定义:如果一个四边形的一组对角互余,那么我们称这个四边形为“对角互余四边形”.(1)如图①,在对角互余四边形ABCD中,∠B=60°,且AC⊥BC,AC⊥AD,若BC=1,则四边形ABCD的面积为;(2)如图②,在对角互余四边形ABCD中,AB=BC,BD=13,∠ABC+∠ADC=90°,AD=8,CD=6,求四边形ABCD的面积;(3)如图③,在△ABC中,BC=2AB,∠ABC=60°,以AC为边在△ABC异侧作△ACD,且∠ADC=30°,若BD=10,CD=6,求△ACD的面积.28.华联超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销.据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x元(x为正整数),每天的销售利润为y元.(1)求y与x的函数关系式;(2)每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少?29.在如图所示的方格纸中,每个小方格都是边长为1个单位长度的正方形,△ABC的顶点及点O都在格点上(每个小方格的顶点叫做格点).(1)以点O为位似中心,在网格区域内画出△A′B′C′,使△A′B′C′与△ABC位似(A′、B′、C′分别为A、B、C的对应点),且位似比为2:1;(2)△A′B′C′的面积为个平方单位;(3)若网格中有一格点D′(异于点C′),且△A′B′D′的面积等于△A′B′C′的面积,请在图中标出所有符合条件的点D′.(如果这样的点D′不止一个,请用D1′、D2′、…、D n′标出)30.如图,转盘A中的6个扇形的面积相等,转盘B中的3个扇形的面积相等.分别任意转动转盘A、B各1次,当转盘停止转动时,将指针所落扇形中的2个数字分别作为平面直角坐标系中一个点的横坐标、纵坐标.(1)用表格列出这样的点所有可能的坐标;(2)求这些点落在二次函数y=x2﹣5x+6的图象上的概率.31.已知二次函数y=a2x−4x+c的图象过点(−1,0)和点(2,−9),(1)求该二次函数的解析式并写出其对称轴;(2)当x满足什么条件时,函数值大于0?(不写求解过程),32.如图示,AB是O的直径,点F是半圆上的一动点(F不与A,B重合),弦⊥交射线AF于点AF.∠,过点D作DE AFAD平分BAF(1)求证:DE与O相切:(2)若8AE =,10AB =,求DE 长;(3)若10AB =,AF 长记为x ,EF 长记为y ,求y 与x 之间的函数关系式,并求出AF EF ⋅的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】直接利用圆内接四边形的对角互补计算∠C 的度数. 【详解】∵四边形ABCD 内接于⊙O ,∠A =400, ∴∠C =1800-400=1400, 故选D. 【点睛】此题考查圆内接四边形的性质,解题关键在于利用圆内接四边形的对角互补2.C解析:C 【解析】 【分析】直接利用特殊角的三角函数值求出答案. 【详解】 解:sin 30°=12故选C 【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.3.B解析:B 【解析】 【分析】根据题干可以明确得到p,q 是方程230x -=的两根,再利用韦达定理即可求解. 【详解】解:由题可知p,q 是方程230x -=的两根,∴,故选B.【点睛】本题考查了一元二次方程的概念,韦达定理的应用,熟悉韦达定理的内容是解题关键. 4.C解析:C【解析】【分析】根据中位数的定义,把8个数据从小到大的顺序依次排列后,求第4,第5位两数的平均数即为本组数据的中位数.【详解】解:把数据由小到大排列为:42,44,45,46,46,46,47,48∴中位数为4646462+=.故答案为:46.【点睛】找中位数的时候一定要先排好大小顺序,再根据奇数个数和偶数个数来确定中位数.如果是奇数个,则正中间的数字即为中位数;如果是偶数个,则找中间两个数的平均数为中位数.先将数据按从小到大顺序排列是求中位数的关键.5.B解析:B【解析】【分析】利用圆心角的度数等于它所对的弧的度数得到∠BOC=50°,利用垂径定理得到=AC BC,然后根据圆周角定理计算∠ADC的度数.【详解】∵BC的度数为50°,∴∠BOC=50°,∵半径OC⊥AB,∴=AC BC,∴∠ADC=12∠BOC=25°.故选B.【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理和圆周角定理.6.D【解析】 【分析】 只要证明AC ABAE AD=,即可解决问题. 【详解】 解:A. 12AE EC = ,可得AE :AC=1:1,与已知2AB AD=不成比例,故不能判定 B.2ECAC =,可得AC :AE=1:1,与已知2AB AD=不成比例,故不能判定; C 选项与已知的2ABAD=,可得两组边对应成比例,但夹角不知是否相等,因此不一定能判定; 12DE BC = D.2AC ABAE AD ==,可得DE//BC , 故选D. 【点睛】本题考查平行线的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.A解析:A 【解析】 【分析】直接根据“上加下减,左加右减”的原则进行解答即可. 【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A .8.C解析:C 【解析】 【分析】由题意直接根据众数和中位数的定义求解可得. 【详解】解:∵这组数据中15出现5次,次数最多, ∴众数为15岁,中位数是第6、7个数据的平均数, ∴中位数为(1516)2+÷=15.5岁, 故选:C .本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.9.A解析:A 【解析】试题分析:先根据圆周角定理的推论得到∠ACB=90°,再利用互余计算出∠B=40°,然后根据圆周角定理求解. 解:连结BC ,如图, ∵AB 为⊙O 的直径, ∴∠ACB=90°, ∵∠BAC=50°, ∴∠B=90°﹣50°=40°, ∴∠ADC=∠B=40°. 故选A .考点:圆周角定理.10.A解析:A 【解析】 【分析】连接AC ,如图,根据圆周角定理得到90BAC ︒∠=,70ACB ADB ︒∠=∠=,然后利用互余计算ABC ∠的度数. 【详解】 连接AC ,如图, ∵BC 是O 的直径,∴90BAC ︒∠=, ∵70ACB ADB ︒∠=∠=, ∴907020ABC ︒︒︒∠=-=. 故答案为20︒. 故选A .【点睛】本题考查圆周角定理和推论,解题的关键是掌握圆周角定理和推论.11.C解析:C【解析】【分析】一元二次方程有实数根,则根的判别式∆≥0,且k≠0,据此列不等式求解.【详解】根据题意,得:∆=1-16k≥0且k≠0,解得:116k≤且k≠0.故选:C.【点睛】本题考查一元二次方程根的判别式与实数根的情况,注意k≠0.12.B解析:B【解析】【分析】连接OA,由圆周角定理得,∠AOP=2∠B=50°,根据切线定理可得∠OAP=90°,继而推出∠P=90°﹣50°=40°.【详解】连接OA,由圆周角定理得,∠AOP=2∠B=50°,∵PA是⊙O的切线,∴∠OAP=90°,∴∠P=90°﹣50°=40°,故选:B.【点睛】本题考查圆周角定理、切线的性质、三角形内角和定理,解题的关键是求出∠AOP的度数.二、填空题13.24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm,圆锥的高为4cm,∴底解析:24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm,圆锥的高为4cm,∴底面圆的半径为3,则底面周长=6π,∴侧面面积=12×6π×5=15π;∴底面积为=9π,∴全面积为:15π+9π=24π.故答案为24π.【点睛】本题利用了圆的周长公式和扇形面积公式求解.14.8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O是△ABC的内切圆,MN是圆O的切线解析:8【解析】【分析】先作出辅助线,连接切点,利用内切圆的性质得到BE=BF,CE=CG,ME=MH,NG=NH,再利用等量代换即可解题.【详解】解:∵圆O是△ABC的内切圆,MN是圆O的切线,如下图,连接各切点,有切线长定理易得,BE=BF,CE=CG,ME=MH,NG=NH,∵△ABC周长为20cm, BC=6cm,∴BC=CE+BE=CG+BF=6cm,∴△AMN的周长=AM+AN+MN=AM+AN+FM+GN=AF+AG,又∵AF+AG=AB+AC-(BF+CG)=20-6-6=8cm故答案是8【点睛】本题考查了三角形内接圆的性质,切线长定理的应用,中等难度,熟练掌握等量代换的方法是解题关键.15.40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠解析:40°【解析】:在△QOC中,OC=OQ,∴∠OQC=∠OCQ,在△OPQ中,QP=QO,∴∠QOP=∠QPO,又∵∠QPO=∠OCQ+∠AOC,∠AOC=30°,∠QOP+∠QPO+∠OQC=180°,∴3∠OCP=120°,∴∠OCP=40°16.【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是即故答案为:.【点睛】本题主要考查二次函解析:22(1)2y x =+-【解析】【分析】根据二次函数图象的平移规律平移即可.【详解】抛物线22(1)1y x =-+向左平移2个单位长度再向下平移3个单位长度后所得到的抛物线的函数表达式是 22(12)13y x =-++-即22(1)2y x =+-故答案为:22(1)2y x =+-.【点睛】本题主要考查二次函数的平移,掌握平移规律“左加右减,上加下减”是解题的关键. 17.5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x :1.1,解得x=2.2,解析:5【解析】【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x :1.1,解得x=2.2,则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m【点睛】本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.18.(1,2)【解析】解:∵点A 的坐标为(2,4),以原点O 为位似中心,把这个三角形缩小为原来的,∴点A′的坐标是(2×,4×),即(1,2).故答案为(1,2).解析:(1,2)【解析】解:∵点A 的坐标为(2,4),以原点O 为位似中心,把这个三角形缩小为原来的12,∴点A ′的坐标是(2×12,4×12),即(1,2).故答案为(1,2). 19.2或【解析】【分析】求出二次函数对称轴为直线x=m ,再分m <-2,-2≤m≤1,m >1三种情况,根据二次函数的增减性列方程求解即可.【详解】解:二次函数的对称轴为直线x=m ,且开口向下,解析:2或【解析】【分析】求出二次函数对称轴为直线x=m ,再分m <-2,-2≤m≤1,m >1三种情况,根据二次函数的增减性列方程求解即可.【详解】解:二次函数22()1y x m m =--++的对称轴为直线x=m ,且开口向下,①m <-2时,x=-2取得最大值,-(-2-m )2+m 2+1=4, 解得74m =-, 724->-, ∴不符合题意,②-2≤m≤1时,x=m 取得最大值,m 2+1=4,解得m =所以m =,③m>1时,x=1取得最大值,-(1-m)2+m2+1=4,解得m=2,-时,二次函数有最大值.综上所述,m=2或3-.故答案为:2或3【点睛】本题考查了二次函数的最值,熟悉二次函数的性质及图象能分类讨论是解题的关键.20.4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=解析:4【解析】【分析】先列举出所有上升数,再根据概率公式解答即可.【详解】解:两位数一共有99-10+1=90个,上升数为:共8+7+6+5+4+3+2+1=36个.概率为36÷90=0.4.故答案为:0.4.21.相离【解析】r=2,d=3, 则直线l与⊙O的位置关系是相离解析:相离【解析】r=2,d=3,则直线l与⊙O的位置关系是相离22.【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、解析:1 4【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、8;2、6、8;、4、6、8,其中恰好能搭成一个三角形为4、6、8,所以恰好能搭成一个三角形的概率=14.故答案为14.【点睛】本题考查列表法或树状图法和三角形三边关系,解题的关键是通过列表法或树状图法展示出所有等可能的结果数及求出构成三角形的结果数.23.140【解析】试题解析::∵∠A=110°∴∠C=180°-∠A=70°∴∠BOD=2∠C=140°.解析:140【解析】试题解析::∵∠A=110°∴∠C=180°-∠A=70°∴∠BOD=2∠C=140°.24.【解析】【分析】x(x﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A2=A2A3=…=A673A674=3,所以抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),然解析:【解析】【分析】x(x﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A2=A2A3=…=A673A674=3,所以抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),然后计算自变量为2020对应的函数值即可.【详解】当y=0时,x(x﹣3)=0,解得x1=0,x2=3,则A1(3,0),∵将C1点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……∴OA1=A1A2=A2A3=…=A673A674=3,∴抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),把P(2020,m)代入得m=﹣(2020﹣2019)(2020﹣2022)=2.故答案为2.【点睛】本题考查图形类规律,解题的关键是掌握图形类规律的基本解题方法.三、解答题25.(1)14;(2)716;【解析】【分析】(1)属于求简单事件的概率,根据概率公式计算可得;(2)用列表格法列出所有的等可能结果,从中确定符合事件的结果,根据概率公式计算可得.【详解】解:(1)小亮随机报名一个项目共有4种等可能结果,分别为A.足球、B.机器人、C.航模、D.绘画,其中选择“机器人”的有1种,为B.机器人,所以选择“机器人”的概率为P=1 4 .(2)用列表法表示所有可能出现的结果如图:从表格可以看出,总共有16种结果,每种结果出现的可能性相同,其中至少有一人参加“航模”社团有7种,分别为(A,C),(B,C),(C,A), (C,B),(C,C), (C,D),(D,C),所以两人至少有一人参加“航模”社团的概率P=7 16.【点睛】本题考查的是求简单事件的概率和两步操作事件的概率,用表格或树状图表示总结果数是解答此类问题的关键.26.(1)a+2;2;(2)-2或642±3)8215a≤--【解析】【分析】(1)将点B的坐标代入解析式,求得c的值;将点A代入解析式,从而求得b;;(2)由题意可得AO=1,设C点坐标为(x,y),然后利用三角形的面积求出点C的纵坐标,然后代入顶点坐标公式求得a的值;(3)结合图像,若x>1时,y<5,则顶点纵坐标大于等于5,根据顶点纵坐标公式列不等式求解即可.【详解】解:(1)将B(0,2)代入解析式得:c=2将A(-1,0)代入解析式得: a×(-1)2+b×(-1)+c=0∴a-b+2=0∴b=a+2故答案为:a+2;2(2)由题意可知:AO=1设C点坐标为(x,y)则111 2y⨯⨯=解得:2y=±当y=2时,242 4ac ba-=由(1)可知,b=a+2;c=2∴242(2)24a aa⨯-+=解得:a=-2当y=-2时,2424ac b a-=- 由(1)可知,b=a+2;c=2 ∴242(2)24a a a⨯-+=-解得:6a =±∴a 的值为-2或6±(3)若x >1时,y <5,又因为图像过点A (-1,0)、B (0,2)∴图像开口向下,即a <0则该图像顶点纵坐标大于等于5 ∴2454ac b a-≥ 即242(2)54a a a⨯-+≥解得:8a ≤--或8a ≥-+∴a 的取值范围为8a ≤--【点睛】本题考查二次函数的性质,掌握顶点坐标公式及数形结合思想解题是本题的解题关键.27.(1)2)36;(3. 【解析】【分析】(1)由AC ⊥BC ,AC ⊥AD ,得出∠ACB=∠CAD=90°,利用含30°直角三角形三边的特殊关系以及勾股定理,就可以解决问题;(2)将△BAD 绕点B 顺时针旋转到△BCE ,则△BCE ≌△BAD ,连接DE ,作BH ⊥DE 于H ,作CG ⊥DE 于G ,作CF ⊥BH 于F .这样可以求∠DCE=90°,则可以得到DE 的长,进而把四边形ABCD 的面积转化为△BCD 和△BCE 的面积之和,△BDE 和△CDE 的面积容易算出来,则四边形ABCD 面积可求;(3)取BC 的中点E ,连接AE ,作CF ⊥AD 于F ,DG ⊥BC 于G ,则BE=CE=12BC ,证出△ABE 是等边三角形,得出∠BAE=∠AEB=60°,AE=BE=CE ,得出∠EAC=∠ECA= =30°,证出∠BAC=∠BAE+∠EAC=90°,得出,设AB=x ,则,由直角三角形的性质得出CF=3,从而CG=a ,AF=y ,证明△ACF ∽△CDG ,得出=AF AC CG CD ,求出y=6,由勾股定理得出y 2x)2-32=3x 2-9,b 2=62-a 2=102-(2x+a)2,(2x+a)2+b 2=132,整理得出a=216xx-,进而得y=()23163=66xax-,得出[()23166x-]2=3x2-9,解得x2=34-622,得出y2=(6627-)2,解得y=66-33,得出AD=AF+DF=66,由三角形面积即可得出答案.【详解】解:(1)∵AC⊥BC,AC⊥AD,∴∠ACB=∠CAD=90°,∵对角互余四边形ABCD中,∠B=60°,∴∠D=30°,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=1,∴∠BAC=30°,∴AB=2BC=2,AC=3BC=3,在Rt△ACD中,∠CAD=90°,∠D=30°,∴AD=3AC=3,CD=2AC=23,∵S△ABC=12•AC•BC=12×3×1=3,S△ACD═12•AC•AD=12×3×3=332,∴S四边形ABCD=S△ABC+S△ACD=23,故答案为:23;(2)将△BAD绕点B顺时针旋转到△BCE,如图②所示:则△BCE≌△BAD,连接DE,作BH⊥DE于H,作CG⊥DE于G,作CF⊥BH于F.∴∠CFH=∠FHG=∠HGC=90°,∴四边形CFHG是矩形,∴FH=CG,CF=HG,∵△BCE≌△BAD,∴BE=BD=13,∠CBE=∠ABD,∠CEB=∠ADB,CE=AD=8,∵∠ABC+∠ADC=90°,∴∠DBC+∠CBE+∠BDC+∠CEB=90°,∴∠CDE+∠CED=90°,∴∠DCE =90°, 在△BDE 中,根据勾股定理可得:DE =22CD CE +=2268+=10,∵BD =BE ,BH ⊥DE ,∴EH =DH =5,∴BH =22BE EH -=22135-=12,∴S △BED =12•BH•DE =12×12×10=60, S △CED =12•CD•CE =12×6×8=24, ∵△BCE ≌△BAD ,∴S 四边形ABCD =S △BCD +S △BCE =S △BED ﹣S △CED =60﹣24=36;(3)取BC 的中点E ,连接AE ,作CF ⊥AD 于F ,DG ⊥BC 于G ,如图③所示:则BE =CE =12BC , ∵BC =2AB ,∴AB =BE ,∵∠ABC =60°, ∴△ABE 是等边三角形,∴∠BAE =∠AEB =60°,AE =BE =CE ,∴∠EAC =∠ECA =12∠AEB =30°, ∴∠BAC =∠BAE+∠EAC =90°,∴AC 3,设AB =x ,则AC 3,∵∠ADC =30°,∴CF =12CD =3,DF 3=3 设CG =a ,AF =y ,在四边形ABCD 中,∠ABC+∠BCD+∠ADC+∠BAC+∠DAC =360°,∴∠DAC+∠BCD =180°,∵∠BCD+∠DCG =180°,∴∠DAC =∠DCG ,∵∠AFC =∠CGD =90°,∴△ACF ∽△CDG ,∴AF CG =AC CD ,即y a =6,∴y在Rt △ACF 中,Rt △CDG 和Rt △BDG 中,由勾股定理得:y 2=2﹣32=3x 2﹣9,b 2=62﹣a 2=102﹣(2x+a)2,(2x+a)2+b 2=132,整理得:x 2+ax ﹣16=0,∴a =216x x-,∴y ×216x x -=)2166x -,∴[)2166x -]2=3x 2﹣9, 整理得:x 4﹣68x 2+364=0,解得:x 2=34﹣,或x 2=∴x2=34﹣∴y2=3(34﹣﹣9=93﹣=93﹣2,∴y∴AF∴AD=AF+DF ,∴△ACD的面积=12AD×CF =12 【点睛】此题是四边形综合题,主要考查了新定义的理解和应用,相似三角形的判定和性质,勾股定理,等边三角形的判定与性质,旋转的性质,全等三角形的性质,含30°角的直角三角形的性质等知识;本题综合性强,有一定难度.28.(1)y=﹣5x 2+110x +1200;(2) 售价定为189元,利润最大1805元【解析】【分析】利润等于(售价﹣成本)×销售量,根据题意列出表达式,借助二次函数的性质求最大值即可;【详解】(1)y =(200﹣x ﹣170)(40+5x )=﹣5x 2+110x +1200;(2)y =﹣5x 2+110x +1200=﹣5(x ﹣11)2+1805,∵抛物线开口向下,∴当x=11时,y有最大值1805,答:售价定为189元,利润最大1805元;【点睛】本题考查实际应用中利润的求法,二次函数的应用;能够根据题意列出合理的表达式是解题的关键.29.(1)详见解析;(2)10;(3)详见解析【解析】【分析】(1)依据点O为位似中心,且位似比为2:1,即可得到△A′B′C′;(2)依据割补法进行计算,即可得出△A′B′C′的面积;(3)依据△A′B′D′的面积等于△A′B′C′的面积,即可得到所有符合条件的点D′.【详解】解:(1)如图所示,△A′B′C′即为所求;(2)△A′B′C′的面积为4×6﹣12×2×4﹣12×2×4﹣12×2×6=24﹣4﹣4﹣6=10;故答案为:10;(3)如图所示,所有符合条件的点D′有5个.【点睛】此题主要考查位似图形的作图,解题的关键是熟知位似图形的性质及网格的特点.30.(1)见解析;(2)1 9【解析】【分析】(1)根据题意列表,展示出所有等可能的坐标结果;(2)由(1)可求得点落在二次函数y =x 2﹣5x +6的图象上的结果数,再根据概率公式计算即可解答.【详解】(1)根据题意列表如下:(2)由上表可知,点(1,2)、(4,2)都在二次函数y =x 2﹣5x +6的图象上, 所以P (这些点落在二次函数y =x 2﹣5x +6的图象上)=218=19. 【点睛】本题考查列表法或树状图法求概率,解题的关键是不重复不遗漏地列出所有等可能的结果.31.(1)245y x x =--,2x =;(2)当x <1-或x >5时,函数值大于0.【解析】【分析】(1)把(-1,0)和点(2,-9)代入y=ax 2-4x+c ,得到一个二元一次方程组,求出方程组的解,即可得到该二次函数的解析式,然后求出对称轴;(2)求得抛物线与x 轴的交点坐标后即可确定正确的答案.【详解】解:(1)∵二次函数24y ax x c =-+的图象过点(−1,0)和点(2,−9), ∴40449a c a c ++=⎧⎨-+=-⎩, 解得:15a c =⎧⎨=-⎩, ∴245y x x =--;∴对称轴为:4222b x a -=-=-=;(2)令2450x y x --==,解得:11x =-,25x =,如图:∴点A 的坐标为(1-,0),点B 的坐标为(5,0);∴结合图象得到,当x <1-或x >5时,函数值大于0.【点睛】本题主要考查对用待定系数法求二次函数的解析式及抛物线与x 轴的交点坐标的知识,解题的关键是正确的求得抛物线的解析式.32.(1)详见解析;(2)4;(3)252【解析】【分析】(1)首先连接OD ,通过半径和角平分线的性质进行等角转换,得出OD AE ∥,进而得出OD DE ⊥,即可得证;(2)首先连接BD ,得出AED ADB ∆∆∽,进而得出2A D A A E B =⋅,再根据勾股定理得出DE ;(3)首先连接DF ,过点D 作DG AB ⊥,得出AED AGD ∆∆≌,再得EDF GDB ∆∆≌,进而得出2AB AF EF =+,然后构建二次函数,即可得出其最大值.【详解】(1)证明:连接OD∵OD OA =∴12∠=∠∵AD 平分BAE ∠ ∴13∠=∠ ∴32∠=∠∴OD AE ∥∵DE AF ⊥∴OD DE ⊥又∵OD 是O 的半径∴DE 与O 相切(2)解:连接BD∵AB 为直径∴∠ADB=90°∵13∠=∠∴AED ADB ∆∆∽∴2A D A A E B =⋅∴280AD =∴Rt ADE ∆中2228084DE AD AE =-=-=(3)连接DF ,过点D 作DG AB ⊥于G∵13∠=∠,DE ⊥AE ,AD=AD∴AED AGD ∆∆≌∴AE AG =,DE=DG∴EDF GDB ∆∆≌∴EF BG =∴2AB AF EF =+即:210x y +=∴152y x =-+ ∴2152AF EF x x ⋅=-+ 根据二次函数知识可知:当5x =时,()max 252AF EF ⋅=【点睛】此题主要考查直线与圆的位置关系、相似三角形的判定与性质以及全等三角形的判定与性质与二次函数的综合应用,熟练掌握,即可解题.。

九年级上册德阳数学期末试卷测试卷 (word版,含解析)

九年级上册德阳数学期末试卷测试卷 (word版,含解析)

九年级上册德阳数学期末试卷测试卷 (word 版,含解析)一、选择题1.有一组数据5,3,5,6,7,这组数据的众数为( )A .3B .6C .5D .72.在平面直角坐标系中,O 的直径为10,若圆心O 为坐标原点,则点()8,6P -与O 的位置关系是( )A .点P 在O 上B .点P 在O 外C .点P 在O 内D .无法确定3.二次函数y =3(x -2)2-1的图像顶点坐标是( ) A .(-2,1) B .(-2,-1) C .(2,1)D .(2,-1) 4.如图,OA 是⊙O 的半径,弦BC ⊥OA ,D 是优弧BC 上一点,如果∠AOB =58º,那么∠ADC 的度数为( )A .32ºB .29ºC .58ºD .116º 5.已知关于x 的函数y =x 2+2mx +1,若x >1时,y 随x 的增大而增大,则m 的取值范围是( )A .m ≥1B .m ≤1C .m ≥-1D .m ≤-1 6.已知一组数据2,3,4,x ,1,4,3有唯一的众数4,则这组数据的中位数是( )A .2B .3C .4D .5 7.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是 A . B .C .D .8.在平面直角坐标系中,将二次函数y =32x 的图象向左平移2个单位,所得图象的解析式为( )A .y =32x −2B .y =32x +2C .y =3()22x -D .y =3()22x + 9.在△ABC 中,∠C =90°,tan A =13,那么sin A 的值是( ) A .12 B .13 C .1010 D .310 10.如图,在O 中,AB 是O 的直径,点D 是O 上一点,点C 是弧AD 的中点,弦CE AB ⊥于点F ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CF BC 、于点P Q 、,连接AC .给出下列结论:①BAD ABC ∠=∠;②GP GD =;③点P 是ACQ 的外心;④AP AD ⋅CQ CB =⋅.其中正确的是( )A .①②③B .②③④C .①③④D .①②③④ 11.如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且∠D =40°,则∠PCA 等于( )A .50°B .60°C .65°D .75°12.二次函数y=ax 2+bx+c (a≠0)的图象如图,给出下列四个结论:①4ac ﹣b 2<0;②4a+c <2b ;③3b+2c <0;④m (am+b )+b <a (m≠﹣1),其中正确结论的个数是( )A .4个B .3个C .2个D .1个二、填空题13.如图,点A 、B 、C 是⊙O 上的点,且∠ACB =40°,阴影部分的面积为2π,则此扇形的半径为______.14.已知∠A =60°,则tan A =_____.15.若a 是方程223x x =+的一个根,则代数式263a a -的值是______.16.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.17.如图,已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分别在AC 和BC 上.如果AD :DB=1:2,则CE :CF 的值为____________.18.在Rt ABC ∆中,90C ∠=︒,12AC =,9BC =,圆P 在ABC ∆内自由移动.若P 的半径为1,则圆心P 在ABC ∆内所能到达的区域的面积为______.19.某一时刻,一棵树高15m ,影长为18m .此时,高为50m 的旗杆的影长为_____m . 20.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .21.如图,在ABC 中,62BC =,45C ∠=︒,2AB AC =,则AC 的长为________.22.在Rt △ABC 中,两直角边的长分别为6和8,则这个三角形的外接圆半径长为_____.23.已知圆锥的底面半径是3cm ,母线长是5cm ,则圆锥的侧面积为_____cm 2.(结果保留π)24.若函数y =(m +1)x 2﹣x +m (m +1)的图象经过原点,则m 的值为_____.三、解答题25.画图并回答问题:(1)在网格图中,画出函数2y x x 2=--与1y x =+的图像;(2)直接写出不等式221x x x -->+的解集.26.新建马路需要在道路两旁安装路灯、种植树苗.如图,某道路一侧路灯AB 在两棵同样高度的树苗CE 和DF 之间,树苗高2 m ,两棵树苗之间的距离CD 为16 m ,在路灯的照射下,树苗CE 的影长CG 为1 m ,树苗DF 的影长DH 为3 m ,点G 、C 、B 、D 、H 在一条直线上.求路灯AB 的高度.27.如图,在Rt ABC ∆中,90C ∠=︒,6AC =,60BAC ∠=︒,AD 平分BAC ∠交BC 于点D ,过点D 作DE AC 交AB 于点E ,点M 是线段AD 上的动点,连结BM 并延长分别交DE ,AC 于点F 、G .(1)求CD 的长.(2)若点M 是线段AD 的中点,求EF DF的值. (3)请问当DM 的长满足什么条件时,在线段DE 上恰好只有一点P ,使得60CPG ∠=︒?28.已知二次函数y =2x 2+bx ﹣6的图象经过点(2,﹣6),若这个二次函数与x 轴交于A .B 两点,与y 轴交于点C ,求出△ABC 的面积.29.如图,在正方形ABCD 中,AB =4,动点P 从点A 出发,以每秒2个单位的速度,沿线段AB 方向匀速运动,到达点B 停止.连接DP 交AC 于点E ,以DP 为直径作⊙O 交AC 于点F ,连接DF 、PF .(1)求证:△DPF 为等腰直角三角形;(2)若点P 的运动时间t 秒.①当t 为何值时,点E 恰好为AC 的一个三等分点;②将△EFP 沿PF 翻折,得到△QFP ,当点Q 恰好落在BC 上时,求t 的值.30.如图,矩形OABC 中,O 为原点,点A 在y 轴上,点C 在x 轴上,点B 的坐标为(4,3),抛物线238y x bx c =-++与y 轴交于点A ,与直线AB 交于点D ,与x 轴交于C E ,两点.(1)求抛物线的表达式;(2)点P 从点C 出发,在线段CB 上以每秒1个单位长度的速度向点B 运动,与此同时,点Q 从点A 出发,在线段AC 上以每秒53个单位长度的速度向点C 运动,当其中一点到达终点时,另一点也停止运动.连接DP DQ PQ 、、,设运动时间为t (秒). ①当t 为何值时,DPQ ∆得面积最小?②是否存在某一时刻t ,使DPQ ∆为直角三角形?若存在,直接写出t 的值;若不存在,请说明理由.31.如图,四边形 ABCD 为矩形.(1)如图1,E 为CD 上一定点,在AD 上找一点F ,使得矩形沿着EF 折叠后,点D 落在 BC 边上(尺规作图,保留作图痕迹);(2)如图2,在AD 和CD 边上分别找点M ,N ,使得矩形沿着MN 折叠后BC 的对应边B' C'恰好经过点D ,且满足B' C' ⊥BD(尺规作图,保留作图痕迹);(3)在(2)的条件下,若AB =2,BC =4,则CN = .32.在2017年“KFC ”篮球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛,那么甲队获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)【参考答案】***试卷处理标记,请不要删除一、选择题解析:C【解析】【分析】根据众数的概念求解.【详解】这组数据中5出现的次数最多,出现了2次,则众数为5.故选:C .【点睛】本题考查了众数的概念:一组数据中出现次数最多的数据叫做众数.2.B解析:B【解析】【分析】求出P 点到圆心的距离,即OP 长,与半径长度5作比较即可作出判断.【详解】解:∵()8,6P -,∴10= ,∵O 的直径为10,∴r=5,∵OP>5,∴点P 在O 外.故选:B.【点睛】本题考查点和直线的位置关系,当d>r 时点在圆外,当d=r 时,点在圆上,当d<r 时,点在圆内,解题关键是根据点到圆心的距离和半径的关系判断. 3.D解析:D【解析】【分析】由二次函数的顶点式,即可得出顶点坐标.【详解】解:∵二次函数为y=a (x-h )2+k 顶点坐标是(h ,k ),∴二次函数y=3(x-2)2-1的图象的顶点坐标是(2,-1).故选:D .【点睛】此题考查了二次函数的性质,二次函数为y=a (x-h )2+k 顶点坐标是(h ,k ).解析:B【解析】【分析】根据垂径定理可得AB AC=,根据圆周角定理可得∠AOB=2∠ADC,进而可得答案.【详解】解:∵OA是⊙O的半径,弦BC⊥OA,∴AB AC=,∴∠ADC=12∠AOB=29°.故选B.【点睛】此题主要考查了圆周角定理和垂径定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.C解析:C【解析】【分析】根据函数解析式可知,开口方向向上,在对称轴的右侧y随x的增大而增大,在对称轴的左侧,y随x的增大而减小.【详解】解:∵函数的对称轴为x=222b mma-=-=-,又∵二次函数开口向上,∴在对称轴的右侧y随x的增大而增大,∵x>1时,y随x的增大而增大,∴-m≤1,即m≥-1故选:C.【点睛】本题考查了二次函数的图形与系数的关系,熟练掌握二次函数的性质是解题的关键.6.B解析:B【解析】【分析】根据题意由有唯一的众数4,可知x=4,然后根据中位数的定义求解即可.【详解】∵这组数据有唯一的众数4,∴x=4,∵将数据从小到大排列为:1,2,3,3,4,4,4,∴中位数为:3.故选B.【点睛】本题考查了众数、中位数的定义,属于基础题,掌握基本定义是关键.众数是一组数据中出现次数最多的那个数.当有奇数个数时,中位数是从小到大排列顺序后位于中间位置的数;当有偶数个数时,中位数是从小到大排列顺序后位于中间位置两个数的平均数. 7.C解析:C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.8.D解析:D【解析】【分析】先确定抛物线y=3x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),然后利用顶点式写出新抛物线解析式即可.【详解】解:抛物线y=3x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),∴平移后的抛物线解析式为:y=3(x+2)2.故选:D.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.9.C解析:C【解析】【分析】根据正切函数的定义,可得BC ,AC 的关系,根据勾股定理,可得AB 的长,根据正弦函数的定义,可得答案.【详解】tan A =BC AC =13,BC =x ,AC =3x , 由勾股定理,得AB x ,sin A =BC AB =10, 故选:C .【点睛】本题考查了同角三角函数的关系,利用正切函数的定义得出BC=x ,AC=3x 是解题关键.10.B解析:B【解析】【分析】①由于AC 与BD 不一定相等,根据圆周角定理可判断①;②连接OD ,利用切线的性质,可得出∠GPD=∠GDP ,利用等角对等边可得出GP=GD ,可判断②;③先由垂径定理得到A 为CE 的中点,再由C 为AD 的中点,得到CD AE =,根据等弧所对的圆周角相等可得出∠CAP=∠ACP ,利用等角对等边可得出AP=CP ,又AB 为直径得到∠ACQ 为直角,由等角的余角相等可得出∠PCQ=∠PQC ,得出CP=PQ ,即P 为直角三角形ACQ 斜边上的中点,即为直角三角形ACQ 的外心,可判断③;④正确.证明△APF ∽△ABD ,可得AP×AD=AF×AB ,证明△ACF ∽△ABC ,可得AC 2=AF×AB ,证明△CAQ ∽△CBA ,可得AC 2=CQ×CB ,由此即可判断④;【详解】解:①错误,假设BAD ABC ∠=∠,则BD AC =,AC CD =,∴AC CD BD ==,显然不可能,故①错误.②正确.连接OD . GD 是切线,DG OD ∴⊥,90GDP ADO ∴∠+∠=︒,OA OD =,ADO OAD ∴∠=∠,90APF OAD ∠+∠=︒,GPD APF ∠=∠,∴∠=∠,GPD GDP∴=,故②正确.GD GP⊥,③正确.AB CE∴AE AC=,=,AC CD∴CD AE=,∴∠=∠,CAD ACEPC PA∴=,AB是直径,∴∠=︒,90ACQ∠+∠=︒,∴∠+∠=︒,90CAP CQP90ACP QCP∴∠=∠,PCQ PQC∴==,PC PQ PA90∠=︒,ACQ∆的外心.故③正确.∴点P是ACQ④正确.连接BD.∠=∠=︒,PAF BAD90AFP ADB∠=∠,∴∆∆∽,APF ABD∴AP AF=,AB AD∴⋅=⋅,AP AD AF ABCAF BACAFC ACB∠=∠=︒,∠=∠,90∽,ACF ABC∴∆∆可得2=,AC AF AB∠=∠,∠=∠,CAQ ABCACQ ACB∽,可得2CAQ CBA∴∆∆=⋅,AC CQ CBAP AD CQ CB∴⋅=⋅.故④正确,故选:B.【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.11.C解析:C【解析】【分析】根据切线的性质,由PD切⊙O于点C得到∠OCD=90°,再利互余计算出∠DOC=50°,由∠A=∠ACO,∠COD=∠A+∠ACO,所以1252A COD∠=∠=︒,然后根据三角形外角性质计算∠PCA的度数.【详解】解:∵PD切⊙O于点C,∴OC⊥CD,∴∠OCD=90°,∵∠D=40°,∴∠DOC=90°﹣40°=50°,∵OA=OC,∴∠A=∠ACO,∵∠COD=∠A+∠ACO,∴1252A COD∠=∠=︒,∴∠PCA=∠A+∠D=25°+40°=65°.故选C.【点睛】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形外角性质等知识;熟练掌握切线的性质与三角形外角性质是解题的关键.12.B解析:B【解析】【分析】【详解】解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b,2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选B.考点:二次函数图象与系数的关系二、填空题13.3【解析】【分析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴解析:3【解析】【分析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴影部分的面积为πx2×80360=29×πx2=2π,故解得:x1=3,x2=-3(不合题意,舍去),故答案为3.【点睛】本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x 的方程,从而得到答案.14.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tanA=tan60°=.故答案为:.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.【解析】【分析】直接利用特殊角的三角函数值得出答案.【详解】tan A =tan60°.【点睛】本题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.15.9【解析】【分析】根据方程解的定义,将a 代入方程得到含a 的等式,将其变形,整体代入所求的代数式.【详解】解:∵a 是方程的一个根,∴2a2=a+3,∴2a2-a=3,∴.故答案为:9解析:9【解析】【分析】根据方程解的定义,将a 代入方程得到含a 的等式,将其变形,整体代入所求的代数式.【详解】解:∵a 是方程223x x =+的一个根,∴2a 2=a+3,∴2a 2-a=3,∴()2263=32339a a a a --=⨯=.故答案为:9.本题考查方程解的定义及代数式求值问题,理解方程解的定义和整体代入思想是解答此题的关键.16.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【详解】解:这个条件解析:∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或AP AQ AB AC=.【详解】解:这个条件为:∠B=∠P ∵∠PAB=∠QAC,∴∠PAQ=∠BAC∵∠B=∠P,∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC=.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.17.【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得. 【详解】解:如图,连接D解析:4 5【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得.解:如图,连接DE,DF,∵△ABC是等边三角形,∴AB=BC=AC, ∠A=∠B=∠ACB=60°,由折叠可得,∠EDF=∠ACB=60°,DE=CE,DF=CF ∵∠BDE=∠BDF+∠FDE=∠A+∠AED,∴∠BDF+60°=∠AED+60°,∴∠BDF=∠AED,∵∠A=∠B,∴△AED∽△BDF,∴AD AE DE BF BD DF,设AD=x,∵AD:DB=1:2,则BD=2x,∴AC=BC=3x,∵AD AE DE BF BD DF,∴AD AE DE DE BF BD DF DF∴323x x DE x x DF∴45 DEDF,∴45 CECF.故答案为:4 5 .【点睛】本题考查了折叠的性质,利用三角形相似对应边成比例及比例的性质解决问题,能发现相似三角形的模型,即“一线三等角”是解答此题的重要突破口.18.24【解析】【分析】根据题意做图,圆心在内所能到达的区域为△EFG ,先求出AB 的长,延长BE 交A C 于H 点,作HM ⊥AB 于M ,根据圆的性质可知BH 平分∠ABC ,故CH=HM,设CH=x=HM ,根解析:24【解析】【分析】根据题意做图,圆心P 在ABC ∆内所能到达的区域为△EFG ,先求出AB 的长,延长BE 交AC 于H 点,作HM ⊥AB 于M ,根据圆的性质可知BH 平分∠ABC ,故CH=HM,设CH=x=HM ,根据Rt △AMH 中利用勾股定理求出x 的值,作EK ⊥BC 于K 点,利用△BEK ∽△BHC ,求出BK 的长,即可求出EF 的长,再根据△EFG ∽△BCA 求出FG ,即可求出△EFG 的面积.【详解】如图,由题意点O 所能到达的区域是△EFG ,连接BE ,延长BE 交AC 于H 点,作HM ⊥AB 于M ,EK ⊥BC 于K ,作FJ ⊥BC 于J .∵90C ∠=︒,12AC =,9BC =,∴15=根据圆的性质可知BH 平分∠ABC∴故CH=HM,设CH=x=HM ,则AH=12-x ,BM=BC=9,∴AM=15-9=6在Rt △AMH 中,AH 2=HM 2+AM 2即AH 2=HM 2+AM 2(12-x )2=x 2+62解得x=4.5∵EK ∥AC ,∴△BEK ∽△BHC , ∴EK BK HC BC =,即14.59BK = ∴BK=2,∴EF=KJ=BC-BK-JC=9-2-1=6,∵EG ∥AB ,EF ∥AC ,FG ∥BC , ∴∠EGF =∠ABC ,∠FEG =∠CAB ,∴△EFG ∽△ACB , 故EF FG BC AC =,即6912FG = 解得FG=8∴圆心P 在ABC ∆内所能到达的区域的面积为12FG×EF=12×8×6=24, 故答案为24.【点睛】此题主要考查相似三角形的判定与性质综合,解题的关键是熟知勾股定理、相似三角形的判定与性质.19.60【解析】【分析】设旗杆的影长为xm,然后利用同一时刻物高与影长成正比例列方程求解即可.【详解】解:设旗杆的影长BE为xm,如图:∵AB∥CD∴△ABE∽△DCE∴,由题意知AB解析:60【解析】【分析】设旗杆的影长为xm,然后利用同一时刻物高与影长成正比例列方程求解即可.【详解】解:设旗杆的影长BE为xm,如图:∵AB∥CD∴△ABE∽△DCE∴AB DCBE CE=,由题意知AB=50,CD=15,CE=18,即,501518x=,解得x=60,经检验,x=60是原方程的解,即高为50m的旗杆的影长为60m.故答案为:60.【点睛】此题主要考查比例的性质,解题的关键是熟知同一时刻物高与影长成正比例.20..【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC ∽△ADE ,根据相似三角形的对应边的比相等就可求出AD 的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△AB解析:103. 【解析】 试题分析:由∠C=∠E=90°,∠BAC=∠DAE 可得△ABC ∽△ADE ,根据相似三角形的对应边的比相等就可求出AD 的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△ABC ∽△ADE∴AC :AE=BC :DE ∴DE=83∴22103AD AE DE =+ 考点: 1.相似三角形的判定与性质;2.勾股定理.21.【解析】【分析】过点作的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求的长.【详解】过作于点,设,则,因为,所以,则由勾股定理得,因为,所以,则.则.【点睛】本题考查勾股定解析:2【解析】【分析】过A 点作BC 的垂线,则得到两个直角三角形,根据勾股定理和正余弦公式,求AC 的长.【详解】 过A 作AD BC ⊥于D 点,设2AC x =,则2AB x =,因为45C ∠=︒,所以AD CD x ==,则由勾股定理得223BD AB AD x =-=,因为62BC =+,所以362BC x x =+=+,则2x =.则2AC =.【点睛】本题考查勾股定理和正余弦公式的运用,要学会通过作辅助线得到特殊三角形,以便求解. 22.5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB ==10,∵∠ACB =90°,∴AB 是⊙O 的直径,∴这个三角形的外接圆直径是10;∴这解析:5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB 2268+=10,∵∠ACB =90°,∴AB 是⊙O 的直径,∴这个三角形的外接圆直径是10;∴这个三角形的外接圆半径长为5,故答案为5.【点睛】本题考查了90度的圆周角所对的弦是直径,熟练掌握是解题的关键.23.15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.故答案为:15π.【点睛】本题考解析:15π【解析】【分析】圆锥的侧面积=底面周长×母线长÷2.【详解】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=12×6π×5=15πcm2.故答案为:15π.【点睛】本题考查的知识点圆锥的侧面积公式,牢记公式是解此题的关键.24.0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m=﹣1,故答案为0或﹣1.【点解析:0或﹣1【解析】【分析】根据题意把原点(0,0)代入解析式,得出关于m的方程,然后解方程即可.【详解】∵函数经过原点,∴m(m+1)=0,∴m=0或m=﹣1,故答案为0或﹣1.【点睛】本题考查二次函数图象上点的坐标特征,解题的关键是知道函数图象上的点满足函数解析式.三、解答题25.(1)画图见解析;(2)x<-1或x>3【解析】【分析】(1)根据二次函数与一次函数图象的性质即可作图,(2)观察图像,找到抛物线在直线上方的图象即可解题.【详解】(1)画图(2)221x x x -->+在图象中代表着抛物线在直线上方的图象∴解集是x <-1或x >3【点睛】本题考查了二次函数与不等式:对于二次函数y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.26.m【解析】【分析】设BC 的长度为x ,根据题意得出△GCE ∽△GBA ,△HDF ∽△HBA ,进而利用相似三角形的性质列出关于x 的方程.【详解】解:设BC 的长度为x m由题意可知CE ∥AB ∥DF∵CE ∥AB∴△GCE ∽△GBA ,△HDF ∽△HBA ∴GC CE GB AB =,即11x +=2ABHD HB =FD AB ,即()3316x +- =2AB∴11x +=()3316x +- ∴x =4∴AB =10答:路灯AB 的高度为10 m.【点睛】此题主要考查了相似三角形的应用,得出△GCE ∽△GBA ,△HDF ∽△HBA 是解题关键.27.(1)DC =;(2)23EF DF =;(3)当DM =DM <<时,满足条件的点P 只有一个.【解析】【分析】(1)由角平分线定义得30DAC ∠=︒,在Rt ADC ∆中,根据锐角三角函数正切定义即可求得DC 长.(2)由题意易求得BC =BD =ASA 得DFM AGM ∆≅∆,根据全等三角形性质得DF AG =,根据相似三角形判定得~BFE BGA ∆∆,由相似三角形性质得EF BE BD AG AB BC==,将DF AG =代入即可求得答案.(3)由圆周角定理可得CQG ∆是顶角为120°的等腰三角形,再分情况讨论:①当Q 与DE 相切时,结合题意画出图形,过点Q 作QH AC ⊥,并延长HQ 与DE 交于点P ,连结QC ,QG ,设Q 半径为r ,由相似三角形的判定和性质即可求得DM 长;②当Q 经过点E 时,结合题意画出图形,过点C 作CK AB ⊥,设Q 半径为r ,在Rt EQK ∆中,根据勾股定理求得r ,再由相似三角形的判定和性质即可求得DM 长;③当Q 经过点D 时,结合题意画出图形,此时点M 与点G 重合,且恰好在点A 处,由此可得DM 长.【详解】(1)解:∵AD 平分BAC ∠,60BAC ∠=︒, ∴1302DAC BAC ∠=∠=︒.在Rt ADC ∆中,tan 30DC AC =⋅︒=(2)解:易得,BC =,BD =由DE AC ,得EDA DAC ∠=∠,DFM AGM ∠=∠.∵AM DM =,∴DFM AGM ∆≅∆,∴AG DF =.由DE AC ,得~BFE BGA ∆∆, ∴EF BE BD AG AB BC== ∴432363EF EF BD DF AG BC ==== (3)解:∵60CPG ∠=︒,过C ,P ,G 作外接圆,圆心为Q ,∴CQG ∆是顶角为120°的等腰三角形.①当Q 与DE 相切时,如图1,过Q 点作QH AC ⊥,并延长HQ 与DE 交于点P ,连结QC ,QG设Q 的半径QP r =则12QH r =,1232r r +=, 解得433r =. ∴43343CG =⨯=,2AG =. 易知DFMAGM ∆∆,可得43DM DF AM AG ==,则47DM AD = ∴1637DM =. ②当Q 经过点E 时,如图2,过C 点作CK AB ⊥,垂足为K .设Q 的半径QC QE r ==,则33-QK r =.在Rt EQK ∆中,()221332r r +-=,解得1439r =, ∴14143393CG =⨯= 易知DFMAGM ∆∆,可得1435DM = ③当Q 经过点D 时,如图3,此时点M 与点G 重合,且恰好在点A 处,可得43DM =综上所述,当1637DM =143435DM <P 只有一个. 【点睛】本题属于相似形综合题,考查了相似三角形的判定和性质,解直角三角形,圆周角定理等知识,解题的关键是学会利用参数构建方程解决问题,学会利用特殊位置解决数学问题,属于中考压轴题.28.【解析】【分析】如图,把(0,6)代入y =2x 2+bx ﹣6可得b 值,根据二次函数解析式可得点C 坐标,令y=0,解方程可求出x 的值,即可得点A 、B 的坐标,利用△ABC 的面积=12×AB×OC ,即可得答案.【详解】如图,∵二次函数y =2x 2+bx ﹣6的图象经过点(2,﹣6),∴﹣6=2×4+2b ﹣6,解得:b =﹣4,∴抛物线的表达式为:y =2x 2﹣4x ﹣6;∴点C (0,﹣6);令y=0,则2x2﹣4x﹣6=0,解得:x1=﹣1,x2=3,∴点A、B的坐标分别为:(﹣1,0)、(3,0),∴AB=4,OC=6,∴△ABC的面积=12×AB×OC=12×4×6=12.【点睛】本题考查二次函数图象上的点的坐标特征及图象与坐标轴的交点问题,分别令x=0,y=0,即可得出抛物线与坐标轴的交点坐标;也考查了三角形的面积.29.(1)详见解析;(2)①1;51.【解析】【分析】(1)要证明三角形△DPF为等腰直角三角形,只要证明∠DFP=90°,∠DPF=∠PDF=45°即可,根据直径所对的圆周角是90°和同弧所对的圆周角相等,可以证明∠DFP=90°,∠DPF=∠PDF=45°,从而可以证明结论成立;(2)①根据题意,可知分两种情况,然后利用分类讨论的方法,分别计算出相应的t的值即可,注意点P从A出发到B停止,t≤4÷2=2;②根据题意,画出相应的图形,然后利用三角形相似,勾股定理,即可求得t的值.【详解】证明:(1)∵四边形ABCD是正方形,AC是对角线,∴∠DAC=45°,∵在⊙O中,DF所对的圆周角是∠DAF和∠DPF,∴∠DAF=∠DPF,∴∠DPF=45°,又∵DP是⊙O的直径,∴∠DFP=90°,∴∠FDP=∠DPF=45°,∴△DFP是等腰直角三角形;(2)①当AE:EC=1:2时,∵AB∥CD,∴∠DCE =∠PAE ,∠CDE =∠APE ,∴△DCE ∽△PAE , ∴DC CE PA AE =, ∴4221t =, 解得,t =1;当AE :EC =2:1时,∵AB ∥CD ,∴∠DCE =∠PAE ,∠CDE =∠APE ,∴△DCE ∽△PAE , ∴DC CE PA AE =, ∴4122t =, 解得,t =4,∵点P 从点A 到B ,t 的最大值是4÷2=2,∴当t =4时不合题意,舍去;由上可得,当t 为1时,点E 恰好为AC 的一个三等分点;②如右图所示,∵∠DPF =90°,∠DPF =∠OPF ,∴∠OPF =90°,∴∠DPA +∠QPB =90°,∵∠DPA +∠PDA =90°,∴∠PDA =∠QPB ,∵点Q 落在BC 上,∴∠DAP =∠B =90°,∴△DAP ∽△PBQ , ∴DA DP PB PQ=, ∵DA =AB =4,AP =2t ,∠DAP =90°,∴DP =PB =4﹣2t ,设PQ =a ,则PE =a ,DE =DP ﹣a =a ,∵△AEP ∽△CED , ∴AP PE CD DE=, 即24t =解得,a=224t t +, ∴PQ =2242t t t++, ∴2242442242t t t t t+=-++,解得,t 1=﹣5﹣1(舍去),t 2=5﹣1,即t 的值是5﹣1.【点睛】此题主要考查四边形综合,解题的关键是熟知正方形的性质、圆周角定理、相似三角形的判定与性质.30.(1)233384y x x =-++;(2)① 32t =;②123453172417145,3,,,2617t t t t t -===== 【解析】【分析】(1)根据点B 的坐标可得出点A ,C 的坐标,代入抛物线解析式即可求出b ,c 的值,求得抛物线的解析式;(2)①过点Q 、P 作QF ⊥AB 、PG ⊥AC ,垂足分别为F 、G ,推出△QFA ∽△CBA ,△CGP ∽△CBA ,用含t 的式子表示OF ,PG ,将三角形的面积用含t 的式子表示出来,结合二次函数的性质可求出最值;②由于三角形直角的位置不确定,需分情况讨论,根据点的坐标,再结合两点间的距离公式用勾股定理求解即可.【详解】解:(1)由题意知:A (0,3),C (4,0),∵抛物线经过A 、B 两点,∴3316408c b c =⎧⎪⎨-⨯++=⎪⎩,解得,343b c ⎧=⎪⎨⎪=⎩, ∴抛物线的表达式为:233384y x x =-++. (2)① ∵四边形ABCD 是矩形,∴∠B =90O , ∴AC 2=AB 2+BC 2=5; 由2333384x x -++=,可得120,2x x ==,∴D (2,3). 过点Q 、P 作QF ⊥AB 、PG ⊥AC ,垂足分别为F 、G ,∵∠FAQ =∠BAC , ∠QFA =∠CBA ,∴△QFA ∽△CBA . ∴AQ QF AC BC=, ∴5335AQ QF BC t t AC =⋅=⋅=. 同理:△CGP ∽△CBA , ∴PG CP AB AB =∴CP PG AB AB =⋅,∴45PG t =, 1154162(5)2(3)22352DPQ ABC QAD PQC PBD S S S S S t t t t ∆∆∆∆∆=---=-⨯⨯-⨯-⨯-⨯⨯-222229323323(3)3()3342322t t t t t =-+=-+-+=-+ 当32t =时,△DPQ 的面积最小.最小值为32. ② 由图像可知点D 的坐标为(2,3),AC=5,直线AC 的解析式为:3y 34x =-+. 三角形直角的位置不确定,需分情况讨论:当DPG 90∠=︒时,根据勾股定理可得出:()()22222255552t 3t 3434233434t t t t ⎛⎫⎛⎫⎛⎫⎛⎫-++-+-++-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 整理,解方程即可得解;当DGP 90∠=︒时,可知点G 运动到点B 的位置,点P 运动到C 的位置,所需时间为t=3;当PDG 90∠=︒时,同理用勾股定理得出:()()22222255552t 3t 3434233434t t t t ⎛⎫⎛⎫⎛⎫⎛⎫-++-=-++-+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; 整理求解可得t 的值.由此可得出t 的值为:132t =,23t =,3176t =,42417t =,5t =.【点睛】本题考查的知识点是二次函数与几何图形的动点问题,掌握二次函数图象的性质是解此题的关键.31.(1)图见解析(2)图见解析(3)51【解析】【分析】(1)以点E为圆心,以DE长为半径画弧,交BC于点D′,连接DD′,作DD′的垂直平分线交AD于点F即可;(2)先作射线BD,然后过点D作BD的垂线与BC的延长线交于点H,作∠BHD的角平分线交CD于点N,交AD于点M,在HD上截取HC′=HC,然后在射线C′D上截取C′B′=BC,此时的M、N即为满足条件的点;(3)在(2)的条件下,根据AB=2,BC=4,即可求出CN的长.【详解】(1)如图,点F为所求;(2)如图,折痕MN、矩形A’B’C’D’为所求;(3)在(2)的条件下,∵AB=2,BC=4,∴BD=5∵BD⊥B′C′,∴BD⊥A′D′,得矩形DGD′C′.∴DG=C′D′=2,∴BG=5设CN的长为x,CD′=y.则C′N=x,D′N=2−x,BD′=4−y,∴(4−y)2=y2+(5)2,解得y51.(2−x)2=x25)2解得x=512.51-.【点睛】本题考查了作图−复杂作图、矩形的性质、翻折变换,解决本题的关键是掌握矩形的性质.32.1 4【解析】【分析】根据甲队第1局胜画出第2局和第3局的树状图,然后根据概率公式列式计算即可得解.。

苏教版九年级数学上册 期末试卷综合测试卷(word含答案)

苏教版九年级数学上册 期末试卷综合测试卷(word含答案)

苏教版九年级数学上册 期末试卷综合测试卷(word 含答案) 一、选择题 1.已知一元二次方程2330p p --=,2330q q --=,则p q +的值为( ) A .3- B .3 C .3- D .32.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是( )A .13B .512C .12D .13.甲、乙两人参加社会实践活动,随机选择“打扫社区卫生”和“参加社会调查”其中一项,那么两人同时选择“参加社会调查”的概率为( )A .34B .14C .13D .124.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( )A .方差B .平均数C .众数D .中位数 5.△ABC 的外接圆圆心是该三角形( )的交点. A .三条边垂直平分线B .三条中线C .三条角平分线D .三条高 6.抛物线2y 3(x 1)1=-+的顶点坐标是( )A .()1,1B .()1,1-C .()1,1--D .()1,1- 7.将函数的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是( )A .向左平移1个单位B .向右平移3个单位C .向上平移3个单位D .向下平移1个单位 8.如图,点A 、B 、C 均在⊙O 上,若∠AOC =80°,则∠ABC 的大小是( )A .30°B .35°C .40°D .50° 9.一个扇形的半径为4,弧长为2π,其圆心角度数是( )A .45B .60C .90D .180 10.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该 企业一年中应停产的月份是( )A .1月,2月B .1月,2月,3月C .3月,12月D .1月,2月,3月,12月11.如图,O 的半径为2,弦2AB =,点P 为优弧AB 上一动点,60PAC ∠=︒,交直线PB 于点C ,则ABC 的最大面积是 ( )A .12B .1C .2D .212.如图,在正方形 ABCD 中,E 是BC 的中点,F 是CD 上一点,AE ⊥EF .有下列结论: ①∠BAE =30°;②射线FE 是∠AFC 的角平分线;③CF =13CD ; ④AF =AB +CF .其中正确结论的个数为( )A .1 个B .2 个C .3 个D .4 个二、填空题13.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC ,若点A 、D 、E 在同一条直线上,∠ACD =70°,则∠EDC 的度数是_____.14.如图,边长为2的正方形ABCD ,以AB 为直径作⊙O ,CF 与⊙O 相切于点E ,与AD 交于点F ,则△CDF 的面积为________________15.抛物线y=(x﹣2)2﹣3的顶点坐标是____.16.从地面垂直向上抛出一小球,小球的高度h(米)与小球运动时间t(秒)之间的函数关系式是h=12t﹣6t2,则小球运动到的最大高度为________米;17.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.18.已知一个圆锥底面圆的半径为6cm,高为8cm,则圆锥的侧面积为_____cm2.(结果保留π)19.已知关于x的方程a(x+m)2+b=0(a、b、m为常数,a≠0)的解是x1=2,x2=﹣1,那么方程a(x+m+2)2+b=0的解_____.20.将抛物线 y=(x+2)2 5向右平移2个单位所得抛物线解析式为_____.21.如图,E是▱ABCD的BC边的中点,BD与AE相交于F,则△ABF与四边形ECDF的面积之比等于_____.22.已知点P(x1,y1)和Q(2,y2)在二次函数y=(x+k)(x﹣k﹣2)的图象上,其中k≠0,若y1>y2,则x1的取值范围为_____.23.若一个圆锥的侧面展开图是一个半径为3cm,圆心角为120°的扇形,则该圆锥的底面半径为__________cm.24.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在△ABC中,AB=AC,若△ABC是“好玩三角形”,则tanB____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学期末试卷综合测试卷(word 含答案) 一、选择题1.如图,在平面直角坐标系中,M 、N 、C 三点的坐标分别为(14,1),(3,1),(3,0),点A 为线段MN 上的一个动点,连接AC ,过点A 作AB ⊥AC 交y 轴于点B ,当点A 从M 运动到N 时,点B 随之运动,设点B 的坐标为(0,b ),则b 的取值范围是( )A .14-≤b ≤1B .54-≤b ≤1C .94-≤b ≤12D .94-≤b ≤1 2.二次函数()20y ax bx c a =++≠的图像如图所示,它的对称轴为直线1x =,与x 轴交点的横坐标分别为1x ,2x ,且110x -<<.下列结论中:①0abc <;②223x <<;③421a b c ++<-;④方程()2200ax bx c a ++-=≠有两个相等的实数根;⑤13a >.其中正确的有( )A .②③⑤B .②③C .②④D .①④⑤3.如图,在由边长为1的小正方形组成的网格中,点A ,B ,C ,D 都在格点上,点E 在AB 的延长线上,以A 为圆心,AE 为半径画弧,交AD 的延长线于点F ,且弧EF 经过点C ,则扇形AEF 的面积为( )A .58B .58πC .54π D .544.如图,点A 、B 、C 是⊙O 上的三点,∠BAC = 40°,则∠OBC 的度数是( ) A .80° B .40° C .50° D .20° 5.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )A .22(3)2y x =-+B .22(3)2y x =++C .22(3)?2y x =-D .22(3)?2y x =+ 6.在六张卡片上分别写有13,π,1.5,5,0,2六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )A .16B .13C .12D .567.某同学在解关于x 的方程ax 2+bx +c =0时,只抄对了a =1,b =﹣8,解出其中一个根是x =﹣1.他核对时发现所抄的c 是原方程的c 的相反数,则原方程的根的情况是( ) A .有两个不相等的实数根B .有两个相等的实数根C .有一个根是x =1D .不存在实数根 8.已知△ABC ≌△DEF ,∠A =60°,∠E =40°,则∠F 的度数为( ) A .40 B .60C .80D .100 9.二次函数y =()21x ++2的顶点是( )A .(1,2)B .(1,−2)C .(−1,2)D .(−1,−2) 10.二次函数y =x 2﹣2x +1与x 轴的交点个数是( ) A .0B .1C .2D .3 11.如图,在矩形中,,,若以为圆心,4为半径作⊙.下列四个点中,在⊙外的是( )A .点B .点C .点D .点 12.已知抛物线与二次函数23y x =-的图像相同,开口方向相同,且顶点坐标为(1,3)-,它对应的函数表达式为( )A .23(1)3y x =--+B .23(1)3y x =-+C .23(1)3y x =+-D .23(1)3y x =-++二、填空题13.如图是测量河宽的示意图,AE 与BC 相交于点D ,∠B=∠C=90°,测得BD=120m ,DC=60m ,EC=50m ,求得河宽AB=______m .14.将边长分别为2cm ,3cm ,4cm 的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______2cm .15.已知扇形的圆心角为90°,弧长等于一个半径为5cm 的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm .16.已知实数,,a b c 满足0a ≠,且0a b c -+=,930a b c ++=,则抛物线2y ax bx c =++图象上的一点(2,4)-关于抛物线对称轴对称的点为__________.17.一天,小青想利用影子测量校园内一根旗杆的高度,在同一时刻内,小青的影长为2米,旗杆的影长为20米,若小青的身高为1.60米,则旗杆的高度为__________米.18.2,0,π,3.14,6这五个数中随机抽取一个数,抽到有理数的概率是____.19.若32x y =,则x y y+的值为_____. 20.已知正方形ABCD 边长为4,点P 为其所在平面内一点,PD 5,∠BPD =90°,则点A 到BP 的距离等于_____.21.数据1、2、3、2、4的众数是______.22.如图,在边长为 6 的等边△ABC 中,D 为 AC 上一点,AD=2,P 为 BD 上一点,连接 CP ,以 CP 为 边,在 PC 的右侧作等边△CPQ ,连接 AQ 交 BD 延长线于 E ,当△CPQ 面积最小时,QE=____________.23.若a b b -=23,则a b的值为________. 24.若二次函数24y x x =-的图像在x 轴下方的部分沿x 轴翻折到x 轴上方,图像的其余部分保持不变,翻折后的图像与原图像x 轴上方的部分组成一个形如“W ”的新图像,若直线y =-2x +b 与该新图像有两个交点,则实数b 的取值范围是__________三、解答题25.某商店经销的某种商品,每件成本为30元.经市场调查,当售价为每件70元时,可销售20件.假设在一定范围内,售价每降低2元,销售量平均增加4件.如果降价后商店销售这批商品获利1200元,问这种商品每件售价是多少元?26.在平面直角坐标系中,已知抛物线24y x x =-+.(1)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“方点”.试求拋物线24y x x =-+的“方点”的坐标;(2)如图,若将该抛物线向左平移1个单位长度,新抛物线与x 轴相交于A 、B 两点(A 在B 左侧),与y 轴相交于点C ,连接BC .若点P 是直线BC 上方抛物线上的一点,求PBC ∆的面积的最大值;(3)第(2)问中平移后的抛物线上是否存在点Q ,使QBC ∆是以BC 为直角边的直角三角形?若存在,直接写出所有符合条件的点Q 的坐标;若不存在,说明理由.27.如图①抛物线y =ax 2+bx +4(a ≠0)与x 轴,y 轴分别交于点A (﹣1,0),B (4,0),点C 三点.(1)试求抛物线的解析式;(2)点D (3,m )在第一象限的抛物线上,连接BC ,BD .试问,在对称轴左侧的抛物线上是否存在一点P ,满足∠PBC =∠DBC ?如果存在,请求出点P 点的坐标;如果不存在,请说明理由;(3)点N 在抛物线的对称轴上,点M 在抛物线上,当以M 、N 、B 、C 为顶点的四边形是平行四边形时,请直接写出点M 的坐标.28.如图,在ABC ∆中,AB AC =,AD 为BC 边上的中线,DE AB ⊥于点E.(1)求证:BDE CAD ∆∆∽;(2)若13AB =,10BC =,求线段DE 的长.29.4张相同的卡片分别写有数字﹣1、﹣3、4、6,将这些卡片的背面朝上,并洗匀. (1)从中任意抽取1张,抽到的数字大于0的概率是______;(2)从中任意抽取1张,并将卡片上的数字记作二次函数y =ax 2+bx 中的a ,再从余下的卡片中任意抽取1张,并将卡片上的数字记作二次函数y =ax 2+bx 中的b ,利用树状图或表格的方法,求出这个二次函数图象的对称轴在y 轴右侧的概率.30.在平面直角坐标系中,已知抛物线经过A(﹣2,0),B(0,﹣2),C(1,0)三点. (1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S ,求S 关于m 的函数关系式,并求出S 的最大值;(3)若点P 是抛物线上的动点,点Q 是直线y =﹣x 上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.31.如图,已知抛物线2y x bx c =++经过(10)A -,、(30)B ,两点,与y 轴相交于点C . (1)求抛物线的解析式;(2)点P 是对称轴上的一个动点,当PAC 的周长最小时,直接写出点P 的坐标和周长最小值;(3)点Q 为抛物线上一点,若8QAB S =,求出此时点Q 的坐标.32.解方程:(1)x 2-3x+1=0;(2)x (x+3)-(2x+6)=0.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】延长NM 交y 轴于P 点,则MN ⊥y 轴.连接CN .证明△PAB ∽△NCA ,得出PB PA NA NC =,设PA =x ,则NA =PN ﹣PA =3﹣x ,设PB =y ,代入整理得到y =3x ﹣x 2=﹣(x ﹣32)2+94,根据二次函数的性质以及14≤x≤3,求出y的最大与最小值,进而求出b的取值范围.【详解】解:如图,延长NM交y轴于P点,则MN⊥y轴.连接CN.在△PAB与△NCA中,9090APB CNAPAB NCA CAN∠∠︒⎧⎨∠∠︒-∠⎩====,∴△PAB∽△NCA,∴PB PANA NC=,设PA=x,则NA=PN﹣PA=3﹣x,设PB=y,∴31y xx=-,∴y=3x﹣x2=﹣(x﹣32)2+94,∵﹣1<0,14≤x≤3,∴x=32时,y有最大值94,此时b=1﹣94=﹣54,x=3时,y有最小值0,此时b=1,∴b的取值范围是﹣54≤b≤1.故选:B.【点睛】本题考查了相似三角形的判定与性质,二次函数的性质,得出y与x之间的函数解析式是解题的关键.2.A解析:A【解析】【分析】利用抛物线开口方向得到a<0,利用对称轴位置得到b>0,利用抛物线与y轴的交点在x 轴下方得c<0,则可对①进行判断;根据二次函数的对称性对②③进行判断;利用抛物线与直线y=2的交点个数对④进行判断,利用函数与坐标轴的交点列出不等式即可判断⑤.【详解】∵抛物线开口向下,∴a <0,∵对称轴为直线1x =∴b=-2a >0∵抛物线与y 轴的交点在x 轴下方,∴c <-1,∴abc >0,所以①错误;∵110x -<<,对称轴为直线1x =∴1212x x +=故223x <<,②正确; ∵对称轴x=1,∴当x=0,x=2时,y 值相等,故当x=0时,y=c <0,∴当x=2时,y=421a b c ++<-,③正确;如图,作y=2,与二次函数有两个交点,故方程()2200ax bx c a ++-=≠有两个不相等的实数根,故④错误; ∵当x=-1时,y=a-b+c=3a+c >0,当x=0时,y=c <-1∴3a >1,故13a >,⑤正确; 故选A.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置. 当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ).也考查了二次函数的性质.3.B解析:B【分析】 连接AC ,根据网格的特点求出r=AC 的长度,再得到扇形的圆心角度数,根据扇形面积公式即可求解.【详解】连接AC ,则r=AC=22251=+扇形的圆心角度数为∠BAD=45°,∴扇形AEF 的面积=()2455360π⨯⨯=58π 故选B.【点睛】此题主要考查扇形面积求解,解题的关键是熟知勾股定理及扇形面积公式.4.C解析:C【解析】∵∠BOC=2∠BAC ,∠BAC=40°∴∠BOC=80°,∵OB=OC ,∴∠OBC=∠OCB=(180°-80°)÷2=50°故选C .5.A解析:A【解析】将二次函数22y x =的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:22(3)2y x =-+.故选A.6.B解析:B【解析】【分析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.∵这组数中无理数有π共2个, ∴卡片上的数为无理数的概率是21=63.故选B.【点睛】本题考查了无理数的定义及概率的计算. 7.A解析:A【解析】【分析】直接把已知数据代入进而得出c 的值,再解方程根据根的判别式分析即可.【详解】∵x =﹣1为方程x 2﹣8x ﹣c =0的根,1+8﹣c =0,解得c =9,∴原方程为x 2-8x +9=0,∵24b ac ∆=-=(﹣8)2-4×9>0,∴方程有两个不相等的实数根.故选:A .【点睛】本题考查一元二次方程的解、一元二次方程根的判别式,解题的关键是掌握一元二次方程根的判别式,对于一元二次方程()200++=≠ax bx c a ,根的情况由24b ac ∆=-来判别,当24b ac ->0时,方程有两个不相等的实数根,当24b ac -=0时,方程有两个相等的实数根,当24b ac -<0时,方程没有实数根.8.C解析:C【解析】【分析】根据全等三角形对应角相等可得∠B=∠E=40°,∠F=∠C ,然后利用三角形内角和定理计算出∠C 的度数,进而可得答案.【详解】解:∵△ABC ≌△DEF ,∴∠B=∠E=40°,∠F=∠C ,∵∠A=60°,∴∠C=180°-60°-40°=80°,∴∠F=80°,故选:C .【点睛】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.9.C解析:C【解析】【分析】x++2的顶点坐标.因为顶点式y=a(x-h)2+k,其顶点坐标是(h,k),即可求出y=()21【详解】x++2是顶点式,解:∵二次函数y=()21∴顶点坐标为:(−1,2);故选:C.【点睛】此题主要考查了利用二次函数顶点式求顶点坐标,此题型是中考中考查重点,同学们应熟练掌握.10.B解析:B【解析】由△=b2-4ac=(-2)2-4×1×1=0,可得二次函数y=x2-2x+1的图象与x轴有一个交点.故选B.11.C解析:C【解析】【分析】连接AC,利用勾股定理求出AC的长度,即可解题.【详解】解:如下图,连接AC,∵圆A的半径是4,AB=4,AD=3,∴由勾股定理可知对角线AC=5,∴D在圆A内,B在圆上,C在圆外,故选C.【点睛】本题考查了圆的简单性质,属于简单题,利用勾股定理求出AC的长是解题关键.12.D解析:D【解析】【分析】先根据抛物线与二次函数23y x =-的图像相同,开口方向相同,确定出二次项系数a 的值,然后再通过顶点坐标即可得出抛物线的表达式.【详解】∵抛物线与二次函数23y x =-的图像相同,开口方向相同, 3a ∴=-∵顶点坐标为(1,3)-∴抛物线的表达式为23(1)3y x =-++故选:D .【点睛】本题主要考查抛物线的顶点式,掌握二次函数表达式中的顶点式是解题的关键. 二、填空题13.100【解析】【分析】由两角对应相等可得△BAD∽△CED,利用对应边成比例即可得两岸间的大致距离AB 的长.【详解】解:∵∠ADB=∠EDC,∠ABC=∠ECD=90°,∴△ABD∽△E解析:100【解析】【分析】由两角对应相等可得△BAD ∽△CED ,利用对应边成比例即可得两岸间的大致距离AB 的长.【详解】解:∵∠ADB=∠EDC ,∠ABC=∠ECD=90°,∴△ABD ∽△ECD , ∴AB BD EC CD=, 即BD EC AB CD ⨯=,解得:AB=1205060=100(米).故答案为100.【点睛】本题主要考查了相似三角形的应用,用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.14.【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如解析:13 3【解析】【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如图所示,∵四边形MEGH为正方形,∴NE GH∴△AEN~△AHG∴NE:GH=AE:AG∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9∴NE=20 9同理可求BK=8 9梯形BENK的面积:1208143 2993⎛⎫⨯+⨯=⎪⎝⎭∴阴影部分的面积:1413 3333⨯-=故答案为:13 3.【点睛】本题主要考查的知识点是图形面积的计算以及相似三角形判定及其性质,根据相似的性质求出相应的边长是解答本题的关键.15.【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,∴R解析:【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,90=25180R∴R=20,225515 .故答案为:【点睛】本题考查弧长公式,及圆锥的高与母线、底面半径之间的关系,底面周长等于扇形的弧长这个等量关系和勾股定理是解答此题的关键.16.【解析】【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【详解】解:∵,,∴点(-1,0)与(3,0)在抛物线上,∴抛物线的对称轴是直线:x=1,∴点关于直线x=解析:(4,4)【解析】【分析】先根据题意确定抛物线的对称轴,再利用抛物线的对称性解答即可.【详解】解:∵0a b c -+=,930a b c ++=,∴点(-1,0)与(3,0)在抛物线2y ax bx c =++上,∴抛物线的对称轴是直线:x =1,∴点(2,4)-关于直线x =1对称的点为:(4,4).故答案为:(4,4).【点睛】本题考查了二次函数的性质和二次函数图象上点的坐标特征,属于常考题型,根据题意判断出点(-1,0)与(3,0)在抛物线上、熟练掌握抛物线的对称性是解题的关键. 17.16【解析】【分析】易得△AOB ∽△ECD ,利用相似三角形对应边的比相等可得旗杆OA 的长度.【详解】解:∵OA ⊥DA ,CE ⊥DA ,∴∠CED=∠OAB=90°,∵CD ∥OE ,∴∠C解析:16【解析】【分析】易得△AOB ∽△ECD ,利用相似三角形对应边的比相等可得旗杆OA 的长度.【详解】解:∵OA ⊥DA ,CE ⊥DA ,∴∠CED=∠OAB=90°,∵CD∥OE,∴∠CDA=∠OBA,∴△AOB∽△ECD,∴CE OA16OA,DE AB220==,解得OA=16.故答案为16.18.【解析】分析:由题意可知,从,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵从,0,π,3.14,6这五个数中随机解析:3 5【解析】分析:,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中是有理数的有3种,由此即可得到所求概率了.详解:∵,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果,其中有理数有0,3.14,6共3个,∴抽到有理数的概率是:35.故答案为35.,0,π,3.14,6这五个数中随机抽取一个数,共有5种等可能结果”并能识别其中“0,3.14,6”是有理数是解答本题的关键. 19..【解析】【分析】根据比例的合比性质变形得:【详解】∵,∴故答案为:.【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键. 解析:52. 【解析】【分析】 根据比例的合比性质变形得:325.22x y y ++== 【详解】 ∵32x y =, ∴325.22x y y ++== 故答案为:52. 【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.20.或【解析】【分析】由题意可得点P 在以D 为圆心,为半径的圆上,同时点P 也在以BD 为直径的圆上,即点P 是两圆的交点,分两种情况讨论,由勾股定理可求BP ,AH 的长,即可求点A 到BP 的距离.【详解】解析:2或2【解析】【分析】由题意可得点P 在以D P 也在以BD 为直径的圆上,即点P 是两圆的交点,分两种情况讨论,由勾股定理可求BP ,AH 的长,即可求点A 到BP 的距离.【详解】∵点P 满足PD∴点P 在以D∵∠BPD =90°,∴点P 在以BD 为直径的圆上,∴如图,点P 是两圆的交点,若点P在AD上方,连接AP,过点A作AH⊥BP,∵CD=4=BC,∠BCD=90°,∴BD=2∵∠BPD=90°,∴BP22BD PD-3,∵∠BPD=90°=∠BAD,∴点A,点B,点D,点P四点共圆,∴∠APB=∠ADB=45°,且AH⊥BP,∴∠HAP=∠APH=45°,∴AH=HP,在Rt△AHB中,AB2=AH2+BH2,∴16=AH2+(3AH)2,∴AH 335+AH335-,若点P在CD的右侧,同理可得AH=3352,综上所述:AH=3352或3352.【点睛】本题是正方形与圆的综合题,正确确定点P是以D5BD为直径的圆的交点是解决问题的关键.21.2【解析】【分析】根据众数的定义直接解答即可.【详解】解:数据1、2、3、2、4中,∵数字2出现了两次,出现次数最多,∴2是众数,故答案为:2.【点睛】此题考查了众数,掌握众数的解析:2【解析】【分析】根据众数的定义直接解答即可.【详解】解:数据1、2、3、2、4中,∵数字2出现了两次,出现次数最多,∴2是众数,故答案为:2.【点睛】此题考查了众数,掌握众数的定义是解题的关键,众数是一组数据中出现次数最多的数.22.【解析】【分析】如图,过点D作DF⊥BC于F,由“SAS”可证△ACQ≌△BCP,可得AQ=BP,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD的长,由锐角三角函数可求BP的长,由相67解析:【解析】【分析】如图,过点D作DF⊥BC于F,由“SAS”可证△ACQ≌△BCP,可得AQ=BP,∠CAQ=∠CBP,由直角三角形的性质和勾股定理可求BD的长,由锐角三角函数可求BP的长,由相似三角形的性质可求AE的长,即可求解.【详解】如图,过点D作DF⊥BC于F,∵△ABC,△PQC是等边三角形,∴BC=AC,PC=CQ,∠BCA=∠PCQ=60°,∴∠BCP=∠ACQ,且AC=BC,CQ=PC,∴△ACQ ≌△BCP (SAS )∴AQ =BP ,∠CAQ =∠CBP ,∵AC =6,AD =2,∴CD =4,∵∠ACB =60°,DF ⊥BC ,∴∠CDF =30°,∴CF =12CD =2,DF =CF ÷tan30°= ∴BF =4,∴BD ,∵△CPQ 是等边三角形,∴S △CPQ 2, ∴当CP ⊥BD 时,△CPQ 面积最小,∴cos ∠CBD =BP BF BC BD =, ∴6BP =,∴BP ,∴AQ =BP , ∵∠CAQ =∠CBP ,∠ADE =∠BDC ,∴△ADE ∽△BDC , ∴AE AD BC BD=, ∴6AE =,∴AE ,∴QE =AQ−AE .. 【点睛】 本题考查了全等三角形的判定和性质,等边三角形的性质,锐角三角函数,相似三角形的判定和性质,直角三角形的性质,勾股定理等知识,求出BP 的长是本题的关键.23.【解析】根据条件可知a 与b 的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则. 解析:53【解析】【分析】根据条件可知a 与b 的数量关系,然后代入原式即可求出答案.【详解】 ∵a b b -=23, ∴b=35a, ∴a b =5335a a =, 故答案为:53. 【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则. 24.【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图解析:18b -<<【解析】【分析】当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线与新图象有三个交点,当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,即可求解.解:设y=x 2-4x 与x 轴的另外一个交点为B ,令y=0,则x=0或4,过点B (4,0), 由函数的对称轴,二次函数y=x 2-4x 翻折后的表达式为:y=-x 2+4x ,当直线y=-2x+b 处于直线m 的位置时,此时直线和新图象只有一个交点A ,当直线处于直线n 的位置时,此时直线n 过点B (4,0)与新图象有三个交点, 当直线y=-2x+b 处于直线m 、n 之间时,与该新图象有两个公共点,当直线处于直线m 的位置:联立y=-2x+b 与y=x 2-4x 并整理:x 2-2x-b=0,则△=4+4b=0,解得:b=-1;当直线过点B 时,将点B 的坐标代入直线表达式得:0=-8+b ,解得:b=8,故-1<b <8;故答案为:-1<b <8.【点睛】本题考查的是二次函数综合运用,涉及到函数与x 轴交点、几何变换、一次函数基本知识等内容,本题的关键是确定点A 、B 两个临界点,进而求解.三、解答题25.每件商品售价60元或50元时,该商店销售利润达到1200元.【解析】【分析】根据题意得出,(售价-成本)⨯(原来的销量+2⨯降低的价格)=1200,据此列方程求解即可.【详解】解:设每件商品应降价x 元时,该商店销售利润为1200元.根据题意,得()()70302021200x x --+=整理得:2302000x x -+=,解这个方程得:110x =,220x =.所以,7060x -=或50答:每件商品售价60元或50元时,该商店销售利润达到1200元.【点睛】本题考查的知识点是生活中常见的商品打折销售问题,弄清题目中的关键概念,找出题目中隐含的等量关系式是解决问题的关键.26.(1)抛物线的方点坐标是()0,0,()3,3;(2)当32m =时,PBC ∆的面积最大,最大值为278;(3)存在,()1,4Q 或()2,5-- 【解析】【分析】(1)由定义得出x=y ,直接代入求解即可 (2)作辅助线PD 平行于y 轴,先求出抛物线与直线的解析式,设出点P 的坐标,利用点坐标求出PD 的长,进而求出面积的二次函数,再利用配方法得出最大值(3)通过抛物线与直线的解析式可求出点B ,C 的坐标,得出△OBC 为等腰直角三角形,过点C 作CM BC ⊥交x 轴于点M ,作BN BC ⊥交y 轴于点N ,得出M ,N 的坐标,得出直线BN 、MC 的解析式然后解方程组即可.【详解】解:(1)由题意得:x y =∴24x x x -+=解得10x =,23x = ∴抛物线的方点坐标是()0,0,()3,3.(2)过P 点作y 轴的平行线交BC 于点D .易得平移后抛物线的表达式为2y x 2x 3=-++,直线BC 的解析式为3y x =-+. 设()2,23P m m m -++,则(),3D m m -+. ∴()222333PD m m m m m =-++--+=-+()03m << ∴()2213327332228PBC S m m m ∆⎛⎫=-+⨯=--+ ⎪⎝⎭()03m << ∴当32m =时,PBC ∆的面积最大,最大值为278. (3)如图所示,过点C 作CM BC ⊥交x 轴于点M ,作BN BC ⊥交y 轴于点N由已知条件得出点B 的坐标为B(3,0),C 的坐标为C(0,3),∴△COB 是等腰直角三角形,∴可得出M 、N 的坐标分别为:M(-3,0),N(0,-3)直线CM 的解析式为:y=x+3直线BN 的解析式为:y=x-3由此可得出:2233y x x y x ⎧=-++⎨=+⎩或2233y x x y x ⎧=-++⎨=-⎩解方程组得出:14x y =⎧⎨=⎩或25x y =-⎧⎨=-⎩ ∴()1,4Q 或()2,5--【点睛】本题是一道关于二次函数的综合题目,解题的关键是根据题意得出抛物线与直线的解析式.27.(1)y =﹣x 2+3x +4;(2)存在.P (﹣34,1916).(3)1539(,)24M -- 21139(,)24M - 3521(,)24M 【解析】【分析】(1)将A,B,C 三点代入y =ax 2+bx+4求出a,b,c 值,即可确定表达式;(2)在y 轴上取点G ,使CG =CD =3,构建△DCB ≌△GCB ,求直线BG 的解析式,再求直线BG 与抛物线交点坐标即为P 点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(1)∵抛物线y =ax 2+bx+4(a≠0)与x 轴,y 轴分别交于点A (﹣1,0),B (4,0),点C 三点.∴4016440a ba b-+=⎧⎨++=⎩解得13ab=-⎧⎨=⎩∴抛物线的解析式为y=﹣x2+3x+4.(2)存在.理由如下:y=﹣x2+3x+4=﹣(x﹣32)2+254.∵点D(3,m)在第一象限的抛物线上,∴m=4,∴D(3,4),∵C(0,4)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(4,0)代入,得k=﹣14,b=1,∴BP解析式为y BP=﹣14x+1.y BP=﹣14x+1,y=﹣x2+3x+4当y=y BP时,﹣14x+1=﹣x2+3x+4,解得x1=﹣34,x2=4(舍去),∴y=1916,∴P(﹣34,1916).(3)1539 (,)24M--21139 (,) 24M-3521 (,) 24M理由如下,如图B(4,0),C(0,4) ,抛物线对称轴为直线32x=,设N(32,n),M(m, ﹣m2+3m+4)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴4-32=0-m,∴m=52-∴﹣m2+3m+4=39 4 -,∴1539 (,)24M--;或∴0-32=4-m,∴m=11 2∴﹣m2+3m+4=39 4 -,∴21139 (,) 24M-;第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),∴322 2m∴m=5 2∴﹣m2+3m+4=21 4∴3521 (,) 24M综上所述,当以M、N、B、C为顶点的四边形是平行四边形时,点M的坐标为1539 (,)24M--21139 (,) 24M-3521 (,) 24M.【点睛】本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.28.(1)见解析;(2)6013DE =. 【解析】【分析】对于(1),由已知条件可以得到∠B=∠C ,△ABC 是等腰三角形,利用等腰三角形的性质易得AD ⊥BC ,∠ADC=90°;接下来不难得到∠ADC=∠BED ,至此问题不难证明; 对于(2),利用勾股定理求出AD ,利用相似比,即可求出DE.【详解】解:(1)证明:∵AB AC =,∴B C ∠=∠.又∵AD 为BC 边上的中线,∴AD BC ⊥.∵DE AB ⊥,∴90BED CDA ︒∠=∠=,∴BDE CAD ∆∆∽.(2)∵10BC =,∴5BD =.在Rt ABD ∆中,根据勾股定理,得2212AD AB BD =-=. 由(1)得BDE CAD ∆∆∽,∴BD DE CA AD =, 即51312DE =, ∴6013DE =.【点睛】此题考查相似三角形的判定与性质,解题关键在于掌握判定定理.29.(1)12;(2)23.【解析】【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,利用一次函数的性质,找出a、b异号的结果数,然后根据概率公式求解.【详解】(1)∵共由4种可能,抽到的数字大于0的有2种,∴从中任意抽取1张,抽到的数字大于0的概率是12,故答案为:1 2(2)画树状图为:共有12种等可能的结果数,其中a、b异号有8种结果,∴这个二次函数的图象的对称轴在y轴右侧的概率为812=23.【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比,熟练掌握a、b异号时,对称轴在y轴右侧是解题关键.30.(1)y=x2+x﹣2;(2)S=﹣m2﹣2m(﹣2<m<0),S的最大值为1;(3)点Q 坐标为:(﹣2,2)或(﹣515或(﹣155)或(2,﹣2).【解析】【分析】(1)设此抛物线的函数解析式为:y=ax2+bx+c,将A,B,C三点代入y=ax2+bx+c,列方程组求出a、b、c的值即可得答案;(2)如图1,过点M作y轴的平行线交AB于点D,M点的横坐标为m,且点M在第三象限的抛物线上,设M点的坐标为(m,m2+m﹣2),﹣2<m<0,由A、B坐标可求出直线AB的解析式为y=﹣x﹣2,则点D的坐标为(m,﹣m﹣2),即可求出MD的长度,进一步求出△MAB的面积S关于m的函数关系式,根据二次函数的性质即可求出其最大值;(3)设P(x,x2+x﹣2),分情况讨论,①当OB为边时,根据平行四边形的性质知PQ∥OB,且PQ=OB,则Q(x,﹣x),可列出关于x的方程,即可求出点Q的坐标;②当BO为对角线时,OQ∥BP,A与P应该重合,OP=2,四边形PBQO为平行四边形,则BQ=OP=2,Q横坐标为2,即可写出点Q的坐标.【详解】(1)设此抛物线的函数解析式为:y=ax2+bx+c,将A(﹣2,0),B(0,﹣2),C(1,0)三点代入,得4202a b cca b c-+=⎧⎪=-⎨⎪++=⎩,解得:112 abc=⎧⎪=⎨⎪=-⎩,∴此函数解析式为:y=x2+x﹣2.(2)如图,过点M作y轴的平行线交AB于点D,∵M点的横坐标为m,且点M在第三象限的抛物线上,∴设M点的坐标为(m,m2+m﹣2),﹣2<m<0,设直线AB的解析式为y=kx﹣2,把A(﹣2,0)代入得,-2k-2=0,解得:k=﹣1,∴直线AB的解析式为y=﹣x﹣2,∵MD∥y轴,∴点D的坐标为(m,﹣m﹣2),∴MD=﹣m﹣2﹣(m2+m﹣2)=﹣m2﹣2m,∴S△MAB=S△MDA+S△MDB=12 MD•OA=12×2(m2﹣2m)=﹣m2﹣2m=﹣(m+1)2+1,∵﹣2<m<0,∴当m=﹣1时,S△MAB有最大值1,综上所述,S关于m的函数关系式是S=﹣m2﹣2m(﹣2<m<0),S的最大值为1.(3)设P(x,x2+x﹣2),①如图,当OB为边时,根据平行四边形的性质知PQ∥OB,且PQ=OB,∴Q的横坐标等于P的横坐标,∵直线的解析式为y=﹣x,则Q(x,﹣x),由PQ=OB,得|﹣x﹣(x2+x﹣2)|=2,即|﹣x2﹣2x+2|=2,当﹣x2﹣2x+2=2时,x1=0(不合题意,舍去),x2=﹣2,∴Q(﹣2,2),当﹣x2﹣2x+2=﹣2时,x1=﹣1+5,x2=﹣1﹣5,∴Q(﹣1+5,1﹣5)或(﹣1﹣5,1+5),②如图,当BO为对角线时,OQ∥BP,∵直线AB的解析式为y=-x-2,直线OQ的解析式为y=-x,∴A与P重合,OP=2,四边形PBQO为平行四边形,。

相关文档
最新文档