八年级数学上册教案

合集下载

2023最新-八年级数学上册教案【优秀5篇】

2023最新-八年级数学上册教案【优秀5篇】

八年级数学上册教案【优秀5篇】作为一位优秀的人民教师,常常需要准备教案,教案有利于教学水平的提高,有助于教研活动的开展。

我们应该怎么写教案呢?以下是人见人爱的分享的5篇《八年级数学上册教案》,如果能帮助到亲,我们的一切努力都是值得的。

人教版八年级上数学教案篇一一、教学目的:1、掌握菱形概念,知道菱形与平行四边形的关系。

2、理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算,会计算菱形的面积。

3、通过运用菱形知识解决具体问题,提高分析能力和观察能力。

4、根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想。

二、重点、难点1、教学重点:菱形的性质1、2.2、教学难点:菱形的性质及菱形知识的综合应用。

三、课堂引入1、(复习)什么叫做平行四边形?什么叫矩形?平行四边形和矩形之间的关系是什么?2、(引入)我们已经学习了一种特殊的平行四边形——矩形,其实还有另外的特殊平行四边形,请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念。

菱形定义:有一组邻边相等的平行四边形叫做菱形。

【强调】菱形(1)是平行四边形;(2)一组邻边相等。

让学生举一些日常生活中所见到过的菱形的例子。

四、例习题分析例1(补充)已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.求证:∠AFD=∠CBE.证明:∠四边形ABCD是菱形,∠ CB=CD,CA平分∠BCD.∠∠BCE=∠DCE.又CE=CE,∠∠BCE∠∠COB(SAS)。

∠∠CBE=∠CDE.∠ 在菱形ABCD中,AB∠CD,∠∠AFD=∠FDC∠ ∠AFD=∠CBE.例2(教材P108例2)略五、随堂练习1、若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为。

2、已知菱形的两条对角线分别是6cm和8cm,求菱形的周长和面积。

3、已知菱形ABCD的周长为20cm,且相邻两内角之比是1∠2,求菱形的对角线的长和面积。

八年级数学教案(最新6篇)

八年级数学教案(最新6篇)

八年级数学教案(最新6篇)八年级数学教案篇一一、教学目标①经历探索整式除法运算法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式,并且结果都是整式),培养学生独立思考、集体协作的能力。

②理解整式除法的算理,发展有条理的思考及表达能力。

二、教学重点与难点重点:整式除法的运算法则及其运用。

难点:整式除法的运算法则的推导和理解,尤其是单项式除以单项式的运算法则。

三、教学准备卡片及多媒体课件。

四、教学设计(一)情境引入教科书第161页问题:木星的质量约为1。

90×1024吨,地球的质量约为5。

98×1021吨,你知道木星的质量约为地球质量的多少倍吗?重点研究算式(1。

90×1024)÷(5。

98×1021)怎样进行计算,目的是给出下面两个单项式相除的模型。

注:教科书从实际问题引入单项式的除法运算,学生在探索这个问题的过程中,将自然地体会到学习单项式的除法运算的必要性,了解数学与现实世界的联系,同时再次经历感受较大数据的过程。

(二)探究新知(1)计算(1。

90×1024)÷(5。

98×1021),说说你计算的根据是什么?(2)你能利用(1)中的方法计算下列各式吗?8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。

(3)你能根据(2)说说单项式除以单项式的运算法则吗?注:教师可以鼓励学生自己发现系数、同底数幂的底数和指数发生的变化,并运用自己的语言进行描述。

单项式的。

除法法则的推导,应按从具体到一般的步骤进行。

探究活动的安排,是使学生通过对具体的特例的计算,归纳出单项式的除法运算性质,并能运用乘除互逆的关系加以说明,也可类比分数的约分进行。

在这些活动过程中,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步发展。

重视算理算法的渗透是新课标所强调的。

(三)归纳法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

八年级上册数学教案 八年级上册数学教案(9篇)

八年级上册数学教案 八年级上册数学教案(9篇)

八年级上册数学教案八年级上册数学教案(9篇)作为一名为他人授业解惑的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。

那么大家知道正规的教案是怎么写的吗?下面是细致的小编帮大家收集整理的9篇八年级上册数学教案的相关范文,欢迎参考阅读,希望能够帮助到大家。

八年级上册数学教案篇一第11章平面直角坐标系11.1平面上点的坐标第1课时平面上点的坐标(一)教学目标【知识与技能】1.知道有序实数对的概念,认识平面直角坐标系的相关知识,如平面直角坐标系的构成:横轴、纵轴、原点等。

2.理解坐标平面内的点与有序实数对的一一对应关系,能写出给定的平面直角坐标系中某一点的坐标。

已知点的坐标,能在平面直角坐标系中描出点。

3.能在方格纸中建立适当的平面直角坐标系来描述点的位置。

【过程与方法】1.结合现实生活中表示物体位置的例子,理解有序实数对和平面直角坐标系的作用。

2.学会用有序实数对和平面直角坐标系中的点来描述物体的位置。

【情感、态度与价值观】通过引入有序实数对、平面直角坐标系让学生体会到现实生活中的问题的解决与数学的发展之间有联系,感受到数学的价值。

重点难点【重点】认识平面直角坐标系,写出坐标平面内点的坐标,已知坐标能在坐标平面内描出点。

【难点】理解坐标系中的坐标与坐标轴上的数字之间的关系。

教学过程一、创设情境、导入新知师:如果让你描述自己在班级中的位置,你会怎么说?生甲:我在第3排第5个座位。

生乙:我在第4行第7列。

师:很好!我们买的电影票上写着几排几号,是对应某一个座位,也就是这个座位可以用排号和列号两个数字确定下来。

二、合作探究,获取新知师:在以上几个问题中,我们根据一个物体在两个互相垂直的方向上的数量来表示这个物体的位置,这两个数量我们可以用一个实数对来表示,但是,如果(5,3)表示5排3号的话,那么(3,5)表示什么呢?生:3排5号。

师:对,它们对应的不是同一个位置,所以要求表示物体位置的这个实数对是有序的。

八年级上册数学教案(6篇)

八年级上册数学教案(6篇)

八年级上册数学教案(6篇)八年级上册数学教案(篇1)一、学生起点分析通过前一章《勾股定理》的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数”奠定了必要性.二、教学任务分析《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节.本节内容安排了2个课时完成,第1课时让学生感受无理数的存在,初步建立无理数的印象,结合勾股定理知识,会根据要求画线段;第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.本课是第1课时,学生将在具体的实例中,通过操作、估算、分析等活动,感受无理数的客观存在性和引入的必要性,并能判断一个数是不是有理数.本节课的教学目标是:①通过拼图活动,让学生感受客观世界中无理数的存在;②能判断三角形的某边长是否为无理数;③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;三、教学过程设计本节课设计了6个教学环节:第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第六环节:作业布置.第一环节:质疑内容:想一想⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.效果:为后续环节的进行起了很好的铺垫的作用第二环节:课题引入内容:1.算一算已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长的平方,并提出问题:是整数(或分数)吗?2.剪剪拼拼把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.效果:巧设问题背景,顺利引入本节课题.第三环节:获取新知内容:议一议→释一释→忆一忆→找一找议一议:已知,请问:① 可能是整数吗?② 可能是分数吗?释一释:释1.满足的为什么不是整数?释2.满足的为什么不是分数?忆一忆:让学生回顾“有理数”概念,既然不是整数也不是分数,那么一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础找一找:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.第四环节:应用与巩固内容:画一画1→画一画2→仿一仿→赛一赛画一画1:在右1的正方形网格中,画出两条线段:1.长度是有理数的线段2.长度不是有理数的线段画一画2:在右2的正方形网格中画出四个三角形(右1) 2.三边长都是有理数2.只有两边长是有理数3.只有一边长是有理数4.三边长都不是有理数仿一仿:例:在数轴上表示满足的解:(右2)仿:在数轴上表示满足的赛一赛:右3是由五个单位正方形组成的纸片,请你把它剪成三块,然后拼成一个正方形,你会吗?试试看!(右3)目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上效果:加深了对“新知”的理解,巩固了本课所学知识.第五环节:课堂小结内容:1.通过本课学习,感受有理数又不够用了,请问你有什么收获与体会?2.客观世界中,的确存在不是有理数的数,你能列举几个吗? 3.除了本课所认识的非有理数的数以外,你还能找到吗?目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.效果:学生总结、相互补充,学会进行概括总结.第六环节:布置作业习题2.1六、教学设计反思(一)生活是数学的源泉,兴趣是学习的动力大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.(二)化抽象为具体常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.(三)强化知识间联系,注意纠错既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.八年级上册数学教案(篇2)教学目标1.知识与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.重、难点与关键1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法采用“激趣导学”的教学方法.教学过程一、创设情境,激趣导入问题牵引请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探索:你会做下面的填空吗?1.ma+mb+mc=()();2._2-4=()();3._2-2_y+y2=()2.师生共识把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究问题牵引(1)下列各式从左到右的变形是否为因式分解:①(_+1)(_-1)=_2-1;②a2-1+b2=(a+1)(a-1)+b2;③7_-7=7(_-1).(2)在下列括号里,填上适当的项,使等式成立.①9_2(______)+y2=(3_+y)(_______);②_2-4_y+(_______)=(_-_______)2.四、随堂练习,巩固深化课本练习.探研时空计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,教师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业.板书设计15.4.1 因式分解1、因式分解例:练习:15.4.2 提公因式法教学目标1.知识与技能能确定多项式各项的公因式,会用提公因式法把多项式分解因式.2.过程与方法使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解.3.情感、态度与价值观培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值.重、难点与关键1.重点:掌握用提公因式法把多项式分解因式.2.难点:正确地确定多项式的最大公因式.3.关键:提公因式法关键是如何找公因式.方法是:一看系数、二看字母.•公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.教学方法采用“启发式”教学方法.教学过程一、回顾交流,导入新知复习交流下列从左到右的变形是否是因式分解,为什么?(1)2_2+4=2(_2+2);(2)2t2-3t+1= (2t3-3t2+t);(3)_2+4_y-y2=_(_+4y)-y2;(4)m(_+y)=m_+my;(5)_2-2_y+y2=(_-y)2.问题:1.多项式mn+mb中各项含有相同因式吗?2.多项式4_2-_和_y2-yz-y呢?请将上述多项式分别写成两个因式的乘积的形式,并说明理由.教师归纳我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式式是m,在4_2-_中的公因式是_,在_y2-yz-y中的公因式是y.概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法.二、小组合作,探究方法教师提问多项式4_2-8_6,16a3b2-4a3b2-8ab4各项的公因式是什么?师生共识提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的最大公约数;字母取各项相同的字母,并且各字母的指数取最低次幂.三、范例学习,应用所学例1把-4_2yz-12_y2z+4_yz分解因式.解:-4_2yz-12_y2z+4_yz=-(4_2yz+12_y2z-4_yz)=-4_yz(_+3y-1)例2分解因式,3a2(_-y)3-4b2(y-_)2思路点拨观察所给多项式可以找出公因式(y-_)2或(_-y)2,于是有两种变形,(_-y)3=-(y-_)3和(_-y)2=(y -_)2,从而得到下面两种分解方法.解法1:3a2(_-y)3-4b2(y-_)2=-3a2(y-_)3-4b2(y-_)2=-[(y-_)23a2(y-_)+4b2(y-_)2]=-(y-_)2 [3a2(y-_)+4b2]=-(y-_)2(3a2y-3a2_+4b2)解法2:3a2(_-y)3-4b2(y-_)2=(_-y)23a2(_-y)-4b2(_-y)2=(_-y)2 [3a2(_-y)-4b2]=(_-y)2(3a2_-3a2y-4b2)例3用简便的方法计算:0.84×12+12×0.6-0.44×12.教师活动引导学生观察并分析怎样计算更为简便.解:0.84×12+12×0.6-0.44×12=12×(0.84+0.6-0.44)=12×1=12.教师活动在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?四、随堂练习,巩固深化课本P167练习第1、2、3题.探研时空利用提公因式法计算:0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69五、课堂总结,发展潜能1.利用提公因式法因式分解,关键是找准最大公因式.•在找最大公因式时应注意:(1)系数要找最大公约数;(2)字母要找各项都有的;(3)指数要找最低次幂.2.因式分解应注意分解彻底,也就是说,分解到不能再分解为止.六、布置作业,专题突破课本P170习题15.4第1、4(1)、6题.板书设计15.4.2 提公因式法1、提公因式法例:练习:15.4.3 公式法(一)教学目标1.知识与技能会应用平方差公式进行因式分解,发展学生推理能力.2.过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.3.情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.重、难点与关键1.重点:利用平方差公式分解因式.2.难点:领会因式分解的解题步骤和分解因式的彻底性.3.关键:应用逆向思维的方向,演绎出平方差公式,•对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.教学方法采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.教学过程一、观察探讨,体验新知问题牵引请同学们计算下列各式.(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).学生活动动笔计算出上面的两道题,并踊跃上台板演.(1)(a+5)(a-5)=a2-52=a2-25;(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.教师活动引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.1.分解因式:a2-25; 2.分解因式16m2-9n.学生活动从逆向思维入手,很快得到下面答案:(1)a2-25=a2-52=(a+5)(a-5).(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).教师活动引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).二、范例学习,应用所学例1把下列各式分解因式:(投影显示或板书)(1)_2-9y2;(2)16_4-y4;(3)12a2_2-27b2y2;(4)(_+2y)2-(_-3y)2;(5)m2(16_-y)+n2(y-16_).思路点拨在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.教师活动启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.学生活动分四人小组,合作探究.解:(1)_2-9y2=(_+3y)(_-3y);(2)16_4-y4=(4_2+y2)(4_2-y2)=(4_2+y2)(2_+y)(2_-y);(3)12a2_2-27b2y2=3(4a2_2-9b2y2)=3(2a_+3by)(2a_-3by);(4)(_+2y)2-(_-3y)2=[(_+2y)+(_-3y)][(_+2y)-(_-3y)] =5y(2_-y);(5)m2(16_-y)+n2(y-16_)=(16_-y)(m2-n2)=(16_-y)(m+n)(m-n).三、随堂练习,巩固深化课本P168练习第1、2题.探研时空1.求证:当n是正整数时,n3-n的值一定是6的倍数. 2.试证两个连续偶数的平方差能被一个奇数整除.连续偶数的平方差能被一个奇数整除.四、课堂总结,发展潜能运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提”得彻底,最后应注意两点:一是每个因式要化简,二是分解因式时,每个因式都要分解彻底.五、布置作业,专题突破课本P171习题15.4第2、4(2)、11题.板书设计15.4.3 公式法(一)1、平方差公式:例:a2-b2=(a+b)(a-b)练习:15.4.3 公式法(二)教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力. 2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力.重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用.2.难点:灵活地应用公式法进行因式分解.3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的.教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容.教学过程一、回顾交流,导入新知问题牵引1.分解因式:(1)-9_2+4y2;(2)(_+3y)2-(_-3y)2;(3) _2-0.01y2.八年级上册数学教案(篇3)一、创设情景,明确目标多媒体展示:内角三兄弟之争在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结.可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?”老二很纳闷.同学们,你们知道其中的道理吗?二、自主学习,指向目标学习至此:请完成《学生用书》相应部分.三、合作探究,达成目标三角形的内角和活动一:见教材P11“探究”.展示点评:从探究的操作中,你能发现证明的思路吗?图中的直线L与△ABC的边BC有什么关系?你能想出证明“三角形内角和的方法”吗?证明命题的步骤是什么?证明三角形的内角和定理.小组讨论:有没有不同的证明方法?反思小结:证明是由题设出发,经过一步步的推理,最后推出结论正确的过程.三角形三个内角的和等于180°.针对训练:见《学生用书》相应部分三角形内角和定理的应用活动二:见教材P12例1展示点评:题中所求的角是哪个三角形的一个内角吗?你能想出几种解法?小组讨论:三角形的内角和在解题时,如何灵活应用?反思小结:当三角形中已知两角的读数时,可直接用内角和定理求第三个内角;当三角形中未直接给出两内角的度数时,可根据它们之间的关系列方程解决.针对训练:见《学生用书》相应部分四、总结梳理,内化目标1.本节学习的数学知识是:三角形的内角和是180°.2.三角形内角和定理的证明思路是什么?3.数学思想是转化、数形结合.《三角形综合应用》精讲精练1. 现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是( )A.1个B.2个C.3个D.4个2. 如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依次为2,3,4,6,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝之间的距离最大值是( )A.5B.6C.7D.103.下列五种说法:①三角形的三个内角中至少有两个锐角;②三角形的三个内角中至少有一个钝角;③一个三角形中,至少有一个角不小于60°;④钝角三角形中,任意两个内角的和必大于90°;⑤直角三角形中两锐角互余.其中正确的说法有________(填序号).《11.2与三角形有关的角》同步测试4.(1)如图①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?(2)如图②,在Rt△ABC中,∠C=90°,D,E分别在AC,AB上,且∠ADE=∠B,判断△ADE的形状.为什么?(3)如图③,在Rt△ABC和Rt△DBE 中,∠C=90°,∠E=90°,AB⊥BD,点C,B,E在同一直线上,∠A与∠D有什么关系?为什么?八年级上册数学教案(篇4)单元(章)主题第三章直棱柱任课教师与班级本课(节)课题3.1 认识直棱柱第 1 课时 / 共课时教学目标(含重点、难点)及设置依据教学目标1、了解多面体、直棱柱的有关概念.2、会认直棱柱的侧棱、侧面、底面.3、了解直棱柱的侧棱互相平行且相等,侧面是长方形(含正方形)等特征.教学重点与难点教学重点:直棱柱的有关概念.教学难点:本节的例题描述一个物体的形状,把它看成怎样的两个几何体的组合,都需要一定的空间想象能力和表达能力.教学准备每个学生准备一个几何体,(分好学习小组)教师准备各种直棱柱和长方体、立方体模型教学过程内容与环节预设、简明设计意图二度备课(即时反思与纠正)一、创设情景,引入新课师:在现实生活中,像笔筒、西瓜、草莓、礼品盒等都呈现出了立体图形的形状,在你身边,还有没有这样类似的立体图形呢?析:学生很容易回答出更多的答案。

八年级上册数学全册教案

八年级上册数学全册教案

八年级上册数学全册教案第一章:实数与代数1.1 有理数教学目标:理解有理数的定义及其分类。

掌握有理数的加、减、乘、除运算规则。

教学内容:有理数的定义及分类。

有理数的加法、减法、乘法、除法运算规则。

教学步骤:1. 引入有理数的概念,解释有理数的定义及分类。

2. 通过示例演示有理数的加法、减法、乘法、除法运算规则。

3. 让学生进行练习,巩固所学的运算规则。

1.2 代数式教学目标:理解代数式的概念及其组成。

掌握代数式的运算规则。

教学内容:代数式的概念及其组成。

代数式的运算规则。

教学步骤:1. 引入代数式的概念,解释代数式的组成。

2. 通过示例演示代数式的运算规则。

3. 让学生进行练习,巩固所学的运算规则。

第二章:几何基础2.1 点、线、面教学目标:理解点、线、面的概念及其关系。

教学内容:点、线、面的概念及其关系。

教学步骤:1. 引入点、线、面的概念,解释它们之间的关系。

2. 通过示例展示点、线、面的特征和性质。

3. 让学生进行练习,巩固所学的概念。

2.2 直线与角教学目标:理解直线和角的概念及其性质。

教学内容:直线和角的概念及其性质。

教学步骤:1. 引入直线和角的概念,解释它们的性质。

2. 通过示例展示直线的特征和角的性质。

3. 让学生进行练习,巩固所学的概念。

第三章:方程与不等式3.1 方程的概念与解法教学目标:理解方程的概念及其解法。

教学内容:方程的概念及其解法。

教学步骤:1. 引入方程的概念,解释方程的解法。

2. 通过示例演示方程的解法。

3. 让学生进行练习,巩固所学的解法。

3.2 不等式的概念与解法教学目标:理解不等式的概念及其解法。

教学内容:不等式的概念及其解法。

教学步骤:1. 引入不等式的概念,解释不等式的解法。

2. 通过示例演示不等式的解法。

3. 让学生进行练习,巩固所学的解法。

第四章:函数与图像4.1 函数的概念与性质教学目标:理解函数的概念及其性质。

教学内容:函数的概念及其性质。

教学步骤:1. 引入函数的概念,解释函数的性质。

八年级上册数学教案(优秀9篇)

八年级上册数学教案(优秀9篇)

八年级上册数学教案(优秀9篇)人教版八年级数学上册教案篇一【教学目标】知识与技能会推导平方差公式,并且懂得运用平方差公式进行简单计算。

过程与方法经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式。

情感、态度与价值观通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性。

【教学重难点】重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解。

难点:平方差公式的应用。

关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键。

【教学过程】一、创设情境,故事引入【情境设置】教师请一位学生讲一讲《狗熊掰棒子》的故事【学生活动】1位学生有声有色地讲述着《狗熊掰棒子》的故事,其他学生认真听着,不时补充。

【教师归纳】听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗?【学生回答】多项式乘以多项式。

【教师激发】大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识。

【问题牵引】计算:(1)(x+2)(x—2);(2)(1+3a)(1—3a);(3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。

做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现。

【学生活动】分四人小组,合作学习,获得以下结果:(1)(x+2)(x—2)=x2—4;(2)(1+3a)(1—3a)=1—9a2;(3)(x+5y)(x—5y)=x2—25y2;(4)(y+3z)(y—3z)=y2—9z2。

【教师活动】请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律。

【学生活动】讨论【教师引导】刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表示刚才同学们所归纳出来的特殊多项式相乘的规律呢?【学生回答】可以用(a+b)(a—b)表示左边,那么右边就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。

人教版八年级上册数学教案(通用10篇)

人教版八年级上册数学教案(通用10篇)

人教版八年级上册数学教案(通用10篇)八年级上册数学教案 1教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力。

2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤。

3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力。

重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用。

2.难点:灵活地应用公式法进行因式分解。

3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的`。

教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容。

教学过程一、回顾交流,导入新知【问题牵引】1.分解因式:(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;(3)x2-0.01y2.【知识迁移】2.计算下列各式:(1)(m-4n)2;(2)(m+4n)2;(3)(a+b)2;(4)(a-b)2。

【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律。

3.分解因式:(1)m2-8mn+16n2(2)m2+8mn+16n2;(3)a2+2ab+b2;(4)a2-2ab+b2。

【学生活动】从逆向思维的角度入手,很快得到下面答案:解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2。

【归纳公式】完全平方公式a2±2ab+b2=(a±b)2。

二、范例学习,应用所学【例1】把下列各式分解因式:(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;(3)(x+y)2-14(x+y)+49;(4)+n4。

【例2】如果x2+axy+16y2是完全平方,求a的值。

【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.三、随堂练习,巩固深化课本P170练习第1、2题。

新人教版八年级数学上册全册名师教案大全5篇

新人教版八年级数学上册全册名师教案大全5篇

新人教版八年级数学上册全册名师教案大全5篇哪里有数,哪里就有美。

思维自疑问和惊奇开始。

一个数学家越超脱越好。

数学是锻炼思想的体操。

这里给大家分享一些关于新人教版八年级数学上册全册名师教案,供大家参考学习。

新人教版八年级数学上册全册名师教案【篇1】一、学习目标:1、会推导两数差的平方公式,会用式子表示及用文字语言叙述;2、会运用两数差的平方公式进行计算。

二、学习过程:请同学们快速阅读课本第27—28页的内容,并完成下面的练习题:(一)探索1、计算: (a - b) =方法一:方法二:方法三:2、两数差的平方用式子表示为_________________________;用文字语言叙述为___________________________ 。

3、两数差的平方公式结构特征是什么?(二)现学现用利用两数差的平方公式计算:1、(3 - a)2、 (2a -1)3、(3y-x)4、(2x – 4y)5、( 3a - )(三)合作攻关灵活运用两数差的平方公式计算:1、(999)2、( a – b – c )3、(a + 1) -(a-1)(四)达标训练1、、选择:下列各式中,与(a - 2b)一定相等的是()A、a -2ab + 4bB、a -4bC、a +4bD、 a - 4ab +4b2、填空:(1)9x + + 16y = (4y - 3x )(2) ( ) = m - 8m + 162、计算:( a - b) ( x -2y )3、有一边长为a米的正方形空地,现准备将这块空地四周均留出b米宽修筑围坝,中间修建喷泉水池,你能计算出喷泉水池的面积吗?(四)提升1、本节课你学到了什么?2、已知a – b = 1,a + b = 25,求ab 的值新人教版八年级数学上册全册名师教案【篇2】一、教学目标(一)、知识与技能:(1)使学生了解因式分解的意义,理解因式分解的概念。

(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。

八年级上册数学教案 八年级上册数学教案(5篇)

八年级上册数学教案 八年级上册数学教案(5篇)

八年级上册数学教案八年级上册数学教案(5篇)作为一位杰出的老师,常常要写一份优秀的教案,教案有利于教学水平的提高,有助于教研活动的开展。

教案要怎么写呢?书痴者文必工,艺痴者技必良,以下是勤劳的小编给家人们收集的八年级上册数学教案(5篇),仅供借鉴,希望大家能够喜欢。

八年级上册数学教案全集篇一教学目标1.掌握角的平分线的性质定理和它的逆定理的内容、证明及应用.2.理解原命题和逆命题的概念和关系,会找一个简单命题的逆命题.3.渗透角平分线是满足特定条件的点的集合的思想。

教学重点和难点角平分线的性质定理和逆定理的应用是重点.性质定理和判定定理的区别和灵活运用是难点.教学过程设计一、角平分钱的性质定理与判定定理的探求与证明1,复习引入课题.(1)提问关于直角三角形全等的判定定理.(2)让学生用量角器画出图3-86中的∠AOB的角平分线OC.2.画图探索角平分线的性质并证明之.(1)在图3-86中,让学生在角平分线OC上任取一点P,并分别作出表示P点到∠AOB两边的距离的线段PD,PE.(2)这两个距离的大小之间有什么关系?为什么?学生度量后得出猜想,并用直角三角形全等的知识进行证明,得出定理.(3)引导学生叙述角平分线的性质定理(定理1),分析定理的条件、结论,并根据相应图形写出表达式.3.逆向思维探求角平分线的判定定理.(1)让学生将定理1的条件、结论进行交换,并思考所得命题是否成立?如何证明?请一位同学叙述证明过程,得出定理2——角平分线的判定定理.(2)教师随后强调定理1与定理2的区别:已知角平分线用性质为定理1,由所给条件判定出角平分线是定理2.(3)教师指出:直接使用两个定理不用再证全等,可简化解题过程.4.理解角平分线是到角的两边距离都相等的点的集合.(1)角平分线上任意一点(运动显示)到角的两边的距离都相等(渗透集合的纯粹性).(2)在角的内部,到角的两边距离相等的点(运动显示)都在这个角的平分线上(而不在其它位置,渗透集合的完备性).由此得出结论:角的平分线是到角的两边距离相等的所有点的集合.二、应用举例、变式练习练习1填空:如图3-86(1)∠OC平分∠AOB,点P在射线OC上,PD∠OA于DPE∠OB于E.∠---------(角平分线的性质定理).(2)∠PD∠OA,PE∠OB,----------∠OP平分∠AOB(-------------)例1已知:如图3-87(a),ABC的角平分线BD和CE交于F.(l)求证:F到AB,BC和AC边的距离相等;(2)求证:AF平分∠BAC;(3)求证:三角形中三条内角的平分线交于一点,而且这点到三角形三边的距离相等;(4)怎样找∠ABC内到三边距离相等的点?(5)若将“两内角平分线BD,CE交于F”改为“∠ABC的两个外角平分线BD,CE交于F,如图3-87(b),那么(1)~(3)题的结论是否会改变?怎样找∠ABC外到三边所在直线距离相等的点?共有多少个?说明:(1)通过此题达到巩固角平分线的性质定理(第(1)题)和判定定理(第(2)题)的目的.(2)此题提供了证明“三线共点”的一种常用方法:先确定两条直线交于某一点,再证明这点在第三条直线上。

八年级数学上册课堂教案5篇

八年级数学上册课堂教案5篇

八班级数学上册课堂教案5篇八班级数学上册课堂教案1教学目标1.理解并把握除数是整数的小数除法的计算方法,能正确计算除数是整数的小数除法。

2.培育同学的分析力量和类推力量。

3.体验所学学问与现实生活的联系,能应用所学学问解决生活中简洁的问题,从中获得价值体验。

教学重难点教学重点:理解并把握除数是整数的小数除法的计算方法。

教学难点:理解商的小数点定位问题。

教学工具ppt课件教学过程一、复习引入1.填空:(PPT课件)2.(PPT课件出示)(1)引导同学列式:224÷4(2)为什么这样列式?(路程÷时间=速度)(3)说一说:224÷4这道题是怎样计算的?(老师板演)【设计意图】通过复习整数除法,唤醒同学对整数除法计算方法和计算步骤的回忆,为新知的教学打好基础。

二、探究新知(一)教学例11.出示例1,引导理解题意。

(PPT课件演示。

)(1)题目中告知了我们什么?(坚持晨练可以熬炼身体,王鹏坚持晨练,他方案4周跑步22.4 km。

)(2)题目中要我们求什么?(按方案他平均每周应跑多少千米?)2.尝试列式,分析数量关系。

(1)要求“他平均每周应跑多少千米”,应当怎样列式?(同学口头列式,老师板书或PPT课件演示:22.4÷4。

)(2)引导思考:为什么用“22.4÷4”?(路程÷时间=速度)3.揭示新课,感受学习价值。

(1)请同学们观看这道除法算式,和我们前面复习的除法计算有什么不同?(除数还是整数,但被除数是小数。

)(2)揭示课题:看来,在实际生活中经常遇到需要用小数除法计算的问题,这节课我们就来争辩新的课题──除数是整数的小数除法。

(3)板书课题:除数是整数的小数除法。

4.提出问题,自主思考算法。

(1)提出问题:我们已经会计算整数除法,那想一想,被除数是小数的除法该怎样计算呢?(2)同学先独立思考,再在小组里沟通自己的想法。

(老师巡察,了解同学思维活动,参与小组沟通,赐予适当指导。

初二数学上册教案(6篇)

初二数学上册教案(6篇)

初二数学上册教案(6篇)作为一名人民教师,常常要根据教学需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。

来参考自己需要的教案吧!为了让您对于八年级数学上册教案的写作了解的更为全面,下面作者给大家分享了6篇初二数学上册教案,希望可以给予您一定的参考与启发。

初二数学上册教案篇一教学目标:知识与技能:会解含有分母的一元一次不等式;能够用不等式表达数量之间的不等关系;能够确定不等式的整数解。

过程与方法:经历解方程和解不等式两种过程的比较,体会类比思想,发展学生的数学思考水平。

情感态度、价值观:通过一元一次不等式的学习,培养学生认真、坚持等良好学习习惯。

.教材分析:本节教材首先让学生动手做一做解两个不等式;之后让大家谈谈解一元一次不等式与解一元一次方程的异同点;较后是关于通过列不等式表示数量之间不等关系的例题2、3,其中例3涉及到了不等式的正解数解问题。

关于解含有分母的一元一次不等式,学生在去分母这一部可能容易出错,可以采用通过学生深度解决、师生总结交流方法、巩固应用等方式处理。

关于一元一次不等式的整数解问题,学生确实会有一定困难,主要是思考不够认真,缺少方法等原因,教师要注重借助数轴的学法指导。

教学重点:1、含有分母的一元一次不等式的解法2、用不等式表达数量之间的不等关系3、确定不等式的整数解教学难点:1、解含有分母的一元一次不等式时,去分母这一部的准确性。

2、不等式的整数解的确定教学流程:一、直接引入我们学习了解一元一次方程和解一元一次不等式,它们之间有怎样的区别和联系呢今天我们来探究一下。

二、探究新知(一)解一元一次方程和解一元一次不等式的异同点1、出示问题,让学生板演找两名同学,分别解下面两个问题:(1)解方程:﹦(2)解不等式:2、小组讨论解一元一次方程和解一元一次不等式的过程的异同点。

3、师生交流。

相同点:解一元一次方程和解一元一次不等式的步骤相同,依次为:去分母去括号移项,合并同类项化系数为1.不同点:在解一元一次不等式的化系数为1时,要注意不等式两边乘或除以同一个负数时,不等号要改变方向。

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)教案内容:一、第一章:勾股定理1. 教学目标:理解勾股定理的定义和证明;能够运用勾股定理解决实际问题。

2. 教学重点:勾股定理的表述和证明;勾股定理的应用。

3. 教学难点:勾股定理的证明;解决实际问题时的计算和应用。

4. 教学准备:教学课件;练习题。

5. 教学过程:导入:介绍勾股定理的背景和意义;讲解:讲解勾股定理的表述和证明;练习:学生练习解决实际问题;总结:回顾本节课的重点和难点。

二、第二章:平行四边形1. 教学目标:理解平行四边形的定义和性质;能够识别和判断平行四边形。

2. 教学重点:平行四边形的定义和性质;平行四边形的判定。

3. 教学难点:平行四边形的性质证明;平行四边形的判定方法。

4. 教学准备:教学课件;练习题。

5. 教学过程:导入:介绍平行四边形的背景和意义;讲解:讲解平行四边形的定义和性质;练习:学生练习识别和判断平行四边形;总结:回顾本节课的重点和难点。

三、第三章:三角形1. 教学目标:理解三角形的定义和性质;能够识别和判断三角形。

2. 教学重点:三角形的定义和性质;三角形的判定。

3. 教学难点:三角形的性质证明;三角形的判定方法。

4. 教学准备:教学课件;练习题。

5. 教学过程:导入:介绍三角形的背景和意义;讲解:讲解三角形的定义和性质;练习:学生练习识别和判断三角形;总结:回顾本节课的重点和难点。

四、第四章:数的开方与乘方1. 教学目标:理解数的开方和乘方的概念;能够熟练进行数的开方和乘方运算。

2. 教学重点:数的开方和乘方的概念;数的开方和乘方的运算规则。

3. 教学难点:数的乘方运算;数的开方和乘方的逆运算。

4. 教学准备:教学课件;练习题。

5. 教学过程:导入:介绍数的开方和乘方的意义;讲解:讲解数的开方和乘方的概念和运算规则;练习:学生练习进行数的开方和乘方运算;总结:回顾本节课的重点和难点。

五、第五章:实数1. 教学目标:理解实数的定义和性质;能够运用实数解决实际问题。

八年级上册数学教案【优秀6篇】

八年级上册数学教案【优秀6篇】

八年级上册数学教案【优秀6篇】八年级上册数学教案篇一【教学目标】知识目标:解单项式乘以多项式的意义,理解单项式与多项式的乘法法则,会进行单项式与多项式的乘法运算。

能力目标:(1)经历探索乘法运算法则的过程,发展观察、归纳、猜测、验证等能力;(2)体会乘法分配律的作用与转化思想,发展有条理的思考及语言表达能力。

情感目标:充分调动学生学习的积极性、主动性【教学重点】单项式与多项式的乘法运算【教学难点】推测整式乘法的运算法则。

【教学过程】一、复习引入通过对已学知识的复习引入课题(学生作答)1、请说出单项式与单项式相乘的法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里出现的字母,则连同它的指数作为积的一个因式。

(系数×系数)×(同字母幂相乘)×单独的幂例如:(2a2b3c)(-3ab)解:原式=[2·(-3)]·(a2·a)·(b3·b)·c=-6a3b4c2、说出多项式2x2-3x-1的项和各项的系数项分别为:2x2、-3x、-1系数分别为:2、-3、-1问:如何计算单项式与多项式相乘?例如:2a2·(3a2-5b)该怎样计算?这便是我们今天要研究的问题。

二、新知探究已知一长方形长为(a+b+c),宽为m,则面积为:m(a+b+c)现将这个长方形分割为宽为m,长分别为a、b、c的三个小长方形,其面积之和为ma+mb+mc因为分割前后长方形没变所以m(a+b+c)=ma+mb+mc上一等式根据什么规律可以得到?从中可以得出单项式与多项式相乘的运算法则该如何表述?(学生分组讨论:前后座为一组;找个别同学作答,教师作评)结论单项式与多项式相乘的运算法则:用单项式分别去乘多项式的每一项,再把所得的积相加。

用字母表示为:m(a+b+c)=ma+mb+mc运算思路:单×多转化分配律单×单三、例题讲解例计算:(1)(-2a2)·(3ab2–5ab3)(2)(-4x)·(2x2+3x-1)解:(1)原式=(-2a2)·3ab2+(-2a2)·(–5ab3)①=-6a3b2+10a3b3②(2)原式=(-4x)·2x2+(-4x)·3x+(-4x)·(-1)①八年级上册数学教案篇二教学内容本节课主要介绍全等三角形的概念和性质。

八年级上册数学教案(实用8篇)

八年级上册数学教案(实用8篇)

八年级上册数学教案(实用8篇)八年级上册数学教案第1篇教学目标1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.教学重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.教学难点:等腰三角形三线合一的性质的理解及其应用.教学过程Ⅰ.提出问题,创设情境在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?有的三角形是轴对称图形,有的三角形不是.问题:那什么样的三角形是轴对称图形?满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课:要求学生通过自己的思考来做一个等腰三角形.作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L 的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.思考:1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的`两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.由此可以得到等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为所以△BAD≌△CAD(SSS).所以∠B=∠C.]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为所以△BAD≌△CAD.所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:△ABC各角的度数.分析:根据等边对等角的性质,我们可以得到∠A=∠ABD,∠ABC=∠C=∠BDC,•再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.再由三角形内角和为180°,•就可求出△ABC的三个内角.把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.解:因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC.∠A=∠ABD(等边对等角).设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=73°.[师]下面我们通过练习来巩固这节课所学的知识.Ⅲ.随堂练习:1.课本P51练习1、2、3. 2.阅读课本P49~P51,然后小结.Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.Ⅴ.作业:课本P56习题12.3第1、2、3、4题.板书设计12.3.1.1等腰三角形一、设计方案作出一个等腰三角形二、等腰三角形性质:1.等边对等角2.三线合一八年级上册数学教案第2篇一、教学目标:1、理解极差的定义,知道极差是用来反映数据波动范围的一个量2、会求一组数据的极差二、重点、难点和难点的突破方法1、重点:会求一组数据的极差2、难点:本节课内容较容易接受,不存在难点。

八年级上册数学的教案5篇

八年级上册数学的教案5篇

八年级上册数学的教案5篇八年级上册数学的教案5篇数学的课件很有意义的。

科学技术的飞速发展给人类生活带来的巨大变化和灿烂前景,唤起学生热爱科学、学习科学和探索科学奥秘的浓厚兴趣。

下面小编给大家带来关于八年级上册数学的教案,希望会对大家的工作与学习有所帮助。

八年级上册数学的教案(篇1)三角形的证明1、等腰三角形①定理:两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS)②全等三角形的对应边相等、对应角相等③定理:等腰三角形的两底角相等,即位等边对等角④推论:等腰三角形顶角的平分线、底边上的中线以及底边上的高线互相重合⑤定理:等边三角形的三个内角都想等,并且每个角都等于60°⑥定理:有两个角相等的是三角形是等腰三角形(等角对等边)⑦定理:三个角都相等的三角形是等边三角形⑧定理;有一个角等于60°的等腰三角形是等边三角形⑨定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半⑩反证法:在证明时,先假设命题的结论不成立,然后推导出与定义,基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。

2、直角三角形①定理:直角三角形的两个锐角互余②定理有两个角互余的三角形是直角三角形③勾股定理:直角三角形两条直角边的平方和等于斜边的平方④如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形⑤在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题⑥一个命题是真命题,它的逆命题不一定是真命题。

如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,其中一个定理称为另一个定理的逆定理⑦定理:斜边和一条直角边分别相等的两个直角三角形全等3、线段的垂直平分线①定理:线段垂直平分线上的点到这条线段两个端点的距离相等②定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上4、角平分线①定理:角平分线上的点到这个角的两边的距离相等②定理:在一个角的内部,到角的两边距离相等的点在这个角的平分线上八年级上册数学的教案(篇2)一、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)第一章:一元一次方程1.1 方程与方程的解理解方程的概念,掌握方程的解的定义。

学会解一元一次方程,掌握解方程的基本步骤。

1.2 方程的解法学习使用加减法、乘除法解一元一次方程。

学会使用移项、合并同类项解方程。

1.3 方程的应用学会将实际问题转化为方程,解决实际问题。

练习使用一元一次方程解决实际问题。

第二章:不等式与不等式组2.1 不等式理解不等式的概念,掌握不等式的性质。

学会解一元一次不等式,掌握解不等式的基本步骤。

2.2 不等式组理解不等式组的概念,掌握不等式组的解法。

学会解不等式组,掌握解不等式组的基本步骤。

2.3 不等式的应用学会将实际问题转化为不等式,解决实际问题。

练习使用不等式解决实际问题。

第三章:函数的初步认识3.1 函数的概念理解函数的概念,掌握函数的定义。

学会判断两个变量之间的关系是否为函数。

3.2 函数的性质学习函数的单调性、奇偶性、周期性等基本性质。

学会判断函数的单调性、奇偶性、周期性。

3.3 函数的应用学会将实际问题转化为函数问题,解决实际问题。

练习使用函数解决实际问题。

第四章:整式的加减4.1 整式的概念理解整式的概念,掌握整式的定义。

学会判断两个整式是否相等。

4.2 整式的加减法学习整式的加减法运算,掌握加减法的基本步骤。

学会使用合并同类项进行整式的加减法运算。

4.3 整式的应用学会将实际问题转化为整式问题,解决实际问题。

练习使用整式解决实际问题。

第五章:数据的收集、整理与描述5.1 数据的收集学会使用调查、实验等方法收集数据。

掌握数据的整理方法,如列表、画图等。

5.2 数据的整理学习数据的整理方法,掌握数据的分类、排序等基本操作。

学会使用图表展示数据,如条形图、折线图等。

5.3 数据的描述学习数据的描述方法,掌握数据的平均数、中位数、众数等基本统计量。

学会使用统计量对数据进行描述和分析。

八年级数学(上)全册教案(新人教版)第六章:三角形6.1 三角形的概念理解三角形的基本概念,掌握三角形的定义。

2024年版人教版八年级上册数学教案5篇

2024年版人教版八年级上册数学教案5篇

2024年版人教版八年级上册数学教案5篇2023版人教版八年级上册数学教案篇1教学目标:教学知识点:能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题。

能力训练要求:1.学会观察图形,勇于探索图形间的关系,培养学生的空间观念。

2.在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。

情感与价值观要求:1.通过有趣的问题提高学习数学的兴趣。

2.在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学。

教学重点难点:重点:探索、发现给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题。

难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题。

教学过程1、创设问题情境,引入新课:前几节课我们学习了勾股定理,你还记得它有什么作用吗?例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子?根据题意,(如图)ac是建筑物,则ac=12米,bc=5米,ab 是梯子的长度,所以在rt△abc中,ab2=ac2+bc2=122+52=132;ab=13米。

所以至少需13米长的梯子。

2、讲授新课:①、蚂蚁怎么走最近。

出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米。

在圆行柱的底面a点有一只蚂蚁,它想吃到上底面上与a 点相对的b点处的食物,需要爬行的的最短路程是多少?(π的值取3)。

(1)同学们可自己做一个圆柱,尝试从a点到b点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(小组讨论)(2)如图,将圆柱侧面剪开展开成一个长方形,从a点到b 点的最短路线是什么?你画对了吗?(3)蚂蚁从a点出发,想吃到b点上的食物,它沿圆柱侧面爬行的最短路程是多少?(学生分组讨论,公布结果)我们知道,圆柱的侧面展开图是一长方形。

好了,现在咱们就用剪刀沿母线aa′将圆柱的侧面展开(如下图)。

我们不难发现,刚才几位同学的走法:(1)a→a′→b;(2)a→b′→b;(3)a→d→b;(4)a—→b。

八年级上册数学教案简单(精选6篇)

八年级上册数学教案简单(精选6篇)

八年级上册数学教案简单(精选6篇)八年级上册数学教案简单篇1教学建议知识结构重难点分析本节的重点是中位线定理.三角形中位线定理和梯形中位线定理不但给出了三角形或梯形中线段的位置关系,而且给出了线段的数量关系,为平面几何中证明线段平行和线段相等提供了新的思路.本节的难点是中位线定理的证明.中位线定理的证明教材中采用了同一法,同一法学生初次接触,思维上不容易理解,而其他证明方法都需要添加2条或2条以上的辅助线,添加的目的性和必要性,同以前遇到的情况对比有一定的难度.教法建议1.对于中位线定理的引入和证明可采用发现法,由学生自己观察、猜想、测量、论证,实际掌握效果比应用讲授法应好些,教师可根据学生情况参考采用2.对于定理的证明,有条件的教师可考虑利用多媒体课件来进行演示知识的形成及证明过程,效果可能会更直接更易于理解教学设计示例一、教学目标1.掌握中位线的概念和三角形中位线定理2.掌握定理“过三角形一边中点且平行另一边的直线平分第三边”3.能够应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力4.通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力5.通过一题多解,培养学生对数学的兴趣二、教学设计画图测量,猜想讨论,启发引导.三、重点、难点1.教学重点:三角形中位线的概论与三角形中位线性质.2.教学难点:三角形中位线定理的证明.四、课时安排1课时五、教具学具准备投影仪、胶片、常用画图工具六、教学步骤【复习提问】1.叙述平行线等分线段定理及推论的内容(结合学生的叙述,教师画出草图,结合图形,加以说明).2.说明定理的证明思路.3.如图所示,在平行四边形ABCD中,M、N分别为BC、DA中点,AM、CN分别交BD于点E、F,如何证明?分析:要证三条线段相等,一般情况下证两两线段相等即可.如要证,只要即可.首先证出四边形AMCN是平行四边形,然后用平行线等分线段定理即可证出.4.什么叫三角形中线?(以上复习用投影仪打出)【引入新课】1.三角形中位线:连结三角形两边中点的线段叫做三角形中位线.(结合三角形中线的定义,让学生明确两者区别,可做一练习,在中,画出中线、中位线)2.三角形中位线性质了解了三角形中位线的定义后,我们来研究一下,三角形中位线有什么性质.如图所示,DE是的一条中位线,如果过D作,交AC于,那么根据平行线等分线段定理推论2,得是AC的中点,可见与DE重合,所以.由此得到:三角形中位线平行于第三边.同样,过D作,且DEFC,所以DE.因此,又得出一个结论,那就是:三角形中位线等于第三边的一半.由此得到三角形中位线定理.三角形中位线定理:三角形中位城平行于第三边,并且等于它的一半.应注意的两个问题:①为便于同学对定理能更好的掌握和应用,可引导学生分析此定理的特点,即同一个题设下有两个结论,第一个结论是表明中位线与第三边的位置关系,第二个结论是说明中位线与第三边的数量关系,在应用时可根据需要来选用其中的结论(可以单独用其中结论).②这个定理的证明方法很多,关键在于如何添加辅助线.可以引导学生用不同的.方法来证明以活跃学生的思维,开阔学生思路,从而提高分析问题和解决问题的能力.但也应指出,当一个命题有多种证明方法时,要选用比较简捷的方法证明.由学生讨论,说出几种证明方法,然后教师总结如下图所示(用投影仪演示).(l)延长DE到F,使,连结CF,由可得ADFC.(2)延长DE到F,使,利用对角线互相平分的四边形是平行四边形,可得ADFC.(3)过点C作,与DE延长线交于F,通过证可得ADFC.上面通过三种不同方法得出ADFC,再由得BDFC,所以四边形DBCF是平行四边形,DFBC,又因DE,所以DE.(证明过程略)例求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形.(由学生根据命题,说出已知、求证)已知:如图所示,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA 的中点.求证:四边形EFGH是平行四边形.‘分析:因为已知点分别是四边形各边中点,如果连结对角线就可以把四边形分成三角形,这样就可以用三角形中位线定理来证明出四边形EFGH对边的关系,从而证出四边形EFGH是平行四边形.证明:连结AC.∴(三角形中位线定理).同理,∴GHEF∴四边形EFGH是平行四边形.【小结】1.三角形中位线及三角形中位线与三角形中线的区别.2.三角形中位线定理及证明思路.七、布置作业教材P188中1(2)、4、7八年级上册数学教案简单篇2一、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十一章全等三角形11.1 全等三角形〖教学目标〗1.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程。

2.能够进行有条理的思考,并能进行简单的推理。

3.培养参与、合作精神。

〖教材分析〗本课时是在前两课时的基础上继续探索三角形全等的条件。

主要内容是三角形两边一角全等条件的探索过程,三角形全等的“边角边”条件及其简单的应用。

〖教学设计〗(一)创设情境,引入课题我们已学过判定两个三角形全等的哪些条件?我们还没有研究三个条件的哪一种情况?(二)探究新知1.请同学们想一想,已知三角形的两条边和一个角时会有几种不同的基本情况?(1)两边及它们的夹角;(2)两边及一边的对角。

2.探究索研讨。

(1)让学生画一个三角形,使它满足两条边长分别为2 cm和3 cm,且它们的夹角为40°。

画完后用剪刀剪下来,和其他同学剪的三角形比较,看看是否能够重合。

由实践操作可知:当两个三角形的两条边的长度确定,且它们所夹的角的度数也确定时,这个三角形的形状也就确定了。

由此得:两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”。

(2)让学生画一个三角形,使它满足两条边长分别为2 cm和3 cm,且其中一条边的对角是40°。

画完后,用剪刀剪下来与其他同学进行比较,看是否能够重合。

(3)满足条件的三角形出现了两种形状完全不同的三角形(如图1)。

(1)(2)图1图2图1(1)(2)合成图2(用两张投影片或计算机课件演示)。

学生通过画图、观察、比较,终于明白为什么两条边及一边的对角这三个条件不能确定三角形的形状和大小的道理。

图3 3.应用“边角边”判定两个三角形全等。

例1如图,AC=AD,AB平分∠CAD,那么BC=BD吗?为什么?解:BC=BD,理由是:AB平分∠CAD→∠CAB=∠DAB。

在△ABC和△ABD中,AC=AD∠CAB=∠DAB→△ABC≌△ABDAB=AB→BC=BD。

图4例2如图,AD∥CB,AD=CB,那么∠B=∠D吗?为什么? 解:∠B=∠D,理由是:AD∥CB→∠DAC=∠BCA。

在△ABC和△CDA中,AD=CB∠BCA=∠DACAC=CA图5→△ABC≌△CDA→∠B=∠D。

4.做一做(1)如图,AO=CO,BO=DO,那么AB=CD吗?为什么?(三)小结1.本课时你学会了哪些知识?2.在学习过程中,你的收获有哪些?还有哪些疑问?3.这三节课我们学习了几种判定三角形全等的方法?〖教学反思〗本课时以学生的动手实践、自主探索、合作交流为主要学习方式,不仅能更好地激发学生的学习兴趣,而且还能培养学生的创新意识和创造能力。

学生积极参与教学活动,才能最大限度地调动学生的积极性,引导他们多角度、多方法、多层次地思考问题,在问题探究、合作交流、形成共识的基础上,让学生自主发现问题、解决问题,从而体验到参与的乐趣,同时也获得了成功的体验。

〖案例点评〗先前学生已经会用刻度尺、量角器和圆规等作出满足已知条件的三角形,前两节课又研究了三角形全等的几个条件,本节课研究判定三角形全等的另一个条件,因此教师根据学生的具体实际,通过让学生动手实践、自主探究、合作交流,最大限度地调动学生学习的积极性,在实践操作和理性分析中,探索三角形全等的又一判定条件,并利用这一条件进行相关的判定。

学生不仅掌握了知识,形成了技能,还发展了学生探索知识的方法――实践操作与理性分析。

11.2 三角形全等的判定第一课时教学内容:全等三角形的判定条件教学目标:在探究三角形全等的条件的过程中,感受探究的方法,培养逻辑思维能力。

教学重点:探究三角形全等的条件教学难点:三角形全等到底需要多少条件教学过程:一、复习引入:我们知道:若两个三角形的三条边、三个角分别对应相等,则这两个三角形全等.那么能否减少一些条件,找到更为简便的判定三角形全等的方法?显然由于三角形的内角和等于180°,如果两个角分别对应相等,那么另一个角必然也相等.这样,若两个三角形的三条边、两个角分别对应相等,则这两个三角形仍然全等.能否再减少一些条件?对两个三角形来说,六个元素(三条边、三个角)中至少要有几个元素分别对应相等,两个三角形才会全等呢?二、探究新知(一)探究全等条件在教师的引导下,学生进行下列探究:1.我们从最简单的开始,如果只知道两个三角形有一组对应相等的元素(边或角),这两个三角形一定全等吗?(1)如果只知道两个三角形有一个角对应相等,那么这两个三角形全等吗?(2)如果只知道两个三角形有一条边对应相等,那么这两个三角形全等吗?2.如果两个三角形有两组对应相等的元素(边或角),那么这两个三角形一定全等吗?想一想,会有几种可能的情况?分别按照下面的条件,用刻度尺或量角器画三角形,并和周围的同学比较一下,所画的图形是否全等.(1)三角形的两个内角分别为30°和70°;(2)三角形的两条边分别为3cm和5cm;(3)三角形的一个内角为60°,一条边为3cm;(i)这条长3cm的边是60°角的邻边;(ii)这条长3cm的边是60°角的对边.你一定会发现,如果只知道两个三角形有一组或两组对应相等的元素(边或角),那么这两个三角形不一定全等(甚至形状都不相同).思 考:如果两个三角形有三组对应相等的元素(边或角),那么会有哪几种可能的情况?这时,这两个三角形一定会全等吗?如果两个三角形有三组元素对应相等,那么这两个三角形全等的可能性极大,但也有不全等的情况。

如图:三、课堂练习 四、总结:两个三角形有一组或两组对应相等的元素(边或角),那么这两个三角形不一定全等;如果两个三角形有三组元素对应相等,那么这两个三角形全等的可能性极大,但也有不全等的情况。

五、作业 选用课时作业设计上的习题 教学后记:第二课时教学内容:边角边教学目标:1、会用“SAS ”识别两个三角形全等;2、在探究三角形全等的判定定理的过程中,体会提出判定定理的必要性;3、通过三角形全等判定定理的证明与应用,培养学生严密的逻辑思维。

教学重点:掌握三角形全等的判定方法。

教学难点:三角形全等判定定理的应用。

教学过程:一、复习引入:上节课我们讲过,两个三角形有一组或两组对应相等的元素(边或角),那么这两个三角形不一定全等;如果两个三角形有三组元素对应相等,那么这两个三角形全等的可能性极大,但也有不全等的情况。

本节课开始,我们将探究在什么情况下三角形一定全等。

如果两个三角形有3组对应相等的元素,那么含有以下的四种情况:两边一角、两角一边、三角、三边. 我们将对这四种情况分别进行讨论.如果两个三角形有两条边和一个角分别对应相等,这两个三角形一定全等吗?如图所示,此时应该有两种情况:一种是角夹在两条边的中间,形成两边夹一角;另一种情况是角不夹在两边的中间,形成两边一对角.图19.2.1二、探究新知(一) 已知两边一夹角作三角形唯一性的体验按下列条件画一个三角形:如图19.2.2,已知两条线段和一个角,以这两条线段为边,以这个角为这两条边的夹角,画一个三角形.2 1A 1 B 1C 1 A B图19.2.2教师一边讲一边按下列步骤作图,要求学生模仿:步骤:1、画一线段AB,使它等于4cm;2、画∠MAB=45°;3、在射线AM上截取AC=3cm;4、连结BC.△ABC即为所求.把你画的三角形与其他同学画的三角形进行比较,所有的三角形都全等吗?换两条线段和一个角试试,是否有同样的结论?通过学生亲自实践,初步体会已知三角形两边一夹角作三角形的确定性,为证明SAS提供实践体验。

(二)SAS证明如图19.2.3,在△ABC和△A′B′C′中,已知AB=A′B′,∠B=∠B′,BC=B′C′.图19.2.3我们要证明两个三角形全等,可以通过平移重合来实现,由于AB=A’B’,我们移动其中的△ABC,使点A与点A′、点B与点B′重合;因为∠B=∠B′,因此可以使∠B与∠B′的另一边BC与B′C′重叠在一起,而BC=B’C’,因此点C与点C’重合.于是△ABC与△A’B’C’重合,这就说明这两个三角形全等.由此可得判定三角形全等的一种简便方法:如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等.简记为S.A.S.(或边角边).(三)例题选讲例1如图19.2.4,在△ABC中,AB=AC,AD平分∠BAC,求证:△ABD≌△ACD.图19.2.4证明∵AD平分∠BAC,(已知)∴∠BAD=∠CAD.(角平分线的定义)在△ABD与△ACD中,∵AB=AC (已知)∠BAD=∠CAD (已证)AD=AD (公共边)在上题中AD 是两个三角形都具有的边,我们称之为公共边,在解题时要善于发现和使用。

由△ABD 与△ACD 全等,还能证得∠B =∠C ,即证得等腰三角形的两个底角相等这条定理.你还能证得哪些结论?(四)已知两个角和其中一个角的对边问题探究如图19.2.5,已知两条线段和一个角,以长的线段为已知角的邻边,短的线段为已知角的对边,画一个三角形.图19.2.5把你画的三角形与其他同学画的三角形进行比较,那么所有的三角形都全等吗?此时符合条件的三角形的形状能有多少种呢?如图中: ∠B=450,AB=4㎝,AC 1=AC 2=3㎝,但△ABC 1与△ABC 2不全等,由此可见已知两边及其中一边的对角对应相等时,不能判定两个三角形全等。

三、课堂练习四、总结:1、两边及其夹角相等,两个三角形全等;2、两边一对角相等,两个三角形不一定...全等。

五、作业教学后记:第三课时教学内容:角边角教学目标:1、会用“ASA ”识别两个三角形全等;2、在探究三角形全等的判定定理的过程中,体会提出判定定理的必要性;3、通过三角形全等判定定理的证明与应用,培养学生严密的逻辑思维。

教学重点:掌握三角形全等的判定方法。

教学难点:三角形全等判定定理的应用。

教学过程:一、复习引入:我们已经学习了,当两个三角形的两条边及其夹角分别对应相等时,两个三角形一定全等.而当两个三角形的两边及其中一边的对角分别对应相等时,两个三角形不一定全等.现在,我们讨论: 如果两个三角形有两个角、一条边分别对应相等,那么这两个三角形能全等吗?这时同样应有两种不同的情况: 如图19.2.6所示,一种情况是两个角及这两角的夹边;另一种情况是两个角及其中一角的对边.图19.2.6 二、探究新知B C 1 C 2 A教师提问并作图,学生模仿:如图19.2.7,已知两个角和一条线段,以这两个角为内角,以这条线段为这两个角的夹边,画一个三角形.图19。

2。

7 步骤:1、画一线段AB ,使它等于4cm ;2、画∠MAB =60°、 ∠NBA =40°, MA 与NB 交于点C . △ABC 即为所求.把你画的三角形与其他同学画的三角形进行比较,所有的三角形都全等吗? 换两个角和一条线段,试试看,是否有同样的结论. 由作图可知:这样的三角形是唯一的。

相关文档
最新文档