重力坝设计计算书

合集下载

重力坝计算书

重力坝计算书

MOW3 = -111.9×5.376 = -601.6 KN·m ∑MOW = 6986.7 KN·m ② 静水压力(水平力) P1 = γH12 /2 = 9.81×(1105.67-1090)2 /2 = -1204.4 KN P2 =γH22 /2 =9.81×(1095.18-1090)2 /2 = 131.6 KN (←) ∑P = -1072.8 KN (→) P1 作用点至 O 点的力臂为: (1105.67-1090)/3 = 5.223m P2 作用点至 O 点的力臂为: (1095.18-1090)/3 = 1.727 m 静水压力对 O 点的弯矩(顺时针为“-” ,逆时针为“+” ) : MOP1 = 1204.4×5.223 = -6290.6 KN·m MOP2 = 131.6×1.727 = 227.3 KN·m ∑MOP = -6063.3 KN·m ③ 扬压力 扬压力示意图请见下图: (→)
由确定坝顶超高计算时已知如下数据:单位:m
平均波长 Lm 波高 h1% 7.644 0.83
坝前水深 H 15.5
波浪中心线至计算水位的高度 hZ
0.283
使波浪破碎的临界水深计算如下:
H cr Lm Lm 2h1% ln 4 Lm 2h1%
将数据代入上式中得到:
H cr 7.644 7.644 2 0.83 ln 1.013 4 7.644 2 0.83
单位: KN、 KN· m
正常使用极限状态 持久状态 1868.6准值
均采用荷载设计值
⑵.由规范 8.结构计算基本规定中可知大坝坝体抗滑稳定和坝基岩 体进行强度和抗滑稳定计算属于 1)承载能力极限状态,在计算时, 其作用和材料性能均应以设计值代入。基本组合,以正常蓄水位对 应的上、下游水位代入,偶然组合以校核洪水位时上、下游水位代 入。 而坝体上、下游面混凝土拉应力验算属于 2)正常使用极限状 态,其各设计状态及各分项系数 = 1.0,即采用标准值输入计算。 此时结构功能限值 C = 0。 荷载各项标准值和设计值请见附表 1。 ① 坝体混凝土与基岩接触面抗滑稳定极限状态 a、基本组合时,取持久状态对应的设计状况系数ψ=1.0,结构系数 γd1=1.2,结构重要性系数γ0 =0.9。 基本组合的极限状态设计表达式

重力坝计算书

重力坝计算书
hc=0.4
A/?= /?1%+hz+hc= 0.75 + 0.16 + 0.4
= 1.31/77
2
1型—.0076 x13卸竺竺丫
132I132丿
h,=0.38/77
波长:
L= 4.80/«
壅高:
L L L4.80
竺值:
V
瞥弩—
故按累计频率为
0.38
~23~
= 0.016
咕=1・24人%=1.24x 0.38=0.47m
厶=6.76m
M2=W2L2=324.00 x 6.76 = 2190
三区:
IV3= 24 X 0.5 x32x(24.00 + 4.80)x 1 = 11059 .20KN
厶=3.20/77
A/3=咒厶=11059 .20 x 3.20 = 35389MKN.m

分区
体枳(m‘)
自重(kN)
力臂(m)
根据杨家沟水库的地质、地形、气候,气象等具体情况,本设计的主要内容和成 果如下:
1、 非溢流坝剖面尺寸的拟定:
坝高33. 00m,上游坡率1:0. 15,下游坡率1:0, 75,坝顶宽度4.50m。
2、 溢流坝堰面曲线的拟定:
顶部曲线段釆用眩S曲线,直线段的坡率1:0.75,反弧段半径为10m。
3、 稳定分析:
图1.1混凝土砌条石重力坝非溢流坝段剖面图
1.3
1.3.1基本原理与荷载组合
重力坝的荷载主要有:自重、静水压力、扬压力、泥沙压力、浪压力、动水压力、 冰压力、地震荷载等。本次设计取单位长度的坝段进行计算。相关荷载组合见表1.7。
表1.7荷载组合表
组合情

重力坝坝顶超高计算书实用标准格式

重力坝坝顶超高计算书实用标准格式

标准文档混凝土重力坝坝顶超高计算书标准格式工程设计分院坝工室2006.3.核定:审查:校核:编写:——水电站工程(或水库工程、水利枢纽工程)混凝土重力坝坝顶高程计算书1 计算说明1.1 适用范围(设计阶段)本计算书仅适用于工程设计阶段的(坝型)坝顶超高/高程计算。

1.2 工程概况工程位于省市(县)的江(河)上。

该工程是以为主,兼顾、、等综合利用的水利水电枢纽工程。

本工程规划设计阶段(或预可行性研究阶段,可行性研究阶段/初步设计阶段,招标设计阶段)设计报告已于年月经审查通过。

水库总库容×108m3,有效库容×108m3,死库容×108m3;灌溉面积亩;水电站装机容量MW,多年平均发电量×108 kW·h,保证出力MW。

选定坝址为,选定坝型为。

根据《水电枢纽工程等级划分及设计安全标准》DL5180—2003,工程等别为等型工程,拦河坝为级永久水工建筑物。

(因拦河大坝坝高已超过其规定的高度,拦河坝应提高级,按级建筑物设计。

)1.3 计算目的和要求通过混凝土重力坝坝顶上游防浪墙顶与正常蓄水位、设计洪水位或校核洪水位高差的计算,以确定防浪墙顶高程和大坝高度,为坝体断面设计及坝体工程量计算提供可靠的依据。

1.4 计算原则和方法1.4.1 计算原则(1)坝顶上游防浪墙顶与正常蓄水位、设计洪水位或校核洪水位的高差,包括最大浪高、波浪中心线至水库静水位的高度和安全超高。

(2)确定的坝顶高程不得低于水库正常蓄水位及设计洪水位。

(3)坝顶高程的确定尚需考虑枢纽中其他建筑物(如船闸坝顶桥下通航净空) 对坝顶高程的要求。

1.4.2 计算方法因选定坝型为(混凝土重力坝),防浪墙顶在水库静水位以上的高差按《混凝土重力坝设计规范》DL 5108-1999式(11.1.1)计算,即:∆h=h1%+h z+h c式中,∆h—防浪墙顶至水库静水位的高差,m;h1%—浪高,m;h z−波浪中心线至水库静水位的高度,m;h c−安全超高,m。

重力坝设计计算书

重力坝设计计算书

水利水电工程专业专项设计说明书水工建筑物课程设计题目:重力坝设计(西山水利枢纽)班级:水电1141姓名韩磊指导教师:**长春工程学院水利与环境工程学院水工教研室2013 年3月3日目录1 挡水坝段 (1)1.1 剖面轮廓及尺寸 (1)1.1.1 坝顶高程的确定 (1)1.2 坝体稳定应力分析 (4)1.2.1 挡水坝段荷载计算 (4)1.2.2 稳定验算 (18)1.2.3 坝基面应力计算 (19)1.2.4 坝体内部应力的计算 (25)2 溢流坝段 (34)2.1 孔口尺寸和泄流能力 (34)2.1.1 确定孔口尺寸和孔口数量 (34)2.1.1.2溢流坝最大高度和坡度的拟定。

(35)2.1.2 泄洪能力的验算 (35)2.2 检修门槽空蚀性能验算 (37)2.2.1校核洪水位时堰顶压力验算 (37)2.2.2 平板门门槽空蚀验算 (37)2.3 溢流坝曲面设计 (37)2.3.1 上游前缘段计算 (37)2.3.2顶部曲线段 (38)2.3.3 中间直线段 (38)2.3.4 反弧段 (38)2.3.5 桥面布置 (39)2.4 堰面水深的校和计算 (40)2.4.1堰面水深计算 (40)2.4.2 直线段水深计算 (41)2.4.3 反弧段水深计算 (41)2.4.4 渗气后水深计算 (42)2.5 消力池的计算 (42)2.5.1判断消能方式 (42)2.5.2 判断是否要修消力池 (42)2.5.3 消力池尺寸的计算 (43)2.5.4 基本组合(2) (44)2.6 溢流坝算段的稳定、应力计 (48)2.6.1 荷载计算 (48)2.6.2 稳定验算 (52)2.6.3 坝基面应力计算 (53)2.6.4 坝体内部应力的计算 (54)3、设计参考资料 (55)谢辞 (55)1 挡水坝段1.1 剖面轮廓及尺寸1.1.1 坝顶高程的确定由于设计洪水位低于正常洪水位,故取正常洪水位和校核洪水位作为控制情况。

重力坝工程量计算书

重力坝工程量计算书

重力坝坝体工程量计算非溢流坝段1#:右岸断面1混凝土面积为17.5㎡,土方开挖为24.38㎡;断面2混凝土面积为128.71㎡,土方开挖为120.69㎡;断面3混凝土面积为128.71㎡,土方开挖为27.12㎡。

断面1与断面2距离为12.26m,断面2与断面3距离为8m则坝段1#混凝土方量为(17.5+128.71)/2*12.26+128.71*8=1925.947 m³土方开挖量为(24.38+120.69)/2*12.26+(120.69+27.12)/2*8=1480.519 m³非溢流坝段2#:右岸断面3混凝土面积为128.71㎡,土方开挖为27.12㎡;断面4混凝土面积为365.09㎡,土方开挖为163.88㎡;断面5混凝土面积为365.09㎡,土方开挖为120.69㎡。

断面3与断面4距离为14m,断面4与断面5距离为8m则坝段2#混凝土方量为(128.71+365.09)/2*14+365.09*8=6377.32 m³土方开挖量为(27.12+163.88)/2*14+(163.88+120.69)/2*8=2475.28 m³非溢流坝段3#:右岸断面5混凝土面积为365.09㎡,土方开挖为120.69㎡;断面6混凝土面积为982.6㎡,土方开挖为605.06㎡;断面7混凝土面积为982.6㎡,土方开挖为248.77㎡。

断面5与断面6距离为14m,断面6与断面7距离为8m则坝段3#混凝土方量为(982.6+365.09)/2*14+982.6*8=17294.63 m³土方开挖量为(120.69+605.06)/2*14+(605.06+248.77)/2*8=8495.57 m³非溢流坝段4#:右岸断面7混凝土面积为982.6㎡,土方开挖为248.77㎡,断面8混凝土面积为2380.91㎡,土方开挖为616.29㎡;断面9混凝土面积为2380.91㎡,砂砾石开挖为907.56㎡;。

某电站重力坝设计计算书

某电站重力坝设计计算书

第一章 基本资料1. 基本资料1.1地质条件河床高程332 m 。

约有2~3 m 覆盖层,岩石为石灰岩,较完整,节理不发育,风化层厚1~2 m 无特殊不利地质构造。

则河床可利用高程为332-3-2=327 m 。

坝基的力学参数:抗剪断系数(混凝土与基岩之间)为''0.9,700kPa f c ==。

基岩的允许抗压强度为3000 kPa 。

地震的设计烈度为6度。

1.2水文条件本枢纽属于中型Ⅲ等工程。

永久性重要建筑物为3级,按规范要求,采用50年一遇洪水设计,500年一遇3洪水校核。

经水文水利计算,有关数据如表1所示:表1—1 水文计算结果1.3气象条件本地区多年平均最大风速为14m/s ,50年重现期的最大风速取多年平均最大风速的1.5倍,水库吹程为2.6km 。

1.4其它有关数据河流泥沙计算年限采用50年,据此求得坝前淤积高程345 m 。

淤沙的浮重度为39.5kN /m ,内摩擦角为12°。

坝体混凝土采用C10,抗压强度为9.8MPa, 重度采用324kN/m 。

1.5 枢纽总体布置根据地形、地质、天然建筑材料等因素的考虑,本工程选用混凝土重力坝方案,重力坝由非溢流坝段核溢流坝段组成。

第二章 非溢流坝设计2.1 剖面设计2.1.1坝顶高程的确定波浪要素按官厅水库公式计算5/41/35%01%5%0.85%21%0.01661.2410.4()2z h V D h h L h h H h cthLLππ====/0;;;;;V m s D m L m h l m l h m z H m -----为计算风速,。

正常蓄水位时宜用相应洪水期多年平均最大风速的1.5~2.0陪;校核洪水位时宜用相应洪水期多年平均最大风速,m/s;吹程,波长,累计频率为波高,波浪中心线高于静水面的高度,坝前水深,h h +∆+∆⎧⎪⎨⎪⎩设计洪水位设防浪墙高程=max 校核洪水位校 表2—1 防浪墙高程计算表经过比较可知防浪墙高程为388.13 m ,因此坝顶高程为防浪墙高程减去防浪墙高度1.2m ,则坝顶高程为386.93 m 。

水工建筑物重力坝设计计算书

水工建筑物重力坝设计计算书

一、非溢流坝设计(一)、初步拟定坝型的轮廓尺寸(1)坝顶高程的确定①校核洪水位情况下:波浪高度2h l=0.0166V5/4D1/3=0.0166×185/4×41/3=0.98m波浪长度2L l=10.4×(2h l)0.8=10.4×0.980.8=10.23m波浪中心线到静水面的高度h0=π(2h l)2/ 2L l=3.14×0.982/10.23=0.30m安全超高按Ⅲ级建筑物取值h c=0.3m=2h l+ h0+ h c=0.98+0.30+0.3=1.58m 坝顶高出水库静水位的高度△h校②设计洪水位情况下:波浪高度2h l=0.0166(1.5V)5/4D1/3=0.0166×(1.5×18)5/4×41/3=1.62m波浪长度2L l=10.4×(2h l)0.8=10.4×1.620.8=15.3m波浪中心线到静水面的高度h0=π(2h l)2/ 2L l=3.14×1.622/15.3=0.54m安全超高按Ⅲ级建筑物取值h c=0.4m=2h l+ h0+ h c=1.62+0.54+0.4=2.56m 坝顶高出水库静水位的高度△h设③两种情况下的坝顶高程分别如下:校核洪水位时:225.3+1.58=226.9m设计洪水位时:224.0+2.56=226.56m坝顶高程选两种情况最大值226.9 m,可按227.00m设计,则坝高227.00-174.5=52.5m。

(2)坝顶宽度的确定本工程按人行行道要求并设置有发电进水口,布置闸门设备,应适当加宽以满足闸门设备的布置,运行和工作交通要求,故取8米。

(3)坝坡的确定考虑到利用部分水重增加稳定,根据工程经验,上游坡采用1:0.2,下游坡按坝底宽度约为坝高的0.7~0.9倍,挡水坝段和厂房坝段均采用1:0.7。

(4)上下游折坡点高程的确定理论分析和工程实验证明,混凝土重力坝上游面可做成折坡,折坡点一般位于1/3~2/3坝高处,以便利用上游坝面水重增加坝体的稳定。

重力坝具体布置计算溢流荷载项目设计书

重力坝具体布置计算溢流荷载项目设计书

重力坝具体布置计算溢流荷载项目设计书1基本资料及枢纽布置1.1基本资料1.1.1地形地质地形情况见附图。

河床高程325m约有2—3m复盖层,岩石为磷状灰岩,较完整,节理不发育,风化层厚丨〜2m无特殊不利地质构造。

1.1.2水文本枢纽属中型水库三等工程。

永久性重要建筑物为三级,按规要求,采用50年一遇洪水设计,500年一遇洪水校核。

经水文水利计算,有关数据如下表1.1.3其他有关数据多年平均最大风速15m)/ s;水库吹程D=2.5公里;3混凝土重度24kN/ m ;淤沙浮重度9.5KN/m3;摩擦角120度;地震波计烈度6度;基岩允许抗压强度3X 103kpa;混凝土与基岩之间抗剪断参数f ' =0.9 ;c' =700kpa;岩石冲坑系数a=1.31.1.4本枢纽选用混凝土重力坝由非溢流重力坝段和溢流坝段组成。

1.2枢纽布置1.2.1坝址和坝型选择坝址、坝型的选择是水利枢纽布置的重要容,二者相互联系。

不同的坝址可选择不同的坝型。

本设计中河谷宽阔,地址条件好,所以选择为重力坝。

1.2.1.1 地质条件地质条件是坝址、坝型选择的重要条件,重力坝需建在岩基上,其重力坝枢纽布置关键因素是地质条件,所以在考虑地质条件时应注意,断层破碎带、软弱夹层,垂直水流的陡倾斜角断层,应尽量避开岩溶地区查明潜伏溶洞、暗河、溶沟和沟槽等对建筑物的影响,应对不利影响作出研究和论证。

1.2.1.2 地形条件不同的坝对地形的要求也不一样,在山谷地区布置水利枢纽时,应尽量少高边坡开挖,坝址选在河谷段,坝轴线断减小坝体工程量,但对泄水和发电不利。

在坝址选择时,要注意坝址位置是否对取水防沙及漂木有利。

1.2.1.3 建筑材料坝址附近有足够数量符合要求的建筑材料。

采用混凝土时,要求可作骨料用的沙卵石或碎石料厂。

1.2.1.4 施工要求要便于施工导流,坝址附近应有开阔的地形,便于布置施工场地,应从长远利益出发,正确对待施工条件问题。

(完整版)重力坝设计计算书

(完整版)重力坝设计计算书

水工建筑物课程设计设计名称:混凝土重力坝设计学院:土木工程学院专业:水利水电工程专业年级: 2012学号:**********学生姓名:**指导教师:邹爽老师2015年7月16日目录一、设计坝顶高程1.确定坝基开挖高程 (1)2.计算坝顶高程 (1)二、绘制坝基开挖线 (2)三、设计非溢流坝段1.设计实用剖面 (3)2.实用坝体剖面稳定及强度验算 (4)四、设计溢流坝段1.孔口形式及溢流坝前沿总长 (15)2.溢流面体型设计 (15)五、溢流坝段稳定验算1.溢流坝段剖面图 (18)2.设计洪水位状况 (19)3.校核洪水位情况 (21)六、设计消能工1.选择鼻坎形式 (24)2.确定挑角、鼻坎高程和反弧半径 (24)3.计算挑距和下游冲刷坑深度 (24)七、坝体细部构造拟定1.橫缝布置 (28)2.坝顶的布置 (28)3.廊道系统 (28)4.橫缝灌浆,固结灌浆,排水措施 (29)八、附录重力坝设计资料 (30)一、设计坝顶高程1.确定坝基开挖高程由相关水文、地质等资料初步估计坝高为50米左右,可建在微风化至弱风化上部基岩上,又下坝址河面高程1858.60m ,综合槽探、硐探、钻探和地表地质勘察资料,坝址区左右岸坡残坡积层厚度达3~5m ,局部地段深达10m ,河床上第四纪冲积覆盖层厚度为8.8m 左右;结合风化线深度,初步拟定坝基最低开挖高程为1843.50m 。

大坝校核洪水为500年一遇,坝体级别为4级。

2.计算坝顶高程坝顶应高于校核洪水位,坝顶上游防浪墙顶的高程应高于波浪顶高程,其与正常蓄水位或校核洪水位的高差,选择两者中防浪墙顶高程的高者作为选定高程。

(1).相关资料(2). 计算h l 根据官厅公式计算: 当20gDV =20~250 时,为累计频率5%的波高h 5%; 当20V gD=250~1000 时,为累计频率10%的波高h 10%; 本设计20V gD=(9.8×0.6×103)/20.72=13.723 故取h l ≈h 5%.(3).计算防浪墙顶高程及基本剖面坝高二、绘制坝基开挖线坝高超过100m时,坝可建在新鲜、微风化或弱风化下部基岩上;坝高在50~100m时,可建在微风化至弱风化上部基岩上;坝高小于50m时,可建在弱风化中部至上部基岩上。

碾压混凝土重力坝设计计算书

碾压混凝土重力坝设计计算书

目录第一章设计依据11.1 工程等级与建筑物级别21.2 工程洪水标准3第二章洪水调节计算52.1 工程洪水标准52.2 调洪计算52.2.1 调洪计算基本原理52.2.2 水位与流量关系的确定62.2.3 机算调洪数据72.2.4校核水库防空时间24第三章水能计算263.1 电站出力的估算263.2 机组台数和单机容量的选择263.3 水轮机型号和参数选择263.4 淤沙高程与电站取水口高程计算273.4.1 淤沙高程273.4.2 电站进水口底板高程27第四章水电站厂房初步设计294.1 水电站厂房的布置294.2 厂房轮廓的确定294.2.1主厂房长度的确定294.2.2 主厂房宽度的确定294.2.3 尾水平台与尾水闸室的布置30第五章大坝设计315.1 大坝有关参数的确定315.2 非溢流坝设计325.2.1 非溢流坝基本剖面设计325.2.2 非溢流坝实用剖面设计335.2.3 非溢流坝的荷载组合335.2.4 非溢流坝抗滑稳定验算(坝基处2—2截面)345.2.5 非溢流坝段应力验算(坝基处2—2截面)385.2.6 坝基处2—2截面部应力验算405.2.7非溢流坝段折坡处抗滑稳定验算(1—1截面)435.2.8非溢流坝段折坡应力验算(1—1截面)485.3 溢流坝段设计495.3.1 溢流坝段基本数据495.3.2溢流坝段实用剖面设计505.3.3溢流坝段消能设施的结构尺寸确定515.3.4溢流坝抗滑稳定验算(坝基处2—2截面)525.3.5溢流坝段应力验算(坝基处2—2截面)565.3.6 溢流挑射距离和冲坑深度计算585.4 厂房坝段设计595.4.1 水电站厂房的型式595.4.2 水电站厂房的布置595.4.3 电站引水管的布置形式595.4.4 厂房坝段坝身剖面设计59第六章施工组织设计616.1 施工导流标准616.2 施工导流布置和水力计算616.2.1导流方法616.2.2 导流布置616.3 一期导流计算626.3.1 导流水力计算626.3.2 上下游围堰的堰顶高程636.3.3 围堰断面设计636.3.4 围堰工程量计算666.4 二期导流机算676.4.1 坝体缺口和底孔联合泄流水力计算676.4.2 堰顶高程的确定与堰顶宽度的确定676.4.3 围堰断面设计676.4.4 围堰工程量计算686.5 封堵时间与蓄水计划69毕业设计(论文)原创性声明和使用授权说明原创性声明本人重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作与取得的成果。

水工建筑物重力坝设计计算书

水工建筑物重力坝设计计算书

.一、非溢流坝设计(一)、初步拟定坝型的轮廓尺寸(1)坝顶高程的确定①校核洪水位情况下:波浪高度2h l5/4D1/3×5/4× 1/3=0.98m=0.0166V=0.0166 18 4波浪长度2L l× l0.8×0.8=10.4 (2h )=10.4 0.98=10.23m波浪中心线到静水面的高度h0π l2/ 2L l ×2=(2h)=3.14 0.98 /10.23=0.30m 安全超高按Ⅲ级建筑物取值h c=0.3m坝顶高出水库静水位的高度△h=2h l0c校②设计洪水位情况下:波浪高度2h l5/4D1/3×5/41/3=0.0166(1.5V)=0.0166 (1.5×18) ×4=1.62m 波浪长度2L l× l0.8×0.8=10.4 (2h )=10.4 1.62=15.3m波浪中心线到静水面的高度h0π l2/ 2L l ×2=(2h)=3.14 1.62 /15.3=0.54m安全超高按Ⅲ级建筑物取值h c=0.4m坝顶高出水库静水位的高度△h=2h l0c设③两种情况下的坝顶高程分别如下:校核洪水位时: 225.3+1.58=226.9m设计洪水位时: 224.0+2.56=226.56m坝顶高程选两种情况最大值226.9 m,可按 227.00m 设计,则坝高 227.00-174.5=52.5m。

(2)坝顶宽度的确定本工程按人行行道要求并设置有发电进水口,布置闸门设备,应适当加宽以满足闸门设备的布置,运行和工作交通要求,故取 8 米。

(3)坝坡的确定考虑到利用部分水重增加稳定,根据工程经验,上游坡采用1:0.2,下游坡按坝底宽度约为坝高的 0.7~ 0.9 倍,挡水坝段和厂房坝段均采用1:0.7。

(4)上下游折坡点高程的确定理论分析和工程实验证明,混凝土重力坝上游面可做成折坡,折坡点一般位于 1/3~2/3 坝高处,以便利用上游坝面水重增加坝体的稳定。

重力坝设计计算书

重力坝设计计算书

鄂-01水利水电枢纽工程毕业设计计算书学 生:宋明京指导老师: 殷德胜三峡大学科技学院1调洪演算选定溢流堰堰顶高程H ,取为470米。

初始下泄流量为发电流量135.96m 3/s 。

1.1拟溢流坝段的基本尺寸及计算过程方案一(1) 堰孔净宽的确定采用设置闸门的溢流坝,采用开敞式溢流。

闸墩的长度和宽度应满足布置闸门、工作桥、交通桥和启闭机械的要求。

所需的前沿净宽ln=28m ,做成4孔,每孔净宽7m ,闸墩宽取3m ,边墩取2m ,则溢流坝段净宽为:B=44m 。

(2) 设计洪水位p%=0.2%时调洪的试算堰顶高程取470m ,堰宽B=n*b=44米, 2t h ∆=。

根据坝址库容曲线由水位查相应的库容:绘制q=f(v)关系曲线,2/32)(H g mnb v f q ε==其中m=0.502,n=4,b=11,ε=0.93。

表1-1图1由水位下泄流量及所给的洪水过程线P=0.2对应的流量关系运用试算法推求水库水位过程如表1-2所示。

123图2图3从表中可以得到设计水位h1设=484.2m,最大下泄流量为4880.64m3/s方案二采用设置闸门的溢流坝,采用开敞式溢流。

闸墩的长度和宽度应满足布置闸门、工作桥、交通桥和启闭机械的要求。

所需的前沿净宽ln=32m ,做成4孔,每孔净宽8m ,闸墩宽取3m ,边墩取2m ,则溢流坝净宽为:B=48m 。

设计洪水位p%=0.2%时调洪的试算堰顶高程取470m ,堰宽B=n*b=48米, 2t h ∆=。

根据坝址库容曲线由水位查相应的库容:绘制q=f(v)关系曲线,2/32)(H g mnb v f q ε==其中m=0.502,n=4,b=11,ε=0.93。

表1-3 水库水位z~q 及z~V 曲线图4图5由水位下泄流量关系及洪水过程线P=0.2推求设计洪水位与时间的关系及各量与时间关系如表1-4所示(下表)。

表1-412图6根据表中数据可得到设计水位h2设=483.5m,最大下泄流量为4964.96m3/s。

重力坝计算说明书

重力坝计算说明书

目录第一章调洪演算......................................................错误!未定义书签。

第二章非溢流坝设计计算.. (1)2.1坝高的计算 (1)2.2坝挡水坝段的稳定及应力分析 (2)第三章溢流坝设计计算 (10)3.1堰面曲线 (10)3.2中部直线段设计 (11)3.3下游消能设计 (11)3.4水力校核 (13)3.5WES堰面水面线计算 (15)第四章放空坝段设计计算 (19)4.1放空计算 (19)4.2下游消能防冲计算 (20)4.3水力校核 (22)4.4水面线计算 (24)第五章电站坝段设计计算 (26)5.1基本尺寸拟订 (26)第六章施工导流计算 (30)6.1河床束窄度 (30)6.2一期围堰计算 (30)6.2二期围堰高程的确定 (31)附录一经济剖面选择输入及输出数据 (35)附录二坝体的稳定应力计算输入输出数据 (40)附录三调洪演算源程序及输入数据 (51)第二章 非溢流坝设计计算2.1 坝高的计算坝顶高出静水面Δh=2h 1+h 0+h c 2h 1——波浪高度校核时,V=16m/s 2h 1=0.0166×V 5/4×D 1/3=0.0166×165/4×0.51/3=0.42m 设计时,V=24m/s 2h 1=0.0166×V 5/4×D 1/3=0.0166×245/4×0.51/3=0.70mh0——波浪中心线高出静水位高度 校核时,2L 1=10.4×(2h 1)0.8=10.4×0.420.8=5.21mm L h 11.024h 1210==π设计时,2L 1=10.4×(2h 1)0.8=10.4×0.700.8=7.81mm L h 20.024h 1210==πh c ——安全超高,等知:校核时,h c =0.3m ;设计时,h c =0.4m 。

重力坝稳定及应力计算书

重力坝稳定及应力计算书

5.1重力坝剖面设计及原则5.1.1剖面尺寸的确定重力坝坝顶高程1152.00m,坝高H=40.00m。

为了适应运用和施工的需要,坝顶必须要有一定的宽度。

一般地,坝顶宽度取坝高的8%~10%,且不小于2m。

若有交通要求或有移动式启闭设施时,应根据实际需要确定。

综合考虑以上因素,坝顶宽度m。

B10考虑坝体利用部分水中增加其抗滑稳定,根据工程实践,上游边坡坡率n=0~0.2,下游边坡坡率m=0~0.8。

故上游边坡坡率初步拟定为0.2,下游边坡坡率初步拟定为0.8。

上游折坡点位置应结合应力控制标准和发电引水管、泄洪孔等建筑物的进口高程来定,一般折坡点在坝高的1/3~2/3附近,故初拟上游折坡点高程为1138.20m。

下游折坡点的位置应根据坝的实用剖面形式、坝顶宽度,结合坝的基本剖面计算得到(最常用的是其基本剖面的顶点位于校核洪水位处),故初拟下游折坡点高程为1148.50m。

5.1.2剖面设计原则重力坝在水压力及其他荷载的作用下,主要依靠坝体自重产生的抗滑力维持抗滑稳定;同时依靠坝体自重产生压应力来抵消由于水压力引起的拉应力以满足强度要求。

非溢流坝剖面设计的基本原则是:①满足稳定和强度要求,保证大坝安全;②工程量小,造价低;③结构合理,运用方便;④利于施工,方便维修。

遵循以上原则拟订出的剖面,需要经过稳定及强度验算,分析是否满足安全和经济的要求,坝体剖面可以参照以前的工程实例,结合本工程的实际情况,先行拟定,然后根据稳定和应力分析进行必要的修正。

重复以上过程直至得到一个经济的剖面。

5.2重力坝挡水坝段荷载计算5.2.1基本原理与荷载组合重力坝的荷载主要有:自重、静水压力、扬压力、泥沙压力、浪压力、动水压力、冰压力、地震荷载等。

本次设计取单位长度的坝段进行计算。

相关荷载组合见表4.5。

表4.5 荷载组合表 组合情况相关工况 自重静水压力扬压力泥沙压力浪压力冰压力地震荷载动水压力土压力基本组合正常水位√√√√√√设计水位 √√√√√√冰冻 √√√√√√特殊组合校核水位 √√√√√√地震情况 √√√√√√√5.2.2坝体自重计算5.3.2.1坝体自重计算公式坝体自重W (KN )的计算公式:V w c ⨯=γ(4.5)式中:V -坝体体积(m 3),以单位长度的坝段为单位,通常把其断面分成若干个简单的几何图形分别计算;c γ-坝体砌石的重度,一般取23kN/m 3。

重力坝毕业设计计算书

重力坝毕业设计计算书
3.3.1 反弧段半径及特征点的确定.................................... - 32 3.3.2 水面线的计算................................................ - 33 3.3.3 直线段与曲线段的切点计算.................................... - 34 3.3.4 自然掺气后水面线的确定 ...................................... - 35 3.4 闸门设计 ..........................................................- 35 3.5 边墙设计 ..........................................................- 36 3.6 堰顶上游剖面设计 ..................................................- 36 -
参考文献 .................................................. - 44 -
精品资料
_______ቤተ መጻሕፍቲ ባይዱ______________________________________________________________________________________________________
1.1 建筑物级别 .........................................................- 1 1.2 设计洪水的计算 .....................................................- 1 -
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

院:土木工程学院专业:水利水电工程专业年级: 2012学号:学生姓名:杨林指导教师:邹爽老师2015年7月16日目录一、设计坝顶高程1.确定坝基开挖高程 (1)2.计算坝顶高程 (1)二、绘制坝基开挖线 (2)三、设计非溢流坝段1.设计实用剖面 (3)2.实用坝体剖面稳定及强度验算 (4)四、设计溢流坝段1.孔口形式及溢流坝前沿总长 (15)2.溢流面体型设计 (15)五、溢流坝段稳定验算1.溢流坝段剖面图 (18)2.设计洪水位状况 (19)3.校核洪水位情况 (21)六、设计消能工1.选择鼻坎形式 (24)2.确定挑角、鼻坎高程和反弧半径 (24)3.计算挑距和下游冲刷坑深度 (24)七、坝体细部构造拟定1.横缝布置 (28)2.坝顶的布置 (28)3.廊道系统 (28)4.横缝灌浆,固结灌浆,排水措施 (29)八、附录重力坝设计资料 (30)一、设计坝顶高程1.确定坝基开挖高程由相关水文、地质等资料初步估计坝高为50米左右,可建在微风化至弱风化上部基岩上,又下坝址河面高程1858.60m ,综合槽探、硐探、钻探和地表地质勘察资料,坝址区左右岸坡残坡积层厚度达3~5m ,局部地段深达10m ,河床上第四纪冲积覆盖层厚度为8.8m 左右;结合风化线深度,初步拟定坝基最低开挖高程为1843.50m 。

大坝校核洪水为500年一遇,坝体级别为4级。

2.计算坝顶高程坝顶应高于校核洪水位,坝顶上游防浪墙顶的高程应高于波浪顶高程,其与正常蓄水位或校核洪水位的高差,选择两者中防浪墙顶高程的高者作为选定高程。

(1).相关资料(2). 计算h l 根据官厅公式计算: 当20gDV =20~250 时,为累计频率5%的波高h 5%; 当20V gD=250~1000 时,为累计频率10%的波高h 10%; 本设计20V gD=(9.8×0.6×103)/20.72=13.723 故取h l ≈h 5%.(3).计算防浪墙顶高程及基本剖面坝高二、绘制坝基开挖线坝高超过100m时,坝可建在新鲜、微风化或弱风化下部基岩上;坝高在50~100m时,可建在微风化至弱风化上部基岩上;坝高小于50m时,可建在弱风化中部至上部基岩上。

本设计坝高为50.454m,根据地质资料坝基建在弱风化层上部基岩上。

开挖线见CAD附图。

三、设计非溢流坝段1.设计实用剖面(1).坝顶宽度一般取坝高的8%~10%,且不小于2m;此处坝高范围可取为:8%x50.454=4.036m、10%x50.454=5.045m。

综合取坝顶宽度为5m. (2).上下游坝坡坡率根据工程经验,一般情况下,上游坝坡坡率为n=0~0.2,常做成铅直、或上部铅直,下部倾斜;下游坝坡坡率为m=0.6~0.8。

考虑施工,枢纽布置,地质条件等因素,坝体上游面设计为上部铅直,下部倾斜,转折点取和淤沙高程等高,即为1876.25m,坡率为0.2;下游坝坡坡率取为0.8。

故可得坝体底宽:B=49x0.8+(1876.25-1843.50)x0.2=45.75m。

(3).坝体实用剖面参数2.实用坝体剖面稳定及强度验算帷幕灌浆中心线取距坝踵8m,取单宽1m进行计算。

砼的容重:γC =2.4 t/m3,水的容重:γW=1t/m3。

(1).设计洪水位情况(正常蓄水位情况与此相同)a. 实用剖面图b. 计算简图:c.荷载计算取1延米计算,坝底宽B=45.75m。

则:坝体自重: W2=r坝A2=2.4x(1886.25-1843.5)x34.2x0.5=1754.46t W3=r坝A3=2.4x5x(1893.954-1843.5)=605.448tW4=r坝A4=t水重:W1=r水A1tW5=r水A5107.256tW6=r水A6=1.0x(1892.50-1876.25)x6.55=106.438t水压力:P1=0.5r水H121892.50-1843.5)2=1200.5tP2= 0.5r水H22=-0.5x1.0x(1861.29-1843.5)2 =158.242t泥沙压力:P S=12r sb h S220tan(45)2ϕ-2xtan230o=143.008t扬压力:U1=(1861.29-1843.5)x1.0x45.75=813.893t U2=(45.75147.27tU3tU4t∑ = W1+ W2+ W3+ W4+ W5+ W6则W=1754.46+605.448+576.240+126.594+107.256+106.438=3276.436t∑ =U1+U2+U3+U4=813.893+147.27+62.42+93.63=1117.213t U∑ =P1-P2+ P S=1200.5-158.242+143.008=1185.266t Pd.稳点判定安全系数:根据 SL319-2005《混凝土重力坝设计规范》规定:水平截面上的正应力: 剪应力: 水平正应力: 主应力: 由上计算可得:运用期:坝踵铅直应力393.92kpa>0kpa ,没有出现拉应力,满足强度要求。

坝址铅直应力较小,为550kpa ,远小于坝基容许压应力。

施工期:坝址铅直应力:22'6'29361.486189037.48'99.8845.7545.75yd W M kpa B B σ•=-=-=∑∑为压应力,即满足拉应力小于0.1Mpa ,满足强度要求。

(2).校核洪水位a.计算简图b.计算各荷载取1延米计算,坝底宽B=45.75m。

则:坝体自重: W2=r坝A2tW3=r坝A3=2.4x5x(1893.954-1843.5)=605.448tW4=r坝A4=2.4x(1876.25-1843.5)x6.55x0.5=576.240t 水重:W1=r水A1=1.0x19.36x19.36149.92tW5=r水A5tW6=r水A6=1.0x(1892.71-1876.25)x6.55=107.813t水压力:P1=0.5r水H1271-1843.5)2=1210.81tP2=0.5r水H22=2.86-1843.5)2 =187.40t泥沙压力:P S=12r sb h S220tan(45)2ϕ-2xtan230o=143.008t扬压力:U1=(1862.86885.72tU2=(45.75-8)x(1892.71-1862.86=140.855tU3=8x(1892.71-1862.8659.70tU4=8x(1892.71-1862.8689.55t∑ = W1+ W2+ W3+ W4+ W5+ W6则W=1754.46+605.448+576.240+149.92+107.256+107.813=3301.137t∑=U1+U2+U3+U4=885.72+140.855+59.70+89.55=1175.825t U∑ =P1+P2+ P S=1210.81-187.40+143.008=1166.418t Pc.稳定判定安全系数:根据 SL319-2005《混凝土重力坝设计规范》规定:水平截面上的正应力: 剪应力: 水平正应力: 主应力: 由上计算可得:运用期:坝踵铅直应力399.50kpa>0kpa ,没有出现拉应力,满足强度要求。

坝址铅直应力较小,为568.75kpa ,远小于坝基容许压应力。

施工期:坝址铅直应力:22'6'29361.486189037.48'99.8845.7545.75ydW M kpa BB σ•=-=-=∑∑为压应力,即满足拉应力小于0.1Mpa ,强度满足要求。

四、设计溢流坝段1.孔口形式及溢流坝前沿总长采用孔口形式:开敞溢流式,溢流孔口设为3孔,每孔净宽10m;采用平面闸门;堰顶高程为1888.000m,溢流段净宽L=nb=3x10=30m。

由工程经验,采用平面闸门时需设闸门槽,工作闸门槽深0.5~2m,考虑工程级别,此处取1m;门槽处闸墩厚度不得小于1~1.5m,以保证有足够的强度,此处取1.5m;平面闸门多采用活动式启闭机,机距取10m。

由此溢流坝段溢流前沿总长为L0=nb+(n-1)d=30+2x1.5=33m.溢流坝段位于大坝中部。

2.溢流面体型设计溢流面由顶部直线段、中间直线段和反弧段三部分组成。

a.顶部曲线段WES坝面曲线的流量系数较大且剖面较廋,工程量较省,此处采用WES曲线,坝面曲线由方程控制。

坐标原点为堰顶最高点,水平右向为x轴,竖直向下为y轴。

WES型溢流堰顶部曲线以堰顶为界分上游段和下游段两部分。

上游段采用三圆弧方法或下列形式的曲线绘制:y H d =0.413(xH d)0.525−0.81(xH d)1.85式中:H d为定型设计水头,一般为校核洪水位时堰顶水头的75%~95%。

本设计采用三圆弧方法绘制上游段曲线:校核洪水位时的堰顶水:H0=1892.71-1888.00=4.71m则H dd=4m。

三圆弧绘制数据如下:X1=-0.175H d=-0.7m R1=0.5H d =2mX2=-0.276H d=-1.104m R2=0.2H d=0.8mX3=-0.282H d=-1.128m R3=0.04H d=0.16mWES型堰顶下游段曲线,当坝体上游面铅直时,按下式计算:x1.85=2.0H d0.85y取值计算得下表:b.中间直线段中间直线段坡率与非溢流坝段下游坡率一致,为1:0.8,与堰顶曲线相切与A点,对堰顶曲线方程x1.85=2.0Hd0.85y求一阶导数,其斜率应等于1:0.8。

即:y`=1.85x0.852x40.85=10.8解得X A=5.7m,带入堰顶曲线方程得Y A=3.85m。

c.反弧段a)确定反弧半径本设计水头为中水头,且下游基岩较为坚固,设计初步选用消能方式为挑流消能。

本设计鼻坎采用连续式。

下游反弧段反弧半径R=(4~10)h c,挑射角θ一般采用20o~25o。

h c 为校核洪水闸门全开时反弧段最低点处的水深。

R太小水流不平顺,过大会导致向下游延生过长,增加工程量。

综合取R=9h c, θ=25o。

查《水利学》得h c迭代公式:式中q为单宽流量,校核洪水位时:q =校核洪水时最大下泄流量溢流坝段净宽=75630=25.2m 3/s E 0为以收缩断面底部为基准断面的上游水流总能量。

E 0=1892.71—1861.29=31.42mφ为流量系数。

主要取决于上游堰高与设计水头之比。

P 1/H d =44.5/4=11.1>1.33,堰为高堰; 堰顶全水头与设计水头之比H 0/H d =4.71/4=1.17,查表计算φ0=0,带入式子迭代得h 1=1.06,h 2=1.08,h 3=1.08.故h c =1.08m 。

相关文档
最新文档