MAGMAIRON帮助文件(翻译)资料
magma中文手册

magma中⽂⼿册MAGMASOFT?4.0Manual Part one1.介紹(Introduction) ………………………………1.1MAGMASOFT? 可以提供你什麼?………………1.2如何成功的使⽤MAGMASOFT?………………1.3MAGMASOFT?的⽂件結構………………………1.4拼字跟⽤法………………………………………1.5疑問………………………………………………2.安裝(Installation)……………………………2.1 系統需求2.2 MAGMA安裝………………………………2.3 啟動MAGMASOFT? 執照………………2.3.1 擷取系統資訊………………………………2.3.2 從Email讀取系統和執照檔………………2.3.3 ⼿動輸⼊系統鑰匙………………………………2.3.4 ⼿動輸⼊執照鑰匙………………………………2.3.5 從檔案讀取系統鑰匙……………………………2.3.6 從檔案讀取執照鑰匙……………………………2.4 管理浮動執照………………………………2.4.1 顯⽰連結………………………………2.5 MAGMASOFT? 的專案………………………………2.6 MAGMASOFT? 的畫⾯………………………………2.7滑⿏鍵盤的⽤法………………………………3.專案管理(Project Administration)3.1開啟專案(Open project)………………………………3.2 產⽣新的專案(Create project)………………………3.3 產⽣新的版本(Create Version)…………………………3.4 刪除結果(Delete Result)…………………………3.5 刪除版本(Delete Version)……………………………3.6 刪除專案(Delete project)……………………………3.7專案資訊(Project info)………………………………4.前處理器(Preprocessor)4.1 開始幾何建構………………………………………4.2 管理幾何資料(Sheets)………………………………4.3 幾何資料庫(Geometry database)………………………4.4 輸⼊CAD資料(Importing CAD Data)…………………4.5 定義⾓度及精度(Definition of Angles & Accuracy)………4.6 選擇畫⾯(View options)………………………………4.7建構指令(Construction commands)……………………4.8操作指令(Manipulation commands)……………………4.9控制點(Control Point)………………………………4.10⽀援幾何功能(Support functions)………………………5.網格化(Mesh Generation)5.1 概論(Overview)………………………………5.1.1格⼦⼤⼩ / ‘wall thickness’………………………5.1.2格⼦再細化/ ‘accuracy’, ‘element size’……………5.1.3格⼦的修飾/ ‘smoothing’………………………5.1.4個⼦的外觀/ ‘aspect ratio’………………………5.2材料群的選⽤與網格化的改善………………………5.3產⽣網格(Generate mesh)……………………………5.4檢查網格(Check enmeshment)………………………5.4.1觀看網格(view mesh)…………………………5.4.2觀看網格品質(view mesh quality)………………6.模擬計算(Simulation)6.1 概論(Overview)………………………………6.1.1 充填(Mold filling)………………………………6.1.2 凝固(Solidification)…………………………6.1.3 充填和凝固………………………………6.1.4 批次⽣產(Batch production)……………………6.2 模擬參數定義(Defining simulation parameters)…………6.2.1 材料 / ‘Material definition’………………………6.2.2 熱傳導係數/ ‘Heat transfer definition’…………MAGMAshakeout選項…………………………6.2.36.2.4 充填 / ‘filling’………………………………6.2.5 注湯速率/ ‘pouring rate’………………………6.2.6 凝固 /‘solidification’……………………………6.2.7 批次⽣產/ ‘batch production’……………………6.3 模擬的開始與控制(Simulation control)…………………6.4 錯誤訊息(Error and Warning messages)…………………7. 選項與模組7.1模組………………………………7.2 選項………………………………1介紹(Introduction)鑄造就是將⾦屬液倒⼊模⽳中成形的⼀種⽣產技術,也是⼀種從設計到成品最快速的⽅法之⼀。
铝合金压铸模英文翻译

program, and then other sections such as biscuit, runner, gate, and overflow were also modeled in the order. Figure 1 shows an example of mold modeling to manufacturer clutch housing parts in application of the high-pressure die casting method. Five gates were used, and the thickness was 3 mm. Figure 2 shows the 3D image of a mold in actual size modeled by using Pro/ENGINEER. The total weight of the mold weighed in 3D modeling was about 12.52 ton, the fixed mold about 3.83 ton, and the moving mold about 8.69 ton, respectively. Two slide cores were operated with five tunnel pins. Specially applied was a chill block with no vacuum device. To prevent dispersion toward the chill block upon casting, a vent insert was added between the moving core and chill block as a shock-observing device to decelerate melting. A slipper was added around the four guide pins to handle problems that might occur to the mold. To prevent the slide core from being pushed toward the hydraulic cylinder upon closing the mold, a retrograding-preventive plate was installed on the fixed mold base. A distributor in contact with the sleeve was designed in a plate type. The hydraulic cylinder applied to
铸造模拟软件MAGMA操作教程

图(2_13)
说明:如图(2_13)中选择,若选择move before(移动方式)则inlet会放在gating1前面。
参照Overlay原理进行排序。一般砂模(sandm)放在最前面,铸件(cast)放在最后。
2-7、设置点
图(2_14)
流迹点选择在inlet下,20个点左右。热点选择在入水口相连的铸件内,选择热点时步骤2替换为THERMO。
2-3、载入.stl档
接上动把.stl档存在CMD文件夹下后,在创建专案的界面(图(2_1))按下preprocess 键,进入载档界面.见图(2_9)
图(2_9)
图(2_10)
载入顺序如上图所标的序号和箭头指向。注意在载前一定要确定群组属性正确。当载入一物件
后,欲载入同样的群组另一物件。则需要在以上图中的3操作之前按下MAT ID +键(上图虚线框标示)。
4_7 应力设置(stress simulation options)
图(4_7)
4_8 运算
5、后处理
6、Info
五、数据库(DATABASE)
设置完成之后,选择图(2_9)中的SAVE ALL AS1存档。然后离开界面进行下一动作。
3、切网格
图(3_1)
自动切割一般设置3百万的网格数。对于很薄的gating和ingate需要进行单独细切,视切出网格的质量而定。我们用细切的网格数自动切割时,若网格质量比细切的要好,则需要检查一下.Stl档有没有错误。
在建构实体时有一些区域重合。如图(2_7),ingate连接cast和gating,其和两者都有交接的部分。我们希望各部分独立不干涉,保证分析的精确。利用overlay原理切割重合区域。如图(2_8)排在前面的ingate被排在后面的gating和cast切割。在载入.stl档后需利用此原理进行排序。
Maya中英对照

08/26] MAYA 中英文对照表File 文件模块New Scene 建立新场景Open Scene 打开场景Save Scene 保存场景Save Scene As 场景另存Save Preferences 保存参数选择Optinize Scene Size 优化场景尺寸Import 导入Export ALL 导出所有Export Selection 选择性导出View Inage 观看图像View Sequence 观看序列Create Reference 创建参数Reference Editor 参考编辑器Project 项目Recent Files 打开最近的文件Recent Increments 最近增加文件Recent Projects 打开最近的工程Exit 退出Edit 编辑模块Undo 取消上一次操作Redo 恢复上一次操作Repeat“NURBS Cube” 重复最后一次操作Recent Commands 打开最近的命令Paste 粘贴Key 关键帧Delete FBIK Keys Delete by Type 按类型单个删除Delete ALL by Type 按类型全部删除Selecl ALL 选择所有Select Hierarchy 选择层级Invert Selection 反向选择Select Llby Type 全选同一类型Quick Select Sets 快速选择Paint Selection Tool 手绘选择工具Select Edge Loop Tool 选择循环边工具Select Edge Edge Tool 选择环形边工具Select Edge Border Tool 选择边界边工具Duplicate 复制Duplicate with Trasform 快速复制Group 群组Ungroup 取消群组Level of Detail 标准细节Parent 指定父子关系Unparent 取消父子关系Modify 修改模块Transformation Tools 变化工具//////////// Reset Ttansformations 复位变换Freeze Transformations 归零Snap Align Objects 吸附对齐物品/////////// Align ToolSnao Together ToolEvaluate Nodes 授权节点///////Make live 建立激活对象Center Pivot 对齐中心点Prefix Hierarchy Name 前缀分层结构名Search and Replaces 搜索换名Add Attribute 增加属性Edit Attribute 编辑属性Delete Attribute 删除属性Covert 转换//////////Replace ObjectsPaint Scripts Tool 绘制脚本工具Paint Attribute Tool 绘制属性工具Create模块NURBS Primitives 原始NURBS模型Polygon Primiives 原始多边形模型Subdiv Primitives 细分表面模型Volume Primitives 体积模型Lights 灯光建立Cameras 摄影机CV Curve Tool CV样条工具Pencil Cuve Tool 笔迹绘制工具Arc Tools 圆弧工具Measure Tools 测量工具Text 文本Adobe Illustrator Object 项目工程Construction Plane 构造平面Locator 定位器Annotation 注解Empty Group 空组Sets 集Display模块Grid 网格Heads Up Display 视图窗显示器UI Elements 基本用户界面Hide 隐藏Show 显示Wireframe Color 线框颜色Object Display 物体显示Transform DisplayPolygons 多边形NURBSSubdiv Surfaces 细分表面AnimationRenderingWindows模块General Editors 常规编辑器Rendering Editors 渲染编辑器Ainmation Editors 动画编辑器Relationship Editors 关联编辑Settings/Preferences 设置/参数选择-----------------------Attribute Editor 属性编辑器Outliner 大纲编辑器Hypergraph:Hierarchy 超级图表Hypergraph?Connections------------------------Paint Effects 笔触效果UV Texture Editor UV纹理贴图编辑窗------------------Playblast 快速播放动画----------------View Arrangement 视图排列方式Saved Layouts 保存过的视窗布局Save Current Layout 保存当前的页面布局---------------------Frame All in All Views 最大显示所有视窗内布局Frame Selection in All Views 最大显示选择物----------------------------Minimize Application 最小化显示Raise Main Window 开启重要部分窗口Raise Application Windows 恢复视窗显示Scale Limit Tool缩放限制工具Reset Transformations重新设置变形控制Freeze Transformations冻结变形控制Enable Nodes授权动画节点All所有IK solvers逆向运动连接器Constraints约束Expressions表达式Particles粒子Rigid Bodies刚体Snapshots快照Disable Node废弃动画节点Make Live激活构造物Center Pivot置中枢轴点Prefix Hierarchy Names定义前缀Add Attribute增加属性Measure测量Distance Tool距离工具Parameter Tool参数工具Arc Length Tool弧度工具Animated Snapshot动画快照Animated Sweep由动画曲线创建几何体曲面Display显示Geometry几何体Backfaces背面Lattice Points车削点Lattice Shape车削形Local Rotation Axes局部旋转轴Rotate Pivots旋转枢轴点Scale Pivots缩放枢轴点Selection Handles选定句柄NURBS Components NURBS元素CVs CV曲线Edit Points编辑点Hulls可控点Custom定制NURBS Smoothness NURBS曲面光滑处理Hull物体外壳Rough边框质量Medium中等质量Fine精细质量Custom定制Polygon Components多边形元素Custom Polygon Display定制多边形显示Fast Interaction快速交错显示Camera/Light Manipulator照相机/灯光操作器Sound声音Joint Size关节尺寸IK Handle Size IK把手尺寸Window窗口General Editors通用编辑器Set Editor系统设置编辑器Attribute Spread Sheet属性编辑器Tool Settings工具设置Filter Action Editor滤镜动作编辑器Channel Control通道控制信息Connection Editor连接编辑器Performance Settings性能设置Script Editor Script编辑器Command Shell命令窗口Plug-in Manager滤镜管理器Rendering Editors渲染编辑器Rendering Flags渲染标记Hardware Render Buffer硬件渲染缓冲区Render View渲染视图Shading Groups Editor阴影组编辑器Texture View质地视图Shading Group Attributes阴影组属性Animation Editors动画编辑器Graph Editor图形编辑器Dope SheetBlend Shape融合形Device Editor设备编辑器Dynamic Relationships动态关系Attribute Editor属性编辑器Outliner框架Hypergraph超图形Multilister多功能渲染控制Expression Editor表达式编辑器Recent Commands当前命令Playblast播放预览View Arangement视图安排Four四分3 Top Split上三分3 Left Split左三分3 Right Split右三分3 Bottom Split底部三分2 Stacked二叠分2 Side By Side二平分Single单图Previous Arrangement前次安排Next Arrangement下次安排Saved Layouts保存布局Single Perspective View单透视图Four View四分图Persp/Graph/Hyper透视/图形/超图形Persp/Multi/Render透视/多功能/渲染Persp/Multi/Outliner透视/多功能/轮廓Persp/Multi透视/多功能Persp/Outliner透视/轮廓Persp/Graph透视/图形Persp/Set Editor透视/组编辑器Edit Layouts编辑布局Frame Selected in All Views所有视图选定帧Frame All in All Views所有视图的所有帧Minimize Application最小化应用Raise Application Windows移动窗口向前Options可选项General Preferences一般设置UI Preferences用户界面设置Customize UI定制用户界面Hotkeys快捷键Colors颜色Marking Menus标记菜单Shelves书架Panels面板Save Preferences保存设置Status Line状态栏Shelf书架Feedback Line反馈栏Channel Box通道面板Time Slider时间滑动棒Range Slider范围滑动棒Command Line命令行Help Line帮助行Show Only Viewing Panes仅显示视图面板Show All Panes显示所有面板Modeling建模系统Primitives基本物体Create NURBS创建NURBS物体Sphere球体Cube立方体Cylinder圆柱体Cone圆台(锥)体Plane平面物体Circle圆Create Polygons创建多边形物体Sphere球体Cube立方体Cylinder圆柱体Cone圆台(锥)体Plane平面物体Torus面包圈Create Text创建文本Create Locator创建指示器Construction Plane构造平面Create Camera创建照相机Curves创建曲线CV Curve Tool CV曲线工具EP Curve Tool EP曲线工具Pencil Curve Tool笔曲线工具Add Points Tool加点工具Curve Editing Tool曲线编辑工具Offset Curve曲线移动Offset Curve On Surface曲线在表面移动Project Tangent曲线切线调整Fillet Curve带状曲线Rebuild Curve重建曲线Extend Curve扩展曲线Insert Knot插入节点Attach Curves连接曲线Detach Curves断开曲线Align Curves对齐曲线Open/Close Curves打开/关闭曲线Reserse Curves反转曲线Duplicate Curves复制曲线CV Hardness硬化曲线Fit B-spline适配贝塔曲线Surfaces曲面Bevel斜角Extrude凸出Loft放样Planar曲面Revolve旋转Boundary边界Birail 1 Tool二对一工具Birail 2 Tool二对二工具Birail 3+ Tool二对三工具Circular Fillet圆边斜角Freeform Fillet自由形斜角Fillet Blend Tool斜角融合工具Edit Surfaces编辑曲面Intersect Surfaces曲面交叉Project Curve投影曲线Trim Tool修整曲线工具Untrim Surfaces撤消修整Rebuild Surfaces重建曲面Prepare For Stitch准备缝合Stitch Surface Points点缝合曲面Stitch Tool缝合工具NURBS to Polygons NURBS转化为多边形Insert Isoparms添加元素Attach Surfaces曲面结合Detach Surfaces曲面分离Align Surfaces曲面对齐Open/Close Surfaces打开/关闭曲面Reverse Surfaces反转曲面Polygones多边形Create Polygon Tool创建多边形工具Append to Polygon Tool追加多边形Split Polygon Tool分离多边形工具Move Component移动元素Subdivide多边形细化Collapse面转点Edges边界Soften/Harden柔化/硬化Close Border关闭边界Merge Tool合并工具Bevel斜角Delete and Clean删除和清除Facets面Keep Facets Together保留边线Extrude凸出Extract破碎Duplicate复制Triangulate三角分裂Quadrangulate四边形合并Trim Facet Tool面修整工具Normals法向Reverse倒转法向Propagate传播法向Conform统一法向Texture质地Assign Shader to Each Projection指定投影Planar Mapping平面贴图Cylindrical Mapping圆柱体贴图Spherical Mapping球体贴图Delete Mapping删除贴图Cut Texture裁剪纹理Sew Texture斜拉纹理Unite联合Separate分离Smooth光滑Selection Constraints选定限定工具Smart Command Settings改变显示属性Convert Selection转化选定Uninstall Current Settins解除当前设定Animation动画模块Keys关键帧Settings设置关键帧Auto Key自动设置关键帧Spline样条曲线式Linear直线式Clamped夹具式Stepped台阶式Flat平坦式Other其他形式Set Driven Key设置驱动关键帧Set设置Go To Previous前移Go To Next后退Set Key设置帧Hold Current Keys保留当前帧Paths路径Set Path Key设置路径关键帧Attach to Path指定路径Flow Path Object物体跟随路径Skeletons骨骼Joint Tool关节工具IK Handle Tool反向动力学句柄工具IK Spline Handle Tool反向动力学样条曲线句柄工具Insert Joint Tool添加关节工具Reroot Skeleton重新设置根关节Remove Joint去除关节Disconnect Joint解除连接关节Connect Joint连接关节Mirror Joint镜向关节Set Preferred Angle设置参考角Assume Preferred AngleEnable IK Solvers反向动力学解算器有效EIk Handle Snap反向动力学句柄捕捉有效ESelected IK Handles反向动力学句柄有效DSelected IK Handles反向动力学句柄无效Deformations变形Edit Menbership Tool编辑成员工具Prune Membership变形成员Cluster簇变形Lattice旋转变形Sculpt造型变形Wire网格化变形Lattice旋转Sculpt造型Cluster簇Point On Curve线点造型Blend Shape混合变形Blend Shape Edit混合变形编辑Add增加Remove删除Swap交换Wire Tool网格化工具Wire Edit网格编辑Add增加Remove删除Add Holder增加定位曲线Reset重置Wire Dropoff Locator网线定位器Wrinkle Tool褶绉变形工具Edit Lattice编辑旋转Reset Lattice重置旋转Remove Lattice Tweeks恢复旋转Display I-mediate Objects显示中间物体Hide Intermediate Objects隐藏中间物体Skinning皮肤Bind Skin绑定蒙皮Detach Skin断开蒙皮Preserve Skin Groups保持皮肤组Detach Skeleton分离骨骼Detach Selected Joints分离选定关节Reattach Skeleton重新连接骨骼Reattach Selected Joints重新连接关节Create Flexor创建屈肌Reassign Bone Lattice Joint再指定骨头关节Go to Bind Pose恢复骨头绑定Point关节Aim目标Orient方向Scale缩放Geometry几何体Normal法向RenderingLighting灯光Create Ambient Light创建环境光Create Directional Light创建方向灯Create Point Light创建点光源Create Spot Light创建聚光灯Relationship Panel关系面板Light Linking Tool灯光链接工具Shading 阴影Shading Group Attributes阴影组属性Create Shading Group创建阴影组Lambert朗伯材质Phong Phong材质Blinn布林材质Other其他材质Assign Shading Group指定阴影组InitialParticleSE初始粒子系统InitialShadingGroup初始阴影组Shading Group Tool阴影组工具Texture Placement Tool纹理位移工具Render渲染Render into New Window渲染至新窗口Redo Previous Render重复上次渲染Test Resolution测试分辨率Camera Panel照相机面板Render Globals一般渲染Batch Render批渲染Cancel Batch Render取消批渲染Show Batch Render显示批渲染Dynamics动力学系统Settings设置Initial State初始状态Set For Current当前设置Set For All Dynamic设置总体动力学特性Rigid Body Solver刚体解算器Dynamics Controller动力学控制器Particle Collision Events粒子爆炸Particle Caching粒子缓冲Run-up and Cache执行缓冲Cache Current Frame缓冲当前帧Set Selected Particles设置选定粒子Dynamics On动力学开Dynamics Off动力学关Set All Particles设置所有粒子Particles All On When Run执行时粒子系统开Auto Create Rigid Body自动创建刚体Particles粒子Particle Tool粒子工具Create Emitter创建发射器Add Emitter增加发射器Add Collisions增加碰撞Add Goal增加目标Fields场Create Air创建空气动力场Create Drag创建拖动场Create Gravity创建动力场Create Newton创建牛顿场Create Radial创建辐射动力场Create Turbulence创建震荡场Create Uniform创建统一场Create V ortex创建涡流场Add Air增加空气动力场Add Newton增加牛顿场Add Radial增加辐射场Add Turbulence增加震荡场Add Uniform增加统一场Add Vortex增加涡流场Connect连接Connect to Field场连接Connect to Emitter发射器连接Connect to Collision碰撞连接Bodies柔体和刚体Create Active Rigid Body创建正刚体Move Tool移动工具Rotate Tool旋转工具Scale Tool缩放工具Show Manipulator Tool显示手动工具Default Object Manipulator默认调节器Proportional Modi Tool比例修改工具Move Limit Tool移动限制工具Rotate Limit Tool旋转限制工具Scale Limit Tool缩放限制工具Reset Transformations重新设置变形控制Freeze Transformations冻结变形控制Enable Nodes授权动画节点All所有IK solvers逆向运动连接器Constraints约束Expressions表达式Particles粒子Rigid Bodies刚体Snapshots快照Disable Node废弃动画节点Make Live激活构造物Center Pivot置中枢轴点Prefix Hierarchy Names定义前缀Add Attribute增加属性Measure测量Distance Tool距离工具Parameter Tool参数工具Arc Length Tool弧度工具Animated Snapshot动画快照Animated Sweep由动画曲线创建几何体曲面Display显示Geometry几何体Backfaces背面Lattice Points车削点Lattice Shape车削形Local Rotation Axes局部旋转轴Rotate Pivots旋转枢轴点Scale Pivots缩放枢轴点Selection Handles选定句柄NURBS Components NURBS元素CVs CV曲线Edit Points编辑点Hulls可控点Custom定制NURBS Smoothness NURBS曲面光滑处理Hull物体外壳Rough边框质量Medium中等质量Fine精细质量Custom定制Polygon Components多边形元素Custom Polygon Display定制多边形显示Fast Interaction快速交错显示Camera/Light Manipulator照相机/灯光操作器Sound声音Joint Size关节尺寸IK Handle Size IK把手尺寸Window窗口General Editors通用编辑器Set Editor系统设置编辑器Attribute Spread Sheet属性编辑器Tool Settings工具设置Filter Action Editor滤镜动作编辑器Channel Control通道控制信息Connection Editor连接编辑器Performance Settings性能设置Script Editor Script编辑器Command Shell命令窗口Plug-in Manager滤镜管理器Rendering Editors渲染编辑器Rendering Flags渲染标记Hardware Render Buffer硬件渲染缓冲区Render View渲染视图Shading Groups Editor阴影组编辑器Texture View质地视图Shading Group Attributes阴影组属性Animation Editors动画编辑器Graph Editor图形编辑器Dope SheetBlend Shape融合形Device Editor设备编辑器Dynamic Relationships动态关系Attribute Editor属性编辑器Outliner框架Hypergraph超图形Multilister多功能渲染控制Expression Editor表达式编辑器Recent Commands当前命令Playblast播放预览View Arangement视图安排Four四分3 Top Split上三分3 Left Split左三分3 Right Split右三分3 Bottom Split底部三分2 Stacked二叠分2 Side By Side二平分Single单图Previous Arrangement前次安排Next Arrangement下次安排Saved Layouts保存布局Single Perspective View单透视图Four View四分图Persp/Graph/Hyper透视/图形/超图形Persp/Multi/Render透视/多功能/渲染Persp/Multi/Outliner透视/多功能/轮廓Persp/Multi透视/多功能Persp/Outliner透视/轮廓Persp/Graph透视/图形Persp/Set Editor透视/组编辑器Edit Layouts编辑布局Frame Selected in All Views所有视图选定帧Frame All in All Views所有视图的所有帧Minimize Application最小化应用Raise Application Windows移动窗口向前Options可选项General Preferences一般设置UI Preferences用户界面设置Customize UI定制用户界面Hotkeys快捷键Colors颜色Marking Menus标记菜单Shelves书架Panels面板Save Preferences保存设置Status Line状态栏Shelf书架Feedback Line反馈栏Channel Box通道面板Time Slider时间滑动棒Range Slider范围滑动棒Command Line命令行Help Line帮助行Show Only Viewing Panes仅显示视图面板Show All Panes显示所有面板Modeling建模系统Primitives基本物体Create NURBS创建NURBS物体Sphere球体Cube立方体Cylinder圆柱体Cone圆台(锥)体Plane平面物体Circle圆Create Polygons创建多边形物体Sphere球体Cube立方体Cylinder圆柱体Cone圆台(锥)体Plane平面物体Torus面包圈Create Text创建文本Create Locator创建指示器Construction Plane构造平面Create Camera创建照相机Curves创建曲线CV Curve Tool CV曲线工具EP Curve Tool EP曲线工具Pencil Curve Tool笔曲线工具Add Points Tool加点工具Curve Editing Tool曲线编辑工具Offset Curve曲线移动Offset Curve On Surface曲线在表面移动Project Tangent曲线切线调整Fillet Curve带状曲线Rebuild Curve重建曲线Extend Curve扩展曲线Insert Knot插入节点Attach Curves连接曲线Detach Curves断开曲线Align Curves对齐曲线Open/Close Curves打开/关闭曲线Reserse Curves反转曲线Duplicate Curves复制曲线CV Hardness硬化曲线Fit B-spline适配贝塔曲线Surfaces曲面Bevel斜角Extrude凸出Loft放样Planar曲面Revolve旋转Boundary边界Birail 1 Tool二对一工具Birail 2 Tool二对二工具Birail 3+ Tool二对三工具Circular Fillet圆边斜角Freeform Fillet自由形斜角Fillet Blend Tool斜角融合工具Edit Surfaces编辑曲面Intersect Surfaces曲面交叉Project Curve投影曲线Trim Tool修整曲线工具Untrim Surfaces撤消修整Rebuild Surfaces重建曲面Prepare For Stitch准备缝合Stitch Surface Points点缝合曲面Stitch Tool缝合工具NURBS to Polygons NURBS转化为多边形Insert Isoparms添加元素Attach Surfaces曲面结合Detach Surfaces曲面分离Align Surfaces曲面对齐Open/Close Surfaces打开/关闭曲面Reverse Surfaces反转曲面Polygones多边形Create Polygon Tool创建多边形工具Append to Polygon Tool追加多边形Split Polygon Tool分离多边形工具Move Component移动元素Subdivide多边形细化Collapse面转点Edges边界Soften/Harden柔化/硬化Close Border关闭边界Merge Tool合并工具Bevel斜角Delete and Clean删除和清除Facets面Keep Facets Together保留边线Extrude凸出Extract破碎Duplicate复制Triangulate三角分裂Quadrangulate四边形合并Trim Facet Tool面修整工具Normals法向Reverse倒转法向Propagate传播法向Conform统一法向Texture质地Assign Shader to Each Projection指定投影Planar Mapping平面贴图Cylindrical Mapping圆柱体贴图Spherical Mapping球体贴图Delete Mapping删除贴图Cut Texture裁剪纹理Sew Texture斜拉纹理Unite联合Separate分离Smooth光滑Selection Constraints选定限定工具Smart Command Settings改变显示属性Convert Selection转化选定Uninstall Current Settins解除当前设定Animation动画模块Keys关键帧Settings设置关键帧Auto Key自动设置关键帧Spline样条曲线式Linear直线式Clamped夹具式Stepped台阶式Flat平坦式Other其他形式Set Driven Key设置驱动关键帧Set设置Go To Previous前移Go To Next后退Set Key设置帧Hold Current Keys保留当前帧Paths路径Set Path Key设置路径关键帧Attach to Path指定路径Flow Path Object物体跟随路径Skeletons骨骼Joint Tool关节工具IK Handle Tool反向动力学句柄工具IK Spline Handle Tool反向动力学样条曲线句柄工具Insert Joint Tool添加关节工具Reroot Skeleton重新设置根关节Remove Joint去除关节Disconnect Joint解除连接关节Connect Joint连接关节Mirror Joint镜向关节Set Preferred Angle设置参考角Assume Preferred AngleEnable IK Solvers反向动力学解算器有效EIk Handle Snap反向动力学句柄捕捉有效ESelected IK Handles反向动力学句柄有效DSelected IK Handles反向动力学句柄无效Deformations变形Edit Menbership Tool编辑成员工具Prune Membership变形成员Cluster簇变形Lattice旋转变形Sculpt造型变形Wire网格化变形Lattice旋转Sculpt造型Cluster簇Point On Curve线点造型Blend Shape混合变形Blend Shape Edit混合变形编辑Add增加Remove删除Swap交换Wire Tool网格化工具Wire Edit网格编辑Add增加Remove删除Add Holder增加定位曲线Reset重置Wire Dropoff Locator网线定位器Wrinkle Tool褶绉变形工具Edit Lattice编辑旋转Reset Lattice重置旋转Remove Lattice Tweeks恢复旋转Display I-mediate Objects显示中间物体Hide Intermediate Objects隐藏中间物体Skinning皮肤Bind Skin绑定蒙皮Detach Skin断开蒙皮Preserve Skin Groups保持皮肤组Detach Skeleton分离骨骼Detach Selected Joints分离选定关节Reattach Skeleton重新连接骨骼Reattach Selected Joints重新连接关节Create Flexor创建屈肌Reassign Bone Lattice Joint再指定骨头关节Go to Bind Pose恢复骨头绑定Point关节Aim目标Orient方向Scale缩放Geometry几何体Normal法向RenderingLighting灯光Create Ambient Light创建环境光Create Directional Light创建方向灯Create Point Light创建点光源Create Spot Light创建聚光灯Relationship Panel关系面板Light Linking Tool灯光链接工具Shading 阴影Shading Group Attributes阴影组属性Create Shading Group创建阴影组Lambert朗伯材质Phong Phong材质Blinn布林材质Other其他材质Assign Shading Group指定阴影组InitialParticleSE初始粒子系统InitialShadingGroup初始阴影组Shading Group Tool阴影组工具Texture Placement Tool纹理位移工具Render渲染Render into New Window渲染至新窗口Redo Previous Render重复上次渲染Test Resolution测试分辨率Camera Panel照相机面板Render Globals一般渲染Batch Render批渲染Cancel Batch Render取消批渲染Show Batch Render显示批渲染Dynamics动力学系统Settings设置Initial State初始状态Set For Current当前设置Set For All Dynamic设置总体动力学特性Rigid Body Solver刚体解算器Dynamics Controller动力学控制器Particle Collision Events粒子爆炸Particle Caching粒子缓冲Run-up and Cache执行缓冲Cache Current Frame缓冲当前帧Set Selected Particles设置选定粒子Dynamics On动力学开Dynamics Off动力学关Set All Particles设置所有粒子Particles All On When Run执行时粒子系统开Auto Create Rigid Body自动创建刚体Particles粒子Particle Tool粒子工具Create Emitter创建发射器Add Emitter增加发射器Add Collisions增加碰撞Add Goal增加目标Fields场Create Air创建空气动力场Create Drag创建拖动场Create Gravity创建动力场Create Newton创建牛顿场Create Radial创建辐射动力场Create Turbulence创建震荡场Create Uniform创建统一场Create V ortex创建涡流场Add Air增加空气动力场Add Newton增加牛顿场Add Radial增加辐射场Add Turbulence增加震荡场Add Uniform增加统一场Add V ortex增加涡流场Connect连接Connect to Field场连接Connect to Emitter发射器连接Connect to Collision碰撞连接Bodies柔体和刚体Create Active Rigid Body创建正刚体Create Passive Rigid Body创建负刚体Create Constraint创建约束物体Create Soft Body创建柔体Create Springs创建弹簧Set Active Key设置正向正Set Passive Key设置负向正Help帮助Product Information产品信息Help帮助。
基于MAGMA模拟软件的球墨铸铁件硬度预测

基于MAGMA模拟软件的球墨铸铁件硬度预测张晓锋1,徐刚2(1.上海圣德曼铸造有限公司,上海201805;2.同济大学汽车学院,上海201805)摘要:介绍了一种利用铸造模拟分析软件预测铸铁件硬度的方法。
球墨铸铁件在冷却过程中Z其共析转变过程的冷却速度会影响球墨铸铁珠光体的析出,从而影响铸件的硬度,利用MAGMA模拟分析软件对球墨铸铁件冷却曲线进行分析,计算共析转变过程中不同位置在不同冷却条件下的冷却速率,通过实际位置硬度检测,找到二者的通过拟曲线,实现对铸件其位置硬度预测。
出:实际的硬度值不共析冷却速率有关,同到学成分、工艺布局、铸件形等影响。
在其变一的下,通过实测不同位置的硬度拟的。
关键词:球墨铸铁;模拟;冷却速率;共析转变中图分类号:TG255文献标志码:B文章编号:1003-8345(2021)03-0031-05DOI:10.3969/j.issn.1003-8345.2021.03.008Hardness Prediction of Nodular Iron Castings Based on MAGMA Simulation SoftwareZHANG Xiao-feng1,XU Gang2(1.Shanghai Sandmann Foundry Co.,LtB.,Shanghai201805,China;2.School of Automotive Engineering,Tongji University,Shanghai201805,China)Abstract:A method for predicting the hardness of iron casting by using simulation analysis software was introduced.In the cooling process of nodular iron castings, the cooling rate of the eutectoid transformation process would affect the pearlite precipitation of nodular iron,thus affect the hardness of castings,using MAGMA simulation analysis software to analyze the cooling curve of nodular iron,to calculate the cooling rate of different positions under different cooling conditions during the eutectoid transformation, and through detecting the actual position hardness,find their relationship,and through the fitted curve to achieve castings hardness prediction of the other position of casting.It was pointed out finally the actual hardness value was not only related to the eutectoid cooling rate,but also affected by the chemical composition,casting method layout, casting shape and so on.It was necessary to determine the fitting function by measuring the hardness values at different positions on the premise of keeping the same as possible at other change points.Key words:nodular iron;numeral simulation;cooling rate;eutectoid transformation球墨铸铁用的一种铸铁,其有的力学,工艺对,制造成,用于汽车等。
optimazation of foundry process

Application of a Multi Objective Genetic Algorithm and a Neural Network to the optimisation of foundry processes.G.Meneghetti *, V. Pediroda**, C. Poloni ***Engin Soft Trading Srl, Italy** Dipartiento di Energetica, Università di Trieste, ItalyAbstractAim of the work was the analysis and the optimisation of a ductile iron casting using the Frontier software. Five geometrical and technological variables were chosen in order to maximise three design objectives. The calculations were performed using the software MAGMASOFT, devoted to the simulation of foundry processes based on fluid-dynamics, thermal and metallurgical theoretical approaches. Results are critically discussed by comparing the traditional and the optimised solution.1. IntroductionA very promising field for computer simulation techniques is certainly given by the foundry industry. The possibility of reliably estimating both the fluid-dynamics, thermal and microstructural evolution of castings (from the pouring of the molten alloy into the mould till the complete solidification) and the final properties are very interesting. In fact if the final microstructure and then the mechanical properties of a casting can be predicted by numerical simulation, the a-priori optimisation of the process parameters (whose number is usually high) can be carried out by exploring different technological solutions with significant improvements in the quality of the product, managing of human and economical resources and time-savings.This approach is extremely new in foundry and in this work an exploratory project aimed at the process optimisation of an industrial ductile iron casting will be presented.2. The simulation of foundry processes and foundamental equationsFrom a theoretical point of view, a foundry process can be considered as the sequence of various events [1-4]:-the filling of a cavity by means of a molten alloy, as described by fluid-dynamics laws (Navier-Stokes equation),-the solidification and cooling of the alloy, according to the heat transfer laws (Fourier equation),-the solid state transformations, related to the thermodynamics and the kinetics.A full understanding of the whole foundry process requires an investigation throughout all these three phenomena. However under some hypotheses (regular filling of the mould cavity, homogeneous temperature distribution at the end of filling, etc.) the analyses of the solidification and the solid state transformation only can lead to reliable estimation of the final microstructure and of the properties of the casting.The accuracy in simulating the solidification process depends mainly on:- the use of proper thermophysical properties of the materials involved in the process, taking into account their change with temperature,- the correct definition of the starting and boundary conditions, with particular regard to the heat transfer coefficients.From a numerical point of view, the investigation of the solidification process could be carried out by means of a pure heat flow calculation described by Fourier’s law of unsteady heat conduction :∂∂ρ∂∂λ∂∂t ()x [x C T T p j j=However a more correct evaluation requires to incorporate the additional heat transport by convective movement of mass due to temperature dependent shrinkage of the solidifying mush.Doing that temperature-dependent density functions are needed, so that the shrinkage can be calculated basing on the actual temperature loss. The total metal shrinkage within one time interval will lead to a corresponding metal volume flowing from the feeder into the casting passing through the feeder-neck. The actual temperature distribution in the feeder neck can be calculated on the basis of the following equation :∂∂ρ∂∂ρ∂∂λ∂∂t ()x (u )x [x ]C T C T T S p j p j j j+=+where the second term on the left hand side of the equation is the convective term while the first one on the right hand side is the conductive term. S denotes the additional internal heat source. The additional heat transport by convective movement of mass means that feeding may last much longer than being calculated by heat flow based uniquely on conduction.Anyway, when the feeder-neck freezes to a certain temperature, the feeding mechanism locks.Therefore the solidification of any other portion of the cast, now insulated, will take place independently from one another and the feed metal required during solidification will come from the remaining liquid. The final volume shrinkage will result in a certain porosity, which typically will be located at the hot spots.From the point of view of the real industrial interest, the above phenomena and the related equations can be approached only numerically: in fact complex 3D geometries have to be taken into account, as well as manufacturing parameters ensuring compliance with temperature-dependent thermophysical properties of the materials, production and process parameters. Finite elements,finite differences, control volumes or a combination of these are typical methods implemented in the software packages [2-3].The final result of the simulation is the knowledge of the actual feeding conditions, which is the basis for correctly design the size of feeders. It must be recalled that this knowledge-based approach is often by-passed by the use of empirical rules and in most cases the optimisation of the feeder size is not really performed (so that the feeders are simply oversized) or it is carried out by means of expensive in-field trial-and-correction procedures.The analyses were performed by using the MAGMASOFT ® software, specifically devoted to the simulation of foundry processes, based on fluid-dynamics, thermal and metallurgical theoretical approaches. In particular MAGMASOFT has a module, named MAGMAIron, devoted to the simulation of mould filling, casting solidification, solid state transformation, with the related mechanical properties (such as hardness, tensile strength and Young Modulus) of cast irons [8]3. Optimisation toolFormally, the optimisation problem addressed can be stated as follows.Minimise: F j (X ) , j=1,nWith respect to:X Subject to c X i mi (;,≥=01X (F ),......X (F ),X (F n 21Where X is the design variables vector, F i(X) are the objectives, and c i(X) are the constraints. FRONTIER’s optimisation methods are based on Genetic Algorithms (GA) and hill climbing methods. These allow the user to combine the efficient local convergence of traditional hill climbers, with the strengths of GA’s, which are their robustness to noise, discontinuities and multimodal characteristic, their ability to address multiple objectives cases directly, and their suitability for parallelisation.GA GENERAL STRUCTURE. A GA has the following stages:1.initialise a population of candidate designs and evaluate them, then2.create a new population by selecting some individuals which reproduce or mutate, and evaluatethis new populationStage 2 is repeated until terminationGA MECHANISMS. Design variables are encoded into chromosomes by means of integer number lists. Though there is an inherent accuracy limitation in using integer values, this is not significant since accuracy can easily be refined using classical optimisation techniques. The initial selection of candidates is important especially when evaluations are so expensive that not many can be afforded in the total optimisation. Initialisation can be done in FRONTIER either by reading a user-defined set, or by random choice, or by using a Sobol algorithm [9] to generate a uniformly distributed quasirandom sequence. The optimisation can also be restarted from a previous population.The critical operators governing GA performance are selection, crossover reproduction, and reproduction by mutation.Four selection operators are provided, all based on the concept of Pareto dominance. They are; (1) Local Geographic Selection; (2) Pareto Tournament Selection; (3) Pareto Tournament Directional Selection; and (4) Local Pareto Selection. The user can choose from these though (4) is recommended for use with either type of crossover, and (2) to generate the proportion of the population which is sent to the next generation unmodified.Most emphasis in FRONTIER is on use of directional crossover, which makes use of detected direction of improvement, and has some parallels with the Nelder & Mead Simplex algorithm. Classical two-point crossover algorithm are also provided.Mutation is carried out when chosen, by randomly selecting a design variable to mutate, then randomly assigning a value from the set of all possibilities.In all cases, GA probabilities can be selected by the user, in place of recommended defaults, if desired. All the algorithm are described in more detail in [10].OPERATIONAL USER CHOICE. Traditional GA’s generate a complete new population of designs from an existing set, at each generation. This can be done in FRONTIER using its MOGA algorithm. An alternative strategy is to use steady state reproduction via a MOGASTD algorithm. In this case, only a few individuals are replaced at each generation. This strategy is more likely to retain best individuals. The FRONTIER algorithm removes any duplicates generated. Population size are under the user’s control. FRONTIER case study work has usually used population from 16 to 64, due to the computational expense of the design evaluations.Classical hill climbers can be chosen by the user not only the refine GA solution. They can be adopted from the start of the optimisation, if the user can formulate his problem suitably, and if he is confident that the condition are appropriate.Returning to the problem of expansive design evaluation, many research have made use of response surface. These interpolate a set of computed design evaluation. The surface can then be used to provide objective functions which are much faster to evaluate. Interpolation of nonlinear functions in many variables, using polynomial or spline functions, becomes rapidly intractable however. FRONTIER provides a response surface option based on use of a neural net, with two nodal planes.Tests have shown this to be an extremely effective strategy when closely combined with the GA to provide a continuous update to the neural net.FITNESS AND CONSTRAINTS HANDLING. The objective values themselves are used as fitness values. Optionally, the user can supply weights to combine these into a single quantity. Constraints are normally used to compute a penalty decrementing the fitness. Alternatively, the combined constraint penalty can be nominated as an extra objective to be minimised.PARALLELISATION OF GA. The multithreading features of Java have been used to parallelise FRONTIER’s GA’s. The same code is usable in a parallel or sequential environment, thus enhancing portability. Multithreading is used to facilitate concurrent design evaluations, with analyses executed in parallel as far as possible, on the user’s available computational resources.DECISION SUPPORT. Even where there are a number of conflicting objectives to consider, we are likely to went to choose only one design. The Pareto boundary set of designs provides candidates for the final choice. In order to proceed further, the designer needs to focus on the comparative importance of the individual objectives. The role of decision support in FRONTIER is to help him to do this, by moving to a single composite objective which combines the original objectives in a way which accurately reflect his preferences.LOCAL UTILITY APPROACH. A wide range of methods has been tried for multiple criteria decision making . The main FRONTIER technique used is the Local Utility Approach (LUTA)[11]. This avoids asking the designer to directly weight the objectives relative to each other (though he can if he wishes), but rather asks him to consider some of the designs which have already been evaluated, and state which he prefers, without needing to give reasons. The algorithm then proceeds in two stages. First it decides if the preferences give are consistent in themselves, and guides the designer to change them if they are not. Then, it proposes a ‘common currency’ objectives measure, termed a utility, this being the sum of a set of piecewise linear utility functions, one for each individual objective. The preference information which the designer has provided can then be stated as a set of inequality relations between the utilities of designs. The algorithm uses the feasible region formed by these constraints to calculate the most typical composite utility function which is consistent with the designer’s preferences.This LUTA technique can be invoked after accumulating a comprehensive set of Pareto boundary designs as a result of a number of optimisation iterations. The advantage of the latter approach is that the focusing of attention on the part of the Pareto boundary which is of most interest can result in considerable computational saving, by avoiding computing information on the whole boundary. In practice so far in FRONTIER, we have generally used the LUTA technique after a set number of design evaluations, after which the utility function for a local hill climber to rapidly refine a solution.4. Object of the study and adopted optimisation procedureThe component investigated is a textile machine guide, for which both mechanical and integrity requirements are prescribed. Such requirements are satisfied, respectively, by reaching proper hardness values and by minimising the porosity content. Furthermore, from the industrial point of view, it is fundamental to maximise the process yield, lowering the feeder size.The chemical composition of the ductile iron is the following :C Si Mn P S Cu Sn Ni Cr Mg3.55 2.770.130.0380.00370.0480.0450.0170.0300.035The liquidus and solidus temperatures are 1155°C and 1120°C respectively. The thermo-physical properties of the material (thermal conductivity, density, specific heat, viscosity) are already implemented into the MAGMASOFT Materials Database.The GA optimisation process was performed starting from a configuration of the casting system which is already the result of the foundry practise optimisation.Only the solidification process was taken into account for the simulation, since it was considered to be more affected by the technological variables selected. Therefore the temperature of the cast at the beginning of the solidification process was set as a constant. Moreover the gating system was neglected in the simulation since its influence on the heat flow involved in the solidification process was thought to be negligible. As a consequence the numerical model considers only the cast, the feeder and the feeder-neck (see Fig. 1, referred to the starting casting system). The adopted mesh was chosen in such a way to balance the accuracy and the calculation time. As a consequence a number of metal cells ranging from 9000 to 12000 (resulting in a total number of cells approximately equal to 200000) was obtained in any analysed model.Five technological variables governing the solidification process have been taken into account and the respective ranges of possible variation were defined:1.temperature of the cast at the beginning of the solidification process , 1300 °C <T init.< 1380°C;2.heat transfer coefficients (HTC) between cast and sand mould , 400 W/m2K <HTC< 1200W/m2K;3.feeder height, 80 mm <H f< 180 mm4.feeder diameter, 30 mm<D f < 80 mm5.section area of the feeder-neck, 175 mm2 <A n< 490 mm2.These variables were considered to be representative of the foundry technology and significant in order to optimise the following design objectives :1.Hardness of the material in a particular portion of the cast2.casting weight (i.e. raw cast + feeder + feeder-neck)3.porosityAim of the analysis was to maximise the hardness and to minimise the total casting weight and the porosity. No constraints were defined for this analysis.Generally speaking, the optimisation procedure should be performed running one MAGMA simulation for each generated individual. That implies the possibility to assign all the input parameters and start the analysis via command files. Similarly the output files should be available in the form of ascii files from which the output parameters can be extracted. However at this stage a complete open interface between MAGMASOFT and Frontier is not still available. As a consequence another solution was adopted. First of all 64 analyses were performed in order to get sufficient information in all the variable domain. After that a interpolation algorithm was used to build a response surface model basing on a Neural Network, “trained” on the available results. It has been verified that the approximation reached is lower than 1% for all the available set of solutions with the exception of one point only where the approximation is slightly lower than 5%. After that the response surface model was used in the next optimisation procedure to calculate the design objectives. In such a way further time-expensive work needed to run one MAGMASOFT interactive session for each simulation was avoided.Concerning the Genetic Algorithm a mix between a classical and directional cross-over was used. The first population was created in a deterministic way.5. Results and discussionThe first optimisation task was done for 4 generations with 16 individuals for each generation. Since a complete simulation required about 20 minutes of CPU time on a workstation HP C200, the total CPU time resulted in about 21 hours and 20 minutes. Figs. 3, 4 and 5 report the obtained solutions. In particular from the tables it can be noted that the hardness values increase as we move from the first to the fourth generation, while the weights decrease. Not the same for the porosity, whose values seems to be less stable to converge towards an optimum solution: in fact the same range between the minimum and the maximum value is maintained both in the first and in the last generation. Moreover Fig. 2 illustrates the strong correlation between the casting weight and the hardness: such correlation is due to the particular geometry of the casting under examination and to the position where the hardness value was determined. Anyway the dependency between these two variables is favourable, the hardness increasing as the casting weight decreases, due to the changed cooling conditions. Figs 3 and 4 show that the other variables are not correlated to each other. From all these three figures it can be noted that the optimisation algorithm tends to calculate a greater number of solutions in a specific area of the design objectives plane, where the optimum solution can be expected to be located.As mentioned before the second optimisation step was performed using an approximation function consisting of three independent Neural Networks (one for each design objective) to fit the results obtained from the first optimisation procedure. Then to explore more extensively the variables domain, an optimisation task was done for 8 generation with 16 individuals for each generation.Figs. 5, 6 and 7 report the obtained solutions. By comparing this set of figures with the corresponding previous one (figs. 2, 3 and 4), it can be noted that the GA could reach better solutions, located at the top-right side area of each diagram. Since the raw casting weight was equal to about 2.5 kg and not influenced by any of the chosen variables, the casting weight resulted to be never lower than about 3 kg.All these design objectives were further processed to obtain the results in the form of Pareto Frontier. The Pareto set is reported in table 1, consisting of 11 non-dominated solutions. A direct comparison among them allowed for identifying three solutions (indicated with number 4, 7 and 8 in table 1) which seemed to reach the best compromise among the three objectives.These solutions were checked by running three MAGMAIron simulations. The comparison between the design objectives as predicted by the response surface model and as calculated by MAGMAIron is reported in table 2. It can be noted that the hardness values are predicted with good approximation by the Neural Network, while the porosity values do not match satisfactorily those calculated by MAGMAIron. Anyway the optimum set of variables (4, 7 and 8) reported in table 1 together with the objectives calculated by MAGMAIron were compared with the set of variables corresponding to the present foundry practise. The results, reported in table 3, suggest to decrease the heat transfer coefficient and the feeder size and to increase the feeder-neck section, in order to reach the objectives. The initial temperature instead is already very near to the optimised value.Finally Fig. 8 compares the sizes of the feeders and highlights the bigger feeder now adopted with respect to that of the optimised solution.6. ConclusionsFrontier was applied to MAGMASOFT code enabling the numerical simulation of mould filling and solidification of castings. On the other hand till now it was not possible to interface Frontier with MAGMASOFT since this software does not accept command files to input design parameters. As a consequence an initial optimisation procedure running MOGA for 4 generations with 16 individuals for each generation was performed and a Neural Network was built through the available design objectives. A second optimisation task running Frontier for 8 generations with 16 individuals for each generation was performed. Some design objectives belonging to the Pareto setwere then checked running MAGMASOFT simulations. The following conclusions could be drawn :•In this application the hardness could be increased from 207 HB up to 220 HB and the casting weight reduced from 4.53 kg to 3.11 kg with a slight increase in porosity from 1.27% to 1.80%.•The approximation that could be reached with the Neural Network is probably limited by the small number of available “training points” considering that five design variables were treated. Infact one of the three design objectives was not predicted satisfactorily, as compared with the solution obtained by MAGMASOFT.References[1]M.C. Flemings: "Solidification Processing", Mc Graw Hill, New York (1974).[2]ASM Metals Handbook, 9th ed., vol. 15: Casting (1988), ASM - Metals Park, Ohio.[3]P.R. Sahm, P.N. Hansen: "Numerical simulation and modelling of casting and solidificationprocesses for foundry and cast-house", CIATF (1984)[4] D.M. Stefanescu: "Critical review of the second generation of solidification models forcastings: macro transport - transformation kinetics codes", Proc. Conf. "Modeling of Casting, Welding and Advanced Solidification Processes VI", TMS (1993), pp 3-20.[5]T. Overfelt: "The manufacturing significance of solidification modeling", Journal of Metals, 6(1992), pp 17-20.[6]T. Overfelt: “Sensitivity of a steel plate solidification model to uncertainties inthermophysical properties”, Proc. Conf. "Modelling of Casting, Welding and Advanced Solidification Processes - VI", 663-670.[7] F. Bonollo, N. Gramegna: "L'applicazione delle proprietà termofisiche dei materiali nei codicidi simulazione numerica dei processi di fonderia", Proc. Conf. "La misura delle grandezze fisiche" (1997), Faenza, pp 285-299.[8]MAGMAIron User Manual[9] C.Poloni, V.Pediroda "GA Coupled with Computationally Expensive Simulations: Tool toImprove Efficiency" in "Genetic Algorithms and Evolution Strategies in Engineering and Computer Science", J.Wiley and Sons 1998[10]Paul Bratley and Bennett L. Fox, Algorithm 659, “Implementing Sobol’s QuasirandomSequence Generator”, 88-100, ACM Transactions on Mathematical Software, vol.14,No. 1, March 1988.[11]Pratyush Sen, Jian Bo Yang, “Multiple-criteria Decision-making in Design Selection andSynthesis”, 207-230, Journal of Engineering Design,vol.6 No. 3, 1995[12]I.L. Svensson, E. Lumback: "Computer simulation of the solidification of castings", Proc.Conf. "State of the art of computer simulation of casting and solidification processes", Strasbourg (1986), pp 57-64.[13]I.L. Svensson, M. Wessen, A. Gonzales: "Modelling of structure and hardness in nodular castiron castings at different silicon contents", Proc. Conf. "Modeling of Casting, Welding and Advanced Solidification Processes VI", TMS (1993), pp 29-36.[14] E. Fras, W. Kapturkiewicz, A.A. Burbielko: "Computer modeling of fine graphite eutecticgrain formation in the casting central part", Proc. Conf. "Modeling of Casting, Welding and Advanced Solidification Processes VI", TMS (1993), pp 261-268.[15] D.M. Stefanescu, G. Uphadhya, D. Bandyopadhyay: "Heat transfer-solidification kineticsmodeling of solidification of castings", Metallurgical Transactions, 21A (1990), pp 997-1005.[16]H. Tian, D.M. Stefanescu: "Experimental evaluation of some solidification kinetics-relatedmaterial parameters required in modeling of solidification of Fe-C-Si alloys", Proc. Conf."Modeling of Casting, Welding and Advanced Solidification Processes VI", TMS (1993), pp 639-646.[17]S. Viswanathan, V.K. Sikka, H.D. Brody: "The application of quality criteria for theprediction of porosity in the design of casting processes", Proc. Conf. "Modeling of Casting, Welding and Advanced Solidification Processes VI", TMS (1993), pp 285-292.[18]S. Viswanathan: "Industrial applications of solidification technology", Journal of Metals, 3(1996), p 19.[19] F. Bonollo, S. Odorizzi: "Casting on the screen - Simulation as a casting tool", Benchmark, 2(1998), pp 26-29.[20] F. Bonollo, N. Gramegna, L. Kallien, D. Lees, J. Young: "Simulazione dei processi difonderia e ottimizzazione dei getti: due casi applicativi", Proc. XIV Assofond Conf. (1996), Baveno.[21] F. Bonollo, N. Gramegna, S. Odorizzi: "Modellizzazione di processi di fonderia", Fonderia,11/12 (1997), pp 50-54.[22] F.J. Bradley, T.M. Adams, R. Gadh, A.K. Mirle: "On the development of a model-basedknowledge system for casting design", Proc. Conf. "Modeling of Casting, Welding and Advanced Solidification Processes VI", TMS (1993), pp 161-168.[23]G. Upadhya, A.J. Paul, J.L. Hill: "Optimal design of gating & risering for casting: anintegrated approach using empirical heuristics and geometrical analysis", Proc. Conf."Modeling of Casting, Welding and Advanced Solidification Processes VI", TMS (1993), pp 135-142.[24]T.E. Morthland, P.E. Byrne, D.A. Tortorelli, J.A. Dantzig: "Optimal riser design for metalcastings", Metallurgical Transactions, 26B (1995), pp 871-885.[25]N. Gramegna: "Colata a gravità in ghisa sferoidale", Engin Soft Trading Internal Report(1996)MATERIALSData-baseadopted mesh for the cast and the feeder-7.66-6.128-4.596-3.064-1.532198.3202.62206.94211.26215.58219.9Hardness Brinell C a s t i n g w e i g ht -6,29-5,032-3,774-2,516-1,2580198,3202,62206,94211,26215,58219,9Hardness BrinellP o r o s i ty -6.29-5.032-3.774-2.516-1.258-7.66-6.128-4.596-3.064-1.5320Casting weightP o r o s i t y Figs. 2,3 and 4 : solutions in the design objectives space obtained using MAGMASOFT software.VARIABLESDESIGN OBJECTIVES N°T init .(°C)HTC (W/m 2úK)H feeder (mm)D feeder (mm)A neck (mm 2)Hardness Brinell casting weight (kg)porosity (%)1130012008630194217 2.90 4.60213808119736289215 3.340.873134110378732276218 3.17 2.354135246010533400218 3.380.70513719408030176219 3.09 3.756133512008531225216 3.01 3.93713654008932341220 3.640.778133640011231400219 3.470.43913628148431315217 3.11 2.7810134610098932278219 3.18 2.6011133510598531225217 3.10 1.90Table 1: Pareto Set extracted from the 128 available solutions obtained with the Neural Network。
Informatica帮助文件翻译之一.

第六章 Filter Transformation(过滤器控件主要内容:z Filter控件总体介绍z书写过滤条件z制作一个过滤控件的例子z使用技巧z关于过滤器控件的错误处理Filter控件的总体介绍控件类型:连接型,积极型Filter控件的作用是在一个Mapping中过滤记录。
当你的所有数据记录从数据源控件出发,穿过Filter控件,此时,在Filter控件中设置一个过滤条件,那么,就只有那些满足过滤条件的记录会流向下一个控件。
有时候,您需要一个或多个条件来过滤数据在他们进入目标数据表之前。
例如,您有一些当前雇员的人力资源信息,您可能需要得到过滤掉零时雇员和钟点工的雇员信息下面图6-1就是一个包含Filter控件的Mapping,它将只让薪水等于或大于30000$的雇员进入目标表中。
图6-1下面这个图是Mapping的过滤条件图6-2 过滤条件可以看见,控件中的过滤条件是SALARY>30000,结果将把薪水小于等于30000的记录过滤掉。
作为一个积极型的控件,Filter控件会改变进入它的数据记录的数量。
每一条记录进入Filter控件,都要经过过滤条件的判断,然后返回真或假,如果返回真会才流出控件。
条件为假的记录被丢弃,在Session日志文件和Reject文件中也不记录。
为了改善Sesson的性能,应该让Filter控件尽量靠近源表,这样就可以在开始就将不想要的数据丢弃。
将两个控件的字段连向Filter控件是不容许的,它流入的字段只能从单独一个控件进入,Filter控件也不能设置默认的输出值。
书写过滤条件我们使用转换语言写过滤条件,过滤条件是一个返回真或假的表达式,例如:当您想把薪水少于等于30000$的雇员过滤掉,你可以这样写表达式:SALARY>30000也可以写复合的过滤条件,使用AND和OR连接单个的表达式。
如果你想过滤薪水小于30000$且大于100000$的雇员,您可以这样写过滤条件:SALARY>30000 AND SALARY<100000在表达式中没有必要指明true或false做为表达式的值,true或false被自动的从表达式或表达式集中返回,如果过滤条件等于NULL,等返回False。
magmasoft帮助文档

2.2 Alloy Composition
The composition of the alloy should be such that the alloying elements form a dilute solution in the iron melt. The total amount of alloying elements should not exceed a few percent. The content of carbon and silicon should be within the normal composition range for most cast iron alloys. Tab. 2-1 shows the recommended composition range (combined amount of elements marked 'x' should not exceed 2%). Element Recommended composition range % C Mg Si P S 3 to 4.3 0 to 0.05 1.5 to 4 0 to 0.2 0 to 0.1
4 Summary - What to Do
4.1 4.2 4.3 4.4 4.5 4.6 Data Specific to Iron Casting Project Definition Geometry Modeling Simulation Setup Presentation of Results Additional Information
file://C:\magma\v4.4\lib\help\online\en\MAGMAsoft\iron.html
【初中地理】地理词汇英语翻译(M开头)

【初中地理】地理词汇英语翻译(M开头) maar低平火山口马其顿斜方辉绿岩maceration浸渍机器证明macroaggregate大团聚体宏观气候macroclimatology大气候学大气气象学macromolecule大分子巨噬细胞macrophyte大型植物大型浮游生物macroporosity大孔隙度大地形macrotherm高温植物大涡mafite镁铁矿物暗盒magentacontactscreen品红接触网目片磁赤铁矿磁赤铁矿magma岩浆岩浆库magmareservoir岩浆储源岩浆同化magmaticdifferentiation岩浆分异酌岩石桨的演化magmaticmigration岩浆迁移岩浆岩magmaticsegregation岩浆分结酌岩浆水magmatism岩浆酌镁质石灰岩含镁石灰岩magnesianskarn镁质夕卡镁磁铁矿magnesite菱镁矿菱镁矿矿床菱镁矿矿床magnesium镁磁相互作用magneticamplifier磁放大器磁各向异性magneticanomaly地磁异常磁引力magneticaxis磁轴磁方位角magneticbearing磁方位磁力图magneticcourse磁针方向磁性数据载体magneticdeclination磁偏角磁偏角图magneticdeflection磁致偏转磁差magneticdomain磁畴地磁赤道magneticfield磁场磁通量magnetichysteresis磁滞漏磁magneticmeridian磁子午线磁矩magneticneedle磁针磁北magneticobservatory地磁台磁针定向magneticpermeability导磁系数磁极性magneticpolarization磁极化磁极magneticpotential磁位磁测magneticrecording磁记录磁自旋量子数magneticstorm磁暴古地磁地层学magneticsurvey地磁测量磁化率magnetictapedrive磁带机磁带机magnetictheodolite罗盘经纬仪磁变化magnetite磁铁矿岩石磁化magnetizingforce磁化力磁强计magnetometer磁力计磁动势magnetosphere磁圈放大倍率magnifier放大镜玻璃放大镜magnitudeofearthquake地震强度主分水岭mainelement知素主断层层mainfold洲皱Maingroupelement元素malachite孔雀石间日疟原虫malleability展性营养不良mammalia哺乳纲哺乳动物mammatuscloud乳房状云猛犸象猛犸象manandbiosphereprogram人与生物圈计划人为气候变化manmadedeposits人工堆积物人为地质灾害manmadepollution人为污染人为污染源manmadescreen人工遮障人造土managementinformationsystem信息管理系统锰磷灰石manganblende硫锰矿锰白云石锰白云石manganese锰锰细菌manganeseconcretion锰结核锰矿床manganesenodules锰结核锰污染manganite水锰矿锰方解石锰方解石manganosite方锰矿红树林红手mangrovemarsh红手沼泽红树林油红手沼泽土mangroveswamp红视泽操纵操作mannagrassmeadow甜茅草甸载人航天器manner方法压力计mantle地幔冰川漂移地幔mantlerock风化层手动着色manualtrackingdigitizer手扶跟踪数字化仪肥料manuredfallow施肥休闲施肥manuscriptrecordofatopographicsurvey地形测量原图地图mapaccuracy地图精度地图分析maparrangement地图配置地图组合地图拼贴mapbibliography地图目录地图编目地图编目mapcharacterizedbyformoffunction合成地图地图集合地图集合mapcontent地图内容地图校正mapdatabase地图数据库地图设计mapediting地图编辑地图的静电复制mapelements地图要素地图雕刻maperror地图误差地图展览mapextract地图片断地图面图纸面积mapfeatures地图要素地图折叠地图折叠mapforvisualeffect显示特定对象图地图格式图纸尺寸mapinset地图插图映射连接图mapinterpretation读图地图册插图mapissue地图发行Mapletring地图注释mapmargin图廓地图匹配制导mapmeasurement地图量算地图测量测距仪mapnomenclature地图编号矿藏图矿藏图mapofprimitivedata原始材料图步行者徒步旅行地图mapoverlay分色透眉地图绘制mapprinting地图印刷映射颜色映射打印颜色mapproduction地图生产地图投影mapprojectiondistortion地图投影变形地图投影变换mapproofchecking地图审校地图出版社mapreading读图地图可靠性地图可靠性maprepresentingcartometricmeasurements地图量测图地图复制地图打印maprevision地图更新地图室地图参考室mapscale地图比例尺地图部分地图片段mapseries地图系列地图集连接图mapsheet地图图幅地图规格地图设计书mapstorage地图保管地图样式地图类型mapsubject制图对象副标题副标题mapsymbol地图符号地图标题maptitleinbibliographies目录的地图名称齐齐地图maptype地图种类带荧光着色的地图mapleforest槭村林测绘局mappingcontrolsurvey图根测量遥感影像制图mappingoflandscapes景观制图Maquis maqui社区marble大理石大理石化大理石marcasite白铁矿前进mareograph自记湖汐计人造黄油热带火山灰土壤marginaldistribution边缘分布边缘地槽次地槽marginalinformation图廓资料边缘节理marginalschistosity边缘片理边缘海marginalzone边缘带海藻marinebacterium海洋细菌海洋生物学marinecharting海图制图海图marineclimate海洋气候海洋气候学marinedeposit海洋沉积海洋环境marineerosion海蚀海相marinefronts海洋锋海洋地球化学勘探marinehumus海成腐殖质海相铁锰矿床marinemap海图滨海湿地marinemeteorology海洋气象学海洋微生物marinepeneplain海蚀准平原海洋污染marineproducts海产物海洋沉积marinesoil海成土海洋阶地marinetransport海运海上运输maritimeairmass海洋气团海松鳞片maritimepolarairmass极地海洋气团马克马克marking标示直接植被解释的标志markstone标石泥灰泥灰marlysoil泥灰质土壤沼泽湿地marshbordersoil沼泽边缘土壤沼气marshpeat沼泽泥炭沼泽地marshyironmanganesedeposit沼泽铁锰矿床沼泽荒地沼泽荒地mask蒙版掩模法masonrydam石坝质量作用定律masscurve累积曲线质量流量计massgrowth生长量群众运动massnumber质量数群体选择杂交选择massseparation质量分离质量分离器massspectrograph质谱仪质谱法massspectrometer质谱分析器质谱仪质谱massspectrum质谱传质massif地块块状煤massiveoredeposit块状矿床块状构造地理网有最全面的地理知识,欢迎大家继续阅读学习。
岩浆岩的主要岩石类型(国外英文资料)

Magma Rock: The Primary Types of Igneous Rocks (Based on InternationalEnglish Resources)When delving into the fascinating world of geology, one cannot overlook the significance of igneous rocks, which originate from the solidification of molten rock, or magma. This document presents an overview of the primary types of igneous rocks, as described in international English resources. Let's explore these rock varieties that have shaped our planet's surface over millions of years.1. Intrusive Igneous RocksIntrusive igneous rocks form when magma cools and solidifies beneath the Earth's surface. The slow cooling process allows for the formation of large crystals, giving these rocks a coarsegrained texture. Some of the main types of intrusive igneous rocks include:Diorite: Diorite is a mediumtodark gray rock with aphanitic texture, consisting of plagioclase feldspar, biotite, hornblende, and pyroxene.2. Extrusive Igneous RocksExtrusive igneous rocks form when magma reaches theEarth's surface and cools rapidly, resulting in finegrainedor glassy textures. These rocks are often associated with volcanic activity. Key types of extrusive igneous rocks include:Understanding the primary types of igneous rocks is crucial for geologists, as these rocks provide valuable insights into the Earth's geological history and the processes that have shaped our planet.Magma Rock: The Primary Types of Igneous Rocks (Based on International English Resources)continuing our exploration of the diverse world of igneous rocks.3. Textures and StructuresThe texture of an igneous rock is a reflection of the conditions under which it formed. International English resources often highlight the following textures:Aphanitic Texture: This texture is found in extrusive rocks where the crystals are too small to be seen with the naked eye. The rapid cooling prevents the growth of large crystals.Phaneritic Texture: Intrusive rocks exhibit this coarsegrained texture, where individual mineral crystals are visible to the naked eye due to the slow cooling underground.4. Chemical CompositionFelsic Rocks: These rocks are rich in silica and have a light color. They include rocks like granite and rhyolite. Felsic rocks have a high viscosity, which means they tend to erupt explosively.Mafic Rocks: Lower in silica content and often darker in color, mafic rocks such as basalt and gabbro have a lower viscosity. They tend to flow more easily and produce less explosive volcanic activity.Ultramafic Rocks: These are rocks with very low silica content and high magnesium and iron content. They are rare on the Earth's surface but are found in the mantle.5. Occurrence and UsesIgneous rocks are found all over the world and have a variety of uses, which are often detailed in international English resources:Construction: Many intrusive igneous rocks, like granite and diorite, are used in construction due to their durability and aesthetic appeal.Landscaping: Basalt is frequently used in landscaping, both as decorative stone and in the production of crushed stone for pathways.Industrial Applications: Certain igneous rocks, such as olivinerich peridotite, are used in the production of metal refining and as a source of magnesium.6. The Rock CycleIgneous rocks play a pivotal role in the rock cycle, which is the process which rocks are created, changed, and destroyed over time. International English resources often describe how:These rocks can be buried and subjected to heat and pressure, leading to the formation of metamorphic rocks.Metamorphic rocks can melt and return to the mantle as magma, starting the cycle anew.Magma Rock: The Primary Types of Igneous Rocks (Based on International English Resources)as we delve deeper into the geological narrative woven igneous rocks.7. Mineral Content and IdentificationThe mineral content of igneous rocks is a key factor in their identification and classification. International English resources often emphasize the following minerals: Mica: Common in many igneous rocks, mica is known for its flaky, sheetlike structure and can be black, white, or green.8. Volcanic Activity and Igneous Rock FormationThe formation of igneous rocks is inextricably linked to volcanic activity, a topic extensively covered in international English literature:Volcanic Eruptions: During eruptions, magma is expelled onto the Earth's surface, where it cools quickly to form extrusive igneous rocks.Plutons: When magma remains below the surface, it cools slowly over time, forming intrusive bodies known as plutons, which can later be exposed erosion.9. Environmental ImpactSoil Formation: The weathering of igneous rocks is a crucial step in the formation of soil, which supports plant life and agricultural activity.10. Geochronology: The Key to Earth's HistoryIgneous rocks are often used to date geological events, a field known as geochronology, which is vital for understanding Earth's history:Radiometric Dating: Certain minerals within igneous rocks, such as zircon, contain radioactive isotopes that can be used to determine the age of the rock.Isotope Ratios: By analyzing the ratios of different isotopes in igneous rocks, scientists can infer past environmental conditions and the timing of geological events.11. Future Research DirectionsAs our knowledge of igneous rocks continues to expand, international English resources suggest several avenues for future research:Planetary Geology: The study of igneous rocks on other planets and moons can provide insights into the geological processes that have shaped our solar system.In wrapping up our exploration of igneous rocks, it's clear that they are more than just stones; they are time capsules that hold the secrets of our planet's past and the keys to understanding its future. Through the lens of international English resources, we see a rich tapestry of scientific discovery and geological intrigue that continues to unfold.Magma Rock: Major Types of Igneous Rocks (Based on International English Resources)1. Granite2. DioriteDiorite is a mediumgrained igneous rock that contains plagioclase feldspar, biotite, hornblende, and sometimes quartz. Its color ranges from dark gray to black. Diorite is often associated with granite and is used in construction similar to granite.3. Andesite4. Basalt5. Gabbro6. PeridotitePeridotite is an ultramafic igneous rock that is rich in olivine and pyroxene. It is often green in color due to the presence of olivine. Peridotite is found in the Earth's mantle and is associated with diamond and platinum deposits.These major types of igneous rocks offer a glimpse into the dynamic processes occurring beneath the Earth's surface. Each rock type has its unique characteristics and plays a vital role in shaping our planet's geology.Magma Rock: Major Types of Igneous Rocks (Based on International English Resources)7. Rhyolite8. Anorthosite9. KimberliteKimberlite is a unique type of ultramafic rock that is best known as the primary host for diamonds. It is characterized its distinctive "pipe" structure and is often rich in olivine and pyroxene. Kimberlite eruptions areviolent and fast, creating carrotshaped geological formations that can be a source of significant economic interest.10. PegmatitePegmatite is an extremely coarsegrained igneous rock that forms during the final stages of magma crystallization. It can contain exceptionally large crystals, sometimes measuring several meters in length. Pegmatites are often associatedwith granite and can be a source of rare minerals, including lithium, tantalum, and cesium.11. KomatiiteKomatiite is an ancient and now rare type of ultramafic volcanic rock that dates back to the Archean Eon. It is high in magnesium and iron, and its formation is associated with high temperatures in the Earth's mantle. Komatiites are important for understanding early Earth's geological history.12. TuffEach of these igneous rock types tells a story about the conditions under which they were formed, the processes that have shaped them, and the secrets they hold about the Earth's past. From the towering mountains capped with granite to the dark, fertile soils derived from basaltic lava flows, igneous rocks are a fundamental part of the planet's geological tapestry. Their study not only enriches our understanding of the Earth's history but also provides valuable insights into the resources we harness and the landscapes we cherish.Magma Rock: Major Types of Igneous Rocks (Based on International English Resources)13. ObsidianObsidian, often referred to as volcanic glass, is an extrusive igneous rock with a vitreous luster and a smooth, glassy texture. It forms when lava cools rapidly, preventingthe growth of crystals. Obsidian is usually dark in color, ranging from dark brown to black, and has been used ancient cultures for tool making and as a material for decorative objects.14. Pumice15. ScoriaScoria is a volcanic rock with a vesicular texture,similar to pumice, but it is typically darker in color and has a more crystalline structure. It is often used as a landscaping material and in the construction of drainage beds due to its porosity and durability.16. PicritePicrite is an ultramafic rock that is rich in olivine and low in silica. It is often dark green to black and can be mistaken for basalt. Picrites are significant as they provide clues about the geochemical processes occurring in the mantle.17. Aphanitic Igneous RocksAphanitic rocks are finegrained igneous rocks that cool quickly on or near the Earth's surface, preventing the growth of large crystals. This category includes rocks like basalt and andesite, which, due to their rapid cooling, have a microscopic or very finegrained texture that is not easily visible to the naked eye.18. Phaneritic Igneous RocksPhaneritic rocks are coarsegrained igneous rocks that form when magma cools slowly beneath the Earth's surface, allowing crystals to grow larger. This group includes rocks like gabbro and granite, which can be appreciated for their visible mineral grains and often beautiful patterns.19. HornfelsThe study of these varied igneous rocks not only provides a window into the dynamic geological processes that have shaped our planet over millions of years but also serves as a foundation for understanding the distribution of natural resources and the environmental impacts of volcanic activity. Each rock type, with its unique history and characteristics, contributes to the rich tapestry of Earth's geological story.。
Asphyre增强版帮助文档 英文翻译

淮阴工学院毕业设计(论文)外文资料翻译系(院):计算机工程学院专业:计算机1062姓名:李楠学号:1061301201外文出处:Asphyre增强版帮助文档(用外文写)the help of Asphyre eXtreme附件: 1.外文资料翻译译文;2.外文原文。
注:请将该封面与附件装订成册。
附件1:外文资料翻译译文Asphyre增强版帮助文档关于Asphyre 加强版Asphyre加强版是创造电脑游戏和交互式程序的一个Delphi VCL组件的框架。
其组件包括以下类别:广泛的 2 D 支持:简单的几何图形例如线、长方形、圆等等;图行变换 (旋转, 裁剪, 拉伸及其他变换) 和多种混合效果;容易对目标图像进行渲染并把它们当做来源图像显示到电脑屏幕上;动态纹理支持: 无论是2 D或3D模型中都能快速更改纹理目录并加以应用;使用多纹理的先进多通道效果;通过字体工具对已渲染的字体文本进行显示。
文本有多种风格(阴影效果,浮雕效果), 可以拉伸也可以包含本文标签;强大的可拉伸的粒子引擎可以显示爆炸, 透镜和其他的效果。
图形用户接口支持 + WYSIWYG 编者:完全可订制的控制;容易使用和加入Asphyre 应用;支持半透明和多幅图画重叠效果;通过使用透明度通道的4角梯度渐变使用户界面更加友好;标签, 编辑框, 列表框,按钮以及其他的控制应用;带有常用图形用户接口组件的类集合。
局部 3D支持:载入和显示静态模型;通过增加高阶层点阵式类来提供一个完全的数学单元;本地公告技术支持爆炸,烟和其他的视觉 3D立体效果;可将原始事物以简单形式显示,好像它在 2D 中–比如测定体积的爆炸, 树和而且其他效果;高清晰的摄相机类;多种光源和材质的支持;通过简单的几个调用就能设置立方体材质和环境映像;用深度缓冲器渲染目标;本地多种材质支持。
用精确的时间表现现实的时间:尽可能快速显示, 程序 (比如移动的物体) 以恒定速度运行;通过限制渲染速度提高系统资源利用率–仅使用一小部分处理器的运算时间, 就能将渲染效果发挥到极致;延迟和帧频的计算。
外文资料翻译

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xx本科毕业论文外文资料翻译系别: xxx专业: xxx姓名: xxx学号: xxx1 区域成矿背景概述塔木铅锌矿床位于阿克陶县塔木村北约5 km,大地构造位置为西昆仑造山带与塔里木板块的交接部位[1],属库斯拉甫-他龙铅锌(铜)成矿带的一部分。
本区前震旦纪末期陆壳裂解形成塔里木板块、西昆仑地体、帕米尔板块等。
加里东期塔里木板块沿库地北断裂(俯冲带)往南西向西昆仑地体俯冲,形成昆中岩浆弧;两者于志留纪末期拼贴为一体[2]。
加里东期花岗质岩浆侵入时代的变化趋势佐证了这一观点[3]。
晚古生代时受古特提斯裂解作用的影响,俯冲带迁移到康西瓦断裂带附近,板块俯冲方向由南西往北东,西昆仑中带成为晚古生代岩浆弧(即昆中多期岩浆弧)[4],库斯拉甫-他龙地区正处于弧后位置,在板块俯冲的影响下发展为晚古生代弧后裂谷(即奥依塔格-库尔良裂陷槽)。
随着古特提斯洋的消亡,库斯拉甫-他龙晚古生代裂谷盆地于二叠纪末期闭合。
三叠纪时期本区处于隆起剥蚀状态,缺失沉积。
侏罗纪为山间盆地相与间夹沼泽相沉积。
至白垩纪末与早第三纪早期,因受新特提斯裂谷化作用遭受一次海侵,形成一套浅海至湖相的沉积岩系。
在喜马拉雅期造山运动的作用下,新特提斯洋闭合,青藏高原崛起,盆山构造急剧分野,引起本区西昆仑前缘大规模的逆冲推覆和走滑,形成铁克力克推覆体等构造,奠定了现今的构造格局。
因此,库斯拉甫-他龙铅锌(铜)成矿带所处的大地构造位置为晚古生代弧后裂谷盆地)))具陆壳基底的奥依塔格-库尔良裂陷槽,晚古生代的裂谷沉积作用、海西末期和喜马拉雅期的强烈构造作用为本区大范围、高强度的铅锌(铜)成矿创造了有利的构造条件[5]。
塔木MVT型铅锌矿区及外围主要出露上泥盆统、石炭系、侏罗系与白垩系)第三系地层,褶皱构造为科克然达坂复式向斜东翼的塔木向斜,区域断裂有克孜勒陶-库斯拉甫北北西向走滑断裂系与北西向昆北逆冲推覆断裂系。
《《钢铁风暴》(1-4章)英汉翻译实践报告》范文

《《钢铁风暴》(1-4章)英汉翻译实践报告》篇一《钢铁风暴》英汉翻译实践报告一、引言本报告旨在分享《钢铁风暴》一书的英汉翻译实践过程,包括翻译背景、翻译目的、翻译方法以及报告的构成等。
在翻译过程中,我积极面对各种挑战,以科学、规范和精准的翻译方法,力求为读者呈现一部高质量的中文译本。
二、翻译背景与目的《钢铁风暴》是一部以战争为背景的小说,讲述了主人公在战争中的成长与蜕变。
本书的翻译目的是将英文原作准确地传达给中文读者,使读者能够理解并感受到原作中的情感与主题。
在翻译过程中,我遵循了翻译的基本原则,即忠实于原文,同时兼顾语言的流畅与表达力。
三、翻译过程与方法在翻译过程中,我首先对原文进行了深入研究,了解作者的写作风格和文本的主题。
然后,我制定了详细的翻译计划,将整个翻译过程分为准备、初译、审稿和定稿四个阶段。
在每个阶段中,我都采用了不同的翻译方法和技巧。
1. 准备阶段:在准备阶段,我主要进行了词汇和句子的预翻译工作。
我查阅了大量的平行文本和术语表,以确保对原文的理解准确无误。
同时,我还对原文中的长句、复杂句进行了分析,以便更好地把握句子的结构和意义。
2. 初译阶段:在初译阶段,我开始了实际的翻译工作。
在翻译过程中,我注重保持原文的情感色彩和语言风格,力求使译文贴近原文的意境。
同时,我还采用了分译、合译等翻译技巧,以使译文更加流畅自然。
3. 审稿阶段:在审稿阶段,我对初译稿进行了反复审查和修改。
我重点关注了译文的准确性、流畅性和表达力等方面,对不准确的翻译进行了修正,对不流畅的句子进行了优化。
此外,我还邀请了同事和导师对译文进行审校,以进一步提高译文的质量。
4. 定稿阶段:在定稿阶段,我对审稿阶段的修改意见进行了整理和总结,对译文进行了最后的润色和调整。
同时,我还对译文的格式、排版等进行了规范处理,以便于读者的阅读。
四、案例分析在本报告中,我将结合具体的翻译案例来分析我在翻译过程中的方法和技巧。
例如,在翻译长句时,我采用了分译的方法,将长句拆分成若干个短句,以便更好地传达原文的意思。
地质类专业英语复习资料

1、学科名称:Mineralogy 矿物学. Petrology 岩石学. Geomorphology 地貌学. Geochemistry 地球化学. Geophysics 地球物理. Sedimentology沉积学. Structural geology 构造地质学. Economic geology 经济地质学. Stratigraphy 地层学. Paleogeography 古地理学.Precambrian前寒武纪.paleozoic 古生代.mesozoic中生代.cenozoic新生代.aqueous 水成论.uniformitarianism均变说.catastrophism灾变说.remote sensing遥感.space shuttle航天飞机.engineering geology 工程地质学.geological mapping 地质填图. 古生物学paleontology mineral composition/component of rock 岩石组分elongate shape 椭圆形. Granulite麻粒岩.halo变质环带. geologic structure地质构造. tectonic构造.debris残骸;碎片;破片;残渣.2、常见矿物mineral:Granite花岗岩. quartz石英. feldspar长石. fluorite萤石. Dolomite白云石. cassiterite锡石. stibnite辉锑矿.silica tetrahedrons硅氧四面体.sheet silicates片状硅酸盐。
chain silicates链状. framework silicates框架硅酸盐. mica云母. chert/flint 燧石. hornblende角闪石. amphibole闪石. augite普通辉石. olivine橄榄石.orthoclase正长石. 斜长石plagioclase. 硅石silica. 玛瑙agate. 碧玉jasper。
使用谷歌翻译工具包

使用谷歌翻译工具包正在翻译...编辑翻译所见即所得("你所看到的就是你所得到的")对于大多数文件类型,您可以使用我们的所见即所得编辑器来翻译你的片段在上下文:变灰人翻译当您上传到谷歌翻译工具包的文件,我们pretranslate通过组合文档的部分人与机器翻译。
要快速区分机器翻译的人翻译,您可以通过点击灰色查看人力翻译的部分"从编辑翻译观点完全匹配灰色。
当格雷进行精确匹配检查,谷歌翻译工具包使用的所有细分市场本来与人类翻译前装满一个灰色的字体,所有细分市场都预先机器翻译填写其原来的颜色显示。
当你翻译的文件,进行精确匹配灰色不灰色的文字,您已经在翻译过程中得到纠正。
预翻译你的文档当您上传到谷歌翻译工具包的文件,我们会自动'pretranslate'您的文件如下:1.我们将您的文件分割成片断,一般句子,标题,或标题栏。
2.我们搜索所有人类翻译以往可用的翻译数据库的每一部分。
3.如果任何一个人翻译的部分存在,我们挑选世界排名最高的搜索结果和'预翻译'部分的翻译。
4.如果没有以前的部分人的翻译存在,我们用机器翻译,生产不受干涉的人翻译的自动翻译段'。
我们认识到一些翻译,机器翻译与前填实际上可能缓慢,不会加快,翻译过程。
在这种情况下,您可以更改您的设置预先填充源文本段,所以你在不作出更正自动翻译源文本可以输入。
目前,机器翻译是仅适用于下列语言:* 阿尔巴尼亚语,阿拉伯语,保加利亚语,加泰罗尼亚语,中文(简体),中文(繁体),克罗地亚语,捷克语,丹麦语,荷兰语,英语,爱沙尼亚语,菲律宾语,芬兰语,法语,加利西亚语,德语,希腊语,希伯来语,印地文,匈牙利,印度尼西亚,意大利语,日语,韩语,拉脱维亚语,立陶宛语,马耳他语,挪威语(博克马尔语),波兰语,葡萄牙语(巴西),葡萄牙语(葡萄牙),罗马尼亚语,俄语,塞尔维亚语,斯洛伐克语,斯洛文尼亚语,西班牙语,瑞典语,泰语,土耳其语,乌克兰语,和越南翻译领域当加载到谷歌翻译工具包的文件,我们分成部分,通常判决,头,或子弹您的文档并pretranslate每个细分市场。
magma介绍

【软件介绍】MAGMA SOFT铸造仿真软件MAGMA SOFT铸造仿真软件是全球最佳的压铸铸造软件工具,为铸造业提供改善铸品品质,制程条件,降低成本,增加竞争力的唯一选择。
铸型的充填、凝固、机械性能、残余应力及扭曲变形等的模拟为全面最佳化铸造工程提供了最可靠的保证。
以往只有对铸造工程参数及铸造质量的影响因素有透彻的了解,才能使铸造工程师对生产高质量的铸件拥有信心。
传统的方法对铸造工程的最佳化工作既耗资又费时,时程的压力使得很多铸造工程无法发挥全面的潜力。
MAGMASOFT软件中的专用模块满足您独特的需求。
MAGMA standard 标准模块包括:Project management module 项目管理模块Pre - processor 分析前处理模块MAGMA fill 流体流动分析模块MAGMA solid 热传及凝固分析模块MAGMA batch 制程仿真分析模块Post - processer 后处理显示模块Thermophysical Database 热物理材料数据库MAGMA lpdc 低压铸造专业模块MAGMA hpdc高压铸造专业模块MAGMA iron铸铁铸造专业模块MAGMA tilt 倾转浇铸铸造专业模块MAGMA roll-over浇铸翻转铸造专业模块MAGMA thixo 半凝固射出专业模块MAGMA stress 应力应变分析模块MAGMA disa 制程模块使用MAGMASOFT铸造仿真软件则是最经济、最方便的方式,它为以最低的成本生产高质量的铸件提供正确有效的解决方案。
MAGMASOFT铸造仿真软件的应用︰;铸造部件设计的开发;最佳化生产制程;新模具的生产;现有模具及铸型的更新;能源及材料方面的需求;清理工耗及费用;质量控制及完善工程档案;报价交货及时;以模拟结果获致客户信心,取得市场利基MAGMA SOFT直接协助工程师达成下列目标︰;铸造工艺及铸造材料的最佳化选择。
勇者斗恶龙9(DQ9)武器资料

殊效果相当好用,而其中的银河之剑,攻击力更是本作所有武器之首。
而“DQ最强剑”的隼剑更不用提,托DQ9中攻击力上升系统的福,本作中的隼剑更是头顶青天,堪称高力量职业居家旅行、杀魔王抢宝物必备,但这个2次攻击的效果也是有限制的,仅限于普通攻击、屠龙斩、金属斩、隼斩(4次伤害,动作还是2次)、脱力攻击、断刃(以上两个是战士的技能“勇敢”中的特技,特殊效果有两次判定)、斗魂搏击、无心攻击(以上两个是战斗大师的技能“斗魂”中的特技)、以及AI战斗时所作出的动作,另外,在使用游人的技能“曲艺”中的特技——玩球杀法时,攻击次数由6~8次变成7~9次。
有战士和僧侣这两个职业可以装备它——尽管大多数枪都要靠买以外的方法获得;尽管枪比其他任何武器都要来得更容易被盾格挡住。
不过只要有心,在游戏早期就能拥有不错的枪。
而最强的四把枪看似终于能将枪容易被格挡的坏毛病丢掉,实则只有在普通攻击时才有这种恩惠,枪技能没辙,让人大跌眼镜。
短剑一般是作为魔法师等力量偏弱角色的武器给人印象的。
杀手耳环可以看做是弱化版的隼剑(其实看英文名就知道了……),其效果和隼剑一样,局限性和隼剑也基本一样——仅限于普通攻击、剧毒短剑(中毒判定有两次)、昆虫杀手、死神狩猎、刺客袭击(即死判定有两次)、睡神狩猎、脱力攻击、断刃(以上两个是战士的技能“勇敢”中的特技,特殊效果有两次判定)、斗魂搏击、无心攻击(以上两个是战斗大师的技能“斗魂”中的特技)、以及AI战斗时所作出的动作,同样的,在使用游人的技能“曲艺”中的特技——玩球杀法时,攻击次数由6~8次变成7~9次。
最后四把“回合第一个攻击”的武器特效的局限性也差不多:该特效局限于剧毒短剑、昆虫杀手、死神狩猎、刺客袭击、睡神狩猎、脱力攻击、断刃、斗魂搏击、无心攻击、以及AI战斗时所作出的动作。
另外,当队伍中有两个或者两个以上的人同时装备最后这四把武器时,攻击顺序按照速度来判定。
是用来杀伤敌人的,而在于其各种各样的特殊效果。
magma模型导入

1.2.3模型导入1. 操作步骤1)单位设置;默认单位是 mm ,根据需要在以下界面修改:图 1.2.3-1 尺寸单位2) 材料组的设定;表1.2.3-1 材料组类型从下拉功能表File中选Load SLA。
例如:LOAD SLA ..proj1cast.stl 读入在目前目录的路径下cast stl。
4)通过File选项 save all as 1 保存材料到项目文件夹中;5)选择退出。
2. 几何模型建立功能1)产生点 SET PointSET POINT X Y Z X 、Y 、Z是点坐标值2)产生线 SET Line直接以鼠标左键点两点决定一条线,然后用中键终止指令(否则会一直连成多边线)。
3)建四方体 BEGIN Box(1)点选右上角建构指令rectangle(长方形);(2)将鼠标移到建构平面(x-y , y-z , z-x view);(3)用左键点两点定义box的平面对角线;(4) 移到不同的view同样用左键点两点来定义box深度(高);(5) 用右键终止指令,完成box建构。
4)建圆柱体 BEGIN Circle(1) 点选右上角建构指令之circle(圆形);(2) 在建构视角先点选圆心位置;再点第2点为半径大小;(3) 移到不同的view用左键点两点来定义cylindere高度;(4) 用右键终止指令,完成box建构。
建圆柱或圆锥的另一个方法是指令操作,如下:SET CYL x1 y1 z1 x2 y2 z2 r1 r2 [acc]x1 y1 z1 轴线第1点坐标值x2 y2 z2 轴线第2点坐标值r1 第1点圆心半径r2 第2点圆心半径acc 圆柱面精度值,未标示则依内定值如:SET CYL 0 0 0 0 0 100 30 30 表示轴线在Z轴半径30的圆柱5) 建球体 SET SPH指令如下:SET SPH x1 y1 z1 x2 y2 z2 [ang]x1 y1 z1 球心坐标值x2 y2 z2 球半径上一点坐标值ang 定义球体是全圆(360o);半球体(180o) 如:SET SPH 0 0 0 0 0 100 180 产生半径100的半球体6) 定义绝热体(1) 设定材料为cut box;(2) 对称区域利用建box(四方体)来框住,表示box以外的区域没有能量穿过cut box边界。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1 Introduction2 Theory2.1 热物理数据2.2 合金成分2.3 灰铸铁仿真2.3.1共晶核2.3.2石墨形态-层状石墨2.3.3灰铁和白口铁的凝固2.3.4固态转变2.3.5硬度和材料特性2.3.6弹性模量-杨氏模量2.4球墨铸铁仿真2.4.1石墨形核2.4.2球墨铸铁固态转变(共析转变)2.4.3球墨铸铁的珠光体分解2.4.4机械性能2.4.5弹性模量-杨氏模量2.5蠕墨铸铁仿真2.6铸铁收缩和疏松的形成2.6.1凝固收缩2.6.2砂型/芯子的变形2.6.3疏松形成和压力特性2.6.4石墨聚集因子2.6.5疏松级别模拟的说明3 How to Use MAGMAiron3.1概述3.2MAGMA数据库3.2.1铸铁数据集3.2.2一般参数3.2.3铸铁成分3.2.4铸铁类型/石墨种类3.2.5型砂成分3.2.6金相照片数据/单位面积形核数/铁素体、珠光体分布形核数3.3仿真3.3.1概述3.3.2窗口——铸铁3.3.3铸铁模拟菜单3.4结果演示/后处理3.4.1结果-概述3.4.2金相照片等——球墨铸铁的微观结构3.4.3单位系统4小结- 怎么办4.1铸铁的具体数据4.2项目定义4.3几何建模4.4仿真设置4.5结果显示4.6其他信息1 Introduction介绍MAGMAiron是微观建模软件,可以模拟凝固、固相转变及在铸铁中凝固中相关的物理现象。
MAGMAiron是一个附加的模块,可以模拟灰铸铁、球墨铸铁和蠕墨铸铁的凝固过程和固态相变过程。
冶金质量、工艺条件对铸铁合金的性能有很大的影响。
微观组织和铸件的力学性能不仅取决于铸造的流动过程,而且还由以下下参数决定:1)合金成分、2)金属处理、3)微量元素和杂质、4)熔炼炉、钢包金属液的处理(除氧、镁处理)5)孕育材料的类型和数量6)孕育法析出相的晶粒长大动力学和冷却条件决定了实际的微观组织的形成,因此必须考虑凝固、疏松和固态相变过程,它们共同影响铸铁的机械性能。
MAGMAiron使用全面的物理模型来预测铸件质量。
MAGMAiron是一个功能强大的工具,专门用于铸造设计、模型布置和工艺优化。
模型从文献资料和实用材料数据中提取。
然而,在铸铁铸造过程中,冶金、微观结构和机械性能是复杂的问题,常常是靠经验。
2理论2.1热物理数据MAGMASOFT标准模块中,凝固模拟是通过在数据库中增加一个固定的温度差(ΔT)的凝固潜热(ρCp)。
ΔT为液相和固相之间的温度差。
目前根据液-固质量百分比计算熔化潜热的大小及影响,同时热容量、导热系数和其他所有热物理数据也计入其中。
另一方面,凝固潜热和固态相变的程度根据实际预测的各阶段由内部程序计算,沉淀强化阶段也被考虑当中。
固液区域影响液态、固态的热容大小。
2.2合金成分合金成分应该是熔融在铁水中的合金元素。
总金额合金元素不应超过一定程度。
对大多数铸铁合金,碳、硅成分在以下范围内。
表2-1给出建议的成分范围。
表2-1合金元素的最大成分Element Recommended composition range %C 3-4.3Mg 0-0.05Si 1.5-4P 0-0.2S 0-0.1Cr 0-1.0(x)Mn 0-1.0(x)Ni 0-1.0(x)Cu 0-1.0(x)Mo 0-1.0(x)Sn 0-0.2(x)Ce 0-0.05Sb 0-0.04N 0-100ppm(x)标记x的元素的成分总和不应大于2%。
合金的化学成分影响其熔化和凝固过程。
可以计算凝固的灰铸铁、球墨铸铁和白口铸铁的共晶温度;计算初生析出和共晶析出过程。
石墨的析出用杠杆规则进行计算。
其他元素的析出,扩散率较低,使用修改后的Scheil-segregation方程计算。
奥氏体按照相图进行析出。
2.3灰铸铁模拟2.3.1共晶体形核灰铸铁的共晶体形核对凝固模拟、疏松形成、微观组织和机械性能的的模拟很重要。
白口共晶体在实际凝固过程中不该产生,为了避免白口共晶体的存在,设置合适含量的共晶核对凝固过程模拟是非常重要的。
如果A值太小,白口共晶体可能产生,其防止了成分的析出,疏松程度严重,机械性能降低。
孕育显著地影响形核率。
在铸铁中,石墨的形核是异质体形核,如必须在第二相粒子、基体、氧化质点等类似点。
在某一温度下活化的晶核数量,用形核公式表示,是由一些形核常数所决定。
孕育导致的石墨形核的基本公式如下:Nν=单位体积(mm3)共晶核数A= 形核常数ΔT=过冷度B=指数在MAGMAiron模块中,A常数采用默认的值,'fail','good'和'very good'三种孕育方式获得对应的A该值。
另外,在MAGMAiron模块中根据孕育方式和孕育操作可以更改或修改这些参数。
一定的过冷度可以激活一定数量石墨形核,如果温度更低,则更多数量的石墨形核被激活。
如果温度升高,新的形核过程停止,现有激活的形核过程也停止。
凝固结束过程中,这些形核能逐渐被激活,但对合金和铸件的热行为影响甚微。
然而,该过程影响了疏松的形成。
用户通过这个参数'graphite precipitation'的设置将该影响计入考虑。
2.3.2石墨形态-片状石墨灰铸铁共晶体生长速率和相应的形态受扩散控制,由温度决定。
根据过冷量,即当前熔体成分的共晶温度与形核温度的差值,生长形态可分为A、D型石墨。
较低过冷度时,以非耦合增长方式生长,形成A型片状石墨。
小于一定的过冷度时,将以耦合方式生长,生长速度增加。
这导致更细的片状石墨形态,生成D型石墨。
2.3.3灰口铁和白口铁的凝固The cementite will not dissolve if the temperature exceeds the metastable eutectic temperature.当合金在冷却过程中温度降到共晶温度,形核并生长,生成灰口铁。
如果温度继续冷却到亚稳定的温度,生成白口铁。
如果有新的形核析出渗碳体,白口铁能从熔体中直接析出长大,并与灰口铁的生成互相竞争。
灰口铁和白口铁的微观组织能同时发生。
如果温度超过亚共晶温度,渗碳体不会分解。
2.3.4固相转变灰铸铁的固态相变,程序假设已全部生成珠光体结构。
珠光体的增长速率根据亚稳相图和合金成分计算共析体的过冷度而得。
珠光体的粗细程度依赖于晶核长大温度,因此非常依赖冷却速度(热性能和传热系数)。
2.3.5硬度和材料特性灰铸铁的硬度值计算根据初生奥氏体的析出量和合金元素对珠光体片间距的影响而得。
珠光体中其它合金元素对铁素体的固溶强化也被考虑其中。
固相转变过程中的冷却速度对珠光体的硬度非常重要。
因此,在模拟时,建议使用已知、最了解的模具和芯子材料的传热和材料数据。
可以通过测试简单形状铸件的冷却速度,与模拟结果进行对比。
2.3.6弹性模量-杨氏模量The result of the modulus calculation depends on the amount and shape of the graphite in the microstructure. As no ferrite is allowed to grow in gray iron mode of MAGMAiron, the modulus will be constant throughout the casting.弹性模量或杨氏模量也可以计算出来。
模量计算结果根据显微组织中石墨的形状和石墨的量所得。
在MAGMAiron模块中灰铸铁中不允许有铁素体形核生长,因此铸件的模量都是常数。
2.4球墨铸铁仿真2.4.1石墨核形核(Nucleation of Graphite Nodules)The formation of defects and final mechanical properties of nodularcast irons depend on the process of graphite nodule nucleation. Thenumber of nodules per unit volume is dependent on the nucleationpractice, type of inoculant and fading time. You can adjust anucleation factor in MAGMAiron to represent these processes andthereby modify the equations for the nucleation, depending on theinoculant and the inoculation practice used in the foundry. The basicequation has the same form as that for the nucleation of gray ironeutectics:球墨铸铁的缺陷和最终的力学性能取决于石墨核的形核过程。
单位体积形核的数量取决于形核、孕育方式和衰退时间。
通过调整MAGMAiron模块中的形核因子,表示这些过程,从而修改了形核公式,取决于孕育和孕育工艺。
基本方程与灰铸铁共晶体形核方程类似:Nν=单位体积(mm3)共晶核数A= 形核常数ΔT=过冷度B=指数你可以修改这个常量,是有可能的应用治疗产量高于100%(“窗口”铸铁“)。
从数量和每平方毫米的结节数计算每立方毫米大小结节,考虑结节的大小。
在MAGMAiron模块中,A常数采用默认的值,'fail','good'和'very good'三种孕育方式获得对应的A该值。
可以修改该参数,孕育处理利用率值能大于100%。
单位面积的形核数用单位体积形核数和形核大小计算,将形核的尺寸考虑进去。
The function 'Real Reality Realizer' enables you to gain information about the microstructure morphology after solidification of nodular cast iron.特别注意:通过'Real Reality Realizer'功能可以获得球墨铸铁凝固后的微观组织形态信息。
2.4.2球墨铸铁的固相变化(共析转变)球墨铸铁铸件的组织中,铁素体/珠光体的含量是铁素体、珠光体分别形核、长大互相竞争的结果。
原因是,有两个相转变图,稳定相转变图控制铁素体的形成,亚稳定相转变图控制珠光体的形成。