基于51单片机的简易数字电压表的设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五邑大学
单片机课程设计报告
基于51单片机的简易数字电压表的设计
学院:信息工程学院
专业:交通工程(交通控制与管理)
班
姓名
学号
指导老师:
完成日期:2015年01月05日
目录
1 引言 (1)
2 设计方案 (1)
3 元器件 (3)
4 实际电路 (8)
5 单片机程序 (10)
6 电路板制作 (15)
7总结 (16)
8附录 (16)
9参考文献 (17)
数字电压表设计
1引言
在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。数字电压表简称DVM,它是采用数字化测量技术,把连续的模拟量转换成不连续、离散的数字形式并加以显示的仪表。由于数字式仪器具有读数准确方便、精度高、误差小、测量速度快等特而得到广泛应用。
传统的指针式刻度电压表功能单一,进度低,容易引起视差和视觉疲劳,因而不能满足数字化时代的需要。采用单片机的数字电压表,将连续的模拟量如直流电压转换成不连续的离散的数字形式并加以显示,从而精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC实时通信。数字电压表是诸多数字化仪表的核心与基础。以数字电压表为核心,可以扩展成各种通用数字仪表、专用数字仪表及各种非电量的数字化仪表。目前,由各种单片机和A/D转换器构成的数字电压表作全面深入的了解是很有必要的。
目前,数字电压表的内部核心部件是A/D转换器,转换的精度很大程度上影响着数字电压表的准确度,因而,以后数字电压表的发展就着眼在高精度和低成本这两个方面。
本文是以简易数字直流电压表的设计为研究内容,本系统主要包括三大模块:转换模块、数据处理模块及显示模块。其中,A/D转换采用ADC0808对输入的模拟信号进行转换,控制核心AT89C51再对转换的结果进行运算处理,最后驱动输出装置LED显示数字电压信号
2 设计方案
2.1设计要求
以单片机为核心,设计一个数字电压表。采用中断方式,对2路0~5V的模拟电压进行循环采集,采集的数据送LED显示,并存入内存。超过界限时指示灯闪烁。为了稍微增加一点难度,我加入测量温度的功能。
2.2 设计思路
⑴根据设计要求,选择AT89C51单片机为核心控制器件。
⑵A/D转换采用ADC0808实现,与单片机的接口为P1口和P2口的高四位引脚。
⑶电压显示采用4位一体的LED数码管。
⑷LED数码的段码输入,由并行端口P0产生:位码输入,用并行端口P2低四
位产生。
2.3 设计方案
将被测电压输入ADC0808的电压输入端口,进行采集。接着,将采集到的模拟信号转换为数字信号。然后,通过控制单片机的内部程序,让单片机系统按照规定的时序来采集ADC0808输入的数字信号,并通过算法计算出被测电压的值。最后,单片机再将计算好的电压值,按照一定的时序送入LED数码管中,让其显示。同时,设置监测电路,当电压达到预定值时,进行报警提示。
2.4 流程图
图1:设计方案流程图
3 元器件
3.1 A/D转换模块
一个n位的逐次逼近型A/D转换器只需要比较n次,转换时间只取决于位数和时钟周期,逐次逼近型A/D转换器转换速度快,因而在实际中广泛使用。
3.1.1 逐次逼近型A/D 转换器原理
逐次逼近型A/D 转换器是由一个比较器、A/D 转换器、存储器及控制电路组成。它利用内部的寄存器从高位到低位一次开始逐位试探比较。
转换过程如下:
开始时,寄存器各位清零,转换时,先将最高位置1,把数据送入A/D 转换器转换,转换结果与输入的模拟量比较,如果转换的模拟量比输入的模拟量小,则1保留,如果转换的模拟量比输入的模拟量大,则1不保留,然后从第二位依次重复上述过程直至最低位,最后寄存器中的内容就是输入模拟量对应的二进制数字量[5]。其原理框图如图2所示:
图2 逐次逼近式A/D 转换器原理图
3.1.2 ADC0808
ADC0808是CMOS 单片型逐次逼近式A/D 转换器,带有使能控制端,与微机直接接口,片内带有锁存功能的8路模拟多路开关,可以对8路0-5V 输入模拟电压信号分时进行转换,由于ADC0808设计时考虑到若干种模/数变换技术的长处,所以该芯片非常适应于过程控制,微控制器输入通道的接口电路,智能仪器和机床控制等领域[5]。
ADC0808主要特性:8路8位A/D 转换器,即分辨率8位;具有锁存控制的8路模拟开关;易与各种微控制器接口;可锁存三态输出,输出与TTL 兼容;转换时间:128μs ;转换精度:0.2%;单个+5V 电源供电;模拟输入电压范围0- +5V ,无需外部零点和满度调整;低功耗,约15mW [6]。
3.1.3 ADC0808的外部引脚特征
ADC0808芯片有28条引脚,采用双列直插式封装,其引脚图如图3所示。
图3 ADC0808引脚图
下面说明各个引脚功能:
IN0-IN7(8条):8路模拟量输入线,用于输入和控制被转换的模拟电压。 地址输入控制(4条):
ALE:地址锁存允许输入线,高电平有效,当ALE 为高电平时,为地址输入线,用于选择IN0-IN7上那一条模拟电压送给比较器进行A/D 转换。
ADDA,ADDB,ADDC:3位地址输入线,用于选择8路模拟输入中的一路,其对应关系如表1所示:
START 送来,宽度应大于100ns ,上升沿清零SAR,下降沿启动ADC 工作。
EOC: EOC 为转换结束输出线,该线上高电平表示A/D 转换已结束,数字量已锁入三态输出锁存器。
D1-D8:数字量输出端,D1为高位。
OE :OE 为输出允许端,高电平能使D1-D8引脚上输出转换后的数字量。 REF+、REF-:参考电压输入量,给电阻阶梯网络供给标准电压。
Vcc 、GND: Vcc 为主电源输入端,GND 为接地端,一般REF+与Vcc 连接在一起,REF-与GND 连接在一起.
CLK:时钟输入端。
3.1.4 ADC0808的内部结构及工作流程
ADC0808由8路模拟通道选择开关,地址锁存与译码器,比较器,8位开关树型A/D 转换器,逐次逼近型寄存器,定时和控制电路和三态输出锁存器等组成,其内部结构如图4所示。
图4 ADC0808的内部结构