谈通风管道局部阻力计算方法
谈通风管道局部阻力计算方法
谈通风管道局部阻力计算方法谈通风管道局部阻力计算方法胡宝林在通风除尘与气力输送系统中,管道的局部阻力主要在弯头、变径管、三通、阀门等管件和重杂物分离器、供料器、卸料器、除尘器等设备上产生。
由于管件形状和设备结构的不确定性以及局部阻力的复杂性,目前许多局部阻力系数还不能用公式进行计算,只能通过大量的实验测试阻力再推算阻力系数,并制成表格供设计者查询。
例如在棉花加工生产线上,常规的漏斗形重杂物分离器压损为300R左右, 离心式籽棉卸料器压损为400匕左右,这些都是实测数据,由于规格结构不同差异也会很大,所以仅供参考。
只有一些常见的形状或结构比较确定的管件及设备可通过公式计算阻力系数,例如弯头、旋风除尘器等。
局部阻力是管道阻力的重要组成部分,一个R=4D 90°弯头的阻力相当于2.5?6.5m的直管沿程阻力。
由于涉及到局部阻力的管件种类繁多,不便一一列举,因此,本文以弯头等常用管件为例重点讨论在纯空气下和带料运行时的局部阻力系数的变化及局部阻力计算方法。
一、纯空气输送时局部阻力和系数1、局部阻力当固体边界的形状、大小或者两者之一沿流程急剧变化,流体的流动速度分布就会发生变化,阻力大大增加,形成输送能量的损失,这种阻力称为局部阻力。
在产生局部损失的地方,由于主流与边界分离和漩涡的存在,质点间的摩擦和撞击加剧,因而产生的输送能量损失比同样长的直管道要大得多,局部阻力与物料的密度及速度的平方成正比,局部阻力计算公式:::.2式中:出一局部阻力,F a;—局部阻力系数,实验取得或公式计算;H d —动压,巳;‘一空气密度,1.205kg/m3(20°C);-—空气流速,m/s2、阻力系数阻力系数的确定有两种方法,一是查表法,二是公式法。
查表法:许多管件或设备都具有特殊的形状或结构,阻力系数难以用理论公式计算,只能通过测试阻力后再反推阻力系数。
为了便于查询和参考,通过大量的实验已经制成了查询表。
风管阻力计算方法
风管阻力计算方法送风机静压Ps(Pa)按下式计算:PS=PD PA式中:PD—风管阻力(Pa),PD= RL(1 K)说明:R—风管的单位磨擦阻力,Pa/m;L—到最远送风口的送风管总长加上到最远回风口的回风管总长,m;K—局部阻力与磨擦阻力损失的比值。
推荐的风管压力损失分配(按局部阻力和磨擦阻力之比)风管系统弯头、三通较少弯头、三通较多K 1.0~2.0 2.0~4.0PD=R(L Le)式中Le为所有局部阻力的当量长度。
PA——空气过滤器、冷热盘管等空调装置的阻力之和(Pa)☆推荐的风管压力损失分配(按送风与回风管之阻力)系统特征风机单一回风在设备附近单一回风有回风管的单一回风在中等回风管系统的多样回风有大规模回风管系统的多样回风送风% 90 80 70 60 50回风% 10 20 30 40 50 ☆低速风管系统的推荐和最大流速m/s应用场所(空调风管中功能段)住宅公共建筑工厂推荐最大推荐最大推荐最大室外空气入口 2.5 4.0 2.5 4.5 2.5 8.0 空气过滤器 1.3 1.5 1.5 1.8 1.8 1.8 加热排管 2.3 2.5 2.5 3.0 3.0 3.5 冷却排管 2.3 2.3 2.5 2.5 3.0 3.0 风机出口 6.0 8.5 9.0 11.0 10.0 14.0 主风管 4.0 6.0 6.0 8.0 9.0 11.0 支风管(水平) 3.0 5.0 4.0 6.5 5.0 9.0 支风管(垂直) 2.5 4.0 3.5 6.0 4.0 8.0 ☆低速风管系统的最大允许流速m/s应用场所以噪声控制以磨擦阻力控制主风管送风主管回风主管送风支管回风支管住宅 3.0 5.0 4.0 3.0 3.0公寓、饭店房间 5.0 7.5 6.5 6.0 5.0办公室、图书馆 6.0 10.0 7.5 8.0 6.1大礼堂、戏院 4.0 6.5 5.5 5.0 4.0银行、高级餐厅7.5 10.0 7.5 8.0 6.0百货店、自助餐厅9.0 12.0 7.5 8.0 6.0工厂12.5(上限) 15.0 9.0 11.0 7.5 ☆推荐的送风口流速m/s应用场所流速m/s播音室 1.5~2.5戏院 2.5~3.5住宅、公寓、饭店房间、教室2.5~3.8一般办公室 2.5~4.0电影院 5.0~6.0百货店、上层 5.0百货店、下层7.510.0☆以噪声标准控制的允许送风流速m/s应用场所流速m/s图书馆、广播室 1.75~2.5住宅、公寓、私人办公室、医院房间 2.5~4.0银行、戏院、教室、一般办公室、商店、餐厅4.0~5.0工厂、百货店、厨房 5.0~7.5☆回风格栅的推荐流速m/s位置近座位逗留区以上门下部门上部工业用流速m/s 2~3 3~4 4 3 ≥4布袋风管的压力损失:布袋送风不只只是传递气流,同时在进行径向送风,所以管道内风速是不断减少的,管道平均风速比传统风管小的多,铁皮风管有个经验数据1pa/m,布袋风管由于管径的不同阻力变化较大,但一般可以近似的认为0.3-0.5pa/m。
通风管道阻力计算
通风管道阻力计算
通风管道阻力计算
空气在风管内流动时会产生两种阻力,一种是摩擦阻力,即空气本身的粘滞性和与管壁间的摩擦所产生的沿程能量损失;另一种是局部阻力,即空气流经管件和设备时由于流速和方向变化以及涡流所产生的比较集中的能量损失。
一、摩擦阻力
根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力可以按以下公式计算:
ΔPm=λν2ρl/8Rs
对于圆形风管,摩擦阻力计算公式可改写为:
ΔPm=λν2ρl/2D
圆形风管单位长度的摩擦阻力(比摩阻)为:
Rs=λν2ρ/2D
其中,λ为摩擦阻力系数,ν为风管内空气的平均流速,ρ为空气的密度,l为风管长度,Rs为风管的水力半径,f为管道中充满流体部分的横断面积,P为湿周(即风管的周长),D为圆形风管直径。
矩形风管的摩擦阻力计算需要先把矩形风管断面尺寸折算成相当的圆形风管直径(即当量直径),再由此求得矩形风管的单位长度摩擦阻力。
当量直径有流速当量直径和流量当量直径两种。
二、局部阻力
当空气流动经过断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)和流量变化的管件(如三通、四通、风管的侧面送、排风口)时,会产生局部阻力。
局部阻力可以按以下公式计算:
Z=ξν2ρ/2
其中,ξ为局部阻力系数。
局部阻力在通风、空调系统中占有较大的比例,在设计时应注意减小局部阻力。
为了达到这个目的,通常采用以下措施:尽量减少弯头,圆形风管弯头的曲率半径一般应大于(1~2)
倍管径;矩形风管弯头断面的长宽比愈大,阻力愈小;在矩形直角弯头中应设导流片。
风机计算_通风管道阻力计算
通风管道阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3;l ————风管长度,mRs————风管的水力半径,m;Rs=f/Pf————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。
矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。
再由此求得矩形风管的单位长度摩擦阻力。
当量直径有流速当量直径和流量当量直径两种;流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。
二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。
局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。
局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施:1. 弯头布置管道时,应尽量取直线,减少弯头。
通风阻力计算公式汇总
通风阻力计算公式汇总通风阻力是流体在通过管道或设备时所经受的阻力。
在工程中,通风阻力的计算对于设计和优化通风系统至关重要。
下面是一些常用的通风阻力计算公式的汇总:1.管道阻力公式:管道阻力是通风系统中一个重要的组成部分。
下面是几种常见的管道阻力计算公式:-法氏方程公式:ΔP=(η*L/D)*(V^2/2g)其中,ΔP是管道阻力,η是比例系数(通常为0.02-0.05),L是管道长度,D是管道直径,V是流速,g是重力加速度。
-白寇厄尔公式:ΔP=η*(ρ*L/D)*(V^2/2)其中,ΔP是管道阻力,η是比例系数(通常为0.03-0.25),ρ是流体密度,L是管道长度,D是管道直径,V是流速。
-弗里若克公式:ΔP=η1*(ρ1*L1/D1)*(V1^2/2)+η2*(ρ2*L2/D2)*(V2^2/2)+...+ηn*(ρn*Ln/Dn)*(Vn^2/2)其中,ΔP是管道阻力,η是比例系数(通常为0.03-0.25),ρ是流体密度,L是管道长度,D是管道直径,V是流速。
以上公式可以根据具体问题中的参数进行计算,得到通风系统的管道阻力。
2.设备阻力公式:在通风系统中,除了管道阻力,设备也会产生阻力。
以下是几种常见的设备阻力计算公式:-弯头阻力:ΔP=ξ1*ρ*(V^2/2)其中,ξ是弯头阻力系数,常用值为0.25-1.0,ρ是流体密度,V是流速。
-扩散器阻力:ΔP=ξ2*(ρ*V^2/2)其中,ξ是扩散器阻力系数,常用值为0.09-0.35,ρ是流体密度,V是流速。
-突变阻力:ΔP=ξ3*(ρ*V^2/2)其中,ξ是突变阻力系数,常用值为1.5-10,ρ是流体密度,V是流速。
这些设备阻力公式可以帮助工程师根据具体设备的参数计算其阻力,从而优化通风系统设计。
3.阻力总和公式:在实际通风系统中,不仅仅有管道和设备阻力,还有其他因素如弯曲、分支、阻尼等会产生阻力。
以下是阻力总和公式的一个例子:ΔP=ΣΔP管道+ΣΔP设备+ΣΔP其他其中,ΔP是总阻力,ΣΔP管道表示管道阻力之和,ΣΔP设备表示设备阻力之和,ΣΔP其他表示其他因素的阻力之和。
通风工程管道阻力计算
通风工程管道阻力计算通风工程中的管道阻力计算是重要的一项工作,它直接关系到系统的通风效果和节能效果。
本文将详细介绍通风工程中的管道阻力计算方法及其影响因素。
一、管道阻力计算方法:通风系统中的管道阻力是指空气在管道中流动时所遇到的阻力。
通常采用以下公式计算:ΔP=K×L×ρ×(V/3600)^2(1)其中,ΔP为管道阻力(Pa),K为阻力系数(Pa/m),L为管道长度(m),ρ为空气密度(kg/m³),V为风量(m³/h)。
阻力系数K是根据流量速度(m/s)和管道直径(m)来计算的。
对于圆形截面的管道,可以使用以下公式计算:K=(0.51+0.002D)×(V/D)^2(2)其中,D为管道直径(m),V为流量速度(m/s)。
二、影响因素:1.管道材质:不同材质的管道具有不同的内表面粗糙度,粗糙度越大,摩擦阻力越大,导致管道阻力增加。
2.管道长度:管道长度越长,空气流动经过的阻力表面越多,阻力增加。
3.管道直径:管道直径越大,流通面积越大,阻力减小。
4.管道弯头和弯管:弯头和弯管的存在会增加管道的阻力,尤其是对空气流动有较大影响的90度弯头。
5.风量:风量越大,管道阻力越大。
三、实际计算:1.根据风量和设计条件选择管道直径。
2.根据管道直径计算阻力系数K。
3.根据管道直径和长度计算总阻力。
4.根据管道阻力和所需风压,判断所选管道是否满足要求。
5.根据需要,可以进行多次迭代计算,直到找到满足要求的管道尺寸。
四、优化策略:1.尽量选择材质光滑、粗糙度低的管道,以减小阻力。
2.在管道设计中尽量减少弯头和弯管的使用,或者采取流线型弯头,以减小阻力。
3.如果风量较大,可以考虑分段设计,通过增加出风口数量来减小单个风口的风量,从而减小管道阻力。
4.在实际计算中可根据实验数据进行修正,以提高计算精度。
总结:通风工程中的管道阻力计算是一个复杂的过程,需要综合考虑管道材质、直径、长度、弯头等因素,并进行科学合理的计算和优化。
风管的阻力计算
风管的阻力计算哎呀,说到风管的阻力计算,这可真是个让人头疼的活儿。
你想想,那些弯弯曲曲的管道,里面空气呼呼地吹,阻力可不是闹着玩的。
不过呢,别急,咱们慢慢来,就像吃个火锅,得慢慢涮,才能品出味道。
首先,咱们得知道,风管里的阻力,主要来自两个方面:一个是摩擦阻力,另一个是局部阻力。
摩擦阻力,就像是你在跑步时,空气对你的阻力一样,风管里的风,吹得越快,摩擦阻力就越大。
局部阻力呢,就是那些弯头、阀门、变径这些地方,空气过不去,得绕个弯,或者挤一挤,这阻力自然就上来了。
咱们先说说摩擦阻力。
这玩意儿,得用到一个公式,Darcy-Weisbach公式,听着挺高大上的,其实就是摩擦阻力的计算公式。
公式是这样的:h_f = f (L/D) (v^2/2g),其中h_f是摩擦阻力,f是摩擦系数,L是管道长度,D是管道直径,v是风速,g是重力加速度。
这个公式,你得根据实际情况,比如管道的材料、粗糙度,来确定摩擦系数f。
接下来,局部阻力。
这个就更复杂了,因为每个局部构件的阻力计算公式都不一样。
比如弯头,你得知道弯头的曲率半径,然后根据曲率半径和风速,计算出阻力。
还有阀门,你得知道阀门的开度,然后根据开度和风速,计算出阻力。
这些局部阻力,你得一个一个加起来,才能得到总的局部阻力。
好了,现在咱们有了摩擦阻力和局部阻力,把它们加起来,就得到了风管的总阻力。
但是,别忘了,这个阻力,是和风量有关的。
风量越大,阻力就越大。
所以,你得根据实际的风量,来调整你的计算结果。
最后,别忘了,这个阻力计算,是为了设计风管系统,保证风能顺利地吹到需要的地方。
所以,你得根据计算结果,选择合适的风机,确保风压足够克服这个阻力。
哎呀,说了这么多,感觉像是在讲天书。
不过,你只要记住,风管的阻力计算,就是摩擦阻力和局部阻力的总和,然后根据风量来调整。
这个活儿,虽然复杂,但是只要你耐心点,一步步来,也不是什么难事。
就像吃火锅,慢慢涮,慢慢吃,才能品出真正的美味。
通风管道沿程摩擦风阻及局部阻力系数计算方法
通风管道沿程摩擦风阻及局部阻力系数计算方法B.1 通风管道沿程摩擦风阻通风管道沿程摩擦风阻可按公式(B.1)~(B.2)计算:55.6d L R f α=.....................................(B.1) =8λρα.......................................(B.2) 式中:α——通风管道摩擦阻力系数(kg/m 3);λ——通风管道达西系数,对柔性通风管进行计算时可取0.019~0.021;ρ——空气密度(kg/m 3);d ——通风管道当量直径(m )。
B.2 通风管道的局部阻力系数通风管道的局部阻力系数取值应根据局部损失的具体形式确定,并可按照以下规定进行取值: a) 突然扩大的异径管接头,其局部阻力系数可按公式(B.3)计算:()212=1/A A ξ-...................................(B.3)式中:A 1——进风处接头的管道截面面积(m 2);A 2——出风处接头的管道截面面积(m 2)。
b) 突然缩小的异径管接头,其局部阻力系数可按公式(B.4)计算: ()221=0.51/A A ξ-..................................(B.4)式中:A 1——进风处接头的管道截面面积(m 2);A 2——出风处接头的管道截面面积(m 2)。
c) 通风管道转弯时,其局部阻力系数可按公式(B.5)~(B.6)计算:0.750.8=0.008/n ξθ...................................(B.5) /n R d =......................................(B.6)式中:θ——转弯角度;R ——转弯处的曲率半径(m );d ——管道直径(m )。
d)管道入口处的局部阻力系数ξ可取为0.6;e)管道出口处的局部阻力系数ξ可取为1.0;f)管道分岔处的局部阻力系数ξ可取为1.0。
通风管道阻力的计算与公式
风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3;l————风管长度,mRs————风管的水力半径,m;Rs=f/Pf————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。
矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。
再由此求得矩形风管的单位长度摩擦阻力。
当量直径有流速当量直径和流量当量直径两种;流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。
二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。
局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。
局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施:1.弯头布置管道时,应尽量取直线,减少弯头。
局部阻力说明
管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3;l ————风管长度,mRs————风管的水力半径,m;Rs=f/Pf————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。
矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。
再由此求得矩形风管的单位长度摩擦阻力。
当量直径有流速当量直径和流量当量直径两种;流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。
二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。
局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。
局部阻力在通风、空调系统中占有较大的比例,在设计时应加以注意,为了减小局部阻力,通常采用以下措施:1. 弯头布置管道时,应尽量取直线,减少弯头。
风管阻力计算公式方法
风管阻力计算公式方法风管阻力计算方法送风机静压Ps(Pa)按下式计算 PS = PD + PA式中:PD――风管阻力(Pa),PD = RL(1 + K)说明:R――风管的单位磨擦阻力,Pa/m;L ――到最远送风口的送风管总长加上到最远回风口的回风管总长,m;K――局部阻力与磨擦阻力损失的比值。
推荐的风管压力损失分配(按局部阻力和磨擦阻力之比)风管系统弯头、三通较少弯头、三通较多K 1.0~2.0 2.0~4.0PD= R(L + Le)式中Le为所有局部阻力的当量长度。
PA――空气过滤器、冷热盘管等空调装置的阻力之和(Pa)☆推荐的风管压力损失分配(按送风与回风管之阻力)在中等回有大规模在设备附有回风管风机单一风管系统回风管系系统特征近单一回的单一回回风的多样回统的多样风风风回风送风% 90 80 70 60 50 回风% 10 20 30 40 50☆低速风管系统的推荐和最大流速m/s住宅公共建筑工厂应用场所(空调风管中功能段)推荐最大推荐最大推荐最大室外空气入口 2.5 4.0 2.5 4.5 2.5 8.0 空气过滤器 1.3 1.5 1.5 1.8 1.8 1.8加热排管 2.3 2.5 2.5 3.0 3.0 3.5冷却排管风机出口主风管2.36.04.02.38.56.02.59.06.02.511.08.03.0 10.0 9.03.014.011.09.08.0 支风管(水平) 3.0 5.0 4.0 6.5 5.0 支风管(垂直) 2.5 4.0 3.5 6.0 4.0☆低速风管系统的最大允许流速m/s以噪声控制应用场所主风管送风主管住宅 3.0 5.0 公寓、饭店房间 5.0 7.5 办公室、图书馆6.0 10.0 大礼堂、戏院 4.0 6.5 银行、高级餐厅 7.5 10.0 百货店、自助餐厅9.0 12.0工厂 12.5 (上限)15.0☆推荐的送风口流速m/s应用场所播音室戏院以磨擦阻力控制回风主送风支管管4.0 3.0 6.5 6.0 7.5 8.05.5 5.0 7.5 8.0 7.5 8.0 9.0 11.0 流速m/s1.5~2.52.5~3.5回风支管3.0 5.0 6.14.0 6.0 6.07.5住宅、公寓、饭店房间、教室一般办公室电影院百货店、上层百货店、下层2.5~3.8 2.5~4.05.0~6.0 5.07.510.0☆以噪声标准控制的允许送风流速m/s应用场所流速m/s图书馆、广播室 1.75~2.5住宅、公寓、私人办公室、医2.5~4.0院房间银行、戏院、教室、一般办公4.0~5.0室、商店、餐厅工厂、百货店、厨房 5.0~7.5☆回风格栅的推荐流速m/s逗留区以位置近座位门下部门上部工业用上流速m/s 2~3 3~4 4 3≥4布袋风管的压力损失:布袋送风不只只是传递气流,同时在进行径向送风,所以管道内风速是不断减少的,管道平均风速比传统风管小的多,铁皮风管有个经验数据1pa/m,布袋风管由于管径的不同阻力变化较大,但一般可以近似的认为0.3-0.5pa/m通风管道阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。
5局部阻力的计算与管路计算
5局部阻力的计算与管路计算局部阻力的计算是管路设计中非常重要的一个环节,它用于确定管道系统中各个局部部件的阻力大小。
这些局部阻力主要包括弯头、管节、节流装置、阀门和管口等。
下面我将详细介绍局部阻力的计算方法以及管路设计中的一些重要考虑因素。
一、弯头的计算弯头是管道系统中常见的一种局部阻力。
弯头的阻力主要取决于其曲率半径、角度和流体的流速。
一般情况下,弯头的阻力可以通过以下公式进行计算:ΔP=K×ρ×v²/2其中,ΔP表示弯头所产生的压力降,K表示弯头阻力系数,ρ表示流体密度,v表示流体流速。
具体的弯头阻力系数K可以通过查阅相关资料或利用实验数据进行确定。
二、管节的计算管节是管道系统中连接两个直管段的部件,其阻力受到管道内径、管长、流体流速以及管节的形状等因素的影响。
一般情况下,管节的阻力可以通过以下公式进行计算:ΔP=K×ρ×v²/2其中,ΔP表示管节所产生的压力降,K表示管节阻力系数,ρ表示流体密度,v表示流体流速。
具体的管节阻力系数K可以通过查阅相关资料或利用实验数据进行确定。
三、节流装置的计算节流装置是管道系统中一种特殊的局部阻力部件,它通过改变流体流速和管道截面积来产生阻力。
节流装置主要包括节流阀和孔板等。
一般情况下,节流装置的阻力可以通过以下公式进行计算:ΔP=K×ρ×v²/2其中,ΔP表示节流装置所产生的压力降,K表示节流装置阻力系数,ρ表示流体密度,v表示流体流速。
具体的节流装置阻力系数K可以通过查阅相关资料或利用实验数据进行确定。
四、阀门的计算阀门是管道系统中常见的一种局部阻力部件,其阻力取决于流体所通过的阀门类型、开度以及流体流速等因素。
ΔP=K×ρ×v²/2其中,ΔP表示阀门所产生的压力降,K表示阀门阻力系数,ρ表示流体密度,v表示流体流速。
具体的阀门阻力系数K可以通过查阅相关资料或利用实验数据进行确定。
通风管道阻力计算
通风管道阻力计算最简单的理解:全压TP=动压VP+静压SP动压的方向是平行与风管的静压的方向是垂直与风管的机外余压是指实际风量为名义风量的80%时室内机组可提供的机外余压。
风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3;l ————风管长度,mRs————风管的水力半径,m;Rs=f/Pf————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。
矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。
再由此求得矩形风管的单位长度摩擦阻力。
当量直径有流速当量直径和流量当量直径两种;流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。
二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。
局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。
局部阻力的计算与管路计算
局部阻力的计算与管路计算一、局部阻力的计算局部阻力是指管道系统中特定部位引起的阻力。
在管道系统中,局部阻力的影响往往是不可忽视的,因此需要进行准确的计算和分析。
常见的局部阻力包括弯头、三通、放大器、收缩器等。
1.弯头的阻力计算弯头的阻力可通过以下公式计算:ΔP=K*0.5*ρ*V^2其中,ΔP为压力损失;K为弯头的阻力系数;ρ为流体密度;V为管道中的平均流速。
弯头的阻力系数K是根据弯头形状和流体特性进行确定的,在实际工程中可以通过查阅相关资料或进行实验获得。
一般情况下,K的取值范围为0.3-0.62.三通的阻力计算三通的阻力可以通过以下公式计算:ΔP=K*0.5*ρ*V^2其中,ΔP为压力损失;K为三通的阻力系数;ρ为流体密度;V为管道中的平均流速。
三通的阻力系数K是根据三通形状和流体特性进行确定的。
不同类型的三通有不同的阻力系数,可以通过查阅相关资料或进行实验获得。
3.放大器的阻力计算放大器的阻力可以通过以下公式计算:ΔP=K*0.5*ρ*V^2其中,ΔP为压力损失;K为放大器的阻力系数;ρ为流体密度;V为管道中的平均流速。
放大器的阻力系数K是根据放大器形状和流体特性进行确定的。
不同类型的放大器有不同的阻力系数,可以通过查阅相关资料或进行实验获得。
4.收缩器的阻力计算收缩器的阻力可以通过以下公式计算:ΔP=K*0.5*ρ*V^2其中,ΔP为压力损失;K为收缩器的阻力系数;ρ为流体密度;V为管道中的平均流速。
收缩器的阻力系数K是根据收缩器形状和流体特性进行确定的。
不同类型的收缩器有不同的阻力系数,可以通过查阅相关资料或进行实验获得。
二、管路计算管路计算是指对管道系统中流体的流量、速度、压力等参数进行计算和分析的过程。
1.流量计算管道系统中的流量可以通过以下公式计算:Q=A*V其中,Q为流量;A为管道的横截面积;V为流体的平均流速。
2.速度计算管道系统中的速度可以通过以下公式计算:V=Q/A其中,V为流体的平均流速;Q为流量;A为管道的横截面积。
局部阻力计算公式
局部阻力计算公式
局部阻力计算公式:动压=局部阻力系数*ρ*V*V*1/2。
局部阻力有阻力系数法和当量长度法两种计算方法。
当量长度法的基本原理是指将管段的局部损失转变为沿程损失来计算。
扩展资料
什么是局部阻力
局部阻力是流体通过管路中的管件、阀门时,由于变径、变向等局部障碍,导致边界层分离产生漩涡而造成的能量损失。
流体在管路中流动的阻力分为直管阻力和局部阻力。
矿井通风局部阻力:在风流流动过程中,由于边壁条件的变化,使均匀流动在局部地区受到阻碍物的影响而破坏,从而引起风流的流速大小和方向,或分布的变化或产生涡流等,造成风流的`能量损失。
流体的局部阻力:流体的边界在局部地区发生急剧变化时,迫使主流脱离边壁而形成漩涡,流体质点间产生剧烈的碰撞,所形成的阻力称为局部阻力。
局部阻力系数
局部阻力系数是流体流经设备及管道附件所产生的局部阻力与相应动压的比值,其值为无量纲数。
动压=局部阻力系数*ρ*V*V*1/2
功能:用于计算流体受局部阻力作用时的能量损失。
关于通风管道阻力的计算与公式和方法
关于通风管道阻力的计算与公式和方法通风管道阻力是指空气在管道内流动过程中所克服的运动阻力,计算和求解通风管道阻力是工程设计中非常重要的一项内容。
下面将介绍通风管道阻力的计算公式和方法。
一、计算公式:通风管道阻力的计算公式一般可以分为两种情况:对于圆形管道,采用简化计算公式;对于非圆形管道,一般采用雷诺数公式或进口流量公式。
1.圆形管道的简化计算公式:(1)流量公式:Q=πd²V/4其中,Q为流量,d为管道直径,V为流速。
(2)雷诺数公式:Re=dVρ/μ其中,Re为雷诺数,ρ为空气密度,μ为空气动力粘度。
(3)彭伯托公式:ΔP=KQ²其中,ΔP为管道阻力,K为阻力系数,Q为流量。
2.非圆形管道的计算公式:非圆形管道的计算公式相对复杂,一般需要根据具体的几何形状和流速情况进行求解。
二、计算方法:通风管道阻力的计算方法主要有以下几种:1.试算法:试算法是通过对不同管道直径和流速的组合进行试算,根据实测数据绘制函数曲线,然后通过函数曲线来计算阻力。
这种方法相对简单易行,适用于不需要精确计算的情况。
2.实测法:实测法是通过在实际通风系统中进行流量和压力的实测,然后根据实测数据来计算阻力。
这种方法的计算结果较为准确,但需要实际设备和条件的支持。
3.数值模拟法:数值模拟法是利用计算机进行数值模拟,通过对通风系统进行建模,并利用数值方法求解流场和压力场分布,从而计算阻力。
这种方法的计算结果精度较高,但需要一定的计算资源和专业软件的支持。
4.经验公式法:经验公式法是通过总结和归纳大量实测数据,得出经验公式来计算阻力。
这种方法适用于一般工程设计情况下的快速计算,但精度相对较低。
三、影响因素:通风管道阻力的计算还需要考虑一些影响因素,如管道长度、管道直径、流速、管道材料、管道内壁粗糙度等。
不同的影响因素会对通风管道阻力产生不同程度的影响,因此在计算阻力时需要综合考虑。
综上所述,通风管道阻力的计算需要根据具体的管道形状和流动条件选择合适的计算公式和方法,并考虑影响因素来进行精确计算。
通风管道阻力计算
通风管道阻力计算 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】通风管道阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。
一、摩擦阻力根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:ΔPm=λν2ρl/8Rs对于圆形风管,摩擦阻力计算公式可改写为:ΔPm=λν2ρl/2D圆形风管单位长度的摩擦阻力(比摩阻)为:Rs=λν2ρ/2D以上各式中λ————摩擦阻力系数ν————风管内空气的平均流速,m/s;ρ————空气的密度,Kg/m3;l————风管长度,m;Rs————风管的水力半径,m;Rs=f/Pf————管道中充满流体部分的横断面积,m2;P————湿周,在通风、空调系统中既为风管的周长,m;D————圆形风管直径,m。
矩形风管的摩擦阻力计算我们日常用的风阻线图是根据圆形风管得出的,为利用该图进行矩形风管计算,需先把矩形风管断面尺寸折算成相当的圆形风管直径,即折算成当量直径。
再由此求得矩形风管的单位长度摩擦阻力。
当量直径有流速当量直径和流量当量直径两种;流速当量直径:Dv=2ab/(a+b)流量当量直径:DL=1.3(ab)0.625/(a+b)0.25在利用风阻线图计算是,应注意其对应关系:采用流速当量直径时,必须用矩形中的空气流速去查出阻力;采用流量当量直径时,必须用矩形风管中的空气流量去查出阻力。
二、局部阻力当空气流动断面变化的管件(如各种变径管、风管进出口、阀门)、流向变化的管件(弯头)流量变化的管件(如三通、四通、风管的侧面送、排风口)都会产生局部阻力。
局部阻力按下式计算:Z=ξν2ρ/2ξ————局部阻力系数。
风管局部阻力计算公式
风管局部阻力计算公式风管局部阻力是指风管系统中风管弯头、风管缩径、风管弯曲等部位对空气流动的阻力。
在风管设计中,准确计算局部阻力非常重要,可以帮助工程师选择合适的风管尺寸和设计合理的风管布局,以降低系统的能耗并提高系统的效率。
以下将介绍一些常见的风管局部阻力计算公式:风管弯头的阻力通常由弯头半径和弯头角度来确定。
根据实验结果,可以使用以下公式计算风管弯头的阻力系数(K):K=0.125*(1-(r/d)^2)^2/(r/d)其中,r为弯头的内曲率半径,d为弯头直径。
阻力系数K通常在0.2到0.3之间,可以根据具体情况进行选择。
风管缩径会导致空气流速增加,从而增加阻力。
根据实验结果,可以使用以下公式计算风管缩径的阻力系数(K):K=0.5*(1-(a/A)^2)^2其中,a为风管缩径段的面积,A为管道进口的面积。
当风管发生多次连续的弯曲时,每个弯曲都会增加空气流动的阻力。
根据实验结果,可以使用以下公式计算风管弯曲的阻力系数(K):K=(5+6*θ/π)*(1-(r1/r0)^2)其中,θ为弯曲的角度,r0为首次弯曲的内曲率半径,r1为非首次弯曲的内曲率半径。
当风管发生多次连续的变径时,每一次变径都会导致空气流速的变化,从而增加阻力。
根据实验结果,可以使用以下公式计算风管变径的阻力系数(K):K=0.5*(1-(a1/a0)^2)^2*(1-(a2/a1)^2)^2*...其中,ai为第i段风管的面积。
综上所述,风管局部阻力的计算利用了一系列实验结果和经验公式,帮助工程师优化风管系统的设计。
通过合理计算和选择,可以降低系统的能耗和运行成本,提高系统的效率和舒适性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谈通风管道局部阻力计算方法
胡宝林
在通风除尘与气力输送系统中,管道的局部阻力主要在弯头、变径管、三通、阀门等管件和重杂物分离器、供料器、卸料器、除尘器等设备上产生。
由于管件形状和设备结构的不确定性以及局部阻力的复杂性,目前许多局部阻力系数还不能用
公式进行计算,只能通过大量的实验测试阻力再推算阻力系数,并制成表格供设计
者查询。
例如在棉花加工生产线上,常规的漏斗形重杂物分离器压损为300R左右, 离心式籽棉卸料器压损为400匕左右,这些都是实测数据,由于规格结构不同差异也会很大,所以仅供参考。
只有一些常见的形状或结构比较确定的管件及设备可通过公式计算阻力系数,例如弯头、旋风除尘器等。
局部阻力是管道阻力的重要组成部分,一个R=4D 90°弯头的阻力相当于2.5〜6.5m的直管沿程阻力。
由于涉及到局部阻力的管件种类繁多,不便一一列举,因此,本文以弯头等常用管件为例重点讨论在纯空气下和带料运行时的局部阻力系数的变化及局部阻力计算方法。
一、纯空气输送时局部阻力和系数
1、局部阻力
当固体边界的形状、大小或者两者之一沿流程急剧变化,流体的流动速度分布就会发生变化,阻力大大增加,形成输送能量的损失,这种阻力称为局部阻力。
在产生局部损失的地方,由于主流与边界分离和漩涡的存在,质点间的摩擦和撞击加剧,因而产生的输送能量损失比同样长的直管道要大得多,局部阻力与物料的密度
及速度的平方成正比,局部阻力计算公式:
::.2
式中:出一局部阻力,F a;
•—局部阻力系数,实验取得或公式计算;
H d —动压,巳;
‘一空气密度,1.205kg/m3(20°C);-—空气流速,m/s
2、阻力系数
阻力系数的确定有两种方法,一是查表法,二是公式法。
查表法:许多管件或设备都具有特殊的形状或结构,阻力系数难以用理论公式计算,只能通过测试阻力后再反推阻力系数。
为了便于查询和参考,通过大量的实验已经制成了查询表。
例如表一所示的就是常见规格圆形管道弯头的局部阻力系数查询表。
表中的数据都是实测数据。
弯头阻力系数查询表
表一
公式法:弯头、旋风除尘器都具有比较规范的结构和形状,可以根据其主要结构参数通过公式进行计算,计算方法如下:
0.75
(一)弯头阻力系数:上=0.008 06
R 0
D
式中:〉一弯曲角,°
R —曲率半径,mm ; D
—管道直径,mm。
(二)旋风除尘器阻力系数:© = K A JD
Dp? V^hl
式中:•一除尘器的局部阻力系数;
K —系数,20〜40,一般取30;
A —除尘器进口截面积,m2;
D p —排风管直径,m ;
h —直筒咼,m;
h i —锥筒高,m。
计算结果与实测结果基本一致,如表二所示
弯头阻力系数表(公式计算)
表二
二、物料输送时局部阻力系数附加
前面介绍的公式中的局部阻力系数是按纯空气流动时计算的,当输送物料时,
因物料的浓度影响加剧了局部阻力,因此要按输送浓度附加阻力系数,研究还发现, 对于供料器、管道的三通、变径管等阻力系数基本可按纯空气再附加计算,
j = 1」o对于卸料器和除尘器,在器内的物料和灰尘的运动,是靠惯性进行的,无需附加压损。
但是对于弯头,它除了取决于物料性质、气流速度、弯曲角度及曲率半径外,由于物料在转弯的同时受物料重力等影响,还与弯头的空间走向有关。
即使弯头的规格完全相同,但空间走向不同则阻力系数也会不同,基本走向如图一所示。
图一
图中可见,当输送物料时,水平转垂直向上的弯头附加阻力系数最大,为2.2, 其次是垂直向上转水平附加阻力系数为 1.6,然后是水平转水平为1.5,较小的是水
平转垂直向下和垂直向下转水平分别为0.7和1.0。
这样在计算物料输送时弯头的
局部阻力系数公式应扩展为:
H j^ 1 K加w—
式中:H jw —物料输送时含有阻力附加系数的弯头局部阻力,R ;
K w —物料输送时因空间走向不同而附加的阻力系数,如图一;
J —输送浓度(输送混合比);
w—输送纯空气时弯头的阻力系数(查表或计算);
空气密度,1.205kg/m3(20°C);
■-—空气流速,m/s
三、不同空间走向弯头阻力分析
现以轧花厂外吸籽棉管道弯头为例计算分析。
基本输送参数:籽棉输送量8500
kg/h,混合比0.8,输送风速24m/s,管道直径360mm,籽棉从进口先后经过三
个R=4D 90°弯头后再经过直管进入车间的卸料器,三个弯头分别是水平转垂直
向上、垂直向上转水平、水平转水平。
现分别计算输送纯空气和输送籽棉时的局部 阻力。
1、计算输送纯空气时的局部阻力系数和阻力
W1
二 W2 二 W3 =0.008 鲁=0.102
4
2
H jwi 二 H jw2 二 H jw3 =0.102 1.205 24 = 35.4
H jw =35.4 3 =106.2( P a )
2、计算输送籽棉时的局部阻力系数和阻力
w1
=]1 2.2 0.8 0.102 = 0.281 w2
二 1 1.6 0.8
0.102 = 0.232 w3
二 1 1.5 0.8
0.102 = 0.224
H jw =97.5 80.5 77.7 =255.7( F >)
显然,考虑到输送物料时因弯头的空间走向不同其阻力系数也不同, 局部阻力
系数比输送纯空气时要大得多,局部阻力约等于纯空气时的
2〜3倍。
所以在计算
弯头阻力时不能仅仅按纯空气时的系数来计算,必须考虑物料的输送浓度J
和弯头 的空间走向。
这也充分说明,为什么有时计算的管道阻力比实际阻力小很多,甚至 有些人只重视经验数据而轻视理论计算之缘故。
四、弯头阻力系数与节数有关
目前绝大多数薄铁制作的弯头都是多节弯头, 同样管径、弯曲角度和曲率半径 的弯头,由于节数不同阻力系数也不同,节数越多则阻力系数越小。
如表三所示
H jw1
= 0.281
1.205 242
2 = 97.5 (P a )
jw 2
1 205 疋 24
2 0.232
= 80.5 (巳)
H jw 3
= 0.224
2
1.205 24
2
= 77.7 (P a )
多节弯头阻力系数表
表二
从表三可见,明确制作弯头的节数是很必要的,节数包含两个端节,端节是中节的一般,虽然节数越多阻力系数越小,但是节数越多制作越麻烦,一般要求中间节最窄宽度尺寸不低于50mm。
随着薄铁加工技术的不断进步,机械制作弯头可以实现节数更多、阻力更小,甚至一次成型的无节弯头必将逐步取代手工制作的多节弯头。
可见弯头节数多少问题不仅是制作工艺问题,也是设计问题。