材料失效分析及案例
全氟醚橡胶制品的应用及案例失效分析1
全氟醚橡胶制品的应用及案例失效分析1全氟醚橡胶制品的应用及案例失效分析11.制药行业:由于全氟醚橡胶具有耐高温、耐腐蚀性能,可以满足制药行业对材料的高要求,因此在制药设备的密封件、管道和阀门等方面得到广泛应用。
例如,全氟醚橡胶制成的密封圈可以在高温和腐蚀性介质条件下保持良好的密封性能,确保药品的质量和生产效益。
2.化工行业:化工设备中的密封件、管道和阀门等也需要具备耐高温、耐腐蚀性能,以应对各种腐蚀性介质的工作环境。
全氟醚橡胶可以在极端温度和腐蚀环境下保持其物理性能和化学稳定性,因此在化工行业中得到了广泛应用。
3.能源行业:在能源行业中,如发电厂、石油化工厂等,液体或气体的输送管道往往会经受极端的温度和压力条件,此时需要使用高温耐腐蚀的材料来制造密封件和管道。
全氟醚橡胶在这样的环境中具有出色的性能,可以有效地防止泄漏和腐蚀。
4.航空航天行业:航空航天行业对材料的要求极高,因为航天器在航天过程中会经历极端的温度和压力环境,同时还需要具备防火、耐热冲击和抗辐射等特性。
全氟醚橡胶由于其耐高温、耐腐蚀和耐辐射等特点,被广泛应用于航空航天领域的密封件、橡胶管和软管等方面。
虽然全氟醚橡胶在很多领域得到了广泛应用,但还会遇到一些失效的案例。
以下是一个案例分析:化工厂使用了全氟醚橡胶制成的管道密封件,在运行过程中出现泄漏问题。
经过分析发现,泄漏的原因是密封件的轴向压缩不足,导致密封不严密。
在初期安装时,由于工人的不当操作导致轴向压缩不够,密封件处于松散状态。
随着设备的正常运行,密封件没有被充分压缩,失去了其原有的弹性,导致泄漏的发生。
针对这个案例,可以采取以下措施进行改进:1.安装过程中的操作规范性培训:对于操作人员,应加强对全氟醚橡胶密封件安装操作的培训和指导,确保安装过程中轴向压缩的准确性。
2.密封件的设计优化:针对密封件的设计,可以优化其结构和形状,使其更容易被轴向压缩,并提高密封效果。
3.密封件材料的选择:在选用全氟醚橡胶密封件时,应根据具体工况的要求,选择合适的密封件材料,以保证其耐温、耐腐蚀性能满足实际需求。
失效分析案例课件
图10 裂纹源扫描电镜照片ppt精选版
14
2.3 结果分析
• 塔架用钢的材料组织状态正常, 母材常温拉伸与低温冲击试验结果 表明, 材料的塑性储备良好, 在-40℃以上没有出现冷脆开裂的现象 及风险。
• 根据宏观分析和微观分析找到了塔架焊缝开裂的裂纹源——近表面 的、深约2mm的焊接缺陷。
8
2.2 断口形貌
1.宏观形貌分析
图4 塔筒内部裂纹宏观形貌照片
失效风电塔架的塔筒内部裂纹宏观形貌: 裂纹的早期扩展阶段,裂纹扩展平稳,属于慢应变速率条件下的宏观
脆性断裂。(图4上) 裂纹扩展的末期(即裂纹末端),裂纹起伏台阶特征明显,表明裂纹
扩展进入复杂应力区,p但pt精尚选未版 进入失稳快速扩展阶段。(图4下)9
断口的近表面层发现存在40-50μm深 的全屈服变形层变形层与基体交 界面部分出现平直细小的类似解 理裂纹。
图7 裂纹微观形貌照片 ppt精选版
12
2.微观形扫描电镜照片
(2)断口的扫描电镜分析
失效主裂纹在焊缝的一侧(图 8), 金相裂纹两边存在一个约4050μm的变形组织, 变形层下有显微 开裂, 这些开裂与多次反复挤压变形 有关。
风电塔架的失效分析
ppt精选版
1
失效分析思路
• 调查收集背景资料 • 试样检验分析: 材料的化学成分,金相组织,力学性能等 • 深入分析: 断口的宏观及微观形貌分析,无损探伤检查等 • 综合分析归纳,确定失效原因 • 结论 • 改进措施
ppt精选版
2
目录
1
概况
2
失效分析
3
改进措施
ppt精选版
Contents
1.宏观形貌分析
金属材料失效分析案例PPT
04
案例四:金属材料脆性断裂 失效
失效现象描述
金属材料在无明显塑性变形的情况下 突然断裂,断口平齐,呈脆性断裂特 征。
断裂发生时,材料内部存在大量微裂 纹和空洞。
断裂前材料未出现明显的塑性变形, 无明显屈服现象。
失效原因分析
材料内部存在缺陷,如微裂纹、夹杂物等,降低 了材料的韧性。
金属材料在加工过程中受到较大的应力集中,如 切割、打孔等操作,导致材料内部产生微裂纹。
失效机理探讨
电化学腐蚀
金属材料与腐蚀介质发生 电化学反应,导致表面氧 化或溶解。
应力腐蚀
金属材料在应力和腐蚀介 质的共同作用下发生脆性 断裂。
疲劳腐蚀
金属材料在交变应力和腐 蚀介质的共同作用下发生 疲劳断裂。
03
案例三:金属材料热疲劳失 效
失效现象描述
金属材料表面出现裂 纹
疲劳断裂,即在交变 应力的作用下发生的 断裂
02
疲劳断裂通常发生在应力集中的 部位,如缺口、裂纹或表面损伤 处。
失效原因分析
金属材料在循环应力作用下,微观结 构中产生微裂纹并逐渐扩展,最终导 致断裂。
应力集中、材料内部缺陷或表面损伤 等因素可加速疲劳裂纹的萌生和扩展 。
失效机理探讨
金属疲劳断裂是一个复杂的过程,涉及微观结构、应力分布、材料缺陷等多个因素。
应力腐蚀开裂
在腐蚀介质和应力的共同作用下,焊接接头 处发生应力腐蚀开裂,裂纹扩展导致断裂。
感谢您的观看
THANKS
金属材料在低温环境下工作,材料的韧性下降, 容易发生脆性断裂。
失效机理探讨
金属材料的脆性断裂通常是由 于材料内部存在缺陷或应力集 中导致的微裂纹扩展。
在低温环境下,金属材料的韧 性下降,容易发生脆性断裂。
失效案例分析
30
15
b.氢致开裂(HIC)
在钢的内部发生氢鼓 泡区域,当氢的压力 继续增高时,小的鼓 泡裂纹趋向于相互连 接,形成有阶梯特征 的氢致开裂。氢致开 裂发生不需要外加应 力(载荷应力、残余 应力),故从概念讲 不属于应力腐蚀破坏 范畴。
31
32
16
33
c.硫化物应力腐蚀开裂(SSCC)
• 硫化氢在液相水中,由于电化学的作用,在阴极反应时生成氢 原子渗透到钢的内部,溶解于晶格中,导致脆性增加(氢原子 渗透到钢的内部晶格,在亲和力的作用下生成氢分子,钢材晶 格发生变形,材料韧性下降,脆性增加),在外加拉应力或残 余应力的作用下形成开裂。
2、焊接裂纹有不同的特性,要根据不同的裂纹产生机理 及形式选择检测的时机与方法,提高检验的有效性。
• 延迟裂纹 • 液化裂纹
3、对于易产生焊接裂纹的钢种,一旦发现裂纹,应扩大 检验比例。
11
案例1:反应流出物换热器管箱入口不锈钢法兰开裂
某石化炼油厂,2010年大修检验发现,反应流出物换热器管箱入口 不锈钢法兰开裂。 主要原因:
P≤0.008%、Mn≤1.30%,且应进行抗HIC性能试验或恒 负荷拉伸试验。
40
20
在湿硫化氢应力腐蚀环境中使用的其它材料制设备和管 道应符合下列要求:
铬钼钢制设备和管道热处理后母材和焊接接头的硬度应不 大于HB225(1Cr-0.5Mo、1.25Cr-0.5Mo)、HB235 (2.25Cr-1Mo、5Cr-1Mo)或HB248(9Cr-1Mo);
27
湿硫化氢环境分类(NACE 8X196) 一类:不选用抗HIC钢,可不做热处理 二类:可选抗HIC钢,要进行热处理 三类:选用抗HIC钢,要进行热处理
材料失效分析
材料失效分析材料失效分析指的是对材料在使用过程中发生失效的原因进行分析研究。
材料失效分析的目的是为了找出失效的根本原因,并采取相应的措施,以避免类似的失效再次发生。
本文将对材料失效分析的方法、步骤和案例进行探讨。
材料失效分析的方法主要包括观察、实验和理论分析。
观察是通过对失效材料的外观进行细致观察,寻找异常的现象或特征,以确定失效的类型和程度。
实验是通过对失效材料进行性能测试,比如强度测试、硬度测试、断裂韧度测试等,以确定失效的原因和机制。
理论分析是通过对材料的结构、组成和使用条件等方面进行分析,以确定失效的根本原因。
材料失效分析的步骤包括采集失效材料样品、外观观察、性能测试、理论分析和结论总结。
首先,需要采集失效材料的样品,并进行标记和记录,以便后续的观察和测试。
然后,通过对失效材料的外观进行观察,寻找异常的现象或特征。
接下来,对失效材料进行性能测试,以确定失效的原因和机制。
在进行性能测试时,可以使用一些常见的测试方法,比如拉伸试验、冲击试验、疲劳试验等。
同时,还可以进行显微结构观察和化学分析,以进一步确定失效原因。
最后,根据观察和测试结果,结合理论分析,得出失效的根本原因,并提出相应的改进措施或预防措施。
以下是一个材料失效分析的案例:某企业生产的铝合金产品在使用过程中出现断裂失效的问题。
首先,对失效的产品进行了观察,发现断裂面上存在明显的晶粒沿晶断裂和脆性断口;然后,对失效产品进行了拉伸试验,发现其强度和韧性均明显低于设计要求;接着,通过金相显微结构观察和化学分析,发现材料中存在夹杂物和析出物,并且晶粒有明显的不均匀性。
综合观察和测试结果,并结合理论分析,得出了以下结论:失效的原因是材料中的夹杂物和析出物导致了晶粒的不均匀性,从而降低了材料的强度和韧性。
为了解决这个问题,可以采取以下措施:提高熔炼过程的质量控制,减少夹杂物和析出物的含量;优化热处理工艺,改善晶粒的均匀性;加强材料的检验和品质管理,确保产品的质量符合设计要求。
金属材料失效分析案例
3 分析
(1)断裂叶片的金相组织为正常的回火索氏体,材料化学成分 合格,主要性能指标也基本正常。
(2)叶片断裂部位在倒*形槽根部的横断面上,亦即在应力集 中部位,是裂纹源萌生地,断口具有典型的疲劳断裂特征, 裂纹扩展属穿晶走向。
精品文档
(3)叶片根部疲劳断裂与装配质量有关,高压转子叶片安 装时通常要求根部紧配合,但裂断的第+级叶片根部却是 松配合,遂导致叶片在运行过程中产生振动并传至根部, 根部与叶轮槽表面产生摩擦,从而使根部表层晶粒持续滑 移带极易萌生裂纹,即产生疲劳源,随后裂纹不断扩展, 最终造成根部疲劳断裂。
疲劳断裂。
精品文档
材料失效分析
班级:XXX 组员:XXX
精品文档
案例 漳平电厂1号机叶片断裂失效分析
1、背景
2 检查、试验
2.1宏观检查2Biblioteka 2 断口微观检查2.3化学成分
2.4硬度测试
2.5 冲击试验
2.6 金相检查
3 分析
4 结论
精品文档
1、背景 漳平电厂1号机系北京重型电机厂制造的冲动凝汽 式汽轮机,其高压转子第8级叶片材料为2Cr13。1998年4月 大修揭盖后发现该级叶片有一段围带残缺约10cm长,有一 个叶片在根部断裂丢失,部分围带铆钉头有弹起现象。修 复工作由电厂委托北京重型电机厂进行,其修复过程为: 拆除5段围带及43片叶片,更换断裂和受损的2个叶片及损 坏的2段围带,复装后叶片与围带采用焊接固定,并对2段 围带铆钉头弹起的部位进行打磨后焊补,修后机组恢复运 行。2000年5月7日,汽轮机出现异常响声,且振动不断加 剧,揭缸后发现高压转子第8级叶片丢落19个,部分围带脱 落,第9级叶片及8、9、10级部分隔板磨损变形。对照1998 年4月大修记录,发现此次丢落的19个叶片大部分为当时修 复处理过的叶片。由于此次叶片断裂事故对转子损伤较为 严重,故把整个转子送到制造厂修复。为了找出叶片断裂 的原因,我们开展了一系列精的品文失档 效分析工作。
MLCC失效分析全面案例课件
全面的M1CC失效分析案例课件Q:M1CC电容是什么结构的呢?A:多层陶瓷电容器是由印好电极(内电极)的陶瓷介质膜片以错位的方式叠合起来,经过一次性高温烧结形成陶瓷芯片,再在芯片的两端封上金属层(外电极)制成的电容。
TerminationsM1CC电容特点:机械强度:硬而脆,这是陶瓷材料的机械强度特点。
热脆性:M1eC内部应力很复杂,所以耐温度冲击的能力很有限。
Q:M1CC电容常见失效模式有哪些?A:焊接锡量不当r组装缺陷《[墓碑效应多层陶瓷J (陶瓷介质内空洞电容器缺陷]f内在因素«电极内部分层I本体缺陷1浆料堆积(机械应力【外在因素《热应力I电应力Q:怎么区分不同原因的缺陷呢?有什么预防措施呢?当温度发生变化时,过量的焊锡在贴片电容上产生很高的张力,会使电容内部断裂或者电容器脱帽,裂纹一般发生在焊锡少的一侧;焊锡量过少会造成焊接强度不足,电容从PCB板上脱离,造成开路故障。
2、墓碑效应(d)Norma1图3墓碑效应示意图在回流焊过程中,贴片元件两端电极受到焊锡融化后的表面张力不平衡会产生转动力矩,将元件一端拉偏形成虚焊,转动力矩较大时元件一端会被拉起,形成墓碑效应。
原因:本身两端电极尺寸差异较大;锡镀层不均匀;PCB板焊盘大小不等、有污物或水分、氧化以及焊盘有埋孔;锡膏粘度过高,锡粉氧化。
措施:①焊接之前对PCB板进行清洗烘干,去除表面污物及水分;②进行焊前检查,确认左右焊盘尺寸相同;③锡膏放置时间不能过长,焊接前需进行充分的搅拌。
本体缺陷一内在因素1、陶瓷介质内空洞图4陶瓷介质空洞图原因:①介质膜片表面吸附有杂质;②电极印刷过程中混入杂质;③内电极浆料混有杂质或有机物的分散不均匀。
2、电极内部分层图5电极内部分层原因:多层陶瓷电容器的烧结为多层材料堆叠共烧。
瓷膜与内浆在排胶和烧结过程中的收缩率不同,在烧结成瓷过程中,芯片内部产生应力,使M1CC产生再分层。
预防措施:在M1CC的制作中,采用与瓷粉匹配更好的内浆,可以降低分层开裂的风险。
失效分析案例讲解
原始资料收集及失效件初步检查
枪管加工工艺 枪管材料:30CrNi2WVA 军工钢(GJB) 长:111 mm 内径:9mm 壁厚:115 mm (内壁镀铬,有6条膛线) 原材料由φ42 mm的棒材通过锻造改拔成φ28 mm 的棒材,然后经以下工艺流程制成枪管成品: 下料→调质→深孔钻→电解抛光→挤丝→去应力→ 机加工→热处理→校直→机加工→酸洗(去除氧化膜) → 镀铬→打高压弹→磁粉探伤→检验→入成品库
失效机理分析及模拟验证 模拟验证试验
取20根与断裂枪管同状态的枪管进行校直模拟试验,对 枪管施加约1 t的压力使其变形,然后进行校直(以上工艺与 实际校直工序相同),校直后进行磁粉探伤,没有发现裂纹,因 此断裂不是由于校直裂纹扩展引起的。 探伤后,所有样品放在酸洗液(去除氧化膜酸溶液)中浸 30 min,取出后清洗并放置24 h,然后再次进行探伤, 5根枪 管出现了裂纹,长度在0.5-1cm之间,裂纹源在校直压点截面 的两侧,两侧均有裂纹产生。 对裂纹枪管进行高压试验,枪管马上断裂,其断口的宏观、 微观形貌与失效件基本一致,说明裂纹是由应力腐蚀引起的。
断口分析 断口宏观分析
宏观断口观察发现裂纹源在枪管内表面阴、阳线的交 界线上,裂纹扩展部分有明显的放射条纹,裂纹以裂源为中 心呈弧形向外扩展,最终断裂部位有明显的剪切唇。 用显微镜观察裂纹,发现裂纹源部分有约0.02 mm深 的渗铬层(图5白色部位),明显大于整体渗铬层深度(0.01 mm),说明枪管在内膛镀铬前已经产生了裂纹。
失效件初步检查
断裂枪管的裂纹都出现在管中部(图1),即进行校直时 的压点处。裂纹源在枪管内壁阴线与阳线的交界线上,成曲 线向外扩展,裂纹长度在410cm左右。根据断口的宏观形貌 (图2),可发现断口为脆性断口,裂源区、扩展区和瞬断区分 明。
《失效分析案例》课件
02
失效分析的方法与技术
介绍了各种失效分析的方法和技术,如外观检查、化学分析、金相切片
、扫描电子显微镜等,以及它们在失效分析中的应用。
03
失效分析案例介绍
列举了一些典型的失效分析案例,包括电子产品、机械零件、复合材料
等,详细介绍了这些案例的失效模式、失效机理和失效原因。
失效分析的展望
失效分析技术的发展趋势
案例三:材料失效
总结词
材料检测、工艺优化、热处理
详细描述
针对材料失效,进行材料检测和工艺优化是关键。通过合理的热处理和加工工艺 ,可以改善材料的性能,提高其抗失效能力。同时,加强材料保护和使用合适的 涂层也是预防材料失效的重要手段。
案例四:结构失效
01 总结词
强度不足、失稳、疲劳
02
详细描述
结构失效通常表现为强度不足 、失稳和疲劳等问题。这些失 效原因可能导致建筑物、桥梁 等结构性能下降、功能丧失或 引发安全问题。
在产品维修和保障阶段,FMEA可以用于分析产品在使用过程中可能出现的问题, 预测产品的寿命和可靠性,为维修和保障计划提供依据。
05 预防与纠正措施
电子产品失效预防与纠正措施
总结词
电子产品失效预防与 纠正措施是确保电子 产品可靠性和性能的 关键。
元器件选择
选择质量稳定、可靠 性高的元器件,避免 使用次品或假冒伪劣 产品。
详细失效分析
采用各种技术和方法,深入分 析失效机制和根本原因。
验证与实施
对改进措施进行验证,并在实 际中实施,以改善产品的可靠 性和性能。
02 失效案例选择与 介绍
案例一:电子产品失效
总结词
详细描述
总结词
详细描述
失效分析实例
材料失效分析
材料失效分析
2、实验过程
• 图7 .58是两个断口表面的低倍放大照 片,图7. 59 和这两个端口表面的位 置和方向。在照片中分辨出两个明显 的区域:外表面,即承受载荷时的最 大纤维应力区,没有发生尺寸改变的 迹象,而在中心区域则看到一些尺寸 改变。此外在表面上有一些明显的塑 性变形,应该是发生最后断裂的地点。 • 将钳柄上的塑料套剥掉以曝露钳柄的 区域。钳的前部镀铬,直至塑料套的 边缘。钳柄的表面上有一层乌黑的物 质,该钳必定是要装塑料套后再进行 电镀的。表面上的乌黑层或是塑料套 留下的,或是一种热处理造成的。 • 目视检查后,分三步进行分析以决定 失效的原因。首先评价对改签剪线操 作的设计应力水平,之后对所用材料 及热处理工艺进行金相检验,最后利 用扫SEM对断口进行仔细的检验
材料失效分析
3、实验结果
• 断口形貌
低倍放大的断口形貌如图7.28所示,没有宏观塑性变形的迹 象。裂纹从左边缘向内扩展通过厚度1/4左右,断裂表面粗糙无 规律,而其余的断口表面是光滑的,在光滑的表面上可以看到贝 壳状花纹,故断裂模式是疲劳。粗糙的断口表面显示出这是最后 因超载而分离的区域并向前扩展到一个孔的边缘,表明疲劳裂纹 不是起源于此孔的边缘,而是沿着右边缘的。这一点在观察断口 表面时也就是在切开试样之后得到证实。贝壳状条纹的弯曲部分 表明疲劳裂纹直接起源于另一螺栓孔的下面(图7 .29),与围绕 该螺栓孔的同心圆槽重合 • 在接近末端处偏离开其中之一螺棒孔的断口表面已严重研 磨(但仍能看到有贝壳状花纹)(图7. 28)而另一端则很少的 磨损伤,并发现有疲劳条纹(图7.31)(疲劳条纹在显微组织复 杂的钢中不常出现。本案例中的显微组织主要是晶粒尺寸均匀的 单相铁素体。)试块切开后产生的断口表面如图7 .32所示,且 有韧窝状的形貌,表面这个区域是因空洞聚集而产生的 •
电子元器件失效分析具体案列
图 1 Pin17 已熔断内引线
图 2 Pin17 已熔断内引线
中国赛宝实验室可靠性研究分析中心
图 3 击穿点及引线损坏形貌
图 4 过电形貌
图 5 内部电路过电形貌
图 6 内部电路击穿点形貌
图 7 内部电路击穿点形貌
图 8 内部电路击穿点形貌
中国赛宝实验室可靠性研究分析中心
案例三:
1 产品名称及型号:通信 IC PMB6850E V2.10
作均正常;
3)内部水汽含量测试:应委托方要求,8#与 12#样品进行内部水汽含量测试,结果符合
要求;
中国赛宝实验室可靠性研究分析中心
4)端口 I-V 特性测试:使用静电放电测试系统剩下的样品进行 I-V 端口扫描测试,发现: 4#样品的 Pin3、Pin4、Pin5、Pin7 对地呈现明显的电阻特性,使用图示仪测试后测得 Pin3 对地呈现约 660Ω阻值、Pin4 与 Pin5 对地呈现约 300Ω阻值、Pin7 对地呈现约 140
___
Ω阻值,且在 1#与 4#样品的 Pin31( EA /Vpp)发现特性曲线异常,但并非每次都能 出现;其他样品的管脚未发现明显异常; 5)开封和内部分析:对 1#~5#样品进行开封,内目检时发现: 芯片的铝键合丝与键合台以外相邻的金属化层(有钝化层覆盖)存在跨接现象。在拉 断铝丝后,可见到铝丝通过超声键合已粘接在相邻的地连线或膜电阻上,并粘附着铝丝被 粘连的铝屑见图 2~图 4。拉断铝丝后均能观察到键合台邻近的工作金属线或膜电阻上存在 铝丝残存的碎屑,说明铝丝存在键合跨接。 统计发现,在 3#与 4#样品中,每只样品的 40 个键合台均有 27 个存在铝丝键合 与其相连的工作金属化铝连线(地线或膜电阻)跨接粘连的问题。
失效分析案例
案例3 3Cr2W8V钢热锻模具淬火开裂原因分析 1 背景 2 检验内容及结果
2 1 原材料化学成分 2 2 硬度测定 2 3 断口形貌
(1)宏观检查 (2)断口微观检查 2. 4 显微组织分析 3 讨论 4 结论
1、背景 某厂选用3Cr2W8V钢制造热锻模具用于锻造 25钢的齿状零件,模具加工成型后外部尺寸为500mm ×250mm×115mm,模具质量为110kg。在同一模具上
开出预锻和终锻两个型腔,加工时发现模具毛坯锻件硬 度偏高,采用HR150型洛氏硬度计测试硬度为30HRC。 为便于加工,该厂将模具进行了一次降低硬度退火,但温度 和时间已无纪录。加工后的模具由本厂进行热处理,淬火 加热炉采用箱式电阻炉。为防止氧化,在模具周围填充旧 渗碳剂加以保护。模具淬火时先采用500℃、850℃两次 预热,后经1050℃×4h保温,冷却介质选用N15号机油。 淬火过程中听到模具开裂声音,随即停止冷却,并放在 630℃回火炉中回火,回火时裂纹继续扩展使模具成为多个 碎块。由于发现模具开裂, 中止继续回火。
图6的金相组织表明,奥氏体晶粒粗大,马氏体粗大,属于明 显的过热现象。但模具表层细瓷状断口(图2、3)和细小晶 粒(图5),属于正常的淬火组织。分析认为:厂方在加工模具 时,发现锻件的硬度偏高,曾经进行一次降低硬度退火,但退 火保温时间不够,仅使表层重结晶细化,因此出现了表层的 细晶粒和细瓷状断口。
2 3 断口形貌
(1)宏观检查 模具横向多处断裂,裂纹特征有直裂纹、弯 折裂纹和圆弧裂纹,
在模具碎块的横断面表层可观察到有约30mm细瓷状 断口,见图2。断口内部有山脊状扩展形貌,放射线中心朝 向模具心部,表明裂纹源形成于模具心部。心部为粗晶状 断口,有十分明显的金属光泽。上述特征可以判定该模具 的开裂是由心部脆性解理断裂引发的。
零件失效分析作业不锈钢管点蚀
304不锈钢管的点蚀失效案例分析窦建城一、案例介绍本案例讨论的是某食品机械公司的一套管壳式冷凝器,其中空心冷却管材质均为304不锈钢。
使用一段时间后,发现有多根冷却管在焊缝处或者管材本身发生点蚀现象,点蚀孔穿透管材本身,孔的形状为不规则圆形,半径≤3mm。
冷却管中所通的冷却液为无色透明状,管材外壁光亮如新,但是管材内壁有大量浅黄色沉积物。
经现场用硝酸银溶液(AgNO3)对工作时流经管内的冷却液进行滴定,明显产生大量的白色AgCl沉淀,由此可以证明工作环境中氯离子的存在。
为了证明CL-离子对304不锈钢的腐蚀作用进行了一系列的实验。
二、304不锈钢介绍304不锈钢(是一种通用性的不锈钢材料,防锈性能比200系列的不锈钢材料要强。
耐高温方面也比较好,一般使用温度极限小于650℃。
304不锈钢具有优良的不锈耐腐蚀性能和较好的抗晶间腐蚀性能。
对氧化性酸,在实验中得出:浓度≤65%的沸腾温度以下的硝酸中,304不锈钢具有很强的抗腐蚀性。
对碱溶液及大部分有机酸和无机酸亦具有良好的耐腐蚀能力。
三、宏观形貌对该304不锈钢管腐蚀样品进行宏观检查,样品表面光亮,直径φ15mm的空心圆柱,但在管材中部以及侧断面有明显的点蚀现象,点蚀孔穿透管材本身,孔的形状为不规则圆形,半径≤3mm。
图1 304不锈钢管外观形貌四、金相与X射线荧光能谱仪分析1.金相分析将该样品切割为20mm的长度的试样,并将圆柱表面压平,方便进行金相显微镜观察,首先借助砂纸除去试样表面的杂物,再使用金相砂纸对试样逐级抛光,用无水乙醇对抛光表面清洗,烘干后,用王水腐蚀。
最后用金相显微镜观察样品点蚀孔处的显微组织,并通过对304不锈钢的金相分析,来研究是否也存在应力腐蚀裂纹。
图2为试样表面所拍金相照片,可以明显的看到试样表面存在多个黑色点蚀孔。
图2 试样表面金相照片2.X射线荧光能谱仪分析X射线荧光能谱仪。
是对被测试样中所含元素进行定性定量分析最为准确的仪器之一。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料失效分析与预防及案例分析
一、失效
零件由于某种原因,导致其尺寸、形状、或材料的组织与性能发生变化而不能完满地完成指定的功能。
二、失效危害性
1、失效导致机械不能正常工作,降低生产效率,降低产品质量,误工误事。
2、失效导致机械不能工作,停工停产,造成重大经济损失。
3、失效导致机毁人亡
三、失效分析
失效分析:判断零件失效性质、分析零件失效原因、研究零件失效的预防措施的技术工作。
四、失效分析内容
1、判断失效性质:畸变失效、断裂失效、磨损失效、腐蚀失效。
2、分析失效原因:设计、材料、加工、装配、使用、维护。
3、研究失效的预防措施:修改设计、更换材料、改进加工、合理装配、正确使用、及时维护。
五、失效分析技术
金相分析技术,断口分析技术,力学性能测试技术,理化分析测试技术,晶体结构分析技术,无损检测技术,应力分析技术。
六、失效案例
汽车离合器壳体开裂失效分析
1、粗视分析
离合器壳体由铝合金铸造而成。
一个壳体破断为两部分,一个壳体一侧的裂纹长220mm, 另一侧有一条15mm长的裂纹。
裂纹的起始位置均在壳体侧面下方的交界处。
壳体侧面的内表面呈135°和90°夹角, 无明显的过渡园角。
裂纹扩展方向与该处所受拉应力的方向垂直。
2、现场调研
离合器安装情况:离合器左边与发动机相联, 右边与变速器相联。
离合器壳
体受到较大弯矩作用。
发动机工作时, 壳体受到强烈振动。
壳体下部受到瞬时大的拉应力作用, 在应力集中处容易产生裂纹造成开裂或破断。
3、立体显微镜下观察
断裂面有放射状撕裂棱。
断面上有许多闪光的小点, 同时发现有园形、椭园形的空洞。
最大的一个椭园形孔洞尺寸为0.6mm×1.2mm。
这些空洞的内表面呈熔融金属凝固态, 为铸造缺陷气孔。
4、显微分析
观察裂纹形态及扩展方向。
裂纹端部位于壳体两侧面内表面相交处, 裂纹上及其附近有大大小小的气孔, 裂纹垂直于壳体边缘扩展。
金相显微组织由白色的a固溶体+灰色的条状及小块状的Si晶体+黑色细针状Al-Si-Fe化合物组成。
黑色针状Al-Si-Fe化合物为有害相, 导致壳体材料的韧性下降。
裂纹穿过气孔, 并沿针状Al-Si-Fe化合物界面扩展。
5、扫描电镜分析
沿晶界或相界扩展的微细裂纹。
平整的晶体平面。
观察到晶界和晶内的裂纹。
该壳体材料的断裂机制为一种包含沿晶(或相界)断裂和穿晶断裂两种形式的混合断裂。
在裂纹快速扩展区断裂形貌呈山脊状撕裂棱。
6、能谱成分分析
对壳体材料和组织中的条状物进行成分分析。
合金的成分接近于铸造铝合金ZL102(ZL102成分: 90~87%Al, 10~13%Si)。
含有Fe, 生成有害相细针状的Al-Si-Fe化合物, 降低了该合金的韧性。
条状物的Si含量很高, 确定其为Si晶体。
7、硬度测定
(1) 布氏硬度测定
硬度为54~61HB。
该壳体的硬度值与铸造铝合金ZL102的硬度相近。
(2) 显微硬度测定
白色块状物65HV0.02 ;条状物75HV0.02
合金的硬度较低, 反映该合金的强度也较低, 只能用于对强度要求不高的铸件。
8、断裂原因分析
(1) 所用材料强度低, 气孔多。
合金含铁量高, 出现较多的针状Al-Si-Fe 化合物, 使韧性大大降低。
(2) 壳体两侧面的内表面无明显的过渡园角, 导致应力集中。
(3) 安装结构不甚合理, 导致壳体承受弯矩过大, 振动厉害。
易于开裂。
(4) 壳体受弯矩作用, 同时受到强烈振动, 迭加了扭矩, 在壳体应力集中处产生微裂纹, 裂纹扩展, 导致开裂、破断。
9、改进措施
(1) 材料方面:
a. 更换材料, 采用强度较高的ZL107、ZL109。
b. 降低含铁量, 进行良好的变质处理。
(2) 壳体结构方面: 将壳体侧面内表面尖角相交改为园角过渡。
(3) 改进发动机-离合器-变速器安装方式, 以减轻壳体所承受的弯矩及振动。