圆周运动单元练习(Word版 含答案)

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、第六章 圆周运动易错题培优(难)

1.高铁项目的建设加速了国民经济了发展,铁路转弯处的弯道半径r 是根据高速列车的速度决定的。弯道处要求外轨比内轨高,其内外轨高度差h 的设计与r 和速率v 有关。下列说法正确的是( )

A .r 一定的情况下,预设列车速度越大,设计的内外轨高度差h 就应该越小

B .h 一定的情况下,预设列车速度越大,设计的转弯半径r 就应该越大

C .r 、h 一定,高速列车在弯道处行驶时,速度越小越安全

D .高速列车在弯道处行驶时,速度太小或太大会对都会对轨道产生很大的侧向压力 【答案】BD 【解析】 【分析】 【详解】

如图所示,两轨道间距离为L 恒定,外轨比内轨高h ,两轨道最高点连线与水平方向的夹角为θ。

当列车在轨道上行驶时,利用自身重力和轨道对列车的支持力的合力来提供向心力,有

2

=tan h v F mg mg m L r

θ==向

A . r 一定的情况下,预设列车速度越大,设计的内外轨高度差h 就应该越大,A 错误;

B .h 一定的情况下,预设列车速度越大,设计的转弯半径r 就应该越大,B 正确;

C .r 、h 一定,高速列车在弯道处行驶时,速度越小时,列车行驶需要的向心力过小,而为列车提供的合力过大,也会造成危险,C 错误;

D .高速列车在弯道处行驶时,向心力刚好有列车自身重力和轨道的支持力提供时,列车对轨道无侧压力,速度太小内轨向外有侧压力,速度太大外轨向内有侧压力,D 正确。 故选BD 。

2.水平光滑直轨道ab 与半径为R 的竖直半圆形光滑轨道bc 相切,一小球以初速度v 0沿直轨道向右运动,如图所示,小球进入圆形轨道后刚好能通过c 点,然后小球做平抛运动落在直轨道上的d 点,则( )

A .小球到达c 点的速度为gR

B .小球在c 点将向下做自由落体运动

C .小球在直轨道上的落点d 与b 点距离为2R

D .小球从c 点落到d 点需要时间为2R g

【答案】ACD 【解析】 【分析】 【详解】

小球恰好通过最高点C,根据重力提供向心力,有: 2

v mg m R

= 解得:v gR =故A 正确;小球离开C 点后做平抛运动,即水平方向做匀速运动,0bd s v t = 竖直方向做自由落体运动,

2122R gt =

解得:2R t g

= ;2bd s R = 故B 错误;CD 正确;故选ACD

3.如图所示,足够大的水平圆台中央固定一光滑竖直细杆,原长为L 的轻质弹簧套在竖直杆上,质量均为m 的光滑小球A 、B 用长为L 的轻杆及光滑铰链相连,小球A 穿过竖直杆置于弹簧上。让小球B 以不同的角速度ω绕竖直杆匀速转动,当转动的角速度为ω0时,小球B 刚好离开台面。弹簧始终在弹性限度内,劲度系数为k ,重力加速度为g ,则

A .小球均静止时,弹簧的长度为L -

mg

k

B .角速度ω=ω0时,小球A 对弹簧的压力为mg

C .角速度ω02kg

kL mg

-D .角速度从ω0继续增大的过程中,小球A 对弹簧的压力不变

【答案】ACD 【解析】 【详解】

A .若两球静止时,均受力平衡,对

B 球分析可知杆的弹力为零,

B N mg =;

设弹簧的压缩量为x ,再对A 球分析可得:

1mg kx =,

故弹簧的长度为:

11mg

L L x L k

=-=-

, 故A 项正确;

BC .当转动的角速度为ω0时,小球B 刚好离开台面,即0B

N '=,设杆与转盘的夹角为θ,由牛顿第二定律可知:

2

0cos tan mg m L ωθθ

=⋅⋅ sin F mg θ⋅=杆

而对A 球依然处于平衡,有:

2sin k F mg F kx θ+==杆

而由几何关系:

1

sin L x L

θ-=

联立四式解得:

2k F mg =,

0ω=

则弹簧对A 球的弹力为2mg ,由牛顿第三定律可知A 球队弹簧的压力为2mg ,故B 错误,C 正确;

D .当角速度从ω0继续增大,B 球将飘起来,杆与水平方向的夹角θ变小,对A 与B 的系统,在竖直方向始终处于平衡,有:

2k F mg mg mg =+=

则弹簧对A 球的弹力是2mg ,由牛顿第三定律可知A 球队弹簧的压力依然为2mg ,故D 正确; 故选ACD 。

4.如图,在竖直平面内固定半径为r 的光滑半圆轨道,小球以水平速度v 0从轨道外侧面的A 点出发沿圆轨道运动,至B 点时脱离轨道,最终落在水平面上的C 点,不计空气阻力、下列说法正确的是( )

A .从A 到

B 过程,小球沿圆切线方向加速度逐渐增大 B .从A 到B 过程,小球的向心力逐渐增大

C .从B 到C 过程,小球做变加速曲线运动

D .若从A 点静止下滑,小球能沿圆轨道滑到地面 【答案】AB 【解析】 【分析】 【详解】

设重力mg 与半径的夹角为θ,对圆弧上的小球受力分析,如图所示

A .建立沿径向和切向的直角坐标系,沿切向由牛顿第二定律有

sin t mg ma θ=

因夹角θ逐渐增大,sin θ增大,则小球沿圆切线方向加速度逐渐增大,故A 正确;

B .从A 到B 过程小球加速运动,线速度逐渐增大,由向心力2

n v F m r

=可知,小球的向心

力逐渐增大,故B 正确;

C .从B 到C 过程已离开圆弧,在空中只受重力,则加速度恒为g ,做匀变速曲线运动(斜下抛运动),故C 错误;

D .若从A 点静止下滑,当下滑到某一位置时斜面的支持力等于零,此时小球会离开圆弧做斜下抛运动而不会沿圆轨道滑到地面,故D 错误。 故选AB 。

5.如图所示,半径分别为R 和2R 的甲、乙两薄圆盘固定在同一转轴上,距地面的高度分别为2h 和h ,两物块a 、b 分别置于圆盘边缘,a 、b 与圆盘间的动摩擦因数μ相等,转轴从静止开始缓慢加速转动,观察发现,a 离开圆盘甲后,未与圆盘乙发生碰撞,重力加速度为g ,最大静摩擦力等于滑动摩擦力,则( )

相关文档
最新文档