真空技术基础 PPT课件

合集下载

真空技术之真空的基本特点.ppt

真空技术之真空的基本特点.ppt

分子或原子团);
②气态粒子通过基本上无碰撞的直线 运动方式传输到基片;
③粒子沉积在基片表面上并凝聚成薄 膜。
2019年8月18
感谢你的观看
32
影响真空镀膜质量和厚度的因素很多,主 要有真空度、蒸发源的形状、基片的位置、蒸 发源的温度等。固体物质在常温和常压下,蒸 发量极低。真空度越高,蒸发源材料的分子越 易于离开材料表面向四周散射。真空室内的分 子越少,蒸发分子与气体分子碰撞的概率就越 小,从而能无阻挡地直线达到基片的表面。
2019年8月18
感谢你的观看
25
2019年8月18
感谢你的观看
26
(3)真空镀膜
一些光学零件的光学表面需要用物理方 法或化学方法镀上一层或多层薄膜,使得光 线经过该表面的反射光特性或透射光持性发 生变化,许多机械加工所采用的刀具表面也 需要沉积一层致密的、结合牢固的超硬镀层 而使其得以硬化,延长其使用寿命,改善被 加工部件的精度和光洁度。
滑与冷却的作用。
感谢你的观看
17
2019年8月18
感谢你的观看
18
当转子顺时针转动时,空气由被抽容器通过 进气管被吸入,旋片随着转子的转动使与进气管 相连的区域不断扩大,而气体就不断地被吸入。 当转子达到一定位置时,另一旋片把被吸入气体 的区域与被抽容器隔开,并将气体压缩,直到压 强增大到可以顶开出气口的活塞阀门而被排出泵 外,转子的不断转动使气体不断地从被抽容器中 抽出。
真空镀膜按其方式不同可分为真空 蒸发镀膜、真空溅射镀膜和现代发展起 来的离子镀膜。这里只介绍真空蒸发镀 膜技术。

2019年8月18
感谢你的观看
29

众所都知,任何物质总在不断地发生着固、

真空获得设备原理与技术基础ppt课件

真空获得设备原理与技术基础ppt课件
7
图3-5 泵体结构 (a)-整体式; (b)-中壁压入式; (c)-组合 式
8
①整体式 :结构紧凑,连接及密封加工面 少,密封性能好。加工工艺较难。 关键:保证两腔同心度和泵腔内表面的精 度及粗糙度(光洁度)。 ②中壁压入式:高低腔为一整体,中隔板 由压力机压入,泵腔加工工艺性好。结构 紧凑。中壁压入公差较严,采用过盈配合 定位,泵腔与中隔板邻近处易产生变形。
磨、自润滑好的材料。 泵体毛坯铸件应进行时效处理,
以消除内应力,防止变形,提高耐磨性。
10
转子结构有三种形式:整体 式、压套式和转子盘式。 ①整体式 :加工基准是两端中心孔, 与转子盘式结构相比,其加工件和 装配量少,加工简单,节省工序, 几何精度和尺寸精度也得到了保证。 但缺点是对材质要求较高,而且其 旋片槽加工较困难,难以达到高精 度,较适于大泵;
6
1-电机;2-手把;3-支架;4-油箱;5-排气管;6-挡油板; 7-气镇阀;8-油窗;9-油泵;10-放油螺塞;11-低级泵盖; 12-排气阀;13-低级旋片弹簧;14-低级旋片;15-低级转 子;16-中隔板;17-中间气道压板;18-挡油板支柱;19- 高级转子;20-高级旋片及弹簧;21-辅助排气阀;22-高级 泵盖;23-泵连轴器;24-电机连轴器。
15
排气阀对泵的真空度和噪音影响较 大。
排气阀有两种形式:一种是用橡胶 垫做阀片,如图3-7(a)所示;另一种是 用布质酚醛层压板或弹簧钢片做阀片, 如图3-7(b)所示。
排气阀必须浸在泵油中。在排气过 程中,压缩气体推开排气阀片,穿过泵 油排出。泵油起到密封的作用。
16
17
在双级泵中,当高真空级与低 真空级为泵腔宽度不等时,需在两 级之间设置中间辅助排气阀,如图 3-8所示。

《高真空技术》课件

《高真空技术》课件

气体分子与表面之间的相互作 用是高真空技术中的重要环节 ,涉及到气体分子在表面的吸 附、脱附等过程。
气体分子与表面的相互作用与 表面材料的性质、温度、气体 分子的性质等因素密切相关。
了解气体分子与表面的相互作 用有助于优化表面处理技术, 提高高真空设备的性能和稳定 性。
气体分子之间的相互作用
气体分子之间的相互作用对高真 空技术的性能产生重要影响,如 气体的流动特性、传递特性等。
04
高真空技术的应用实例
电子束蒸发镀膜技术
总结词
电子束蒸发镀膜技术是一种利用高能 电子束将材料加热至熔融状态,并形 成薄膜的技术。
总结词
电子束蒸发镀膜技术具有高精度、高 纯度、高附着力等特点,可实现大面 积、均匀的薄膜制备,并且能够控制 薄膜的厚度和成分。
详细描述
该技术广泛应用于光学、电子、机械 、生物医学等领域,可制备出具有优 异性能的薄膜材料,如金属薄膜、绝 缘薄膜、半导体薄膜等。
高真空技术涉及的领域广泛,包括电子、光学、物理、化学、材料科学等,是现 代科学技术发展的重要支撑。
高真空技术的应用领域
电子学
高真空技术在电子学领域的应用主要涉及 到电子器件的制造和测试,如电子显微镜 、电子束曝光机等。
材料科学
高真空技术在材料科学领域的应用主要涉 及到材料的表面改性和新型材料的制备, 如金属薄膜和复合材料等。
详细描述
在制备过程中,高真空环境能够有效 地防止氧化和污染,提高薄膜的质量 和性能。
真空热处理技术
总结词
详细描述
真空热处理技术是一种在真空环境中进行 的热处理技术,可实现金属材料的真空退 火、淬火、回火等处理。
该技术能够提高金属材料的力学性能、耐 腐蚀性能和抗疲劳性能等,广泛应用于航 空航天、汽车、能源等领域。

第一章 真空技术基础

第一章 真空技术基础

几个基本概念:
• 真空:气体分子数量低于大气压状态的空间。但不是完全空 的。 • 真空术语: 本底真空度:全密封真空腔体内抽空时的气压。 工作真空度:实验或工艺过程中所必需的气体压力。 极限真空度:没有漏气和内壁脱气条件下,真空泵所能达 到的最低气压。 真空规:测量真空中气压的仪表或传感器。 真空度单位:气压的单位。 真空度就是真空中的气压。真空度的测量就是气压的测量。
1mba 100 1atm
1.013×105 760
二、真空区域的划分
1105 ~ 1102 Pa
粗真空
低真空 高真空 超高真空
1102 ~ 1101 Pa
粘滞流
1101 ~ 1106 Pa
110 Pa
11010 Pa
6
粘滞流
分子流
极高真空
分子流
三、固体对气体的吸附及气体的脱附
• 缺点:泵内油蒸汽的回流会直接造成真空 系统的污染。 • 应用领域:真空镀膜、真空炉、电子、化 工、航空、航天、冶金、材料、生物医药 、原子能、宇宙探测等领域。
思考:
1. 扩散泵能否单独使用,即从大气开始抽真空?为什么? 2. 如果使用扩散泵时,忘记开冷却水,结果会怎样?
附:钛升华泵
加热钛靶蒸发生成钛膜,并与气体发生反应 工作范围 10-8-10-11 Torr 价格便宜,可靠
油扩散泵的结构如示意图
• 泵的底部—是装有真空泵油的蒸发器,真空泵油经电 炉加热沸腾后,产生一定的油蒸汽,蒸汽沿着蒸汽导 流管传输到上部,经由三级伞形喷口向下喷出。喷口 外面的压强较油蒸汽压低,于是便形成一股向出口方 向运动的高速蒸汽流,使之具有很好的运载气体分子 的能力。油分子与气体分子碰撞,由于油分子的分子 量大,碰撞的结果是油分子把动量交给气体分子自己 慢下来,而气体分子获得向下运动的动量后便迅速往 下飞去.并且,在射流的界面内,气体分子不可能长 期滞留,因而界面内气体分子浓度较小.由于这个浓 度差,使被抽气体分得以源源不断地扩散进入蒸汽流 而被逐级带至出口,并被前级泵抽走.慢下来的蒸汽 流在向下运动的过程中碰到水冷的泵壁,油分子就被 冷凝下来,沿着泵壁流回蒸发器继续循环使用.冷阱 的作用是减少油蒸汽分子进入被抽容器。

薄膜物理与技术-1真空技术基础PPT课件

薄膜物理与技术-1真空技术基础PPT课件
薄膜物理与技术-1真空技术基础 ppt课件
目录
• 真空技术基础 • 真空获得技术 • 真空测量技术 • 真空镀膜技术 • 薄膜性能检测技术
01 真空技术基础
真空定义与特性
真空定义
真空是指在给定的空间内,气体压力 低于一个大气压的状态。在真空技术 中,通常使用托斯卡或帕斯卡作为压 力单位。
真空特性
而实现气体的压缩和排除。
分子泵特性
抽气速率高、工作压力范围广、无 油污染、维护简单等。
分子泵分类
直联型分子泵、侧流型分子泵、复 合型分子泵等。
扩散泵抽气原理与特性
扩散泵抽气原理
利用加热的吸气剂将气体分子吸 进吸气剂表面,再通过扩散作用 将气体分子从吸气剂表面传递到 泵的出口,从而实现气体的排除。
扩散泵特性
真空技术的分类与应用
真空技术的分类
根据应用需求,真空技术可分为真空镀膜、真空热处理、真空电子器件制造等。
真空技术的应用
真空技术在科学研究、工业生产、航空航天、电子工业等领域有广泛应用,如 电子显微镜、太阳能电池、平板显示器的制造等。
02 真空获得技术
机械泵抽气原理与特性
机械泵抽气原理
机械泵分类
真空具有低气体压力的特性,这使得 物质在真空中表现出不同的物理和化 学性质。例如,气体分子间的碰撞减 少,气体分子的平均自由程增加。
真空的度量与单位
真空度
真空度是指真空空间内的气体压 力,通常用压力范围来表示,如 低真空、中真空、高真空和超高 真空。
真空单位
常用的真空单位有帕斯卡(Pa)、 托斯卡(Torr)和巴(bar)。1 Torr = 133.322368 Pascal。
利用高速旋转的叶轮将气体吸入,通 过压缩和排出来实现气体压缩和排除。

《真空基础知识》课件

《真空基础知识》课件
力下的真空状态 ,通常在100Pa至1000Pa之间。
高真空
超高真空
超高真空是指在极低压力下的真空状 态,通常在10^-6Pa至10^-9Pa之间 。
高真空是指在较高压力下的真空状态 ,通常在10^-3Pa至10^-5Pa之间。
02
真空的物理性质
真空中的气体分子分布
真空环境
在真空环境中,气体分子数极低,物质处于高度纯净状态, 有利于科学研究和技术应用。
真空的度量单位
帕斯卡(Pa)
帕斯卡是国际单位制中压力的单位,也是真空度的一种度量单位。
托(Torr)
托是国际单位制中压力的单位,常用于表示真空度。
毫米汞柱(mmHg)
毫米汞柱是常用的真空度单位,常用于表示低压力下的真空度。
中需要使用高真空或超高真空环境。
02
在物理实验中,高真空可以消除空气阻力对实 验的影响,例如在研究自由落体运动、弹性碰
撞等实验中需要使用高真空。
04
在材料科学中,高真空可以用于材料制备、表面处 理等,例如在薄膜制备、晶体生长等领域中需要使
用高真空或超高真空环境。
真空在工业生产中的应用
真空在工业生产中的应用也非常 广泛,例如在机械制造、航空航 天、电子制造等领域中需要使用 真空技术。
机械真空泵
利用机械运动将气体吸入并排出,以达到抽气 的目的。
扩散泵
通过加热使气体分子热运动加速,从而实现气 体扩散。
溅射泵
利用高能粒子将气体分子打散,使气体分子从 表面逸出。
真空的测量 技术
皮拉尼真空计
利用电阻丝加热后冷却的原理,测量 真空度。
冷阴极电离真空计
利用不同气体在加热状态下热导率不 同的原理,测量真空度。

真空技术基础及其应用现状演示幻灯片

真空技术基础及其应用现状演示幻灯片

马德堡半球实验
4
2020/4/13
早期真空相关发现和发明:

阴极射线(Goldstein,1876年)
碳丝灯泡(T.A.Edison,1879年)
X射线(W.Rontgen,1895年)
真空二极管(A.Fleming,1902年)
真空三极管(L.Forest,1907年)
充气日光灯(ngmuir,1915年)
(1)灵敏度与气体种类有关 (2)压强高于10-1Pa时,灯丝易于烧毁。
22
2020/4/13
4、真空控制系统
控制真空系统中机组的启 停,大门的开、闭,真空 系统真空度、温度的监测 系统,称为真空控制系统, 该系统包括控制操作界面、 显示界面等。
23
2020/4/13
5、真空检漏技术
一个理想的真空容器,当达到真空状态后,与对其工作 的真空泵隔离,该容器内的真空度不应改变。而一个真 正容器内,则压强会上升,这是由于容器壁表面出气、 渗透和漏气等因素构成的。
测量所得的离子流。
19
2020/4/13
各种真空计适用压力范围
20
2020/4/13
几种常用真空计简介
电容薄膜真空计 原理:压强改变时薄膜发生形变,它和感知电极间
的距离改变,从而其间的电容量改变,用电学的方 法测出电容量,便可通过校准确定气体压强。 量程:其量程有四个数量级,105Pa~10Pa、 104Pa~1Pa、103Pa~10-1Pa、102Pa~10-2Pa 特点:量程宽(1×105Pa~1×10-2Pa),精度高,稳定性 好,测量结果与气体 种类无关 ,特别是可以测量蒸 汽和腐蚀性气体的压力
真空技术基础及其应用现状
刘甲朋
1

2011-00真空技术基础

2011-00真空技术基础

1 . 5 . 1 真空在输运、吸引、起吊及真空 造型等设备中的应用
1.5.2 真空在电真空器件中的应用
• 出于各种真空器件的工作原理是基于电场、磁场 来控制电于在空间的运动借以达到放大、振荡、 显示图像等目的。 • 因此.避免电子对气体分子间的碰撞,保证电子 在空间的运动规律、防止发射热电子的阴极氧化 中毒,把电子器件内抽成不同电真空器件所要求 的不同真空度,保证电子器件的正常工作,是绝 对必要的。 • 目前,电真空工业中所生产的电真空器件主要有 电子管,离于管,电子束管,电光源管.还有中 子管、电子衍射仪、电子显微镜、x光显微镜,各 种粒子加速器、质谱仪、核辐射谱仪、气体激光 器等。这些电于器件及工艺,在近代科学和近代 大工业生产中起着重要作用。
• 在气体中,一个分子连续两次碰撞之 间的路程称为自由程。自由程与压强 成反比,有如下关系;

0 .6 7 P ( 厘米 )
(1—1) 式中压强P的单位用帕,自由程的单位 是厘米。
• 假设有一个D=10厘米的器件,其中真空度 为6.7×10-4帕,则 =1000厘米,由此可 见自由程远大于器件的尺寸。 • 此时,气体分子主要是以器壁碰撞为主。 可以认为,一个气体分子与器壁碰撞若干 次,行走的路程为1000厘米后才与另一气 体分子发生碰撞。
• 地球上,存在着自然状态的真空。包围地 球的大气层,受地心引力(空气分子重力)的 作用,离地面越高,空气越稀薄。 • 衡量气体稀密程度的物理量为压力,气体 分子处于无规则热运动之中,与物体碰幢 时会产生压力。 • 气体分子密度越大,气体压力也越大,在 海平面上,大气产生的压力为101325Pa, 约100kPa,工程中称为一个标准大气压。 • 而珠峰顶处的气压为32kPa,仅为海平面压 力的三分之一左右。

真空技术基础(ppt)

真空技术基础(ppt)
特点与使用:单独使用或用作其他泵的前级泵,低 真空系统。 缺点:油污染
附:干泵
二、复合分子泵
涡轮分子泵
多级叶片连续压 缩保证了高抽速
(1000 l/s)
结构简单 转速较小 压缩比大
牵引分子泵
涡轮分子泵抽气能力高 牵引分子泵压缩比大
复合式分子泵
极限真空度:10-1~10-8 Pa
三、低温泵
工作原理:依靠气体分子在低温条件下自发凝结或被其他物质表面吸附的性 质对气体分子的去除,进而获得高真空的装置。真空度依赖于低温度,吸附 物质的表面积和吸附气体的种类等。
真空度单位:气压的单位。 真空度就是真空中的气压。真空度的测量就是气压的测量。
第一节 、真空的基本知识
一、表示真空程度的单位
表1 几种压强单位的换算关系
单位 帕(Pa) 托(torr) 毫巴(mba) 标准大气压(atm)
1Pa 1
7.5×10-3 1×10-2
9.87×10-6
1torr 133.3
真空技术基础(ppt)
优选第一章真空技术基础
托里拆力试验
十七世纪用抽水泵 它来排除矿井中的 积水,无法将水抽 到10米以上的高度
伽利略(1564-1642) 物理學家、數學家、天文
學家及哲學家 “真空力”
托里拆力 (1608~1647) 物理学家、数学家
水银真空试验
辈尔梯 数学家、天文学家 水真空试验 (当时未成功)
溅射离子泵
低温泵
• 说明:
• 由于不同泵种的工作压力范围不同,实际 运用中为达一定的真空度,将两种或以上 的真空泵组合起来形成真空泵机组。
一、旋片式机械真空泵
机械泵是运用机械方法不断地改变泵内吸 气空腔的体积,使被抽容器内气体的体积不断 膨胀,从而获得真空的装置。它可以直接在大 气压下开始工作,极限真空度一般为1~1×102Pa,抽气速率与转速及空腔体积V的大小有关, 一般在每秒几升到每秒几十升之间。

1-第1章 真空技术基础

1-第1章 真空技术基础


早期技术落后,所制得的薄膜重复性较差,从而限
制了薄膜的应用。薄膜的应用最早只局限于抗腐性和制造
镜面。

在制备薄膜的真空系统和检测系统(如电子显微镜、低能
电子衍射以及其他表面分析技术)出现以后,薄膜的重复性才
大有改观,从此薄膜的应用也迅速拓展,尤其到了20世纪50年 代,随着电子工业和信息产业的兴起,薄膜技术和薄膜材料愈
1643年,意大利物理学家托里拆利
Байду номын сангаас
(Evangelista Torricelli,1608~1647)
与伽利略晚年的得意门生和亲密助手维 维安尼(Vincenzo Viviani )一起在佛罗
伦萨做了著名的“托里拆利实验” ,证
明了大气压的存在,同时,也为人类揭 示了“真空”这个物理状态的存在。
在此后的几个世纪里,尤其是在20世纪初,真空技

不论哪一种类型上的真空,只要在给定空间内,气体压 强低于一个大气压的气体状态,均称之为真空。完全没有气
体的空间状态称为绝对真空。
目前,即使采用最先进的真空制备手段所能达到的最 低压强下,每立方厘米体积中仍有几百个气体分子。 因此,平时我们所说的真空均指相对真空状态。在真 空技术中,常用“真空度”这个习惯用语和“压强”这一 物理量表示某一空间的真空程度,但是应当严格区别它们 的物理意义。 某空间的压强越低意味着真空度越高,反之,压强高 的空间则真空度低。
1971年国际计量会议正式确定“帕斯卡”作为气体压
强的国际单位,1Pa = 1N/m2 7.510-3Torr 。
表1-1给出了目前真空技术中常用的压强单位及其之间 的换算关系。
●二、真空区域的划分

为了研究真空和实际使用方便,常常根据各压强范围
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 真空技术基础
1.1 真空的基本知识
1.1.1 真空度的单位
真空的实质:一种低压气体物理状态 真空度采用气体压强表征 真空度的单位 = 气体压强的单位
注意:真空度和气压的意义相反 真空度 意味着 气压
国际单位制(MKS制,即SI制) 1 Pa=1 N / m 2 1 bar=106 dyne/cm 2 厘米克秒制(CGS 制) 主要单位制 1 PSI =1 lbf / in 2 英制(FPS制) 毫末汞柱制(mmHg 制) 1 torr =1 mmHg =1 / 760 atm
1 真空技术基础
1.1 真空的基本知识
1.1.2 真空区域的划分
真空区域:指不同的真空度范围;
划分目的:为了研究真空和实际应用的便利; 划分依据:按照各个压强范围内气体运动特征的不同进行划分; 划分准则:理论上,可依据Knudsen数的不同进行划分。
相关物理:
1)Knudsen数 定义: K n
存在的真空 宇宙真空:宇宙空间内 因此,真空可分为 备获得的容器内真空 人为真空:利用真空设
现代真空技术的极限:每 cm3空间内仅有数百个气体分子 对应气压 10-11 Pa 思考题:常温常压下,每cm3空间内有多少个气体分子? 提示:可由Avogadro常数推算 (6.02×1023个/22.4×103cm3 2.7×1019 个/cm3)
(760/1.013×105)
Pa 1.333×102
(1.013×105/760)
bar 1.333×10-3
(1.013/760)
atm 1.316×10-3
(1/760)
PSI 1.9337×10-2 1.4504×10-4 1.4504×101 1.4696×101
10-5 105 1.013×105 6.8948×103 1.013 6.8948×10-2
结果:得到了“真空”的定义和大气压的定义与量度依据!
1 真空技术基础
1.1 真空的基本知识
概念:利用外力将一定密闭空间内的气体分子移走, 使该空间内的气压小于 1 个大气压, 则该空间内的气体的物理状态就被称为真空。
注意:真空,实际上指的是 一种低压的、稀薄的气体状态, 而不是指“没有任何物质存在”!
— 气体分子的平均自由程 D — 流场特征尺寸(如:管径)
物理意义:是描述稀薄气体流动状态的准数! 分子平均自由程大于流场特征尺寸时的气流称为Knudsen流,其 Kn 一般 > 10! 2)真空系统中气体运动特征的理论划分: 粘滞流(层流、Poiseuille流) Kn <0.01
0.01
1 真空技术基础
真空与薄膜材料与技术有何关系?
几乎所有的现代薄膜材料制备都需要在真空或较低的气压条件下进行 都涉及真空下气相的产生、输运和反应过程 了解真空的基本概念和知识,掌握真空的获得和测量技术基础知识 是了解薄膜材料制备技术的基础!
1.1 真空的基本知识
中学物理内容:1643年 托里切利 (Torricelli) 著名的大气压实验
本课程讨论的对象:
什么是薄膜(Thin film)?
① 相对尺度:某一维尺寸 << 其余二维尺寸; ② 绝对尺度:在此维度上材料厚度 < 1~5 m,
厚度 > 5 m 的沉积层叫什么 ?
一般称为涂层 (Coatings)
本课程的讨论对象是什么 ? 具有结构/功能特性的固态薄膜(thin solid films)!
9.869×10-6 9.869×10-1
(1/1.013×105)
6.8046×10-2
说明:1、mmHg是人类使用最早、最广泛的压强单位;
1958年为纪念托里切利,用托(torr)代替了mmHg:1 torr=1 mmHg 2、早期的真空度计量常以 torr 或 mbar 为单位; 目前随着标准化进程的推进,SI(MKS)制单位应用日渐广泛 真空度用 Pa 作单位
为人类首次揭示了 真空 这个物理状态的存在! 管内水银柱上方空间内,因已排除空气的存在而形成真空 (托里切利真空) 图中A、B、C三点压力相等,A、C点:大气压;B点:水银柱产生的压力 换句话说:可用水银柱产生的压力 作为 大气压力 的量度! 把高度为760 mm的水银柱所产生的压力定义为1个大气压 (1 atm) 1 atm = 760 mmHg !
换算基础:1 N=105 dyne=0.225 lbf 1 atm=760 mmHg(torr)=1.013×105 Pa=1.013 bar
1 真空技术基础
1.1 真空的基本知识
1.1.1 真空度的单位
不同真空度单位制间的换算关系:
torr/mmHg 1 torr (1 mmHg) 1 Pa 1 bar 1 atm 1 PSI 7.501×10-3 7.501×102 760.0 51.7149
m RT M
k — 玻尔兹曼常数,1.38×10-23 J/K; T — 气体温度 (K); m — 气体质量 (kg); R — 普适气体常数,R = NA· k = 8.314 J/mol· K; 23 NA — Avogadro常数,6.02×10 个/mol;
P nkT n
P kT
粘滞-分子流 Kn = 0.01~1

分子流(自由分子流、Knudsen流) Kn >> 1
1 真空技术基础
1.1 真空的基本知识
1.1.2 真空区域的划分
3)理想气体状态方程: P nkT, PV 式中:n — 分子密度 (个/m3); P — 气体压强 (Pa); V — 气体体积 (m3); M — 气体分子量 (kg/mol);
本课程的研究内容
凝结 材料学 薄膜在基片上 伴随复杂物理化学过程 形核 阶段 涉及 物理学 形成,可分为 化 学 长大
薄膜材料与技术
制备技术 形成机制 主要研究:各种薄膜材料的 成分结构 特性性能
相关文档
最新文档