实验 薄透镜焦距的测定

合集下载

实验一 薄透镜焦距的测定

实验一  薄透镜焦距的测定

实验一 薄透镜焦距的测定【实验目的】1. 进一步理解透镜成像的规律;2. 掌握测量薄透镜焦距的几种方法;3. 学会光具座上各元件的共轴调节方法。

【实验仪器】光具座、凸透镜、凹透镜、平面镜、像屏、物屏、光源。

【实验原理】1、薄透镜焦距的测定透镜的厚度相对透镜表面的曲率半径可以忽略时,称为薄透镜。

薄透镜的近轴光线成像公式为:fs s 111'=+ (3—1—1)式中s 为物距,s '为像距,f 为焦距。

其符号规定如下:实物时s 取正,虚物s 取负;实像时s '取正,虚像时s '取负;f 为透镜焦距,凸透镜取正,凹透镜取负 。

(1) 位移法测定凸透镜焦距 (贝塞尔法又称共轭成像法)如图1所示,如果物屏与像屏的距离A 保持不变,且A > 4f ,在物屏与像屏间移动凸透镜,可以两次看到物的实像,一次成倒立放大实像,一次成倒立缩小实像,两次成像透镜移动的距离为L 。

据光线可逆性原理可得:s 1= s 2′,s 2= s 1′,则2s '21L A s -==,2'12L A s s +==, 将此结果代入式(3—1—1)可得:AL A f 422-= (3—1—2)只要测出A 和L 的值,就可算出f 。

(2) 自准直法测凸透镜焦距光路图如图2所示。

当物体AB 处在凸透镜的焦距平面时,物AB 上各点发出的光束,经透镜后成为不同方向的平行光束。

若用一与主光轴垂直的平面镜将平行光反射回去,则反射光再经透镜后仍会聚焦于透镜的焦平面上,此关系就称为自准直原理。

所成像是一个与原物等大的倒立实像A ′B ′(此时物到透镜的距离即为焦距)。

所以自准直法的特点是:物、像在同物像像屏屏图2 自准直法测凸透镜焦距一焦平面上。

自准直法除了用于测量透镜焦距外,还是光学仪器调节中常用的重要方法。

(3) 物距—像距法测凹透镜焦距(利用虚物成实像求焦距) 如图3所示,先用凸透镜L 1使AB 成实象A 1B 1,像A 1 B 1便可视为凹透镜L 2的物体(虚物)所在位置,然后将凹透镜L 2放于L 1和A 1B 1之间,如果O 2A 1<∣f 2∣,则通过L 1的光束经L 2折射后,仍能形成一实象A 2B 2。

薄透镜焦距的测定物理实验报告

薄透镜焦距的测定物理实验报告

薄透镜焦距的测定物理实验报告一、实验目的1、加深对薄透镜成像原理的理解。

2、学习几种测量薄透镜焦距的方法。

3、掌握光学实验中的基本测量技术和数据处理方法。

二、实验原理1、薄透镜成像公式当光线通过薄透镜时,遵循薄透镜成像公式:$\frac{1}{u} +\frac{1}{v} =\frac{1}{f}$,其中$u$ 为物距,$v$ 为像距,$f$ 为焦距。

2、自准直法当物屏上的物点发出的光线经透镜折射后,变成平行光,若在透镜后面垂直于光轴放置一个平面反射镜,此平行光将沿原路返回,再次通过透镜后仍成像于物屏上的物点处。

此时,物屏与透镜之间的距离即为透镜的焦距。

3、物距像距法当物距和像距分别为$u$ 和$v$ 时,通过测量物距和像距,代入薄透镜成像公式可求得焦距$f$ 。

4、共轭法移动透镜,在物屏和像屏之间分别得到放大和缩小的清晰像。

根据光路可逆原理,两次成像时物距和像距互换,利用公式$\frac{u + v}{4}$可计算出焦距。

三、实验仪器光具座、凸透镜、凹透镜、物屏、像屏、平面反射镜、光源等。

四、实验内容与步骤1、自准直法测凸透镜焦距(1)将凸透镜固定在光具座的一端,在凸透镜的另一侧放置物屏,使物屏上的十字叉丝清晰可见。

(2)在凸透镜后面垂直于光轴放置平面反射镜。

(3)沿光具座移动物屏,直到在物屏上再次看到清晰的十字叉丝与原物大小相等、方向相反。

(4)记录此时物屏与凸透镜的位置,两者之间的距离即为凸透镜的焦距。

(5)重复测量三次,计算焦距的平均值。

2、物距像距法测凸透镜焦距(1)将凸透镜固定在光具座的中间位置。

(2)在凸透镜的一侧放置物屏,另一侧放置像屏。

(3)移动物屏和像屏,直到在像屏上得到清晰的像。

(4)记录物屏和像屏的位置,分别得到物距$u$ 和像距$v$ 。

(5)代入薄透镜成像公式计算焦距,并重复测量三次,计算平均值。

3、共轭法测凸透镜焦距(1)将物屏固定在光具座的一端,凸透镜放在光具座中间附近。

薄透镜焦距的测定

薄透镜焦距的测定

二、 实验原理
2.薄凸透镜焦距的测定
(1)物距像距法(公式法)
11 1 υu f
f uυ uυ
二、实验原理
(2)自准值法(平面镜法)
X
X
2
Hale Waihona Puke 1测量出物体和透镜的位置X1、X2,即可求得透镜的焦距为:
f X2 X1
二、实验原理
(3)共轭法(位移法)
B
A
O1
e u
L
O2
ν
A' A" B'
二、实验原理
薄透镜成像公式
11 1 uv f
u为物距,恒取正值。为像距,v其正负由像的虚实来决定,实像为正,虚像为负;f
为透镜焦距,凸透镜焦距为正,凹透镜焦距为负。
凸透镜成像规律
u <f,在物的同侧得到一个放大正立的虚象 ; F<u<2f,在透镜另一侧二倍焦距之外成一个放大倒立的实像 ; u>2f,在透镜另一侧焦距和二倍焦距之间成一个缩小倒立的实像 。
薄透镜焦距的测定
天津理工大学理学院实验中心
目录
一、实验目的 二、实验原理 三、实验仪器 四、实验步骤 五、数据处理 六、注意事项 七、思考题
一、实验目的
1.掌握光路共轴等高的调整方法; 2.加深对薄透镜成像规律的认识; 3.学习测量薄透镜焦距的几种方法。
二、实验原理
1.薄透镜的成像规律
。 凸透镜具有使光线汇聚的作用。凹透镜具有使光线发散的作用
五、数据记录与处理
1.用位移法(共轭法)测凸透镜焦距
采用逼近法读数,表格如下:
物S1
S2左
镜S2 S2右
平均
像S3
S4左

薄透镜焦距的测定

薄透镜焦距的测定

的像为止,记录物距s与像距s′,由公式(2)求出焦距f ′。
图4 物距、像距法测焦距光路
2. 自准直法测凸透镜焦距 如图5所示,在待测透镜L的一侧放臵被光源照明的1字形物屏AB, 在另一侧放一面平面反射镜M,移动透镜(或物屏),当物屏AB正 好位于凸透镜之前的焦平面时,物屏AB上任一点发出的光线经凸透 镜L折射后,变为平行光线,然后被平面反射镜反射回来,再经凸 透镜折射后,仍会聚在它的焦平面上,即在原物屏平面上,形成一 个与原物等大、倒立的实像A′B′。此时物屏到凸透镜之间的距离等 于待测透镜的焦距,即
屏位臵(缩小像)x3 .
表三 二次成像法测凸透镜焦距数据记录表
n 1 2 3
x1 /cm
x2/cm
x3/cm
D=(x1- x0)/ cm
d=(x3- x2)/ cm
fi’/cm
4
5
4. 辅助透镜法测凹透镜焦距
经凸透镜成像位臵x1,经凸凹透镜成像位臵x2,凹透镜位臵x3 .
表四 辅助透镜法测凹透镜焦距数据记录表
普通物理(光学)实验
薄透镜焦距的测定
薄透镜焦距的测定
实验目的 实验原理 数据处理 实验仪器 实验内容 注意事项
思考问题
实验目的
1.掌握光具座的使用与光学元件等高共轴 调节的方法。
2.学会测量透镜焦距的常用方法,掌握简
单光路的分析。 3.熟悉光学实验的基本操作规范。
实验仪器
2 5 4 3
1
图1 薄透镜焦距测定实验仪器组成
f s
图5 用自准直法测凸透镜焦距
3. 二次成像法(贝塞耳法)
毋须考虑透镜本身 的厚度,因此较准确
物像公式法、自准直法都因凸透镜的中心位臵不易确定而在测量中要 引入误差,用二次成像法来测量凸透镜焦距可以避免这一缺点。如图6所 示,物屏和像屏之间的距离大于,且保持不变,如果沿光轴方向移动透镜, 透镜在物屏和像屏之间必定存在两个位臵能观察到清晰的像,透镜在这两 个位臵之间距离的绝对值为,运用物像的共轭对称性质,可以证明

大学物理实验薄透镜焦距的测定

大学物理实验薄透镜焦距的测定

光学实验 薄透镜焦距的测定一、[实验目的]1.明确光学实验室规则,训练相应的实验规范行为; 2.认识光学实验平台,学会调节光学系统使之共轴; 2.掌握薄透镜焦距的3种常用测定方法。

二、[实验仪器] 1.光学平台2.凸透镜(f70 ) ;凸透镜(f190)(待测物) 凹透镜(f-100)(待测物) 3.光源、物屏、像屏、平面镜 三、[实验原理]本实验中仅考虑透镜厚度比球面曲率半径小得多的透镜,此时,透镜的两个主平面与透镜中心面可看作是重合的。

因此,物距u 、像距v 、焦距f 可视为是物、像、焦点与透镜中心的距离。

1.由自准直法测凸透镜焦距2.用物距像距法测透镜焦距设薄透镜的焦距f ,物距为u ,对应的像距为v ,则透镜成像的公式:fv u 111=+ 即 vu uvf +='-------------------(1) 通过物距、像距的测定,求薄透镜的焦距。

3.用两次成像法测凸透镜焦距在下图中,取物、屏之距L > 4f ,且在实验过程中保持不变。

置凸透镜于物、屏之间,移动透镜的座驾观察二次成像的图案,则凸透镜有两个位置Ⅰ与Ⅱ (二者相距为 d )可使物成像于屏上,其中一个是放大、倒立的实像,另一个是缩小、倒立的实像。

Ld L f 422-='-------------------------(2)分别测量L 和d ,代入上式即可求得凸透镜焦距。

4.测定凹透镜的焦距薄凹透镜是一种发散透镜。

实物经过凹透镜的折射无法形成实像,因此测量焦距的方法一般要加一块凸透镜。

先将实物发出的光经凸透镜折射后形成会聚光束,然后利用会聚光束来测定凹透镜的焦距。

光路图如下图。

先用一块凸透镜(本实验选f70)把光源形成一个汇聚点(实像可以在接受屏上找到成像位置),然后加上待测的凹透镜,则会聚光束经凹透镜发散,形成一个新汇聚点(仍然是实像)。

测出两个汇聚点(实像)到凹透镜中心的距离,就可以知道物距u (负号)和像距v 。

实验1 薄透镜焦距的测定

实验1  薄透镜焦距的测定

实验1 薄透镜焦距的测定注意: 白光源不能长时间发光, 请同学们在记录数据的时候关闭白光源。

第一部分用实物成实像法测薄凸透镜焦距【实验目的】1.掌握简单光路的分析和调整方法。

2.掌握实物成实像测凸透镜焦距的原理及方法。

【实验仪器】WSZ-1A 18-10 光学平台1.带有毛玻璃的白炽灯光源S2.品字形物屏P: SZ-143.凸透镜L: f=190mm(f=150mm)4.二维调整架: SZ-075.白屏H: SZ-136.通用底座: SZ-047、二维底座: SZ-028、通用底座: SZ-049、通用底座: SZ-04【实验原理】对凸透镜而言, 用实物作为光源, 其发出的光线经会聚透镜后, 在一定条件下成实像, 可用白屏接取实像加以观察, 通过测定物距和像距, 再利用空气中的薄透镜的高斯公式即可计算出焦距。

【实验内容与步骤】1.把全部光学器件按实验器件图的顺序摆放在光学平台上, 靠拢后目测调至共轴2.调节透镜L的位置, 调节白屏H使品字形物屏P在H上成一清晰的放大像, 记下品字形物屏P的位置a、透镜L的位置b及白屏H的位置c。

3、移动透镜L的位置, 再调节白屏H的位置使其上再次得到P的清晰像, 记录a、b、c 的位置, 再重复一次。

4.比较实验值和真实值的差异并分析其原因。

【数据处理】Δ='+'=__________f__cmff第二部分用位移法测薄凸透镜焦距f【实验目的】1.掌握简单光路的分析和调整方法。

2.掌握位移法测凸透镜焦距的原理及方法。

【实验仪器】WSZ-1A 18-10 光学平台1.带有毛玻璃的白炽灯光源S2.品字形物屏P: SZ-143.凸透镜L: f=190mm(f=150mm)4.二维调整架: SZ-075.白屏H: SZ-136.通用底座: SZ-047、二维底座: SZ-028、通用底座: SZ-04【实验原理】对凸透镜而言, 当物和像屏间的距离大于4倍焦距时, 在它们之间移动透镜, 则在屏上会出现两次清晰的像, 一个为放大的像, 一个为缩小的像。

薄透镜焦距的测量实验报告

薄透镜焦距的测量实验报告

薄透镜焦距的测量实验报告实验目的,通过实验测量薄透镜的焦距,掌握测量薄透镜焦距的方法和技巧。

实验仪器,凸透镜、光具架、物镜、白纸、尺子、平行光源。

实验原理,薄透镜的焦距是指平行光线经过透镜后汇聚或者看似汇聚的位置。

对于凸透镜来说,焦距为正,对于凹透镜来说,焦距为负。

焦距的计算公式为1/f = 1/v + 1/u,其中f为焦距,v为像距,u为物距。

实验步骤:1. 将凸透镜固定在光具架上,调整光具架使得凸透镜与平行光源垂直放置。

2. 在凸透镜的一侧放置一张白纸,调整白纸的位置使得凸透镜的像清晰可见。

3. 测量凸透镜与白纸的距离,即像距v。

4. 移动白纸,使得凸透镜与白纸的距离变化,再次测量像距v。

5. 测量物距u。

实验数据记录与处理:实验一:像距v1 = 20cm,像距v2 = 18cm,取平均值v = (20+18)/2 = 19cm。

物距u = 25cm。

代入公式1/f = 1/v + 1/u,得到焦距f = 47.5cm。

实验二:像距v1 = 15cm,像距v2 = 14cm,取平均值v = (15+14)/2 = 14.5cm。

物距u = 20cm。

代入公式1/f = 1/v + 1/u,得到焦距f = 40cm。

实验结果分析:通过两次实验测量得到的焦距分别为47.5cm和40cm,两次实验结果相差不大,说明实验数据比较准确。

实验中可能存在的误差主要来自于测量距离的精度以及光线的折射等因素。

实验结论:通过本次实验,我们掌握了测量薄透镜焦距的方法和技巧,同时也加深了对薄透镜焦距的理解。

在实际应用中,我们可以通过测量薄透镜的焦距来确定透镜的性质,为光学系统的设计和调试提供重要参考。

总结:本实验通过测量薄透镜的焦距,加深了对光学原理的理解,同时也提高了实验操作的技能。

在今后的学习和科研中,我们将更加熟练地运用光学知识,为科学研究和工程技术的发展贡献自己的力量。

测薄透镜焦距实验报告

测薄透镜焦距实验报告

测薄透镜焦距实验报告目录- 实验目的- 实验原理- 透镜焦距的定义- 使用薄透镜测定焦距的原理- 实验器材- 实验步骤- 步骤一:准备工作- 步骤二:安装实验装置- 步骤三:测量- 实验结果与分析- 实验结论- 实验总结实验目的本实验旨在通过测量薄透镜的焦距,掌握薄透镜的焦距测定方法,加深对光学知识的理解。

实验原理透镜焦距的定义透镜焦距是指透镜将平行光线聚焦到焦点上的距离,通常用f表示。

使用薄透镜测定焦距的原理当物体远离透镜很远时,其像会成像在焦点附近,测量物体与透镜之间的距离和像与透镜之间的距离,即可计算出透镜的焦距。

实验器材1. 薄透镜2. 光源3. 牛顿环实验装置4. 尺子实验步骤步骤一:准备工作1. 将实验器材摆放在实验台上,确保稳定。

2. 确认各器材连接正确,光源亮度适中。

步骤二:安装实验装置1. 将薄透镜放置在合适的位置。

2. 调节光源位置,使得光线射向透镜。

步骤三:测量1. 将物体放置在光源前方一定距离处。

2. 在像方放置屏幕,并移动屏幕位置找到清晰像。

3. 测量物体与透镜之间的距离和像与透镜之间的距离。

实验结果与分析通过实验测得的数据,我们可以利用透镜公式进行计算,得出透镜的焦距。

实验结论本实验通过简单的薄透镜焦距测量,掌握了薄透镜的焦距测定方法,加深了对光学知识的理解。

实验总结通过这次实验,我深刻认识到了实验操作的重要性,以及实验结果的验证对于理论知识的巩固作用。

希望在今后的实验中能够更加认真地进行每一步操作,提高实验的准确性和实用性。

测量薄透镜焦距的方法

测量薄透镜焦距的方法

测量薄透镜焦距的方法
测量薄透镜的焦距可以使用以下几种方法:
1. 构建朗宾透镜实验装置:首先将薄透镜与一短焦距的凹透镜相组合,使其共同构成一个朗宾透镜。

然后将一平行光线照射到朗宾透镜上,并在朗宾透镜的另一侧放置一个屏幕。

调整屏幕的位置,使得在屏幕上能够观察到清晰的聚焦图像。

测量出透镜与屏幕之间的距离,便是薄透镜的焦距。

2. 利用屈光度计:将薄透镜面对着一平行光源,并将屈光度计的目镜对准透镜,观察屈光度计的读数。

然后将薄透镜移动一段距离,直到屈光度计的读数再次稳定下来。

测量透镜移动的距离,便是焦距。

这种方法适用于透镜焦距较大的情况。

3. 利用显微镜原理:将薄透镜放置在一个物体的正下方,通过调节目镜与物镜之间的距离,使得观察到的物体在放大倍率最大的情况下仍然清晰可见。

测量目镜与物镜之间的距离,便是薄透镜的焦距。

需要注意的是,以上方法仅适用于薄透镜,也就是透镜的厚度很小,光线在透镜上的入射和折射角非常小的情况下。

若透镜较厚,或入射光线角度较大,需要考虑透镜的厚度和球面效应对测量结果的影响。

薄透镜焦距测量实验

薄透镜焦距测量实验

薄透镜焦距测量实验薄透镜焦距测量【实验⽬的】1. 学习光学仪器的使⽤和维护规则,学会调节光学系统使之等⾼共轴。

2. 掌握测量薄会聚透镜和发散透镜焦距的⽅法。

3. 观察透镜成像,并从感性上了解透镜成像公式的近似性。

【实验仪器】光具座,底座及⽀架,薄凸透镜,薄凹透镜,平⾯镜,物屏(有透光箭头的铁⽪屏),像屏(⽩⾊,有散光的作⽤)。

【实验原理】透镜是光学仪器中最基本的元件,焦距是反映透镜特性的重要物理量。

为了正确使⽤光学仪器,必须掌握透镜成像规律,学会光路调节技术和焦距测量⽅法。

1.⾃准直法测量凸透镜焦距如图1-1和图1-2所⽰,当物P在焦点处或焦平⾯上时,经透镜L 后光是平⾏光束,经平⾯镜反射再经透镜后成像于原物P处。

因此,P 点到透镜L中⼼点的距离就是透镜的焦距f。

图1-1:⾃准直法测量焦距原理图1当实物(具体实验中为狭缝光源)刚好在凸透镜焦点时,会在实物处呈现倒⽴等⼤的实像。

实物和凸透镜之间的距离即是焦距的值。

图1-2:⾃准直法测量焦距原理图2光的可逆性原理:当光线的⽅向返转时,它将逆着同⼀路径传播。

这个⽅法是利⽤调节实验装置本⾝,使之产⽣平⾏光以达到调焦的⽬的,所以称⾃准直法。

2.物距与像距法测量凸透镜焦距由于对实物,凸透镜可成实像,所以直接测量凸透镜的物距u、像距v,就可以⽤⾼斯公式(⾼斯公式的普遍形式:),求出凸透镜的焦距,如图2-1所⽰。

图2-1:物距与像距法测量焦距原理图3.共轭法(⼆次成像法)测量凸透镜焦距如图3-1,取物体与像屏之间的距离L⼤于4倍凸透镜焦距f,即L>4f,并保持L不变。

沿光轴⽅向移动透镜,则在像屏上必能两次成像。

图3-1:⼆次成像法测量焦距原理图当透镜在位置 I时屏上将出现⼀个放⼤清晰的像(设此物距为u,像距为v);当透镜在位置 II 时,屏上⼜将出现⼀个缩⼩清晰的像(设此物距为u′,像距为v′),设透镜在两次成像时位置之间的距离为 C,根据透镜成像公式,可得u= v′,u′=v⼜从图3-1可以看出上式称为透镜成像的贝塞尔公式。

测量薄透镜焦距的方法

测量薄透镜焦距的方法

测量薄透镜焦距的方法薄透镜是光学实验中常用的器件,它具有很多重要的应用,如成像、照相、望远镜、显微镜等。

薄透镜的焦距是一个重要的参数,它决定了透镜的成像能力和成像位置。

因此,准确地测量薄透镜的焦距对于光学实验和应用具有重要意义。

下面将介绍几种测量薄透镜焦距的方法。

一、通过物距法测量薄透镜焦距。

物距法是一种常用的测量薄透镜焦距的方法。

具体步骤如下:1. 将一物体放置在薄透镜的一侧,并测量物体到透镜的距离,即物距u。

2. 调节物体位置,使得在透镜的另一侧得到清晰的像,测量像到透镜的距离,即像距v。

3. 根据薄透镜的公式1/f=1/v+1/u,可以计算出薄透镜的焦距f。

二、通过放大率法测量薄透镜焦距。

放大率法是另一种测量薄透镜焦距的方法。

具体步骤如下:1. 将一物体放置在薄透镜的一侧,并测量物体到透镜的距离,即物距u。

2. 调节物体位置,使得在透镜的另一侧得到清晰的像,测量像的高度,即像高h。

3. 根据放大率公式m=-v/u=h'/h,可以计算出薄透镜的焦距f。

三、通过远处物体成像法测量薄透镜焦距。

远处物体成像法是一种简便的测量薄透镜焦距的方法。

具体步骤如下:1. 将一远处物体放置在薄透镜的一侧,调节透镜位置,使得在透镜的另一侧得到清晰的像。

2. 测量像到透镜的距离,即像距v。

3. 根据薄透镜的公式1/f=1/v,可以计算出薄透镜的焦距f。

以上所述的三种方法都是常用的测量薄透镜焦距的方法,每种方法都有其适用的场合,可以根据实际情况选择合适的方法进行测量。

在实际操作中,需要注意测量的精度和准确性,避免因操作不当而导致误差的产生。

总之,薄透镜的焦距是一个重要的光学参数,准确地测量薄透镜的焦距对于光学实验和应用具有重要意义。

通过物距法、放大率法和远处物体成像法等方法,可以准确地测量薄透镜的焦距,为光学实验和应用提供准确的数据支持。

实验一 薄透镜焦距的测定实验报告

实验一  薄透镜焦距的测定实验报告

实验一 薄透镜焦距的测定实验目的1.学会调节光学系统使之共轴,并了解视差原理的实际应用;2.掌握薄透镜焦距的常用测定方法;实验仪器和用具光具座,会聚透镜,物屏,白屏,光源实验原理 详细见P39-41. 实验内容一 成像透镜法测透镜焦距 1 测量数据表1 物距、像距测量数据 单位:cm2 像方焦距标准不确定度的分析f ′的A 类标准不确定度为: )5=n (cm 15.0=)1-n (n )f ′-f ′(=)f ′(U ∑2iAB 类不确定度:cm 03.03cm05.03Δ=)f ′(U B ==仪;f ′的总标准不确定度为: cm 15.0=)f ′(U +)f ′(U =)f ′(U 2B 2A C 故测得的透镜的像方焦距为:cm )15.0±94.14(=f ′. 二 透镜两次成像法测焦距 1 测量数据表2 物屏距离L 、透镜移动距离d 的测量数据 单位:cm2 像方焦距的标准不确定度的分析 f ′的A 类标准不确定度为: )5(02.0)1-()-()(∑2==''='n cm n n f f f U iAB 类不确定度:cm 03.03cm05.03Δ=)f ′(U B ==仪(测量均匀分布取3=C );f ′的总标准不确定度为: cm 04.0=)f ′(U +)f ′(U =)f ′(U 2B 2AC 故,测得透镜的像方焦距为:cm )04.0±04.15(=f ′.实验结论误差主要来源于:一,光线并非严格的满足傍轴条件;二,存在视差,成最清晰像的位置很难测准;三,透镜、光屏支架的底座和平行轨道之间的接合不够光滑,接合处较松动,位置读数误差较大.采用多次测量求平均值可以减少误差,由测量的不确定度可以确定测量的误差在允许的范围之内.。

薄透镜焦距的测定实验报告

薄透镜焦距的测定实验报告

薄透镜焦距的测定实验报告
实验目的:通过实验测定薄透镜的焦距。

实验原理:薄透镜是一种光学元件,它可以将光线聚焦或发散。

薄透镜的焦距是指光线通过薄透镜后,聚焦或发散的距离。

薄透镜的焦距可以通过实验测定得到。

实验器材:薄透镜、光源、屏幕、尺子、直尺、三角板等。

实验步骤:
1. 将薄透镜放在光源和屏幕之间,使光线通过薄透镜后聚焦在屏幕上。

2. 移动屏幕,找到光线聚焦的位置,用尺子测量光线聚焦的距离,即为薄透镜的焦距。

3. 重复以上步骤,取多组数据,计算平均值。

实验结果:通过实验测得薄透镜的焦距为10cm。

实验分析:实验结果与理论值相符合,说明实验操作正确,实验结果可信。

实验结论:通过实验测定,薄透镜的焦距为10cm。

实验注意事项:
1. 实验时要注意安全,避免光线直接照射眼睛。

2. 实验时要保持光源、薄透镜和屏幕的位置不变,避免误差。

3. 实验时要注意测量精度,尽量减小误差。

总结:通过本次实验,我们学习了薄透镜的基本原理和测量方法,掌握了实验操作技能,提高了实验能力。

薄透镜焦距的测定

薄透镜焦距的测定

薄透镜焦距的测定【实验目的】1.学会调节光学系统共轴,并了解视差原理的实际应用.2.掌握薄透镜焦距的常用测定方法.【实验仪器】光具座,会聚透镜,发散透镜,物屏,白屏,平面反射镜,尖头棒,指针,光源.【实验原理】透镜分为会聚透镜和发散透镜两类,当透镜厚度与焦距相比甚小时,这种透镜称为薄透镜.设薄透镜的像方焦距为f ',物距为p ,对应的像距为p ',在近轴光线的条件下,透镜成像的高斯公式为 f pp '=-'111 应用上式时必须注意各物理量所适用的符号法则.规定:距离自参考点(薄透镜光心)量起,与光线行进方向一致时为正,反之为负.运算时已知量须添加符号,未知量则根据求得结果中的符号判断其物理意义.1.测量会聚透镜焦距的方法(1)用实物成实像求焦距(2)由透镜两次成像求焦距注意:物体与白屏的距离l 大于4f '且保持其相对位置不变,请证明l d l f 422-=' 这种方法中不须考虑透镜本身的厚度,因此用这种方法测出的焦距一般较为准确.(3)由自准直法确定2.测定发散透镜焦距的方法(1)虚物成像求焦距(2)由平面镜辅助确定虚像位置求焦距【实验内容】1.粗调粗测待测会聚透镜的焦距.2.共轴、等高调节将照明光源、物屏、待测透镜和白屏依次放在光具座导轨上,调节各光学元件的光轴.3.实物成实像法测测会聚透镜焦距用具有箭形开孔的物屏为物,用准单色光源照明,使物屏与白屏之间相隔一定的距离大于4f ',移动待测透镜,直至白屏呈现出箭形物体的清晰像,记录物、像及透镜的位置,算出f '.改变屏的位置,重复几次,求其平均值.4.两次成像法测会聚透镜焦距将物屏与白屏固定在相距大于4f'的位置,测出它们之间的距离l,移动透镜,使屏上得到清晰的像,记录透镜的位置,移动透镜至另一位置,使屏上又得到清晰的像,再记录透镜的位置,求出f'.改变屏的位置,重复几次,求其平均值.5.自准直法测会聚透镜焦距以尖头棒为物,仔细调节物距使得物、虚像共面。

实验十三薄透镜焦距的测定

实验十三薄透镜焦距的测定

实验十三薄透镜焦距的测定透镜是组成各种光学仪器的基本光学元件,焦距则是透镜的一个重要参数。

在不同的使用场合往往要选择合适的透镜或透镜组,这就需要测定透镜的焦距。

本实验通过不同的实验方法来研究薄透镜的成像规律,并确定其焦距。

一、实验目的要求1.学会调节光学系统使之共轴。

2.掌握测量会聚透镜和发散透镜焦距的方法。

3.验证薄透镜成象的理论公式。

二、仪器用具光具座、透镜夹、薄透镜(凸凹各一块)、光源、物屏、象屏,平面反射镜等。

三、实验原理透镜:是具有两个折射面的简单共轴球面系统。

薄透镜:是指它的厚度远比两个折射面的曲率半径和焦距小得多的透镜。

薄透镜的成像公式:在满足薄透镜和近轴光线的条件下,物距u ,像距v 和焦距f 之间的关系为:f v u 111=+(5-1)这就是薄透镜成像的公式,又称高斯公式。

并规定(5-1)式中,物距u ,实物为正,虚物为负;像距v ,实像为正,虚像为负;对凸透镜f 为正值,对凹透镜f 为负值。

(一)、凸透镜焦距的测定1、凸透镜的成像规律为:像的大小和位置是依照物体离透镜的距离而决定的(1)当u f >>时,极远处的物体经过透镜在后焦点附近成缩小的倒立实像。

(2)当u f >时,物体越靠近前焦点,像逐渐远离后焦点且逐渐变大。

(3)当u f =时,物体位于前焦点,像存在于无穷远处(4)当u f <时,物体位于前焦点以内,像为正立放大的虚像,与物体位于同侧,由于虚像点是光线反方向延长的交点,因此不能用像屏接收,只能通过透镜观察。

2、测定方法(1)自准直法光路图如下图所示。

当物体A 处在凸透镜的焦距平面时,物A 上各点发出的光束,经透镜后成为不同方向的平行光束。

若用一与主光轴垂直的平面镜M 将平行光反射回去,则反射光再经透镜后仍会聚焦于透镜的焦平面上,此关系就称为自准直原理。

所成像是一个与原物等大的倒立实像A ′。

所以自准直法的特点是,物、像在同一焦平面上。

自准直法除了用于测量透镜焦距外,还是光学仪器调节中常用的重要方法。

薄透镜焦距的测定物理实验报告

薄透镜焦距的测定物理实验报告

薄透镜焦距的测定物理实验报告实验目的:本实验的目的是通过测定薄透镜的焦距,研究薄透镜的成像规律,并掌握焦距的测定方法。

实验原理:薄透镜是由凹凸两个球面所组成,其中一面的曲率半径较大,称为凸面,另一面的曲率半径较小,称为凹面。

薄透镜的厚度相对于焦距来说是非常小的,因此可以近似认为是无厚度的。

光线在透镜中的传播可以利用折射定律来描述,即入射角和折射角满足sinθ₁/sinθ₂=n₂/n₁,其中n₁和n₂分别为透镜两边的折射率。

对于薄透镜来说,其折射率可以由透镜材料的折射率来近似表示。

对于平凸透镜,在透镜的两边分别有一个焦点,分别称为前焦点和后焦点。

当物体距离透镜远时,物体距离透镜一侧焦点足够远,光线近似于平行光线,此时透镜会将光线聚焦到另一侧焦点上,成像为实像。

当物体距离透镜一侧焦点足够近时,透镜会将光线发散,成像为虚像。

根据薄透镜成像规律可以推导出薄透镜的公式:1/f=1/v-1/u,其中f为焦距,v为像距,u为物距。

实验器材:1.薄透镜2.物体3.尺子或测微尺4.白纸实验步骤:1.将薄透镜平放在桌面上。

2.选择一个物体放置在透镜的前方,距离透镜一段距离。

3.在透镜的后方放置一张白纸,以便观察成像情况。

4.调整透镜与物体的距离,直到在白纸上观察到清晰的成像。

5.测量物距u和像距v。

6.重复以上步骤几次,以取得更多的数据。

实验数据处理与分析:根据薄透镜焦距公式1/f=1/v-1/u,可以将实验数据代入计算焦距f 的值。

根据实验数据绘制焦距与物距的图像,通过拟合直线来确定焦距的值。

实验结论:通过本次实验,我们成功测定了薄透镜的焦距,并验证了薄透镜成像规律。

实验结果与理论值吻合较好,实验步骤简单易行,可以有效地测定薄透镜的焦距。

实验中可能存在的误差:1.在实验中,由于测量误差和人为因素的影响,测量得到的数据可能存在一定的误差。

2.实际上,薄透镜的焦距可能会受到透镜本身的质量和形状的影响,这也可能导致测量数据与理论值存在一定的偏差。

薄透镜焦距的测量实验报告

薄透镜焦距的测量实验报告

薄透镜焦距的测量实验报告薄透镜焦距的测量实验报告一、引言透镜是光学仪器中的重要组成部分,其焦距是透镜的重要光学参数之一。

透镜焦距的准确测量对于光学仪器的设计和制造具有重要意义。

本实验旨在通过薄透镜焦距的测量,掌握透镜焦距的测量方法,了解透镜成像的原理和规律,加深对光学仪器中透镜的认识和理解。

二、实验原理薄透镜焦距的测量可以通过物距-像距法来实现。

当物体位于透镜前方时,光线经过透镜后会形成一个清晰的实像。

此时,可以通过测量物体到透镜的距离(物距)和实像到透镜的距离(像距),并根据透镜成像公式计算出透镜的焦距。

透镜成像公式为:1/f=1/u+1/v,其中f为透镜焦距,u为物距,v为像距。

当物体位于透镜前方时,物距u为正数,像距v也为正数;当物体位于透镜后方时,物距u为负数,像距v也为负数。

因此,在计算透镜焦距时,需要考虑物距和像距的符号。

三、实验步骤1.搭建实验光路:将光源、光具座、透镜和光屏依次放置在实验台上,并调整它们的高度,使光线能够垂直通过透镜。

2.测量物距和像距:将物体放置在透镜前方,移动光屏,直到在光屏上观察到清晰的实像。

此时,测量物体到透镜的距离(物距)和实像到透镜的距离(像距)。

3.计算焦距:根据透镜成像公式,计算出透镜的焦距。

为了减小误差,需要进行多次实验,并求出焦距的平均值。

4.绘制光路图:根据实验数据,绘制出物体、透镜和实像之间的光路图。

四、实验结果与分析表1 实验数据记录表有一定的可行性和精度。

在本实验中,通过多次测量并计算焦距的平均值,可以得到较为准确的实验结果。

然而,由于实验过程中存在误差和不确定性,如光源和光屏的调整误差、测量误差等,因此实验结果仍存在一定的误差。

为了提高实验精度,可以采用更精确的测量仪器和方法,如使用显微镜观察实像的位置等。

根据实验数据绘制的光路图如下所示:图1 光路图五、结论本实验通过物距-像距法测量了薄透镜的焦距,掌握了透镜焦距的测量方法,了解了透镜成像的原理和规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

好处在凹透镜上沿。移动带痕玻片并仔细观察凹透镜内虚像的
顶端和凹透镜外玻片刻痕间的相对位置有无变化。当相对位置 不变,即无视差时,记录下此时玻片刻痕的位置。重复测量三次,
将数据填于表3-8-4中, 求出f。
2) 自准法 先对光学系统进行共轴调节,然后把凸透镜放在稍大于 两倍焦距处。移动凹透镜和平面反射镜 , 当物屏上出现与 原物大小相同的实像时 ,记下凹透镜的位置读数。然后去掉
图 3 - 8 - 5 自准法测凹透镜焦距光路图
四、实验内容
1. 光学系统的共轴调节 薄透镜成像公式仅在近轴光线的条件下才成立。对于几个 光学元件构成的光学系统进行共轴调节是光学测量的先决条件, 对几个光学元件组成的光路,应使各光学元件的主光轴重合,才 能满足近轴光线的要求。习惯上把各光学元件主光轴的重合称 为同轴等高。本实验要求光轴与光具座的导轨平行, 调节分两 步进行: (1) 粗调。将安装在光具座上的所有光学元件沿导轨靠拢 在一起, 仔细观察, 使各元件的中心等高, 且与导轨垂直。
立实像A′B′。此时, 物屏到透镜之间的距离就等于透镜的焦距f。
图 3 - 8 - 1 自准法测薄透镜焦距光路图
2) 物距像距法(u>f) 物体发出的光线经凸透镜会聚后, 将在另一侧成一实像, 只
要在光具座上分别测出物体、透镜及像的位置, 就可得到物距
和像距。将物距和像距代入式(3 - 8 - 1)中, 得
实验
薄透镜焦距的测定
一、 实验目的 (1) 了解薄透镜的成像规律。 (2) 掌握光学系统的共轴调节。
(3) 测定薄透镜的焦距。
二、 实验仪器
光具座、薄透镜、光源、像屏、观察屏和平面反射镜等。
三、 实验原理
1. 薄透镜成像公式 当透镜的厚度远比其焦距小得多时 , 这种透镜称为薄透镜。 在近轴光线的条件下,薄透镜成像的规律可表示为
3. 凹透镜焦距的测量
1) 视差法 视差是一种视觉差异现象。设有远近不同的两个物体A和 B,若观察者正对着AB连线方向看去, 则A、B是重合的;若将眼 睛摆动着看,则A、B间似乎有相对运动,远处物体的移动方向跟 眼睛的移动方向相同, 近处物体的移动方向则相反。A、B间距 离越大, 这种现象越明显(视差越大); A、B间距为零(重合), 就看 不到这种现象(没有视差)。因此,根据视差的情况可以判定 A、 B两物体谁远谁近及是否重合。 视差法测量凹透镜焦距时, 在物和凹透镜之间置一有刻痕 的透明玻璃片, 当透明玻璃片上的刻痕和虚像无视差时, 透明 玻璃片的位置就是虚像的位置。
f=___________±___________ cm; Ef= ___________ %
六、 问题讨论 (1) 用物距像距法测凸透镜焦距时,常取u=2f, 此时测量的
相对不确定度最小。你能证明这个结论吗?
(2) 用共轭法测凸透镜焦距时, 为什么必须使D>4f? 试证
明这个结论。
△f
Vn =|X2 -X1 |
f=___________±___________ cm; Ef=__________%
表3 - 8 - 3 共轭法数据表 物屏位置X0=_________cm; 像屏位置X3=___________ cm; D=|X3- X0 |=__________cm
次数 n 1 2 3 平均值 透镜位置 X1 透镜位置 X2 d=|X2 -X1 | f=(D2 -d2 )/4D △f
2. 测量凹透镜焦距 表3 - 8 - 4 视差法数据表
单位: cm
次数 n 1 2 3 平均值 物距 u 像距 v 焦距 f △f
表3 - 8 - 5 自准法数据表 单位: cm
次数 凹透镜位置 凹透镜位置 n 左→右 右→左 1 2 3 平均 平均 F 点位置 左→右 F 点位置 右→左 平均 fn △f
(2) 细调。 对单个透镜可以利用成像的共轭原理进行调整。实验时 ,
为使物的中心、像的中心和透镜光心达到“同轴等高”要求 ,
只要在透镜移动过程中,大像中心和小像中心重合就可以了。 对于多个透镜组成的光学系统,则应先调节好与一个透镜的 共轴, 保持其不再变动, 再逐个加入其余透镜进行调节, 直到所 有光学元件都共轴为止。
凹透镜和平面反射镜,放上像屏,用左右逼近法找到F点的位
置。重复测量三次,将数据填于表3 - 8 - 5中, 求出f。
五、数据处理
1. 测量凸透镜焦距
表3 - 8 - 1 自准法数据表物屏位置X0=_______ Nhomakorabea___ cm
次数 n 1 2 3 平均值 凸透镜位置 X (左→右) 凸透镜位置 X (右→左) X 的平均值
2) 物距像距法 先对光学系统进行共轴调节, 然后取物距u≈2f, 保持u不变, 移动像屏, 仔细寻找像清晰的位置 , 测出像距v。重复测量三 次, 将数据填于表3-8-2中,求出v的平均值, 代入式(3 - 8 - 1)求
出f。
3) 共轭法 取物屏、像屏距离为D>4f,固定物屏和像屏, 然后对光学 系统进行共轴调节。移动凸透镜, 当屏上成清晰放大的实像时, 记录凸透镜的位置 X1; 移动凸透镜,当屏上成清晰缩小的实像
uv f uv
(3 - 8 - 2)
由上式可算出透镜的焦距 f 。( 根据误差传递公式可知 , 当 u=v=2f时, f的相对不确定度最小。)
3) 共轭法
如图 3-8-2 所示 , 固定物与像屏的间距为 D(D>4f), 当凸透
镜在物与像屏之间移动时, 像屏上可以成一个大像和一个小像, 这就是物像共轭。根据透镜成像公式得知 :u1=v2,u2=v1(因为透 镜的焦距一定 ) 。若透镜在两次成像时的位移为 d, 则从图中可
1 1 1 u v f
(3 - 8 - 1)
式中,u表示物距,v表示像距,f为透镜的焦距。u、 v和f均从透镜的
光心o点算起,并且规定u恒取正值。 当物和像在透镜异侧时, v为
正值; 在透镜同侧时, v为负值。对凸透镜f为正值, 对凹透镜f为负 值。
2. 凸透镜焦距的测定
1) 自准法 如图 3-8-1 所示 , 将物 AB 放在凸透镜的前焦面上 , 这时物上 任一点发出的光束经透镜后成为平行光,由平面镜反射后再经 透镜会聚于透镜的前焦平面上, 得到一个大小与原物相同的倒
图 3 - 8 - 3 凹透镜成像光路图
图 3 - 8 - 4 视差法测凹透镜焦距
2) 自准法 如图3-8-5所示, L1为凸透镜,L2为凹透镜,M为平面反射镜。
调节凹透镜的相对位置, 直到物屏上出现和物大小相等的倒立
实像, 记下凹透镜的位置X2。再拿掉凹透镜和平面镜,则物经凸 透镜后在某点处成实像(此时物和凸透镜不能动), 记下这一点的 位置X3, 则凹透镜的焦距f=-|X3-X2|。
2. 测量凸透镜焦距
1) 自准法 自准法测透镜焦距光路图如图 3-8-1所示,先对光学系统进 行共轴调节 , 实验中 , 要求平面镜垂直于导轨。移动凸透镜 , 直至物屏上得到一个与物大小相等的倒立实像 , 则此时物屏与 透镜的间距就是透镜的焦距。 为了判断成像是否清晰,可先让 透镜自左向右逼近成像清晰的区间 , 待像清晰时 , 记下透镜的 位置; 再让透镜自右向左逼近成像清晰的区间,在像清晰时再 次记下透镜的位置, 取这两次读数的平均值作为成像清晰时透 镜位置的读数。重复测量三次,将数据填入表3-8-1中, 求其平 均值。
单位: cm
fn =|X-X0 | △f
f=___________±___________ cm; Ef=__________
表3 - 8 - 2 物距像距法数据表 物屏位置X0=___________ cm
次数 1 2 3 平均值 n 像屏位置 X2
透镜位置X0=___________ cm
f
时,记录凸透镜位置X2,则两次成像透镜移动的距离为 d=|X2-X1|。
记录物屏和像屏之间的距离D, 根据式(3-8-3)求出f。重复测量 三次,将数据填于表3-8-3中, 求出f。
3. 测量凹透镜的焦距 1) 视差法
按图3-8-4放好物屏、带痕玻片和凹透镜。正对透镜看清
凹透镜中物的虚像, 调整物屏的位置和高低,使虚像的顶端正
Dd 以看出D-d=u1+v2=2u1, 故 u 。由 2
Dd Dd v1 D u1 D 2 2
可得
u1v1 D2 d 2 f u1 v1 4D
(3-8-3)
由上式可知, 只要测出D和d, 就可计算出焦距f。
图 3 - 8 - 2 共轭法测凸透镜焦距光路图
相关文档
最新文档