高斯马尔科夫定理

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

①高斯马尔科夫定理:在所有线性无偏估计中,最小二乘估计具有最小方差。最小二乘估计也称最优线性无偏估计(BLUE )。这种特性的内容成为高斯马尔科夫定理。

②多重共线性的概念,影响,检验方法和处理方法。

答:概念:一般情况下,多个解释变量之间都存在一定程度的相关性,称为不完全多重共线性,通常提到的多重共线性,是指解释变量之间存在比较强的线性相关关系。

影响:1、不能对总体参数β做出准确推断,大大降低预测精确度;

2、由于β

ˆ的方差很大,容易淘汰一些不应淘汰的解释变量,从而发生弃真错误; 3、不同解释变量对被解释变量的影响会发生互相代替的情况,从而造成错误的模型关系;

4、参数估计值机器方差对样本很敏感,由于增加或减少一些样本,导致建立的回归模型可靠程度降低;

检验方法:1、相关系数检验法;2、逐步分析检验法。

处理方法:1、保留重要解释变量;2、去掉不重要的解释变量;3、一阶差分法;4、主分量法。 ③序列相关的定义,产生原因,影响和检验方法。 答: 定义:对于不同的样本值,随机干扰之间不再是完全相互独立的,而是存在某种相关性。又称自相关,是指总体回归模型的随机误差项之间存在相关关系。

产生原因:1、模型设定的偏误;2、经济行为的惯性。

影响:存在序列相关时,OLS 方法下的各种检验失效。因为βi 估计的方差不等于OLS 方法下计算的方差。 检验方法:Durbin-Waston 检验法。(DW 检验)

④异方差性的定义,产生原因,影响和检验方法。

答: 定义:回归模型的随机扰动项ui 在不同的观测值中的方差不等于一个常数,Var(ui )≠常数(i=1,2,…,n ),或者Var (ui )≠Var (uj )(i j=1,2,…,n ),这时我们就称随机扰动项ui 具有异方差性。

产生原因:1、模型中缺少某些解释变量,从而随机扰动项产生系统模式;2、测量误差;3、模型函数形式设置不正确;4、异常值的出现。

检验方法:1、Goldfeld - Quandt 检验法;2、Breusch-Pagan 检验;3、图示法。 ⑤多元线性模型的显著性检验步骤。

答:1、提出假设,原假设

H 0:β1=β2=…=βk =0, 备择假设H 1:至少有一个βj 不等于零J=1,2,…,k 。

3、给定显著性水平α,查表得到临界值

)(1,a --k n k F ,确定拒绝域)(1,-->k n k F F α

4、利用样本观测值计算出F 统计量,并进行判断;若)(1,-->k n k F F α

,则拒绝原假设,即认为回归方程的线性关系显著成立;否则接受原假设,认为回归方程不存在显著的线性关系。

相关文档
最新文档