超筋梁受弯试验报告

超筋梁受弯试验报告
超筋梁受弯试验报告

《混凝土结构基本原理》试验课程作业

L ENGINEERING

混凝土构件试验报告

试验名称超筋梁受弯试验

试验日期2016-12-04

试件编号NB1

学号

手机号

试验课教师黄庆华

基本原理课教师顾祥林

1. 试验目的

本试验目的是使同学们通过试验研究认识混凝土结构构件的破坏全过程,掌握测试混凝土受弯基本性能的试验方法。其中具体包括:

● 检验试验试件的破坏形态、破坏机理是否与理论课一致。 ● 检验通过设计理论设计的试验试件的实际性能。 ● 了解和初步掌握混凝土基本构件试验及分析方法。

2. 试件设计

2.1 材料和试件尺寸

● 试件尺寸(矩形截面):1202001800b h l mm ??=??; ● 混凝土强度等级:C20; ● 纵向受拉钢筋的种类:HRB335; ● 箍筋的种类:HPB300;

● 纵向钢筋混凝土保护层厚度:15mm ;

2.2 试件设计

(1)设计和计算过程;

根据《混凝土结构设计规》(GB50010-2010),HRB335钢筋受拉强度标准值2

455y f N mm -=?,

弹性模量522.010s E N mm -=??。查表可得,C20混凝土的受压强度标准值2

13.4c f N mm -=?

所以计算可得界限受压区相对高度:

0.80.47410.0033b y s

f E ξ=

=+

()21-

计算最大配筋率:

1max 0.0139c

b

y

f f αρξ==

()22- 所以得最大纵筋面积:

2max max 334.7A bh mm ρ==

()23-

取216φ(2402.1s A mm =),为使得试验效果更明显,所以最终取222φ(2

760.3s A mm =)。

计算得此时受弯梁得极限承载力 。 21.07u M kN m =?

()24-

则计算极限荷载:

256.19u

u M P kN a

=

?= ()25- 计算截面剪跨比: 0

2.874

3.0a

h λ=

=≤ ()26-

由001.7521u sv u t yv P A V f bh f h s λ=

=++,计算可得,min 0.2830.106sv sv A b s

ρ=>=。 考虑到不能让受剪段先于受弯段破坏,所以取8@50φ,肢数为2。

(2)设计结果(模板图、配筋图、必要的详图等);

试件的配筋情况见图1和表1。

表1梁受弯试件的配筋

试件编号 试件特征 配筋情况

MLB

超筋梁

222φ 210φ 8@50(2)φ

图1梁受弯试验试件配筋

2.3 试件的制作和试验前预处理

(1)根据试件设计尺寸制作模具,并布置好钢筋以及应变片。配置好混凝土,在混凝土浇筑入模时取样。

(2)将混凝土注入边长为150mm ×150mm ×300mm 的棱柱体得模具中,作为轴心抗压强度和静力受压弹性模量试验的标准试件,并将其在室与试件同条件养护。保留足够数量同批次的钢筋。

(3)达到28d 后拆掉模具,将混凝土试件进行表面刷白处理,以每两根线间隔为5cm 在时间上进行坐标网格的划分。

(4)在进行试验前,测量混凝土试件的尺寸。试件实际尺寸为: ● 高205.5h mm = ● 宽121.0b mm = ● 长1800l mm =

3. 材性试验

在混凝土试件破坏后,马上进行材料性能试验。

3.1 混凝土材性试验

国家标准《混凝土结构设计规》(GB50010-2002)规定:混凝土强度等级应按立方体抗压强度标准确定;立方体抗压强度标准值系指标准方法制作养护的边长为150mm 的立方体试件,在28d 龄期用标准试验方法测得的具有95%保证率的抗压强度。因此立方体抗压强度标准值是《混凝土

结构设计规》[1]中混凝土各种力学指标的基本代表值,根据混凝土强度等级,可以查阅《混凝土结构设计规》[1]的有关表格,以确定混凝土的轴心抗压、轴心抗拉强度标准值和设计值以及混凝土的弹性模量等。国家标准《普通混凝土力学性能试验方法》(GB/T50081-2002)规定:以边长为150mm 的立方体为标准试件,将标准立方体试件在203±℃的温度和相对湿度90%以上的潮湿空气中养护28d ,按照标准试验方法测得的抗压强度作为混凝土的立方体抗压强度,单位为

2N mm (MPa )。

? 混凝土立方体抗压强度试验步骤应按下列方法进行:

(1)试件从养护地点取出后应及时进行试验,将试件表面与上下承压板面擦干净;

(2)将试件安放在试验机的下压板或垫板上,试件的承压面应与成型时的顶面垂直。试件的中心应与试验机下压板中心对准,开动试验机,当上压板与试件接近时,调整球座,使接触均衡; (3)在试验过程中应连续均匀地加荷,混凝土强度等级

(4)当试件接近破坏开始急剧变形时,应停止调整试验机油门,直至破坏。然后记录破坏荷载。 ? 混凝土立方体抗压强度试验结果计算及确定按下列方法进行: (1) 混凝土立方体抗压强度应按下式计算:

cc F

f A

=

()31-

式中,cc f 为混凝土立方体试件抗压强度(MPa );F 为试件破坏荷载(N );A 为试件承压面积(2

mm )。

(2)强度值的确定应符合下列规定:

①以三个试件为一组,每组试件所用的拌合物应从同一盘混凝土或同一车混凝土中取样; ②三个试件测值的算术平均值作为该组试件的强度值(计算应精确至0.1MPa );

③三个测值中的最大值或最小值中如有一个与中间值的差值超过中间值的15%时,则把最大及最小值一并舍除,取中间值作为该组试件的抗压强度值;

④如最大值或最小值与中间值的差值均超过中间值的15%,则该组试件的试验结果无效。 ⑤混凝土强度等级

2混凝土轴心抗压强度试验

国家标准《混凝土结构设计规》(GB50010-2002)规定:边长为150mm ×150mm ×300mm 的棱柱体试件是轴心抗压强度和静力受压弹性模量试验的标准试件。轴心抗压强度和抗压强度的试验方法相同。而对于非标准试件的数据处理有如下规定:混凝土强度等级

3混凝土强度实测结果

本次试验混凝土强度实测结果如表2所示。

表2混凝土强度实测结果表

抗压强度/MPa 抗压强度 /MPa

抗压强度 /MPa 弹性模量 /GPa 16.74

14.43 13.71

25.69

13.97

12.58

3.2 钢筋材性试验

(1)试件尺寸

钢筋试样采用不经切削加工原截面钢筋。根据各类钢筋标准所规定的伸长率标准和试验机上、下夹头的最小距离,夹头高度等因素决定其试件长度,基本长度02L L h =+,其中0L 为05d (0d 为钢筋直径);h 为夹头长度,通常取100mm 左右。对于圆形截面钢筋的直径应在标距0L 的两端和中间测量,应在每处的两个相互垂直的方向上各测一次,取其算术平均值,选用三处中的最小直径计算横截面面积。对于热轧带肋钢筋,按其公称直径计算横截面面积。

(2)试验条件

钢筋试样在弹性围,试验机的加载速率应在3~30MPa/s 围,并保持试验机控制器固定于这一速率位置上,直至获得屈服点和上屈服点;测定下屈服点时,应变速率在0.00025~0.0025/s 围,并保持恒定。屈服段过后,试验机两夹头在力作用下的分离速率不超过0.5min c L (c L 为两夹头的钢筋试样净长)。

4. 试验过程

4.1 加载装置和试件安装就位

介绍试验装置,实测与加载装置有关的相关参数,如受弯梁跨度、受弯梁集中力实际加载位置、偏压柱的偏心距、受扭梁扭力的力臂长等。

图2为本试验进行梁受弯性能试验采用的加载装置,加载设备为千斤顶。采用两点集中力加载,在跨中形成纯弯段,由千斤顶及反力梁施加压力,分配梁分配荷载,压力传感器测定荷载值。对于梁受弯性能试验,取L=1800mm ,a=150mm ,b=500mm ,c=500mm 。

图2梁受弯试验装置图

4.2 加载制度

本次梁受弯试验采用单调分级加载机制,试件加载控制方式为力控制,每次加载时间间隔为15分钟。在正式加载前,为检查仪器仪表读数是否正常,需要预加载,预加载所用的荷载是分级荷载的前2级。

对于超筋梁,①在加载到开裂试验荷载计算值的90%以前,每级荷载不宜大于开裂荷载计算值的20%;②达到开裂试验荷载计算值的90%以后,每级荷载值不宜大于其荷载值的5%;③当

P)的级距;④在加载达到承载力试件开裂后,每级荷载值取10%的承载力试验荷载计算值(

u

试验荷载计算值的90%以后,每级荷载值不宜大于开裂试验荷载值的5%;⑤加载到临近破坏前,拆除所有仪表,然后加载至破坏。

根据本试件的极限荷载,在实际试验时,采用的试件加载制度为:

0→9kN→18kN→27kN→30kN→33kN→73kN→113kN→破坏

4.3量测与观测容

4.3.1混凝土平均应变

在梁跨中一侧面布置4个位移计,位移计间距如图3所示,标距为150mm,以量测梁侧表面混凝土沿截面高度的平均应变分布规律,测点布置见图3。

图3梁受弯试验混凝土平均应变测点布置

其中,四个位移计均以压为正。

4.3.2纵向钢筋应变

在试件纵向受拉钢筋中部粘贴电阻应变片,以量测加载过程中钢筋的应力变化,测点布置见图4。

图4纵筋应变片布置

在所有钢筋应变片中,6-3出现故障无常工作。在其他所有应变片中均以受拉为正。

4.3.3挠度

对受弯构件的挠度测点应布置在构件跨中或挠度最大的部位截面的中轴线上,如图5所示。在试验加载前,应在没有外荷载的条件下测读仪表的初始读数。试验时在每级荷载下,应在规定的荷载持续试件结束时量测构件的变形。结构构件各部位测点的测度程序在整个试验过程中宜保持一致,各测点间读数时间间隔不宜过长。

图5梁受弯试验挠度测点布置

其中,位移计6与位移计7以向下为负,位移计5以向下为正。 4.3.4裂缝

试验前将梁两侧面用石灰浆刷白,并绘制50mm ×50mm 的网格。试验时借助放大镜用肉眼查找裂缝。构件开裂后立即对裂缝的发生发展情况进行详细观测,用读数放大镜及钢直尺等工具量测各级荷载(0.4u P ~0.7u P )作用下的裂缝宽度、长度及裂缝间距,并采用数码相机拍摄后手工绘制裂缝展开图,裂缝宽度的测量位置为构件的侧面相应于受拉主筋高度处。最大裂缝宽度应在使用状态短期试验荷载值持续15min 结束时进行量测。

4.4 裂缝发展及破坏形态

在试验前首先对试件进行观察,主要查看是否有初始裂缝。在本次实验中,通过数位同学的仔细观察,并没有发现初始裂缝。开始加载,第一级第二级均未出现裂缝。因为当第二级时,

18P kN =,1

4.5 4.842

cr M Pa kN m M kN m =

=?<=?。随着压力不断增加,纯弯段开始出现裂缝,并且随着荷载的增加,裂缝不断增多,逐渐变密。快达到破坏时,可以发现试件上的裂缝已经非常多了。最后受压区混凝土被压碎,梁破坏,最终破坏如图6。

图6受弯梁最终破坏形态图

5. 试验数据处理与分析

对试验数据进行整理,作出以下关系曲线或分布规律图,并对所得的曲线或规律图进行分析评述。

(1) 荷载―挠度关系曲线:

关系曲线如图7所示。在荷载较小时,梁处于线弹性阶段,荷载与挠度成正比。荷载大概在40kN (跨中弯矩15M kN m =?)时斜率开始减小,表明梁逐渐开始出现裂缝。在90kN (跨中弯矩33.75M kN m =?)时,混凝土基本退出工作。

图7荷载-挠度曲线图

(2)构件沿截面高度混凝土平均应变分布:

分析不同荷载水平下(如弹性、开裂、弹塑性变形、极限荷载、下降段初期、下降段后期等阶段)构件沿截面高度混凝土平均应变分布图是否满足平截面假定。

由于荷载还在较小时,位移计2(2-5)就发生很大的位移,故认为位移计2发生损坏所以不予考虑。在弹性阶段,其他三个位移计都表明了,混凝土的应变是和荷载成正比的。且在某个荷载水平下,不同截面高度的混凝土平均应变和截面高度成正比,即符合平截面假定。从位移计1可以看出,荷载下降时,平均应变基本按原比例减小。而从位移计3和位移计4可以看出和在逐渐减小平均应变继续增大。

(a)所有位移计平均应变分布图

(b )去除异常读数位移计平均应变分布图 图8构件沿截面高度混凝土平均应变分布图

(3) 弯矩―曲率关系曲线

易知梁的跨中弯矩1

0.3752M Pa P ==。 由曲率定义可知i j

ij ij

h εεφ-=

?。由于从图8中可以看出位移计2(2-5)在荷载还在30kN 就出

现很大的读数误差,所以取位移计3(2-4)与位移计4(2-3)进行计算。则=55ij h mm ?。

关系曲线如图

9所示。

图9 弯矩―曲率关系曲线

(4) 荷载―纵筋应变关系曲线

不同应变与荷载的关系如10图所示。在达到极限荷载之前,钢筋应变和荷载成正比。在破坏后,应变片2和5的应力继续增大,这有可能是因为跨中有裂缝直接穿过2、5应变片。

图10 荷载―纵筋应变关系曲线

通过理论计算,并与试验结果进行比较分析,容包括:

(1)采用《混凝土结构基本原理(第三版)》(顾祥林主编)第五章第五节中的方法计算不同荷载作用下试验梁正截面的弯矩-曲率(M -φ)关系(请参见例题5-2),将计算和实测曲线画于同一图中,并进行比较,分析两者一致或差异产生的原因;

计算当t

c ε分别为0.0008、0.0010、0.0015、0.0020、0.0025、0.0033时梁的跨中截面弯矩

M 和相应的φ。

当0.002t c

εp 时,通过()22001=13t c c n

s n f E εξξρεε??

-- ???

,求出n ξ,再用式()51-求出M 。

2

200200013121313t c t t c

c c n n t

c M f b h εεεεξξεεεε??

- ??? ?=-- ? ???- ???

()51- 当0.002t c ε≥时,通过()201=13t

c n s n c t c f E εξξερε??-- ???

,求出n ξ,再用式()52-求出M 。

20

200011212111313t c c n n t c t c M f b h εεεξξεεε??????????- ?????

????=---?? ???????

-?????????

? ()52-

计算结果如附表1所示。

计算结果和实测曲面见图11。

图11 弯矩―曲率关系曲线

从图11可以看出,在实际情况下当混凝土退出工作时,梁的曲率比理论值要低,反映了该梁的刚度偏大。同时也可看出,在混凝土退出工作时,跨中弯矩实际值比理论值高出一倍。这同时印证了梁的极限承载力实际值大概是理论值的两倍多。

(2)采用《混凝土结构基本原理(第三版)》(顾祥林主编)第五章第六节中的简化方法计算梁试件正截面的承载力,并和试验结果进行比较,分析两者差异产生的原因;

0.8

0.531

1

0.0033

b

y

s

f

E

ξ==

+

()

51

-

10

0.8

0.8

c s y

b

f b h A f

ξ

αξ

ξ

-

=

-

解得,

0.609

ξ=()

52

-

109.01

x h mm

ξ

==()

53

-所以试件正截面承载力得:

10

22.51

2

u c

x

M f bx h kN m

α??

=-=?

?

??

()

54

-

而试验结果表明该试件的极限承载力52.45

u

M kN m

=?,相差1.3倍。具体原因主要有:

●未考虑上部纵筋对试件的影响,也未考虑箍筋对裂缝的限制作用。

●试件测定强度后10d做试验,故混凝土的抗压强度比实测的大。

●钢筋材料、混凝土材料的不确定性。

●理论公式总是偏于安全的。

6 结论

通过本次超筋梁的受弯试验,加深了我们对课堂对混凝土结构构件的认识。学会了如何自主设计试验,并完成试验。尤其是对裂缝的认识,学习了解了裂缝的标记方式,用放大镜找寻观察

裂缝。使我们认识到了,一个试验的完成是需要付出许许多多准备的,比如留样,测定强度。

最后,通过试验,我们清楚地知道了超筋梁的两个阶段,完整地认识了超筋梁的破坏过程。具体分析了试验值比理论值要高的原因。

7附件

ε跨中截面相关参数

附表1不同t

c

少筋梁受弯

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊《混凝土结构基本原理》试验课程作业 L ENGINEERING 少筋梁受弯试验报告 试验名称少筋梁受弯 试验课教师林峰 姓名 学号 手机号 理论课教师顾祥林 日期2012年10月28日

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊ ┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 1. 试验目的 本实验通过试验研究认识钢筋混凝土少筋受弯梁的破坏过程,掌握少筋梁受弯测试基本性能的试验方法。 (1)通过参加实验以及之后实验报告的整理,可以让我理解和掌握钢筋混凝土构件的试验方法和试验结果,通过实践掌握试件的设计、实验结果整理的方法。 (2)写出实验报告,在写报告的过程中加深对混凝土结构基本构件受力性能的理解(3)观察既有破坏构件,掌握裂缝观察与统计方法 2. 试件设计 2.1 材料选取 ①混凝土强度等级:C20; ②少筋梁纵向受拉钢筋的种类:HPB235; ③箍筋种类:HPB235; ④纵向受拉钢筋混凝土保护层厚度:15mm; 2.2 试件设计 (1)试件设计依据 根据梁的正截面受压区相对高度ξ和界限受压区相对高度ξb的比值判断的出受弯梁的类型:当ξ<ξb时为适筋梁或少筋梁,反之为超筋梁。受弯梁设计时采用的 y f、 s E分别为《混凝土结构设计规范》规定的钢筋受拉强度标准值和弹性模量。 由于是少筋梁,在设计配筋时还需要控制受拉钢筋的配筋率ρ,要求ρ不大于适筋构件的最小配筋率,其中: ; ; (2)试件的主要参数 ①试件尺寸(矩形截面):1500 202 121? ? = ? ?l h b; ②试件配筋情况见图;

适筋梁受弯破坏试验设计方案

适筋梁受弯破坏试验设计方案 一、 试验目的: (1) 通过实践掌握试件的设计、实验结果整理的方法。 (2) 加深对混凝土基本构建受力性能的理解。 (3) 更直观的了解适筋梁受弯破坏形态及裂缝发展情况。 (4) 验证适筋梁破坏过程中的平截面假定。 (5) 对比实验值与计算理论值,从而更好地掌握设计的原理。 二、 试件设计: (1)试件设计的依据 根据梁正截面受压区相对高度ξ和界限受压区相对高度b ξ的比较可以判断出受弯构件的类型:当b ξξ≤时,为适筋梁;当b ξξ>时,为超筋梁。界限受压区相对高度 b ξ可按下式计算: b y s 0.8 10.0033f E ξ= + 在设计时,如果考虑配筋率,则需要确保1αρρξ≤=c b b y f f 其中在进行受弯试件梁设计时, y f 、s E 分别取《混凝土结构设计规范》规定的 钢筋受拉强度标准值和弹性模量;进行受弯试件梁加载设计时,y f 、s E 分别取钢筋试件试验得到钢筋受拉屈服强度标准值和弹性模量。 同时,为了防止出现少筋破坏,需要控制梁受拉钢筋配筋率ρ大于适筋构件的最小配筋率min ρ,其中min ρ可按下式计算: t min y 0.45 f f ρ= (2)试件的主要参数 ①试件尺寸(矩形截面):b ×h ×l =180×250×2200mm ; ②混凝土强度等级:C35; ③纵向受拉钢筋的种类:HRB400; ④箍筋的种类:HPB300(纯弯段无箍筋); ⑤纵向钢筋混凝土保护层厚度:25mm ; 综上所述,试件的配筋情况见图3和表1:

图3 梁受弯实验试件配筋 表1 试件 编号 试件特征 配筋情况 预估荷载P (kN) ① ② ③ P cr P y P u MLA 适筋梁 416 2φ10 φ8@50( 2) 32.729 147.266 163.629 说明:预估荷载按照《混凝土结构设计规范》给定的材料强度标准值计算,未计试件梁和分配梁的自重。 三、 试验装置: 图1为本方案进行梁受弯性能试验采用的加载装置,加载设备为千斤顶。采用两点集中力加载,以便于在跨中形成纯弯段。并且由千斤顶及反力梁施加压力,分配梁分配荷载,压力传感器测定荷载值。 梁受弯性能试验中,采用三分点加载方案,取2200L mm =,100a mm =,700b mm =,600c mm =。 图2.a 为加载简图,此时千斤顶加力为P ,经过分配梁后,可视为两个大小为/2P 的集中荷载分别作用于图示位置。 图2.b 为荷载作用下的弯矩图。由此图可知,纯弯段的弯矩最大,0.35M P =. 图2.c 为荷载作用下的剪力图。 1—试验梁;2—滚动铰支座;3—固定铰支座;4—支墩;5—分配梁滚动铰支座; 6—分配梁滚动铰支座;7—集中力下的垫板;8—分配梁;9—反力梁及龙门架;10—千斤顶; 图1 梁受弯试验装置图

纯弯曲实验报告

《材料力学》课程实验报告纸 实验二:梁的纯弯曲正应力试验 一、实验目的 1、测定矩形截面梁在只受弯矩作用的条件下,横截面上正应力的大小随高 度变化的分布规律,并与理论值进行比较,以验证平面假设的正确性,即横截面上正应力的大小沿高度线性分布。 2、学习多点静态应变测量方法。 二:实验仪器与设备: ①贴有电阻应变片的矩形截面钢梁实验装置 1台 ②DH3818静态应变测试仪 1件 三、实验原理 (1)受力图 主梁材料为钢梁,矩形截面,弹性模量E=210GPa,高度h=40.0mm,宽度 b=15.2mm。旋动转轮进行加载,压力器借助于下面辅助梁和拉杆(对称分布)的传递,分解为大小相等的两个集中力分别作用于主梁的C、D截面。对主梁进行受力分析,得到其受力简图,如图1所示。 (2)内力图 分析主梁的受力特点,进行求解并画出其内力图,我们得到CD段上的剪力为零,而弯矩则为常值,因此主梁的CD段按理论描述,处于纯弯曲状态。主梁的内力简图,如图2所示。 Page 1 of 10

《材料力学》课程实验报告纸 (3)弯曲变形效果图(纵向剖面) (4)理论正应力 根据矩形截面梁受纯弯矩作用时,对其变形效果所作的平面假设,即横截面上只有正应力,而没有切应力(或0=τ),得到主梁纯弯曲CD 段横截面上任一高度处正应力的理论计算公式为 z i i I y M = 理论σ 其中,M 为CD 段的截面弯矩(常值),z I 为惯性矩, i y 为所求点至中性轴的距 离。 (5)实测正应力 测量时,在主梁的纯弯曲CD 段上取5个不同的等分高度处(1、2、3、4、5),沿着与梁的纵向轴线平行的方向粘贴5个电阻应变片,如图4所示。 在矩形截面梁上粘贴上如图5.3所示的2组电阻应变片,应变片1-5分别贴在横力弯曲区,6-10贴在纯弯曲区,同一组应变片之间的间隔距离相等。 Page 2 of 10

超筋梁受弯试验方案

《混凝土结构基本原理》试验课程作业 L ENGINEERING 混凝土构件试验方案 试验名称超筋梁受弯试验 姓名 学号 手机号 所选试验课教师黄庆华 所上试验课教师黄庆华 基本原理课教师顾祥林

1.试验目的 本试验目的是使同学们通过试验研究认识混凝土结构构件的破坏全过程,掌握测试混凝土受弯基本性能的试验方法。其中具体包括: ● 检验试验试件的破坏形态、破坏机理是否与理论课一致。 ● 检验通过设计理论设计的试验试件的实际性能。 ● 了解和初步掌握混凝土基本构件试验及分析方法。 2.试件设计 2.1材料和试件尺寸 ● 试件尺寸(矩形截面):1202001800b h l mm ??=??; ● 混凝土强度等级:C20; ● 纵向受拉钢筋的种类:HRB335; ● 箍筋的种类:HPB300; ● 纵向钢筋混凝土保护层厚度:15mm ; 2.2试件设计 (1)设计和计算过程; 根据《混凝土结构设计规范》(GB50010-2010),HRB335钢筋受拉强度标准值 2455y f N mm -=?,弹性模量522.010s E N mm -=??。查表可得,C20混凝土的受压强度标准 值2 13.4c f N mm -=? 所以计算可得界限受压区相对高度: 0.80.47410.0033b y s f E ξ= =+ ()21- 计算最大配筋率: 1max 0.0139c b y f f αρξ== ()22- 所以得最大纵筋面积: 2max max 334.7A bh mm ρ== ()23- 取216φ(2402.1s A mm =),为使得试验效果更明显,所以最终取222φ(2 760.3s A mm =)。 计算得此时受弯梁得极限承载力。 21.07u M kN m =? ()24- 则计算极限荷载: 256.19u u M P kN a = ?= ()25- 计算截面剪跨比:

适筋梁受弯破坏试验设计方案

L ENGINEERING 《混凝土结构基本原理》试验课程作业 适筋梁受弯破坏试验设计方案 试验课教师黄庆华 姓名 学号 手机号 任课教师顾祥林 合作者

适筋梁受弯破坏试验设计方案 一、 试验目的: (1) 通过实践掌握试件的设计、实验结果整理的方法。 (2) 加深对混凝土基本构建受力性能的理解。 (3) 更直观的了解适筋梁受弯破坏形态及裂缝发展情况。 (4) 验证适筋梁破坏过程中的平截面假定。 (5) 对比实验值与计算理论值,从而更好地掌握设计的原理。 二、 试件设计: (1)试件设计的依据 根据梁正截面受压区相对高度ξ和界限受压区相对高度b ξ的比较可以判断出受弯构件的类型:当b ξξ≤时,为适筋梁;当b ξξ>时,为超筋梁。界限受压区相对高度 b ξ可按下式计算: b y s 0.8 10.0033f E ξ= + 在设计时,如果考虑配筋率,则需要确保1αρρξ≤=c b b y f f 其中在进行受弯试件梁设计时, y f 、s E 分别取《混凝土结构设计规范》规定的 钢筋受拉强度标准值和弹性模量;进行受弯试件梁加载设计时,y f 、s E 分别取钢筋试件试验得到钢筋受拉屈服强度标准值和弹性模量。 同时,为了防止出现少筋破坏,需要控制梁受拉钢筋配筋率ρ大于适筋构件的最小配筋率min ρ,其中min ρ可按下式计算: t min y 0.45 f f ρ= (2)试件的主要参数 ①试件尺寸(矩形截面):b ×h ×l =180×250×2200mm ; ②混凝土强度等级:C35; ③纵向受拉钢筋的种类:HRB400; ④箍筋的种类:HPB300(纯弯段无箍筋); ⑤纵向钢筋混凝土保护层厚度:25mm ; 综上所述,试件的配筋情况见图3和表1:

纯弯梁的弯曲应力测定

纯弯梁的弯曲应力测定实验报告 使用设备名称与型号 同组人员 实验时间 1、 实验目的 1.测定梁纯弯曲时横截面上的正应力大小及分布规律,并与理论值比较,以验证弯曲正应力公式。 2.观察正应力与弯矩的线性关系。 3.了解电测法的基本原理和电阻应变仪的使用方法。 2、 实验设备与仪器 1.弯曲梁实验装置和贴有电阻应变片的矩形截面钢梁。 2.静态数字电阻应变仪YJ28A-P10R(见附录四)和载荷显示仪。 3.直尺。 3、 实验原理 梁纯弯曲时横截面上的正应力公式为σ= ,式中M为作用在横截面上的弯矩,Y为欲求应力点到中性轴Z的距离,I z为梁横截面对中性轴的惯性矩。本实验采用矩形截面钢梁,实验时将梁的支承及载荷情况布置如图6-1所示,梁的CD段为纯弯曲,在梁的CD段某截面不同高度(四等分点)处贴五片电阻应变片,方向平行梁轴,温度补偿片粘贴梁上不受力处,当纯弯梁受载变形时,利用电阻应变仪测出各应变片的应变值(即梁上各纵向应变值)ε实。由于纵向纤维间不互相挤压,故根据单向应力状态的虎克定律求出应力σ实=Eε实。E为梁所用材料的弹性模量。为了减少测量误差,同时也可以验证正应

力与弯矩的线性关系,采用等量加载来测定沿高度分布的各相应点的应变,每增加等量的载荷 F,测定各点相应的应变一次,取应变增量的平均值 ε实。求出各应力增量 σ实=E ε实,并与理论值 σ理= 进行比较,其中 M= Fa.,从而验证理论公式的正确性。

图6-1纯弯梁示意图 4、 实验操作步骤 1.将梁放在实验装置的支座上。注意应尽量使梁受平面弯曲,用尺测量力作用点的位置及梁的截面尺寸。 2.在确保梁的最大应力小于材料的比例极限σp前提下,确定加载方案。 3.将梁上各测点的工作应变片逐点连接到应变仪的A、B接线柱上,而温度补偿片接在B、C接线柱上。按电阻应变仪的使用方法,将应变仪调整好。 4.先加载至初载荷,记录此时各点的应变值,然后每次等量增加载荷 ΔF,逐次测定各点相应的应变值,直到最终载荷终止。卸载后,注意记录各测点的零点漂移。 5.检查实验数据是否与离开中性轴的距离成正比,是否与载荷成线形关系,结束工作。 5、 实验结果及分析计算 1、 实验数据 12345

同济大学土木工程优秀混凝土试验报告

混凝土结构基本原理实验报告书 学号: 姓名: 任课老师: 实验老师:林峰 实验组别: A6

梁斜拉QC1实验报告 一、试验原始资料的整理 1、试验对象的考察与检查 件尺寸(矩形截面):b×h×l=119×202×1800mm; 构件净跨度:1500mm; 混凝土强度等级:C20; 纵向受拉钢筋的种类:HRB335; 箍筋的种类:HPB300; 纵向钢筋混凝土保护层厚度:15mm; 试件表面刷白,绘制50mm*50mm的网格。 2、材料的力学性能试验结果 混凝土抗压强度试验数据 试验内容:混凝土立方体试块抗压强度 试件编号 试件尺寸 (mm)试件破坏荷载 (kN) 试件承压面积 (mm2) 强度评定 (MPa) 1100×99×100184990018.586 2100×99×100194990019.596 3100×99×100188990018.990 平均19.057试验内容:混凝土棱柱体试块轴心抗压强度 试件编号 试件尺寸 (mm)试件破坏荷载 (kN) 试件承压面积 (mm2) 强度评定 (MPa) 199×100×298124990012.525 299×100×298132990013.333 399×100×313108990010.909 平均12.256 =18.1MPa= 11.6MPa 钢筋拉伸试验数据

钢筋Φ4Φ6Φ8Φ10Φ12Φ14Φ18Φ22 (M Pa)316.94 6 302.2449 222.4077 466.1718 398.4823 422.1161 408.3805 492.927 (M Pa)372.21 2 474.8413 170.7887 677.7483 557.2487 656.7253 614.0465 676.213 3、试验计划与方案及实施过程中的一切变动情况记录 3.1梁受弯性能概述 根据梁正截面受弯破坏过程及破坏形态,可将梁分为适筋梁、超筋梁和少筋梁三种类型。下面以纯弯段内只配置纵向受拉钢筋的截面为例,说明这三种破坏模式[7]。 a)适筋梁的受弯破坏过程 b)超筋梁的受弯破坏过程 c)少筋梁的受弯破坏过程 3.2试验目的和要求 a)参加并完成规定的实验项目内容,理解和掌握钢筋混凝土适筋梁受弯实验的实验方 法和实验结果,通过实践掌握试件的设计、实验结果整理的方法。 b)写出实验报告。在此过程中,加深对混凝土适筋梁受弯性能的理解。 3.3试件设计和制作 (1)试件设计的依据 根据剪跨比 和弯剪区箍筋配筋量的调整,可将试件设计为剪压、斜压和斜拉破坏。 进行试件设计时,应保证梁受弯极限荷载的预估值比剪极限荷载预估值大。 (2)试件的主要参数 件尺寸(矩形截面):b×h×l=120×200×1800mm; 构件净跨度:1500mm; 混凝土强度等级:C20; 纵向受拉钢筋的种类:HRB335; 箍筋的种类:HPB300; 纵向钢筋混凝土保护层厚度:15mm; 试件的配筋情况见表3.3.1和图3.3.1; 试件 编号试件特征配筋情况 加载位置 b(mm) 预估受剪 极限荷载 预估受弯 极限荷载

适筋梁受弯性能试验

适筋梁受弯性能试验 【试验目的】 1、通过观察混凝土适筋梁受弯破坏的全过程,研究认识混凝土适筋梁的受弯性能。 2、理解和掌握钢筋混凝土适筋梁受弯构件的实验方法和实验结果,通过实践掌握试件的设计、实验结果整理的方法。 3、通过撰写实验报告的过程,加深对混凝土结构适筋梁构件受弯性能的理解。 【试件设计】 试件的主要参数: 试件长度:L=2000mm; 试件尺寸(矩形截面):b×h=200mm×300mm; 混凝土强度等级:C30; 纵向受拉钢筋的种类:HRB400; 箍筋的种类:HPB235(纯弯段无箍筋); 纵向钢筋混凝土保护层厚度:25mm; 试件的配筋情况见图1和表1; 231 图1 适筋梁受弯试验试件配筋 表1 适筋梁受弯试件的配筋

说明:预估荷载按照《混凝土结构设计规范》给定的材料强度标准值计算,未计试件梁和分配梁的自重。 【试验装置和加载方式】 1、试验装置 图2为进行适筋梁受弯性能试验采用的加载装置,加载设备为千斤顶。采用两点集中力加载,在跨中形成纯弯段,由千斤顶及反力梁施加压力,分配梁分配荷载,压力传感器测定荷载值。适筋梁受弯性能试验,取L=2000mm,a=150mm,b=600mm,c=500 mm。 专业文档供参考,如有帮助请下 载。. —分6—支墩;45—分配梁滚动铰支座;1—试验梁;2—滚动铰支座;3—固定铰支座;—千斤顶;9—反力梁及龙门架;10配梁滚动铰支座;7—集中力下的垫板;8—分配梁;适筋梁受弯试验装置图图2 ),mm(a)加载简图(kN kNm)(b)弯矩图( kN)(c)剪力图(适筋梁受弯试验加载和内力简图图3 、加载方式2)单调分级加载机制(1 梁受弯试验采用单调分级加载,3所示。剪力图见图试件的加载简图和相应的弯矩、2和需要预

纯弯梁正应力分布电测实验(精)

实验七 纯弯梁正应力分布电测实验 实验内容一 纯弯梁正应力分布电测实验 一、实验目的 1、用电测法测定矩形截面梁在纯弯曲时的正应力的大小及其分布规律,并与理论值作比较。 2、初步掌握电测方法。 二、实验设备 1、弯曲梁实验装置一台(见图7.2) 2、YJ-4501A 静态数字电阻应变仪一台 3、温度补偿片 三、实验原理及方法 试件选用矩形截面,荷载及测量点的布置如图7.1。梁的材料为钢,其弹性模量a G E Ρ=210,转动实验装置上的加载手轮,可使梁受到如图7.1的荷载,梁的中段为纯弯曲段,荷载作用于纵向对称平面内,而且在弹性极限内进行实验,故为弹性范围内平面弯曲问题。梁的正应力公式为 y I M Z =σ 式中:M --纯弯曲段梁截面上的弯矩 Z I --横截面对中性轴的惯性矩 y --截面上测点至中性轴的距离。 为了测量梁纯弯曲时横截面上应力分布规律,在梁的纯弯曲段沿梁的侧面各点沿轴线方向粘贴应变片,其分布如图(图7.1)应变片1#粘贴在中性层上,应变片2#、3#、应变片4#和应变片6#、7#分别粘贴在距离中性层为、和上下表面。此外,在梁的上表面沿横向粘贴应变片8#,如果测得纯梁弯曲时沿横截面高度各点的轴向应变,则由单向应力状态的胡克定律公式4/h 8/3h εσE =,可求出各点处的应力实验值。将应力实验值与应力理论值进行比较,可得出测量误差。 式中:ε—各测量点的线应变 E —材料的弹性模量 σ--相应各测点正应力

若由实验,测得的应变片7#和8#的应变7ε和8ε满足 μεε=7 8 ,则证明 验采用等增量加载的方法测量应力的实验值及计算理论值,计算时均应以弯矩增量及应变增量的平均值代入。 4# 图7.1 图中:, mm c 150=mm h 40= mm b 20= , mm l 620= 1#--8#所示应变片粘贴位置及方向。 四、实验步骤 1、检查梁是否安放稳妥 2、把梁上的应变片接在静态电阻应变仪的A 、B 接线柱上。公共温度补偿片接在0通道接线柱B 、C 上。此接法为半桥接线法 3、打开实验装置和仪器的电源开关,转动加载系统给梁加载荷0.5kN 。 4、校对电阻应变仪上的灵敏度系数。对搭接的各测量通道置0操作。 5、用等增量加载法测量,分四次加载,。实验时逐级加载,并记录各应变片在各级荷载作用下的读数应变。 N P 1000=ΔN P 4500max =6、根据实验数据计算各测点应力的实测值及理论值,并作比较。 7、计算78εε值,若μεε=78,则说明纯弯曲梁为单向力状态。 五、注意事项 1、接线要牢固可靠。

混凝土适筋梁试验方案

《混凝土结构基本原理》试验课程作业 混凝土受弯构件适筋梁破坏试验方案 试验名称 混凝土受弯构件适筋梁破坏试验 试验课教师 姓名 学号 手 机 号 任课教师 日 期 L ENGINEERING

1. 试验目的 通过观察混凝土适筋梁受弯破坏的全过程,认识混凝土适筋梁的受弯性能;理解和掌握钢筋混凝土适筋梁受弯构件的试验方法和实验结果,通过实践掌握试件的设计、实验结果整理的方法。 通过试验加深对混凝土机构基本构件的受力性能的理解。 2. 试件设计 2.1 材料和试件尺寸 试件尺寸:b ×h ×l=100×150×1400; 混凝土强度等级:C25 f c =11.9MPa ;f t =1.27MPa ; 纵向受拉钢筋种类:HRB335; 箍筋的种类:HPB235(纯弯段无箍筋); 纵向钢筋混凝土保护层厚度:15mm ; 2.2 试件设计 2.2.1试件设计的基本原理及依据 根据梁正截面受压区相对高度ε和界限受压区相对高度εb 的比较可以判断出受弯构件的类型,当ε≤εb 时,为适筋梁;当ε≥εb 时为超筋梁。界限受压区相对高度εb 按下式计算: Es f y 0033.018 .0b + = ε 其中在进行受弯试件梁设计的时候,f y 、Es 分别取《混凝土结构设计规范》规定的钢筋受拉强度标准值和弹性模量;进行受弯试件梁加载设计时,f y 、Es 分别取钢筋试件试验得到钢筋受拉屈服强度标准值和弹性模量。 为满足发生适筋破坏,应有以下配筋率的要求: min b ρρρ<< 其中,min 0.45 t y f f ρ=,1t b b y f f αρε=。 同时,为保证承剪段不发生受剪破坏,有受剪承载力要求: max 001.75 1sv u cs t yv A V V V f bh f h s λ≤== ++ 按《混凝土结构基本原理(第二版)》第五章第七节相关知识,有以下正截面承载力相关公式:

纯弯曲梁的正应力实验参考书报告

《纯弯曲梁的正应力实验》实验报告 一、实验目的 1.测定梁在纯弯曲时横截面上正应力大小和分布规律 2.验证纯弯曲梁的正应力计算公式 二、实验仪器设备和工具 3.XL3416 纯弯曲试验装置 4.力&应变综合参数测试仪 5.游标卡尺、钢板尺 三、实验原理及方法 在纯弯曲条件下,梁横截面上任一点的正应力,计算公式为 σ= My / I z 式中M为弯矩,I z 为横截面对中性轴的惯性矩;y为所求应力点至中性轴的距离。 为了测量梁在纯弯曲时横截面上正应力的分布规律,在梁的纯弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。 实验采用半桥单臂、公共补偿、多点测量方法。加载采用增量法,即每增加等量的载荷△P,测出各点的应变增量△ε,然后分别取各点应变增量的平均值△ε实i,依次求出各点的应变增量 σ实i=E△ε实i 将实测应力值与理论应力值进行比较,以验证弯曲正应力公式。 四、实验步骤 1.设计好本实验所需的各类数据表格。 2.测量矩形截面梁的宽度b和高度h、载荷作用点到梁支点距离a及各应变 片到中性层的距离y i 。见附表1 3.拟订加载方案。先选取适当的初载荷P 0(一般取P =10%P max 左右),估 算P max (该实验载荷范围P max ≤4000N),分4~6级加载。 4.根据加载方案,调整好实验加载装置。

5. 按实验要求接好线,调整好仪器,检查整个测试系统是否处于正常工作状态。 6. 加载。均匀缓慢加载至初载荷P 0,记下各点应变的初始读数;然后分级 等增量加载,每增加一级载荷,依次记录各点电阻应变片的应变值εi ,直到最终载荷。实验至少重复两次。见附表2 7. 作完实验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。 附表1 (试件相关数据) 附表2 (实验数据) 载荷 N P 500 1000 1500 2000 2500 3000 △P 500 500 500 500 500 各 测点电阻应变仪读数 με 1 εP -33 -66 -99 -133 -166 △εP -33 -33 -34 -33 平均值 -33.25 2 εP -16 -3 3 -50 -67 -83 △εP -17 -17 -17 -16 平均值 16.75 3 εP 0 0 0 0 0 △εP 0 0 0 0 平均值 0 4 εP 1 5 32 47 63 79 △εP 17 15 1 6 16 平均值 16 5 εP 32 65 9 7 130 163 △εP 33 32 33 33 平均值 32.75 五、实验结果处理 1. 实验值计算 根据测得的各点应变值εi 求出应变增量平均值△εi ,代入胡克定律计算 各点的实验应力值,因1με=10-6ε,所以 各点实验应力计算: 应变片至中性层距离(mm ) 梁的尺寸和有关参数 Y 1 -20 宽 度 b = 20 mm Y 2 -10 高 度 h = 40 mm Y 3 0 跨 度 L = 620mm (新700 mm ) Y 4 10 载荷距离 a = 150 mm Y 5 20 弹性模量 E = 210 GPa ( 新206 GPa ) 泊 松 比 μ= 0.26 惯性矩I z =bh 3/12=1.067×10-7m 4 =106667mm 4

钢筋混凝土梁受弯及受剪性能试验指导书

郑州大学现代远程教育《综合性实践环节》 试验指导 赵军楚留声编

一、试验名称:钢筋混凝土梁正截面受弯性能试验 (一)试验目的 1.了解适筋梁、超筋梁和少筋梁的受力过程和破坏特征以及配筋率对破坏特征的影响。 2.验证钢筋混凝土受弯构件正截面承载力计算理论和计算公式。 3.掌握钢筋混凝土受弯构件的试验方法及荷载、应变、挠度、裂缝宽度等数据的测试技术和有关仪器的使用方法。 4.培养学生对钢筋混凝土构件试验分析的初步能力。 (二)试验构件和仪器布置 1.试验梁分三种,即、、,其几何尺寸及配筋见图1。 试验梁制作时每根梁(或每盘混凝土)取150×150×150mm试块三个,以确定混凝土强度。每种直径和钢筋取300mm长试件三根,以测定钢筋的屈服强度、极限强度和延伸率。 2.加荷装置和仪表布置 试验梁放置于静力试验台座上,通过加荷架用千斤顶施加荷载。加荷装置见图2所示。每根梁布置百分表5块,以测定跨中挠度。用电阻应变仪量测钢筋和混凝土在各级荷载作用下的应变。

(三)试验准备工作 认真学习有关专业知识,了解钢筋混凝土梁的正截面破坏形态。 (四)试验前在材料试验机上对钢筋试件和混凝土试块进行试验,以确定钢筋的屈服强度和极限强度、延伸率以及混凝土的立方体抗压。根据测定的求出混凝土棱柱体抗压强度、抗拉强度及弹性模量的试验值。

图1 图2 (五)估算开裂荷载 图3为试验梁加荷时的计算简图。纯弯段CD的弯矩为

图3 开裂弯矩按下式计算 M cr=0.292(1+2.5a1)f t bh2 式中b、h分别为试验梁的宽度和高度。。为钢筋的截面积。 ,为钢筋的弹性模量,取值2.1×Mpa,为砼弹性模量。则开裂荷载为 (六)估算破坏荷载 1.计算 ρmax=ξα1f c/f y ρmin=0.45f t/f y 本试验单排钢筋a=35mm。 2.计算破坏弯矩 若≤表示试验梁为少筋梁

纯弯梁的弯曲应力测定实验报告

纯弯梁的弯曲应力测定 一.实验目的 1.掌握电测法的测试原理,学习运用电阻应变仪测量应变的方法 2.测定梁弯曲时的正应力分布,并与理论计算结果镜像比较,验证弯梁正应力公式。二.实验设备 1.钢卷尺 2.游标卡尺 3.静态电阻应变仪 4.纯弯梁实验装置 三.实验原理 本实验采用的是用低碳钢制成的矩形截面试件,实验装置如图所示。 计算各点的实测应力增量公式:i i E 实实εσ?=?计算各点的理论应力增量公式:z i i I My ?= ?σ式中?M=12?P×a ,Iz=bh312 四.试验方法 1.测定弯梁试件尺寸:h,b,L,a 2.电阻应变仪大调整与桥路连接 3.接通力传感器显示屏电源,当试件未受力时,调节电阻应变仪零点。 4.缓慢转动手轮,每增加1KN 载荷,测相应测点的应变值,直到载荷为4.5KN 为止。 5.卸去载荷,应变仪,力传感器显示屏复位。应变测量结束。 五.实验数据测定 试件材料的弹性模量E =210GPa

2.试件尺寸及贴片位置 试件尺寸/m贴片位置/m b0.02y6-0.020 3.应变读数记录 读 次 载荷 P/kN 载荷 增量 Δ P/k N 电阻应变仪读数(με) 测点1测点2测点3测点4测点5测点6测点7 S1Δ S 1 S2Δ S2 S3Δ S3 S4Δ S4 S5Δ S5 S6Δ S6 S7Δ S7 10.51010-290340-460480-61062 2 1.51-2934-4648-6162 1.51-1-3631-4848-6764 3 2.50-6565-9496-12 812 6 16-2333-4256-6369 4 3.56-8898-13 615 2 -19 1 19 5 12-3139-4648-5964 5 4.58-11137-1820-2525

纯弯梁正应力分布规律实验

中国矿业大学(北京) 工程土木工程_______专业_______班_________组 实验者姓名:__________实验日期:___________年____月___日 实验六纯弯曲正应力分布规律实验 一.实验目的 1.用电测法测定梁纯弯曲时沿其横截面高度的正应变(正应力)的 分布规律。 2.验证纯弯曲梁的正应力计算公式。 二.实验仪器与设备 1.多功能工程力学实验台。 2.应力&应变综合参数测试仪一台。 3.矩形截面钢梁。 4.温度补偿块(或标准无感电阻)。 5.长度测量尺。 三.实验原理及方法 四.实验步骤

1.测量梁矩形截面的宽度b 和高度h 、载荷作用点到梁支点的距离a ,并测量各应变片到中性层的距离y I 。 2.将拉压传感器接至应力&应变综合参数测试仪中。 3.应变片连接采用1/4桥连接方式,将待测试应变片连接在A 、B 两端,将B 、B 1短接,在桥路选择上,将A 、D 两端连接补偿片,D 1、D 2短线连接即可。 4.本次实验的载荷范围为0~2kN ,在此范围内,采用分级加载方 式(一般分4~6级),实验时逐级加载,分别记录各应变片在各级载荷作用下的应变值。 五.实验结果处理 1.按实验记录数据求出各点的应力实验值,并计算出各点的应 力理论值。计算出它们的相对误差。 2.按同一比例分别画出各点应力的实验值和理论值沿横截面高度 的分布曲线,将两者进行比较,如两者接近,则说明弯曲正应 力的理论分析是可行的。 3.计算6#和5#的比值,若 μεε≈5 6 ,则说明纯弯曲梁为单向应力状 态。

4.实验数据可参照下表: 应变片至中性层的距离 梁宽度b= 20.84 mm;梁高度h= 40.15mm;施力点到支座距离l= 106 mm 应变片在各级载荷下的应变值 各测试点应力实验结果 P=400N

纯弯曲实验报告

实验二:梁的纯弯曲正应力试验 一、实验目的 1、测定矩形截面梁在只受弯矩作用的条件下,横截面上正应力的大小随高度 变化的分布规律,并与理论值进行比较,以验证平面假设的正确性,即横截面上正应力的大小沿高度线性分布。 2、学习多点静态应变测量方法。 二:实验仪器与设备: ①贴有电阻应变片的矩形截面钢梁实验装置 1台 ②DH3818静态应变测试仪 1件 三、实验原理 (1)受力图 主梁材料为钢梁,矩形截面,弹性模量E=210GPa,高度h=40.0mm,宽度 b=15.2mm。旋动转轮进行加载,压力器借助于下面辅助梁和拉杆(对称分布)的传递,分解为大小相等的两个集中力分别作用于主梁的C、D截面。对主梁进行受力分析,得到其受力简图,如图1所示。 (2)力图 分析主梁的受力特点,进行求解并画出其力图,我们得到CD段上的剪力为零,而弯矩则为常值,因此主梁的CD段按理论描述,处于纯弯曲状态。主梁的力简图,如图2所示。 Page 1 of 10

(3)弯曲变形效果图(纵向剖面) (4)理论正应力 根据矩形截面梁受纯弯矩作用时,对其变形效果所作的平面假设,即横截面上只有正应力,而没有切应力(或0=τ),得到主梁纯弯曲CD 段横截面上任一高度处正应力的理论计算公式为 z i i I y M = 理论σ 其中,M 为CD 段的截面弯矩(常值),z I 为惯性矩, i y 为所求点至中性轴的距 离。 (5)实测正应力 测量时,在主梁的纯弯曲CD 段上取5个不同的等分高度处(1、2、3、4、5),沿着与梁的纵向轴线平行的方向粘贴5个电阻应变片,如图4所示。 在矩形截面梁上粘贴上如图5.3所示的2组电阻应变片,应变片1-5分别贴在横力弯曲区,6-10贴在纯弯曲区,同一组应变片之间的间隔距离相等。 Page 2 of 10

适筋梁受弯破坏试验设计方案

适筋梁受弯破坏试验设计方案 一、 试验目的: (1) 通过实践掌握试件的设计、实验结果整理的方法。 (2) 加深对混凝土基本构建受力性能的理解。 (3) 更直观的了解适筋梁受弯破坏形态及裂缝发展情况。 (4) 验证适筋梁破坏过程中的平截面假定。 (5) 对比实验值与计算理论值,从而更好地掌握设计的原理。 二、 试件设计: (1)试件设计的依据 根据梁正截面受压区相对高度ξ和界限受压区相对高度b ξ的比较可以判断出受弯构件的类型:当b ξξ≤时,为适筋梁;当b ξξ>时,为超筋梁。界限受压区相对高度 b ξ可按下式计算: b y s 0.810.0033f E ξ= + 在设计时,如果考虑配筋率,则需要确保1αρρξ≤=c b b y f f 其中在进行受弯试件梁设计时, y f 、s E 分别取《混凝土结构设计规范》规定的 钢筋受拉强度标准值和弹性模量;进行受弯试件梁加载设计时,y f 、s E 分别取钢筋 试件试验得到钢筋受拉屈服强度标准值和弹性模量。 同时,为了防止出现少筋破坏,需要控制梁受拉钢筋配筋率ρ大于适筋构件的最小配筋率min ρ,其中min ρ可按下式计算: t min y 0.45 f f ρ= (2)试件的主要参数 ①试件尺寸(矩形截面):b ×h ×l =180×250×2200mm ; ②混凝土强度等级:C35; ③纵向受拉钢筋的种类:HRB400; ④箍筋的种类:HPB300(纯弯段无箍筋); ⑤纵向钢筋混凝土保护层厚度:25mm ; 综上所述,试件的配筋情况见图3和表1:

图3 梁受弯实验试件配筋 表1 试件 编号 试件特征 配筋情况 预估荷载P (kN) ① ② ③ P cr P y P u M LA 适筋梁 416 2 φ10 φ8 @50(2) 32.729 147.266 163.629 说明:预估荷载按照《混凝土结构设计规范》给定的材料强度标准值计算,未计试件梁和分配梁的自重。 三、 试验装置: 图1为本方案进行梁受弯性能试验采用的加载装置,加载设备为千斤顶。采用两点集中力加载,以便于在跨中形成纯弯段。并且由千斤顶及反力梁施加压力,分配梁分配荷载,压力传感器测定荷载值。 梁受弯性能试验中,采用三分点加载方案,取2200L mm =,100a mm =,700b mm =, 600c mm =。 图2.a 为加载简图,此时千斤顶加力为P ,经过分配梁后,可视为两个大小为/2P 的集中荷载分别作用于图示位置。 图2.b 为荷载作用下的弯矩图。由此图可知,纯弯段的弯矩最大,0.35M P =. 图2.c 为荷载作用下的剪力图。

纯弯梁弯曲的应力分析实验报告

一、实验目的 1. 梁在纯弯曲时横截面上正应力大小和分布规律 2. 验证纯弯曲梁的正应力计算公式 3. 测定泊松比m 4. 掌握电测法的基本原理 二、实验设备 多功能实验台,静态数字电阻应变仪一台,矩形截面梁,游标卡尺 三、实验原理 1. 测定弯曲正应力 本实验采用的是用低碳钢制成的矩形截面试件,实验装置简图如下所示。 计算各点的实测应力增量公式:i i E 实实εσ?=? 计算各点的理论应力增量公式:z i i I My ?= ?σ 2.测定泊松比 计算泊松比数值:ε εμ' = 四、实验步骤 1.测量梁的截面尺寸h 和b ,力作用点到支座的距离以及各个测点到中性层的距离; 2.根据材料的许用应力和截面尺寸及最大弯矩的位置,估算最大荷载,即:[]σa bh 3F 2 max ≤ ,然后确定量程,分级载荷和载荷重量; 3.接通应变仪电源,分清各测点应变片引线,把各个测点的应变片和公共补偿片接到应变仪的相应通道,调整应变仪零点和灵敏度值; 4.记录荷载为F 的初应变,以后每增加一级荷载就记录一次应变值,直至加到n F ;

5.按上面步骤再做一次。根据实验数据决定是否再做第三次。 五、实验数据及处理 梁试件的弹性模量11101.2?=E Pa 梁试件的横截面尺寸h = 40.20 ㎜,b = 20.70 ㎜ 支座到集中力作用点的距离d = 90 ㎜ 各测点到中性层的位置:1y = 20.1 ㎜ 2y = 10.05 ㎜ 3y = 0 ㎜ 4y = 10.05 ㎜ 5y = 20.1 ㎜

六、应力分布图(理论和实验的应力分布图画在同一图上) 七、思考题 1.为什么要把温度补偿片贴在与构件相同的材料上? 答:应变片是比较高精度的传感元件,必须考虑温度的影响,所以需要把温度补偿片贴在与构件相同的材料上,来消除温度带来的应变。 2.影响实验结果的主要因素是什么? 答:影响本实验的主要因素:实验材料生锈,实验仪器精度以及操作的过程。

实验五 直梁弯曲实验 实验报告

实验五 直梁弯曲实验 一、 实验目的: 1. 用电测法测定纯弯时梁横截面上的正应变分布规律,并与理论计算结果进行比较。 2. 用电测法测定三点弯梁某一横截面上的正应变分布与最大切应变,并与理论计算结果 进行比较。 3.学习电测法的多点测量。 二、实验设备: 1. 微机控制电子万能试验机; 2. 电阻应变仪; 三、实验试件: 本实验所用试件为两种梁:一种为实心中碳钢矩形截面梁,其横截面设计尺寸为h ×b =(50×28)mm 2 ;另一种为空心中碳钢矩形截面梁,其横截面设计尺寸为h ×b =(50×30)mm 2 ,壁厚t=2mm 。材料的屈服极限MPa s 360=σ,弹性模量E=210GPa ,泊松比μ=0.28。 实验时间:2010年12图一 实验装置图(纯弯曲) 图二 实验装置图(三点弯)

四.实验原理及方法: 在比例极限内,根据平面假设和单向受力假设,梁横截面上的正应变为线性分布,距中性层为 y 处的纵向正应变和横向正应变为: ()()Z Z M y y E I M y y E I εεμ ?= ??'=-? (1) 距中性层为 y 处的纵向正应力为: ()()z M y y E y I ?=?= σε (2) 对于三点弯梁,梁横截面上还存在弯曲切应力: () ()S z z F S y I ωτδ ?= ? (3) 并且,在梁的中性层上存在最大弯曲切应力,对于实心矩形截面梁: max 32S F A = τ (4) 对于空心矩形截面梁: 22max [((2)(2)]16S z F bh b t h t I t = ---τ (5) 由于在梁的中性层处,微体受纯剪切受力状态,因此有: max max G τγ= (6) 实验时,可根据中性层处0 45±方向的正应变测得最大切应变: 45454545max 22)(εεεεγ-==-=-- (7) 本实验采用重复加载法,多次测量在一级载荷增量?M 作用下,产生的应变增量?ε、?ε’和 图三 纯弯梁受力简图(a=90mm ) 图四 三点弯梁受力简图(a=90mm )

适筋梁受弯破坏试验设计方案

适筋梁受弯破坏试验设计方案 1 2020年4月19日

1 2020年4月19日 L ENGINEERING 《混凝土结构基本原理》试验课程作业 适筋梁受弯破坏试验设计方案 试验课教师 黄庆华 姓名 学号 手 机 号 任课教师 顾祥林 合 作 者

1 2020年4月19日 适筋梁受弯破坏试验设计方案 一、 试验目的: (1) 经过实践掌握试件的设计、实验结果整理的方法。 (2) 加深对混凝土基本构建受力性能的理解。 (3) 更直观的了解适筋梁受弯破坏形态及裂缝发展情况。 (4) 验证适筋梁破坏过程中的平截面假定。 (5) 对比实验值与计算理论值,从而更好地掌握设计的原理。 二、 试件设计: (1)试件设计的依据 根据梁正截面受压区相对高度ξ和界限受压区相对高度b ξ的比较能够判断出受弯构件的类型:当b ξξ≤时,为适筋梁;当b ξξ>时,为超筋梁。界限受压区相对高度b ξ可按下式计算: b y s 0.8 10.0033f E ξ= + 在设计时,如果考虑配筋率,则需要确保 1αρρξ≤=c b b y f f 其中在进行受弯试件梁设计时,y f 、s E 分别取《混凝土结构设计规范》规定的钢筋受拉强度标准值和弹性模量;进行受弯试件梁加载设计时,y f 、s E 分别取钢筋试件试验得到钢筋受拉屈服强度标准值和

2 2020年4月19日 弹性模量。 同时,为了防止出现少筋破坏,需要控制梁受拉钢筋配筋率ρ大于适筋构件的最小配筋率min ρ,其中min ρ可按下式计算: t min y 0.45 f f ρ= (2)试件的主要参数 ①试件尺寸(矩形截面):b ×h ×l =180×250×2200mm ; ②混凝土强度等级:C35; ③纵向受拉钢筋的种类:HRB400; ④箍筋的种类:HPB300(纯弯段无箍筋); ⑤纵向钢筋混凝土保护层厚度:25mm ; 综上所述,试件的配筋情况见图3和表1: 图3 梁受弯实 验试件配筋 表1

纯弯梁弯曲的应力分析实验报告

纯弯梁弯曲的应力分析实验报告 一、实验目的 1. 梁在纯弯曲时横截面上正应力大小和分布规律 2. 验证纯弯曲梁的正应力计算公式 3. 测定泊松比m 4. 掌握电测法的基本原理 二、实验设备 多功能实验台,静态数字电阻应变仪一台,矩形截面梁,游标卡尺三、实验原理 1. 测定弯曲正应力 本实验采用的是用低碳钢制成的矩形截面试件,实验装置简图如下所示。 计算各点的实测应力增量公式:,,,E,,实i实i ,Myi,,,计算各点的理论应力增量公式: iIz 2.测定泊松比 ',,计算泊松比数值: ,, 四、实验步骤 1.测量梁的截面尺寸h和b,力作用点到支座的距离以及各个测点到中性层的距离; 2.根据材料的许用应力和截面尺寸及最大弯矩的位置,估算最大荷载,即:

2bhF,,,,,然后确定量程,分级载荷和载荷重量; max3a 3.接通应变仪电源,分清各测点应变片引线,把各个测点的应变片和公共补偿片接到应变仪的相应通道,调整应变仪零点和灵敏度值; 4.记录荷载为F的初应变,以后每增加一级荷载就记录一次应变值,直至加到 ; Fn 5.按上面步骤再做一次。根据实验数据决定是否再做第三次。 五、实验数据及处理 11E,2.1,10梁试件的弹性模量Pa 梁试件的横截面尺寸, 40.20 ?,, 20.70 ? hb 支座到集中力作用点的距离, 90 ? d 各测点到中性层的位置:, 20.1 ? , 10.05 ? , 0 ? yyy312 , 10.05 ? , 20.1 ? yy54 ,6静态电子应变仪读数 (,10)载荷(N) 1点 2点 3点 4点 5点 6点 读数增量读数增量读数增量读数增量读数增量增量读数 F,F ,,,,,,,,, ,,,,,,,,,335566112244 0 0 0 0 0 0 0 492 -27 -12 1 16 26 -10 492 -27 -12 1 16 26 -10 506 -31 -14 1 16 28 -8 998 -58 -26 2 32 54 -18 450 -10 -6 3 8 15 -4 1448 -68 -32 5 40 69 -22 262 -20 -6 1 8 12 -2 ,,,,,, ,,,,,,,F 3561241710 -88 -38 6 48 81 -24 427.5 -22 -9.5 1.5 12 20.25 -6 应变片位置 1点 2点 3点 4点 5点 6点 实验应力值/MPa -4.62 -2.00 0.32 2.52 4.25 -1.26

相关文档
最新文档