《运筹学》线性规划
《运筹学》课后答案
《运筹学》课后答案《运筹学》是一门研究如何在有限资源下做出最佳决策的学科,它涉及到数学、统计学、经济学等多个学科的知识。
掌握运筹学的方法和技巧对于解决实际问题具有重要意义。
下面是《运筹学》课后习题的答案:1. 什么是线性规划问题?线性规划问题是指在一组线性约束条件下,求解一个线性目标函数的最优值的问题。
线性规划问题具有优化的特点,即找到一组满足约束条件的解,使得目标函数取得最大(最小)值。
2. 线性规划问题的标准形式是什么?线性规划问题的标准形式是指将目标函数和约束条件都写成标准形式,即目标函数为最大化(最小化)一个线性函数,约束条件为一组线性不等式和线性等式。
3. 线性规划问题的解的存在性和唯一性是什么?线性规划问题的解的存在性和唯一性是由线性规划问题的特殊结构决定的。
如果线性规划问题有有界解(即目标函数有最大(最小)值),则存在解;如果线性规划问题的目标函数有最大(最小)值,且该最大(最小)值只有一个解,则解是唯一的。
4. 什么是单纯形法?单纯形法是一种解线性规划问题的常用方法,它通过迭代计算来逐步接近最优解。
单纯形法的基本思想是从一个初始可行解出发,通过一系列变换(包括基变换、基可行解的改进等)来逐步接近最优解。
5. 什么是对偶理论?对偶理论是线性规划问题的一个重要理论基础,它通过将原问题转化为对应的对偶问题来研究线性规划问题。
对偶理论可以帮助我们理解线性规划问题的性质和结构,并且可以通过对偶问题的解来得到原问题的解。
6. 什么是整数规划问题?整数规划问题是指在线性规划问题的基础上,将决策变量的取值限制为整数的问题。
整数规划问题具有更为复杂的性质,其解的搜索空间更大,求解难度更大。
7. 什么是分支定界法?分支定界法是解整数规划问题的一种常用方法,它通过将整数规划问题分解为一系列线性规划子问题,通过不断分支和约束来逐步缩小解的搜索空间,最终找到最优解。
8. 什么是动态规划?动态规划是一种解决多阶段决策问题的方法,它通过将问题分解为一系列子问题,并且利用子问题的解来构建整体问题的解。
运筹学基础-线性规划(方法)
线性规划问题通常由三个基本部分组成,即决策变量、约束条件 和目标函数。决策变量是问题中需要求解的未知数,约束条件是 限制决策变量取值的条件,目标函数是要求最大或最小的函数。
线性规划的应用领域
01
02
03
04
生产计划
在制造业中,线性规划可以用 于制定最优的生产计划,以最 大化利润或最小化成本。
02
线性规划的基本概念
线性方程组
线性方程组是由多个线性方程组成的数学模型,描 述了多个变量之间的线性关系。
线性方程组可以用矩阵和向量表示,通过矩阵运算 和代数方法求解。
线性方程组有多种解法,如高斯消元法、LU分解、 迭代法等。
约束条件与目标函数
02
01
03
约束条件是限制变量取值的条件,通常表示为变量的 上界、下界或等式约束。
目标函数是描述问题目标的数学表达式,通常是最小 化或最大化的线性或非线性函数。
约束条件和目标函数共同构成了线性规划问题的数学 模型。
线性规划的解
线性规划的解是指满足 所有约束条件并使目标 函数取得最优值的变量 取值。
线性规划问题可能有多 个解,也可能无解或无 界解。
最优解的性质包括最优 性、可行性和唯一性。
最优解可以通过求解线 性方程组或使用专门的 优化软件获得。
03
线性规划的求解方法
单纯形法
01
基本概念
单纯形法是一种求解线性规划问题的迭代算法,通过 不断迭代寻找最优解。
02 1. 初始化 选择一个初始可行解,并确定初始基可行解。
03
2. 迭代
根据目标函数系数和约束条件系数,计算出单纯形表 格,然后进行迭代更新。
运筹学基础-线性规划(方法)
《运筹学》课件 第一章 线性规划
10
解:令
xi=
1, Si被选中
min z= ci xi i 1 10
0, Si没被选中
xi 5
i 1
x1 x8 1 x7 x8 1
称为技术系数
b= (b1,b2, …, bm) 称为资源系数
2、非标准型
标准型
(1)Min Z = CX
Max Z' = -CX
(2)约束条件
• “≤”型约束,加松弛变量;
松弛变量
例如: 9 x1 +4x2≤360
9 x1 +4x2+ x3=360
• “≥”型约束,减松弛变量;
例、将如下问题化为标准型
数据模型与决策 (运筹学)
课程教材:
吴育华,杜纲. 《管理科学基础》,天津大学出版社。
绪论
一、运筹学的产生与发展
运筹学(Operational Research) 直译为“运作研究”。
• 产生于二战时期 • 60年代,在工业、农业、社会等各领域得到广泛应用 • 在我国,50年代中期由钱学森等引入
Min z x1 2x2 3x3
x1 x2 x3 7
s.t
.
x1 x2 x3 3x1 x2 2
x3
2
5
x1, x2 , x3 0
解:令 Min z Max z' (z' z) ,第一个约束加松弛变量x5,
第二个约束减松弛变量x6,得标准型:
Max z' x1 2x2 +3x3
x1 x2 x3 x4 7
s.t .
x1 x2 3x1
x3 x2
x5 2 2x3 5
x1 , , x5 0
运筹学第1章-线性规划
下一页 返回
图解法步骤:
(1)建立坐标系; (2)将约束条件在图上表示; (3)确立满足约束条件的解的范围; (4)绘制出目标函数的图形 (5)确定最优解
用图解法求解下列线性规划问题
max z 2x1 3x2
4x1 0x2 16
s.t
10xx11
4x2 2x2
12 8
x1, x2 0
1. 1.1问题举例
(1)生产计划问题。 生产计划问题是典型的已知资源求利润最大化的问题,对于此类
问题通常有三个假设:①在某一计划期内对生产做出的安排;②生产 过程的损失忽略不计;③市场需求无限制,即假设生产的产品全部 卖出。
下一页 返回
1.一般线性规划问题的数学模型
例1 用一块连长为a的正方形铁皮做一个容 器,应如何裁剪,使做成的窗口的容积为最 大?
解:设 x1, x2分别表示从A,B两处采购的原油量(单
位:吨),则所有的采购方案的最优方案为:
min z 200x1 290x2
0.15x1 0.50x2 150000
s.t
0.20x1 0.50x1
0.30x2 0.15x2
120000 120000
x1 0, x2 0
1. 1线性规划问题与模型
也可以写成模型(1-6)和模型(1-7)的形式,其中模型(1-7)较为常用。
运筹学-1、线性规划
则:
x1 x2 100
x1 ( x3 ) x4 x2 2
设x3为第二年新的投资; x4为第二年的保留资金;
则:
18
•设x5为第三年新的投资;x6为第三年的保留资金;
则:
x3 ( x5 ) x6 x4 2 x1 2
•设x7为第四年新的投资;第四年的保留资金为x8;
max Z 2 x7 x9 x1 x2 100 x 2x 2x 2x 0 2 3 4 1 4 x1 x3 2 x4 2 x5 2 x6 0 s.t 4 x3 x5 2 x6 2 x7 2 x8 0 4 x5 x7 2 x 8 2 x9 0 x 0, j 1, 2, , 9 j
13
例3:(运输问题)设有两个砖厂A1 、A2 ,产 量分别为23万块、27万块,现将其产品联合供应三 个施工现场B1 、 B2 、 B3 ,其需要量分别为17万 块、18万块、15万块。各产地到各施工现场的单位 运价如下表: 现场 砖厂 B1 B2 B3
A1 A2
5 6
14 18
7 9
问如何调运才能使总运费最省?
20
例5:(下料问题) 某一机床需要用甲、乙、 丙三种规格的钢轴各一根,这些轴的规格分别是 2.9,2.1, 1.5(m),这些钢轴需要用同一种圆钢来做,圆 钢长度为7.4m。现在要制造100台机床,最少要用多 少根圆钢来生产这些钢轴?
解:第一步:设一根圆钢切割成甲、乙、丙三 种钢轴的根数分别为y1,y2,y3,则切割方式可用不等 式2.9y1+2.1y2+1.5y3≤7.4 表示,求这个不等式的有实 际意义的非负整数解共有8组,也就是有8种不同的 下料方式,如下表所示:
《运筹学》(第二版)课后习题参考答案
生产工序
所需时间(小时)
每道工序可用时间(小时)
1
2
3
4
5
成型
3
4
6
2
3
3600
打磨
4
3
5
6
4
3950
上漆
2
3
3
4
3
2800
利润(百元)
2.7
3
4.5
2.5
3
解:设 表示第i种规格的家具的生产量(i=1,2,…,5),则
s.t.
通过LINGO软件计算得: .
11.某厂生产甲、乙、丙三种产品,分别经过A,B,C三种设备加工。已知生产单位产品所需的设备台时数、设备的现有加工能力及每件产品的利润如表2—10所示。
-10/3
-2/3
0
故最优解为 ,又由于 取整数,故四舍五入可得最优解为 , .
(2)产品丙的利润 变化的单纯形法迭代表如下:
10
6
0
0
0
b
6
200/3
0
1
5/6
5/3
-1/6
0
10
100/3
1
0
1/6
-2/3
1/6
0
0
100
0
0
4
-2
0
1
0
0
-20/3
-10/3
-2/3
0
要使原最优计划保持不变,只要 ,即 .故当产品丙每件的利润增加到大于6.67时,才值得安排生产。
答:(1)唯一最优解:只有一个最优点;
(2)多重最优解:无穷多个最优解;
(3)无界解:可行域无界,目标值无限增大;
运筹学--第2节(线性规划-标准型)
分析和表述问题
目 例1 美佳公司计划制造I,II两种家电产品。已知各制造标一件时
分别占用的设备A、B的台时、调试时间及A、B设备和调试工
序每天可用于这两种家电的能力、各售出一件时的获利:情况如 表 的I利—润l所为示最。大问。该公司应制造A、B两种家电各多少件,利使获取
minZ= 2x11 + x12+3x13+2x21 +2x22 +4x23 +3x31 +4x32 +2x33
x11 +x12+x13 50 x21+x22+x23 30 x31+x32+x33 10
x11 +x21+x31 = 40 x12 +x22+x32 = 15 x13 +x23+x33 = 35
假设:利润——Z
家电I的数量——x1
家电II的数量——x2
分析和表述问题
例1 美佳公司计划制造I,II两种家电产品。已知各制造一件时 分别占用的设备A、B的台时、调试时间及A、B设备和调试工 序每天可用于这两种家电的能力、各售出一件时的获利情况如 表I—l所示。问该公司每天应制造I、II两种家电各多少件,使 获取的利润为最大。
x1 , x2 , x4 , … , x7 0
练习
补充作业、运输问题
从仓库到工厂运送单位原材料的成本,工厂对原
材料的需求量,仓库目前库存分别如表所示,求成本 最低的运输方案。
工厂 仓库
1 2 3 需求
1 2 3 库存
213
50
224
运筹学习题答案第六章
运筹学习题答案第六章运筹学习题答案第六章第一节:线性规划线性规划是运筹学中的一种重要方法,它通过建立数学模型来解决实际问题。
在第六章中,我们学习了线性规划的基本概念和求解方法。
本节将针对第六章的习题提供详细的解答。
第1题:某公司生产两种产品,产品A和产品B。
每单位产品A的利润为5万元,每单位产品B的利润为4万元。
产品A每单位需要3个工时,产品B每单位需要2个工时。
公司每天有8个小时的工时可用。
求解公司每天应生产多少单位的产品A和产品B,才能使利润最大化?解答:设产品A的产量为x,产品B的产量为y。
根据题意可得以下线性规划模型:目标函数:Max Z = 5x + 4y约束条件:3x + 2y ≤ 8非负约束:x ≥ 0,y ≥ 0根据图形法,我们可以绘制出约束条件的图形,并找到最优解。
通过计算,我们得到最优解为x = 2,y = 1。
即公司每天应生产2个单位的产品A和1个单位的产品B,才能使利润最大化。
第2题:某公司有两个生产车间,分别生产产品A和产品B。
车间1每天可生产产品A 4个单位或产品B 2个单位;车间2每天可生产产品A 3个单位或产品B 6个单位。
产品A的利润为3万元,产品B的利润为2万元。
公司每天有8个小时的工时可用。
求解公司每天应生产多少单位的产品A和产品B,才能使利润最大化?解答:设车间1生产的产品A的单位数为x1,车间2生产的产品A的单位数为x2。
设车间1生产的产品B的单位数为y1,车间2生产的产品B的单位数为y2。
根据题意可得以下线性规划模型:目标函数:Max Z = 3x1 + 2x2 + 2y1 + 3y2约束条件:4x1 + 3x2 ≤ 82x1 + 6x2 ≤ 8非负约束:x1 ≥ 0,x2 ≥ 0,y1 ≥ 0,y2 ≥ 0通过计算,我们得到最优解为x1 = 2,x2 = 0,y1 = 0,y2 = 1。
即公司每天应生产2个单位的产品A和1个单位的产品B,才能使利润最大化。
运筹学 第01章 线性规划问题
线性规划建模步骤
设定决策变量 明确约束条件并用决策变量的线性等式或 不等式表示 用变量的线性函数表示要达到的目标,并 确定是求极小还是求极大 根据变量的物理性质确定变量是否具有非 负性 注:其中最关键是设定决策变量这一步
生产计划问题(1)
某工厂用三种原料生产三种产品,已知的 条件如下表所示,试制订总利润最大的日 生产计划
线性规划问题解的有关概念(2)
基本解:令模型中所有非基变量的值等于零后,由 模型的约束方程组得到的一组解。 基本可行解:满足非负条件的基本解称为基本可行 解。 可行基:对应于基本可行解的基称为可行基。 退化解:基本可行解的非零分量个数小于m时,称 为退化解。 最优基:若对应于基B的基本可行解X是线性规划的 最优解,则称B为线性规划的最优基
人员安排问题(1)
医院护士24小时值班,不同时段需要的护 士人数不等(见下表)。每个护士每天连 续值班8小时,在各时段开始时上班。问最 少需要多少护士?
序号 1 2 3 4 时段 06—10 10—14 14—18 18—22 最少人数 60 70 60 50
5 6
22—02 02—06
20 30
人员安排问题(2)
设xj为第j时段开始值班的护士人数
目标函数为:使人数最少,则有
min f ( X ) x1 x2 x3 x4 x5 x6 x6 x1 60 x x 70 1 2 x2 x3 60 s.t. x3 x4 50 x x 20 5 4 x5 x6 30 x1 , x2 , x3 , x4 , x5 , x6 0且为整数
运筹学
第一章 线性规划问题
本章重点
线性规划建模 线性规划的图解法 线性规划的标准形式 单纯形法 两阶段法 大M法
《运筹学》第三章线性规划对偶理论与灵敏度分析习题及答案
《运筹学》第三章线性规划对偶理论与灵敏度分析习题及答案一、填空题1. 在线性规划问题中,若原问题存在最优解,则其对偶问题也一定存在最优解,这是线性规划的基本性质之一,称为______。
答案:对偶性2. 在线性规划问题中,若原问题与对偶问题均存在可行解,则它们均有______。
答案:最优解3. 对于线性规划问题,若原问题约束条件系数矩阵为A,目标函数系数向量为c,则其对偶问题的目标函数系数向量是______。
答案:c的转置(c^T)二、选择题1. 线性规划的原问题与对偶问题之间的关系是:A. 原问题的最优解和对偶问题的最优解相同B. 原问题的最优解是对偶问题的最优解的负数C. 原问题的最优解与对偶问题的最优解互为对偶D. 原问题的最优解和对偶问题的最优解没有关系答案:C2. 在线性规划中,若原问题不可行,则其对应的对偶问题:A. 可行B. 不可行C. 无界D. 无法确定答案:B三、判断题1. 线性规划的原问题和对偶问题具有相同的可行解。
()答案:错误2. 若线性规划的原问题存在唯一最优解,则其对偶问题也一定存在唯一最优解。
()答案:正确四、计算题1. 已知线性规划问题:max z = 3x1 + 2x2s.t.x1 + 2x2 ≤ 42x1 + x2 ≤ 5x1, x2 ≥ 0求该问题的对偶问题,并求解原问题和对偶问题的最优解。
答案:对偶问题为:min w = 4y1 + 5y2s.t.y1 + 2y2 ≥ 32y1 + y2 ≥ 2y1, y2 ≥ 0原问题和对偶问题的最优解如下:原问题最优解:x1 = 2, x2 = 1,最大利润z = 8对偶问题最优解:y1 = 2, y2 = 1,最小成本w = 82. 某工厂生产甲、乙两种产品,生产一件甲产品需要2小时的机器时间和3小时的工人劳动时间,生产一件乙产品需要1小时的机器时间和1小时的工人劳动时间。
工厂每周最多能使用12小时的机器时间和9小时的工人劳动时间。
运筹学线性规划
运筹学建模步骤: 识别问题 定义决策变量
建立约束条件 建立目标函数
整理课件
2.2 线性规划模型的一般形式和标准形式
2.2.1 线性规划的一般模型
为了讨论一般的线性规划问题的求解。我们先给出线性规 划模型的一般形式如下:
max(或min)z CX
n
s.t. j1
Pj x j
(或 ,或)b
X 0
其中
x1
a1j b1
Xx2,Cc1 c2 cn,Pj a2j,bb2
xn
amj bm
整理课件
用矩阵的记号可以将线性规划模型一般形式写成:
max(或min)z CX
AX (或,或)b s.t.X 0
其中 X, C, b 同上,而矩阵 A 是由各约束条件的系数(技术
养分
饲料
A
B
C
M
0.5
0.2
0.3
D
价格
0
300
N
0.1
0.3
0.4
0.2
200
每头日需 10
5
8
7
答案:设购买M饲料x1,N饲料x2
Min Z=300 x1 +200x2 0.5 x1 +0.1x2≥10
0.2x1 +0.3x2 ≥5
s.t.
0.3x1 +0.4x2 ≥8
0.2x2 ≥7
x1 , x2≥0 整理课件
x1 2 x2 5
s.t.
2
4
x1 x1
x2 4 3x2 9
运筹学中的线性规划理论与应用
运筹学中的线性规划理论与应用线性规划是运筹学中的一种重要工具,被广泛应用于经济、管理、工程等领域。
它的核心思想是通过建立数学模型,以线性目标函数和线性约束条件为基础,以最优化为目标,找到最佳的决策方案。
在本文中,我将讨论线性规划的基本概念和理论,并介绍其在实际应用中的案例。
一、线性规划的基本概念和理论线性规划主要研究如何分配有限资源以达到最优化的利益。
在线性规划中,决策变量、目标函数和约束条件是构建数学模型的三个基本要素。
1. 决策变量决策变量是指在问题中需要做决策的变量,通常表示为一个向量。
例如,在生产计划中,决策变量可以表示为不同产品的生产数量。
2. 目标函数目标函数是指在线性规划中需要最大化或最小化的目标指标。
目标函数通常是由决策变量线性组合而成的。
3. 约束条件约束条件是指在线性规划中限制决策变量取值范围的条件。
约束条件通常是由一系列线性不等式或等式组成的。
在线性规划问题中,通过将目标函数和约束条件转化为数学表达式,可以建立一个数学模型。
这个模型可以通过一系列数学方法求解,以达到最优化的目标。
二、线性规划在实际应用中的案例线性规划在现代管理和决策中有着广泛的应用。
以下是几个典型的案例。
1. 生产计划在生产计划中,线性规划可以用于确定不同产品的生产数量,以最大化利润或满足市场需求。
2. 配送问题在物流配送中,线性规划可以用于合理安排不同配送点的货物数量和时间,以最小化配送成本。
3. 投资组合在金融领域,线性规划可以用于确定不同投资项目的投资比例,以最大化收益或降低风险。
4. 网络流问题在网络建设中,线性规划可以用于确定网络中各节点之间的流量分配,以最大化网络传输效率。
这些案例只是线性规划在实际应用中的冰山一角。
在现代运筹学和管理科学中,线性规划以其简单、有效和灵活的特点,成为了决策分析的重要工具。
总结:线性规划是运筹学中的一种重要工具,通过建立数学模型,以线性目标函数和约束条件为基础,以最优化为目标,解决实际决策问题。
《运筹学》第四版线性规划模型
决策变量的意义
决策变量的具体含义应该与实际 问题相关,例如生产计划、资源 分配等。
确定目标函数
目标函数
01
线性规划的目标函数是用来衡量问题优化的标准,通
常是一个或多个决策变量的线性函数。
目标函数的优化方向
02 根据问题的实际需求,目标函数可以是最大化或最小
化。
目标函数的数学表达式
03
目标函数通常由决策变量和相应的系数组成,表示为
a21x1+a22x2+...+a2nxn=b2,...。
线性规划模型的表示形式
标准形式
标准形式的线性规划模型通常由目标 函数和约束条件组成,表示为 max/min f(x) s.t. a11x1+a12x2+...+a1nxn<=b1, a21x1+a22x2+...+a2nxn=b2,...。
详细描述
在资源分配问题中,线性规划模型用于确定 最佳的资源分配方案。通过构建包含资源种 类、需求量、效益等变量的线性规划模型, 可以找到在满足资源需求和效益约束下的最 优资源分配方案。这有助于企业或组织实现 资源的合理配置和效益的最大化。
05
线性规划模型的扩展与展望
多目标线性规划
多目标线性规划是线性规划的一个重要扩展,它考虑了多个相互冲突的目 标函数,并寻求在所有目标之间找到最优的平衡。
THANK YOU
非标准形式
如果线性规划模型的目标函数或约束 条件不符合标准形式,可以通过引入 松弛变量或剩余变量将其转化为标准 形式。
03
线性规划模型的求解方法
单纯形法
单纯形法是一种迭代算法,用于求解 线性规划问题。
在每次迭代中,算法会检查当前解是 否满足最优条件,如果不满足,则通 过一定的规则转换到另一个解,直到 找到最优解或确定无解。
运筹学中的线性规划和整数规划
运筹学中的线性规划和整数规划运筹学是一门涉及决策分析、优化、模型构建和仿真等知识领域的学科,应用广泛,如供应链管理、交通规划、制造业生产、金融投资等方面。
其中,线性规划和整数规划是运筹学中最为基础和重要的优化技术,被广泛应用于各个领域。
一、线性规划线性规划是一种在一组线性约束条件下,求解线性目标函数极值问题的数学方法。
在生产、运输、选址等问题中,线性规划都有着重要的应用。
其数学模型可以表示为:$\max c^Tx$$s.t. Ax \leq b,x\geq 0$其中$c$为目标函数的向量,$x$为决策变量向量,$A$为约束矩阵,$b$为约束向量,$c^Tx$表示目标函数的值,$\leq$表示小于等于。
如果目标函数和约束都是线性的,则可以通过线性规划的求解方法来确定决策变量的最优值。
线性规划的求解方法一般分为单纯形法和内点法两种方法。
单纯性法是线性规划中最为常用的方法,通过对角线交替调整,逐步从可行解中寻找最优解,收敛速度较快,但是存在不稳定的情况。
内点法是近年来发展起来的用于求解大规模线性规划问题的数值方法,其核心思想是迭代求解一系列线性方程组,每次保持解在可行域内部,直到找到最优解为止。
这种方法对大规模问题求解能力强,使用较多。
二、整数规划整数规划是线性规划的升级版,它要求决策变量必须取整数值。
整数规划在很多实际问题中都有着重要的应用,比如很多生产过程中需要将生产数量取整数,物流路径问题需要选取整数条路径等。
与线性规划不同的是,整数规划是NP难问题,没有一种有效的算法能够完全解决所有的整数规划问题。
因此,通常需要采用分支定界、割平面等方法来求解。
分支定界是一种常用的整数规划求解方法。
它通过将整数规划问题分为多个子问题,依次求解这些子问题并优化当前最优解,以逐步逼近最优解。
割平面法则是在分支定界方法的基础上加入约束条件,使得求解过程更加严格化,最终得到更好的结果。
总的来说,运筹学中线性规划和整数规划是不可或缺的优化工具,我们可以通过理论和实践加深对它们的理解。
运筹学—线性规划
,确定基变量 xl
为换出变量。
-1 -1 (6) 用 Pk 替代 Pl 得新基B1,由变换公式 B1 Elk B
计算新基的逆阵B1-1,求出新的基本可行解 其中 Elk 为变换矩阵,构造方法是: 从一个单位矩阵出发,把换出变量
xl 在基B中的对应列的单位
向量,替换成换入变量 x k 对应的系数列向量 B-1Pk,并做如下变形,
C=(3,2,0,0)
1 1 1 0 A= 2 1 0 1
-1 0 -1 0
40 b= 60
1 0 (2)计算单纯行乘子 π0 =CB B (c3 ,c4 )B (0, 0) (0, 0) 0 1 目标函数当前值 40 Z0 = π0 b = (0,0) 0 60
2 0 B = E 32 B = 1 1 0
-1 2 -1 1
x 3 ,x 4 为非基变量, 2 2 -1 -1 1 = 1 -1 1 进入第三循环. 2
C=(3,2,0,0) -1 1 1 1 1 1 0 40 -1 2 B2 =(P2 ,P1 )= A= B2 = b= 1 2 2 1 0 1 60 -1 1
第j个约束为等式约束
第i个变量为自由变量
例8:写出下面线性规划的对偶规划模型:
max z 2 x 1 3x 2 x 1 2x 2 3 2 x x 5 1 2 s .t . x 1 3 x 2 1 x 1 0
例8:写出下面线性规划的对偶规划模型:
甲 乙
对偶模型的一般式
以例7为例,原问题为
记Y ( y ,y , y ), 则对偶问题为
运筹学 线性规划 图解法
x2 4x1=16
x1+2x2=8
Q4
Q3
3
•Q2(4,2) 4x2=12
Q1
0
4
x1
2x1+3x2=0
2.试算法
最优解在顶点达到:
O点:X1=0, X2=0, Z=0 Q1: X1=4, X2=0, Z=8 Q2: X1=4, X2=2, Z=14 Q3: X1=2, X2=3, Z=10 Q4: X1=0, X2=3, Z=6
x2
X1=10/3,x2 =4/3
Z=12.67
0
x1
线性代数基础知识补充与回顾
一、克莱姆规则
含有n个未知数x1,x2,…xn的n个线性方程的方程 组如下式所示:
a11x1 a12x2 ..... a1nxn b1 a21x1 a22x2 ..... a2nxn b2 ...................................... an1x1 an2x2 ..... annxn bn
克莱姆法则 如果上述线性方程组的系数行列式不等于零,即有:
a11 a1n
D
0
an1 ann
那么,上述方程组有唯一解:
x1D D 1,x2D D 2,........xn .. ..D .D .n .
其中Dj(j=1,2,……n)是把系数行列式D中的第j 列的元素用方程组的常数项代替后得到的n阶行列式.
(a)可行域有界 唯一最优解
(b)可行域有界 多个最优解
(c)可行域无界 唯一最优解
(d)可行域无界 多个最优解
(e)可行域无界 目标函数无界
(f)可行域为空集 无可行解
课堂作业:用图解法求解下列问题
某厂利用A、B两种原料,生产甲、乙两种产品,有关数据如下:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
每头 日需
10
课堂练习
某蓄场每日要为每头牲畜购买饲料,以使其获取所需的A、B、C、D四 种养分。有关数据如下表,现饲料可从市场上出售的M、N两种饲料中选 择,试决定总花费最小的购买方案。(列出模型)
养分 饲料 M N 每头日需 A 0.5 0.1 10 B 0.2 0.3 5 C 0.3 0.4 8 D 0 0.2 7 价格 300 200
转化为:
3x1 2 x2 4 x3 xs 3
它表示决策结果超过了实际需要的部分,因此常称它为剩余变量。 无论是松弛变量还是剩余变量在决策中都不产生实际价值,因此它们在 目标函数中的系数都应该为零。在后面的讨论中,有时也将松弛变量和 剩余变量统称为松弛变量。
3、约束条件右端常数为负数 只需将这一约束条件两端同 乘“-1”就可化为一个等价的约束条件,其右端常数满足标 准形式的要求。
4、决策变量不满足非负约束 (a) Nhomakorabeax1 0
x1 则x1 0 x1
x3 (b) 如x3无约束,则令 x3 x3
例如,将例1中的线性规划模型化为标准形式就是:
max z 3 x1 2 x2 5 x1 2 x2 x3 2 x x x4 4 1 2 x5 9 4 x1 3 x2 x1 , x2 , x3 , x4 , x5 0
最优值:
即最优的目标函数值, 通常用z*表示
图解法步骤: 建立平面直角坐标系 图示约束条件,求可行域 图示目标函数 求最优解
建立直角坐标系
x2
图示约束条件,求可行域
max z 3 x1 2 x2 x1 2 x2 5 2 x x 4 1 2 s.t. 4 x1 3 x2 9 x1 , x2 0
3x 2 3x 2 2 x3 x5 2 2 x1
从而得到模型的标准形式为
2 x2 2 x2 x3 max z 3x1 2 x2 2 x 2 3x3 x 4 2 x1 3x 2 3x2 2 x3 x5 2 2 x1 x , x , x , x , x , x 0 1 2 2 3 4 5
然后在两端乘以-1得 x1 2 x2 3x3 x4 2 也就是
x1 2 x2 3x3 x4 2 2 x2 2 x2 3x3 x4 2 x1
(5)约束条件2是“”型的,因此需要在左边加上一个松弛变量 x5 使它化为等式: 2 x1 3x2 2 x3 x5 2 也就是
为标准形式。
(1 )变量 x1 是非正的,所以要将模型中的所有 x1 都用 x1 x1 0 代替,其中 x1
x2 无约束,因此取两个变量 x2 0, x2 0 使得 x2 。在模型中,所有的 x2 都用 x2 x2 x2 x2 代替。
其中 x3 , x4 , x5 就是分别对第一、第二、第三个约束条件中 添加的松弛变量。
例3
化如下的线性规划问题模型
min z 3x1 2 x 2 x3 x1 2 x 2 3x3 2 2 x1 3x 2 2 x3 2 x 0, x 无约束, x 0 2 3 1
a1n a2 n amn
在今后的讨论,常将矩阵 A 称为线性规划问题的(约束条件) 系数矩阵。明显地系数矩阵 A 与矩阵 P j 之间存在关系: A P1 P2 Pn
2.2.2 线性规划的标准形式
max z c1 x1 c2 x2 cn xn a11x1 a12 x2 a1n xn b1 a x a x a x b 21 1 22 2 2n n 2 s.t. a x a x a x b mn n m m 1 m2 2 x1 , x2 ,..., xn 0
例2的模型就是
min w x1 x 2 x3 3x1 x 2 100 s.t. x 2 2 x3 100 x , x , x 0 1 2 3
例2 中的问题常称为下料问题。
线性规划的三个要素: 决策变量 目标函数 约束条件 其次线性规划模型必须满足如下两个要求: ① 目标函数必须是决策变量的线性函数; ② 约束条件必须是含决策变量的线性等式或不等式。
(2) 变量
(3)目标函数是求最小值的,因此令z z (3x1 2 x2 x3 )
z ,即
3x1 2 x2 x3 2 x2 x3 3x 2 x2
(4)约束条件1是“ ”型的,并且右端的常数小于零。 因此先将其左边减取一个剩余变量 x4 化为等式,即
最优解
等值线向右上方移动,函数值变 大。在其即将离开可行域时达到 B(3/2,1)点。所以最优解为:
x1 3 2 , x2 1
此时最优值为:
x1 2 x2 5
1 z* 3 x 2 x 6 2
1 2
4x1 3x2 9
x1
2.2.2 线性规划求解的可能结局
它具有如下四个特征: ① 目标函数求max; ② 约束条件两端用“=”连结 ; ③ bi非负; ④ 所有决策变量xj非负。
2.2.3 将线性规划的模型化为标准形式
1、目标函数求最小值的情形 取原目标函数的相反数为新的目标函数,对原目标函数 求最小值的问题就等价于对这一新的目标函数求最大值的问题。
例如: 等价于
max z =3x1 + 5.7x2
绿色线段上的所有点 都是最优解,即有无穷多 最优解。Zman=34.2
其中
用矩阵的记号可以将线性规划模型一般形式写成:
max( 或 min) z CX AX (或 ,或 )b s.t. X 0 其中 X , C , b 同上,而矩阵 A 是由各约束条件的系数(技术
系数)构成的 m n 矩阵:
a11 a12 a a22 21 A am1 am 2
min z 2 x1 3x2 x3
max z ' 2 x1 3x2 x3
2、约束条件为不等式 (a)
2 x1 3x2 x3 2
转化为
2 x1 3x2 x3 xs 2
xs表示决策中尚未使用的那部分资源,因此称这一变量为松弛变量。
(b)
3x1 2 x2 4 x3 3
1、有唯一的最优解 2、有无穷多个最优解 (将目标函数改为 z=4x1+3x2 )
x2
max z 4 x1 3 x2 x1 2 x2 5 2 x x 4 s.t. 1 2 4 x1 3 x2 9 x1 , x2 0
2x1+x2=4 D C
x1+2x2 =5 B 4x1+3x2 =9 O A x1
第2章 线性规划
例1 穗羊公司的例子
I II 每周可使用量
A(千克)
B(吨) C(百工时)
1
2 4
2
1 3
5
4 9
单位产品利润(万元)
3
2
问该公司每周应生产产品I与产品II各多少单位,才能使每周的获利达 到最大?
假设产品I、II每周的产量分别是x1和x2,得到如下的数学模型
max z 3x1 2 x 2 x1 2 x 2 5 2 x x 4 1 2 s.t. 4 x1 3x 2 9 x1 , x 2 0
运筹学建模步骤: 识别问题 定义决策变量 建立约束条件 建立目标函数
2.2 线性规划模型的一般形式和标准形式
2.2.1 线性规划的一般模型
为了讨论一般的线性规划问题的求解。我们先给出线性规 划模型的一般形式如下:
max( 或 min) z c1 x1 c2 x2 cn xn a11x1 a12 x2 a1n xn (或 ,或 )b1 a21x1 a22 x2 a2 n xn (或 ,或 )b2 s.t. a x a x a x (或 ,或 )b mn n m m 1 m2 2 x1 , x2 ,..., xn 0
max( 或 min) z c j x j
j 1
n
n aij x j (或 ,或 )bi , i 1, 2,..., m s.t. j 1 x 0, j 1, 2,..., n j
利用向量,可以将一般形式表示为:
max( 或 min) z CX n Pj x j (或 ,或 )b s.t. j 1 X 0
2 x1 x2 4
x1 2 x2 5
x1
4x1 3x2 9
图示目标函数
x2
max z 3 x1 2 x2 x1 2 x2 5 2 x x 4 s.t. 1 2 4 x1 3 x2 9 x1 , x2 0
求最优解
2 x1 x2 4
其中s.t.是英文词组subject to的缩写,表示“受限制于”的意 思,有时也约去不写出来。 该问题常称为生产计划问题或产品组合(product mix)问题。
例2 设有一批规格为10米长的圆钢筋,将它截成分别为3米, 4米长的预制构件的短钢筋各100根,问怎样截取最省料? 因为,10米长的钢筋截为3米或4米长,共有三种截法: 截法Ⅰ:3 3 3 1 米 截法Ⅱ:3 3 4 0 米 截法Ⅲ:4 4 0 2 米 假设按截法Ⅰ,Ⅱ,Ⅲ各截取10米长的钢筋分别为x1, x2, x3 根 则可以获得3米长的短钢筋的根数是3x1+2x2 4米长短钢筋的根数是x2+2x3 按问题要求它们应该不小于100根。 总共用料是x1 + x2 + x3 要达到最省料的目的,就必须使总用料最小。