重庆巴蜀中学数学全等三角形(培优篇)(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、八年级数学全等三角形解答题压轴题(难)
1.如图,已知△ABC中,AB=AC=20cm,BC=16cm,点D为AB的中点.
(1)如果点P在线段BC上以6cm/s的速度由B点向C点运动,同时点Q在线段CA上由C向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使
△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?【答案】(1)①△BPD≌△CQP,理由见解析;②V7.5
Q
(厘米/秒);(2)点P、Q
在AB边上相遇,即经过了80
3
秒,点P与点Q第一次在AB边上相遇.
【解析】
【分析】
(1)①先求出t=1时BP=BQ=6,再求出PC=10=BD,再根据∠B=∠C证得
△BPD≌△CQP;
②根据V P≠V Q,使△BPD与△CQP全等,所以CQ=BD=10,再利用点P的时间即可得到点Q的运动速度;
(2)根据V Q>V P,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,设运动x
秒,即可列出方程15
6220
2
x x,解方程即可得到结果.
【详解】
(1)①因为t=1(秒),
所以BP=CQ=6(厘米)
∵AB=20,D为AB中点,
∴BD=10(厘米)
又∵PC=BC﹣BP=16﹣6=10(厘米)∴PC=BD
∵AB=AC,
∴∠B=∠C,
在△BPD与△CQP中,
BP CQ B C PC BD =⎧⎪∠
=∠⎨⎪=⎩
, ∴△BPD ≌△CQP (SAS ),
②因为V P ≠V Q ,
所以BP ≠CQ ,
又因为∠B =∠C ,
要使△BPD 与△CQP 全等,只能BP =CP =8,即△BPD ≌△CPQ ,
故CQ =BD =10.
所以点P 、Q 的运动时间84663
BP
t (秒), 此时107.54
3Q CQ V t (厘米/秒).
(2)因为V Q >V P ,只能是点Q 追上点P ,即点Q 比点P 多走AB +AC 的路程
设经过x 秒后P 与Q 第一次相遇,依题意得
1562202x x , 解得x=803
(秒) 此时P 运动了8061603
(厘米) 又因为△ABC 的周长为56厘米,160=56×2+48, 所以点P 、Q 在AB 边上相遇,即经过了
803秒,点P 与点Q 第一次在AB 边上相遇. 【点睛】
此题考查三角形全等的证明,三角形与动点相结合的解题方法,再证明三角形全等时注意顶点的对应关系是证明的关键.
2.(1)问题背景:
如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,E 、F 分别是BC ,CD 上的点,且∠EAF =60°,探究图中线段BE ,EF ,FD 之间的数量关系.
小王同学探究此问题的方法是延长FD 到点G ,使DG =BE ,连结AG ,先证明
△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是 ;
(2)探索延伸:
如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,
且∠EAF=1
2
∠BAD,上述结论是否仍然成立,并说明理由;
(3)结论应用:
如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇与指挥中心O 之间夹角∠EOF=70°,试求此时两舰艇之间的距离.
(4)能力提高:
如图4,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且
∠MAN=45°.若BM=1,CN=3,试求出MN的长.
【答案】(1)EF=BE+FD;(2)EF=BE+FD仍然成立;(3)210;(4)MN10.【解析】
试题分析:(1)由△AEF≌△AGF,得EF=GF,又由BE=DG,得
EF=GF=DF+DG=DF+BE;(2)延长FD到点G,使DG=BE,连接AG,证明△ABE≌△ADG,再证△AEF≌△AGF,得EF=FG,即可得到答案;(3)连接EF,延长AE,BF相交于点C,根据探索延伸可得EF=AE+FB,即可计算出EF的长度;(4)在△ABC外侧作
∠CAD=∠BAM,截取AD=A M,连接CD,DN,证明△ACD≌△ABM,得到CD=BM,再证
MN=ND,则求出ND的长度,即可得到答案.
解:(1)由△AEF≌△AGF,得EF=GF,又由BE=DG,得EF=GF=DF+DG=DF+BE;
(2)EF=BE+FD仍然成立.
证明:如答图1,延长FD到点G,使DG=BE,连接AG,
∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG,
在△ABE与△ADG中,AB=AD,∠B=∠ADG,BE=DG,∴△ABE≌△ADG.
∴AE=AG,∠BAE=∠DAG.
又∵∠EAF=1
2
∠BAD,
∴∠F AG=∠F AD+∠DAG=∠F AD+∠BAE=∠BAD-∠EAF=∠BAD-1
2
∠BAD=
1
2
∠BAD,