〖汇总3套试卷〗湖北省名校2018年九年级上学期期末经典数学试题

合集下载

2017-2018学年湖北省武汉市九年级(上)期末数学试卷

2017-2018学年湖北省武汉市九年级(上)期末数学试卷

3.(3 分)下列交通标志中,是中心对称图形的是( )
A.
B.
C.
D.
4.(3 分)事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则( )
A.事件①是必然事件,事件②是随机事件
B.事件①是随机事件,事件②是必然事件
C.事件①和②都是随机事件
D.事件①和②都是必然事件
5.(3 分)抛掷一枚质地均匀的硬币,正面朝上的概率为 0.5,下列说法正确的是( )

15.(3 分)如图,正六边形 ABCDEF 中,P 是边 ED 的中点,连接 AP,则 =

16.(3 分)在⊙O 中,弧 AB 所对的圆心角∠AOB=108°,点 C 为⊙O 上的动点,以 AO、AC 为边
构造▱ AODC.当∠A=
°时,线段 BD 最长.
三、解答题(共 8 题,共 72 分) 17.(8 分)解方程:x2+x﹣3=0. 18.(8 分)如图,在⊙O 中,半径 OA 与弦 BD 垂直,点 C 在⊙O 上,∠AOB=80° (1)若点 C 在优弧 BD 上,求∠ACD 的大小; (2)若点 C 在劣弧 BD 上,直接写出∠ACD 的大小.
购买一张彩票,没中奖是随机事件,
故选:C.
5.(3 分)抛掷一枚质地均匀的硬币,正面朝上的概率为 0.5,下列说法正确的是( )
A.连续抛掷 2 次必有 1 次正面朝上
B.连续抛掷 10 次不可能都正面朝上
C.大量反复抛掷每 100 次出现正面朝上 50 次
D.通过抛掷硬币确定谁先发球的比赛规则是公平的
2017-2018 学年湖北省武汉市九年级(上)期末数学试卷
一、选择题(共 10 小题,每小题 3 分,共 30 分)

(汇总3份试卷)2018年湖北省名校九年级上学期期末监测数学试题

(汇总3份试卷)2018年湖北省名校九年级上学期期末监测数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知O 的半径为6cm ,点P 到圆心O 的距离为6cm ,则点P 和O 的位置关系是( )A .点P 在圆内B .点P 在圆上C .点P 在圆外D .不能确定 【答案】B【解析】根据点与圆的位置关系进行判断.【详解】∵⊙O 的半径为6cm ,P 到圆心O 的距离为6cm ,即OP=6,∴点P 在⊙O 上.故选:B .【点睛】本题考查了点与圆的位置关系:点与圆的位置关系有3种,设⊙O 的半径为r ,点P 到圆心的距离OP=d ,则有:点P 在圆外⇔d >r ;点P 在圆上⇔d=r ;点P 在圆内⇔d <r .2.下列各式正确的是( )A =B 3=C 123=⨯ D = 【答案】B【分析】根据二次根式的性质,同类二次根式的定义,以及二次根式的除法,分别进行判断,即可得到答案.【详解】解:A A 错误;B 3=,故B 正确;C =,故C 错误;D 23=,故D 错误; 故选:B.【点睛】本题考查了二次根式的性质,同类二次根式的定义,解题的关键是熟练掌握二次根式的性质进行解题. 3.如图,∠1=∠2,则下列各式不能说明△ABC ∽△ADE 的是( )A .∠D =∠BB .∠E =∠C C .AD AE AB AC = D .AD DE AB BC = 【答案】D 【分析】根据∠1=∠2,可知∠DAE =∠BAC ,因此只要再找一组角或一组对应边成比例即可.【详解】解:A 和B 符合有两组角对应相等的两个三角形相似;C 、符合两组对应边的比相等且相应的夹角相等的两个三角形相似;D 、对应边成比例但无法证明其夹角相等,故其不能推出两三角形相似.故选D .【点睛】 考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.4.如图,在矩形COED 中,点D 的坐标是(1,3),则CE 的长是( )A .3B .22C 10D .4【答案】C 【分析】根据勾股定理求得10OD =10CE OD ==.【详解】解:∵四边形COED 是矩形,∴CE =OD ,∵点D 的坐标是(1,3),∴221310OD +=∴10CE =故选:C .【点睛】本题考查的是矩形的性质,两点间的距离公式,掌握矩形的对角线的性质是解题的关键.5.如图,在△ABC 中,点D 在AB 上、点E 在AC 上,若∠A =60°,∠B =68°,AD ·AB =AE ·AC ,则∠ADE 等于A.52°B.62°C.68°D.72°【答案】A【分析】先证明△ADE∽△ACB,根据对应角相等即可求解.【详解】∵AD·AB=AE·AC,∴AD ACAE AB=,又∠A=∠A,∴△ADE∽△ACB,∴∠ADE=∠C=180°-∠A-∠B=52°,故选A.【点睛】此题主要考查相似三角形的性质,解题的关键是熟知相似三角形的判定定理.6.如图,矩形ABCD的顶点D在反比例函数kyx=(x<0)的图象上,顶点B,C在x轴上,对角线AC的延长线交y轴于点E,连接BE,若△BCE的面积是6,则k的值为()A.﹣6 B.﹣8 C.﹣9 D.﹣12【答案】D【分析】先设D(a,b),得出CO=-a,CD=AB=b,k=ab,再根据△BCE的面积是6,得出BC×OE=12,最后根据AB∥OE,BC•EO=AB•CO,求得ab的值即可.【详解】设D(a,b),则CO=﹣a,CD=AB=b,∵矩形ABCD的顶点D在反比例函数kyx=(x<0)的图象上,∴k=ab,∵△BCE的面积是6,∴1×BC×OE=6,即BC×OE=12,2∵AB∥OE,∴BC AB=,即BC•EO=AB•CO,OC EO∴12=b×(﹣a),即ab=﹣12,∴k=﹣12,故选D.考点:反比例函数系数k的几何意义;矩形的性质;平行线分线段成比例;数形结合.7.如图,⊙O的半径为1,点O到直线a的距离为2,点P是直线a上的一个动点,PA切⊙O于点A,则PA的最小值是()A.1 B.3C.2 D.5【答案】B【分析】因为PA为切线,所以△OPA是直角三角形.又OA为半径为定值,所以当OP最小时,PA最小.根据垂线段最短,知OP=1时PA最小.运用勾股定理求解.【详解】解:作OP⊥a于P点,则OP=1.根据题意,在Rt△OPA中,AP=22-21=3-=22OP OA故选:B.【点睛】此题考查了切线的性质及垂线段最短等知识点,如何确定PA 最小时点P 的位置是解题的关键,难度中等偏上.8.已知关于x 的二次方程2(12)210k x x ---=有两个实数根,则k 的取值范围是( )A .1k ≤B .1k ≤且12k ≠C .0k ≥D .0k ≥且12k ≠ 【答案】B【分析】根据一元二次方程根的判别式让∆=b 2−4ac ≥1,且二次项的系数不为1保证此方程为一元二次方程.【详解】解:由题意得:2(2)4(12)(1)0---⨯-≥k 且120k -≠,解得:1k ≤且12k ≠, 故选:B .【点睛】本题考查了一元二次方程根的判别式,方程有2个实数根应注意两种情况:∆≥1,二次项的系数不为1. 9.已知a 、b 满足a 2﹣6a+2=0,b 2﹣6b+2=0,则b a a b +=( ) A .﹣6B .2C .16D .16或2 【答案】D【分析】当a=b 时,可得出b a a b+=2;当a≠b 时,a 、b 为一元二次方程x 2-6x+2=0的两根,利用根与系数的关系可得出a+b=6,ab=2,再将其代入b a a b +=2()2a b ab ab+-中即可求出结论. 【详解】当a=b 时,b a a b+=1+1=2; 当a≠b 时,∵a 、b 满足a 2-6a+2=0,b 2-6b+2=0,∴a 、b 为一元二次方程x 2-6x+2=0的两根,∴a+b=6,ab=2, ∴b a a b+=222226222()b a a b ab ab ab ++--⨯== =1. 故选:D .【点睛】此题考查根与系数的关系,分a=b 及a≠b 两种情况,求出b a a b+的值是解题的关键. 10.已知x =﹣1是一元二次方程x 2+mx+3=0的一个解,则m 的值是( ) A .4B .﹣4C .﹣3D .3 【答案】A【分析】根据一元二次方程的解的定义,把x=﹣1代入方程得1﹣m+2=0,然后解关于m的一次方程即可.【详解】解:把x=﹣1代入x2+mx+3=0得1﹣m+3=0,解得m=1.故选:A.【点睛】本题考查的是一元二次方程中含有参数的解,只需要把x的值代入方程即可求出.11.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是( )A.12B.13C.23D.16【答案】A【分析】用树形图法确定所有情况和所需情况,然后用概率公式解答即可.【详解】解:画树状图如下:则总共有12种情况,其中有6种情况是两个球颜色相同的,故其概率为61 122=.故答案为A.【点睛】本题考查画树形图和概率公式,其中根据题意画出树形图是解答本题的关键.12.如图,AB为⊙O的直径,CD为⊙O上的两个点(CD两点分别在直径AB的两侧),连接BD,AD,AC,CD,若∠BAD=56°,则∠C的度数为()A.56°B.55°C.35°D.34°【答案】D【分析】利用直径所对的圆周角是90︒可求得ABD∠的度数,根据同弧所对的的圆周角相等可得∠C的度数.【详解】解:AB为⊙O的直径,点D为⊙O上的一个点90ADB︒∴∠=56BAD ∠=︒34ABD ︒∴∠=34C ABD ︒∴∠=∠=故选:D【点睛】本题考查了圆周角的性质,熟练掌握圆周角的相关性质是解题的关键.二、填空题(本题包括8个小题)13.函数y=—(x-1)2+2图像上有两点A(3,y 1)、B (—4,y ,),则y 1______y 2(填“<”、“>”或“=”).【答案】>【分析】由题意可知二次函数的解析式,且已知A 、B 两点的横坐标,将两点横坐标分别代入二次函数解析式求出y 1、y 1的值,再比较大小即可.【详解】解:把A (3,y 1)、B (-4,y 1)代入二次函数y=—(x-1)1+1得,y 1=-(3-1)1+1=-1;y 1=-(-4-1)1+1=-13,所以y 1>y 1.故答案为>.【点睛】本题考查二次函数图象上点的坐标相关特征,熟练掌握二次函数图象上点的坐标符合函数解析式是解题关键.14.如图,人字梯AB ,AC 的长都为2米.当50a =︒时,人字梯顶端高地面的高度AD 是____米(结果精确到0.1m .参考依据:sin500.77︒≈,cos500.64︒≈,tan50 1.19︒≈)【答案】1.5.【分析】在Rt ADC ∆中,根据锐角三角函数正弦定义即可求得答案.【详解】在Rt ADC ∆中,∵2AC =,50ACD ∠=︒, ∴sin 50AD AC︒=, ∴sin5020.77 1.5AD AC =⨯︒=⨯≈.故答案为1.5.【点睛】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.15.如图,ABC的中线AD、CE交于点G,点F在边AC上,GF BC,那么GFBC的值是__________.【答案】1 3【分析】根据三角形的重心和平行线分线段成比例解答即可.【详解】∵△ABC的中线AD、CE交于点G,∴G是△ABC的重心,∴21 AGGD=,∵GF∥BC,∴23 GF AGDC AD=,∵DC=12 BC,∴13GFBC=,故答案为:1 3 .【点睛】此题考查三角形重心问题以及平行线分线段成比例,解题关键是根据三角形的重心得出比例关系.16.如图,矩形ABCD中,AB=4,BC=5,AF平分∠DAE,EF⊥AE,则CF=______.【答案】3 2【解析】试题分析:证△AEF≌△ADF,推出AE=AD=5,EF=DF,在△ABE中,由勾股定理求出BE=3,求出CE=2,设CF=x,则EF=DF=4-x,在Rt△CFE中,由勾股定理得出方程(4-x)2=x2+22,求出x即可.试题解析:∵AF平分∠DAE,∴∠DAF=∠EAF,∵四边形ABCD是矩形,∴∠D=∠C=90°,AD=BC=5,AB=CD=4,∵EF ⊥AE ,∴∠AEF=∠D=90°,在△AEF 和△ADF 中,{?D AEFDAF EAF AF AF∠=∠∠=∠=,∴△AEF ≌△ADF (AAS ),∴AE=AD=5,EF=DF ,在△ABE 中,∠B=90°,AE=5,AB=4,由勾股定理得:BE=3,∴CE=5-3=2,设CF=x ,则EF=DF=4-x ,在Rt △CFE 中,由勾股定理得:EF 2=CE 2+CF 2,∴(4-x )2=x 2+22, x=32,CF=32. 考点:矩形的性质.17.一只不透明的布袋中有三种珠子(除颜色以外没有任何区别),分别是3个红珠子,4个白珠子和5个黑珠子,每次只摸出一个珠子,观察后均放回搅匀,在连续9次摸出的都是红珠子的情况下,第10次摸出红珠子的概率是_____.【答案】14. 【分析】每次只摸出一个珠子时,布袋中共有珠子12个,其中红珠子3个,可以直接应用求概率的公式.【详解】解:因为每次只摸出一个珠子时,布袋中共有珠子12个,其中红珠子3个,所以第10次摸出红珠子的概率是31124=. 故答案是:14. 【点睛】本题考查概率的意义,解题的关键是熟练掌握概率公式.18.如图,Rt ABC ∆ 中,∠ACB=90°, AC=4, BC=3, CD AB ⊥则 tan BCD ∠=_______.【答案】34【分析】先求得∠A=∠BCD ,然后根据锐角三角函数的概念求解即可.【详解】在Rt △ABC 与Rt △BCD 中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD .∴tan ∠BCD=tan ∠A=34BC AC =. 故答案为34. 【点睛】 本题考查了解直角三角形,三角函数值只与角的大小有关,因而求一个角的函数值,可以转化为求与它相等的其它角的三角函数值.三、解答题(本题包括8个小题)19.(1)解方程:2210x x --=;(2)求二次函数2(1)16y x =--的图象与坐标轴的交点坐标.【答案】(1)x 1,x 2=1;(2)(5,0),(-3,0),(0,-15)【分析】(1)根据一元二次方程的求根公式,即可求解;(2)令y=0,求出x 的值,令x=0,求出y 的值,进而即可得到答案.【详解】(1)x 2﹣2x ﹣1=0 ,∵a=1,b=﹣2,c=﹣1,∴△=b 2﹣4ac=4+4=8>0,∴x=22± =1±∴x 1,x 2=1;(2)令y=0,则20(1)16x =--,即:2(1)=16x -,解得:1253x x ==-,,令x=0,则y=-15,∴二次函数2(1)16y x =--的图象与坐标轴的交点坐标为:(5,0),(-3,0),(0,-15).【点睛】本题主要考查一元二次方程的解法和二次函数图象与坐标轴的交点坐标,掌握一元二次方程的求根公式以及求二次函数图象与坐标轴的交点坐标,是解题的关键.20.如图,在矩形ABCD 中,AB=3,AD=6,点E 在AD 边上,且AE=4,EF ⊥BE 交CD 于点F .(1)求证:△ABE ∽△DEF ;(2)求EF 的长.【答案】(1)见解析;(2)103. 【分析】(1)根据矩形的性质可得∠A=∠D=90°,再根据同角的余角相等求出∠1=∠3,然后利用两角对应相等,两三角形相似证明;(2)利用勾股定理列式求出BE ,再求出DE ,然后根据相似三角形对应边成比例列式求解即可.【详解】(1)证明:在矩形ABCD 中,∠A=∠D=90°,∴∠1+∠2=90°,∵EF ⊥BE ,∴∠2+∠3=180°-90°=90°,∴∠1=∠3,又∵∠A=∠D=90°,∴△ABE ∽△DEF ;(2)∵AB=3,AE=4,∴2222=34AB AE ++,∵AD=6,AE=4,∴DE=AD-AE=6-4=2,∵△ABE ∽△DEF ,∴DE EF AB BE =,即2=35EF , 解得EF=103.【点睛】本题考查了相似三角形的判定与性质,矩形的性质,利用同角的余角相等求出相等的锐角是证明三角形相似的关键.21.如图,有长为14m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm1.(1)求S与x的函数关系式及x值的取值范围;(1)要围成面积为45m1的花圃,AB的长是多少米?(3)当AB的长是多少米时,围成的花圃的面积最大?【答案】(1)S=﹣3x1+14x,143≤x< 8;(1)5m;(3)46.67m1【分析】(1)设花圃宽AB为xm,则长为(14-3x),利用长方形的面积公式,可求出S与x关系式,根据墙的最大长度求出x的取值范围;(1)根据(1)所求的关系式把S=2代入即可求出x,即AB;(3)根据二次函数的性质及x的取值范围求出即可.【详解】解:(1)根据题意,得S=x(14﹣3x),即所求的函数解析式为:S=﹣3x1+14x,又∵0<14﹣3x≤10,∴1483x≤<;(1)根据题意,设花圃宽AB为xm,则长为(14-3x),∴﹣3x1+14x=2.整理,得x1﹣8x+15=0,解得x=3或5,当x=3时,长=14﹣9=15>10不成立,当x=5时,长=14﹣15=9<10成立,∴AB长为5m;(3)S=14x﹣3x1=﹣3(x﹣4)1+48∵墙的最大可用长度为10m,0≤14﹣3x≤10,∴1483x≤<,∵对称轴x=4,开口向下,∴当x=143m,有最大面积的花圃.【点睛】二次函数在实际生活中的应用是本题的考点,根据题目给出的条件,找出合适的等量关系,列出方程是解题的关键.22.我区某校组织了一次“诗词大会”,张老师为了选拔本班学生参加,对本班全体学生诗词的掌握情况进行了调查,并将调查结果分为了三类:A:好,B:中,C:差.请根据图中信息,解答下列问题:(1)全班学生共有人;(2)扇形统计图中,B类占的百分比为%,C类占的百分比为%;(3)将上面的条形统计图补充完整;(4)小明被选中参加了比赛.比赛中有一道必答题是:从下表所示的九宫格中选取七个字组成一句诗,其答案为“便引诗情到碧霄”.小明回答该问题时,对第四个字是选“情”还是选“青”,第七个字是选“霄”还是选“宵”,都难以抉择,若分别随机选择,请用列表或画树状图的方法求小明回答正确的概率.情到碧霄诗青引宵便【答案】(1)40;(2)60,15;(3)补全条形统计图见解析;(4)小明回答正确的概率是14.【分析】(1)根据统计图可知,10人占全班人数的25%,据此求解;(2)根据(1)中所求,容易得C类占的百分比,用1减去,B A两类的百分比即可求得C类百分比;(3)根据题意,画出树状图,根据概率公式即可求得.【详解】(1)全班学生总人数为10÷25%=40(人);故答案为:40;(2)B类占的百分比为:2440×100%=60%;C类占的百分比为1﹣25%﹣60%=15%;故答案为:60,15;(3)C类的人数40×15%=6(人),补全图形如下:(4)根据题意画图如下:由树状图可知共有4种可能结果,其中正确的有1种, 所以小明回答正确的概率是14. 【点睛】本题考查统计图表的中数据的计算,以及树状图的绘制,涉及利用概率公式求随机事件的概率,属综合基础题.23.成都市某景区经营一种新上市的纪念品,进价为20元/件,试营销阶段发现;当销售单价是30元时,每天的销售量为200件;销售单价每上涨2元,每天的销售量就减少10件.这种纪念品的销售单价为x (元). (1)试确定日销售量y (台)与销售单价为x (元)之间的函数关系式;(2)若要求每天的销售量不少于15件,且每件纪念品的利润至少为30元,则当销售单价定为多少时,该纪念品每天的销售利润最大,最大利润为多少?【答案】(1)5350y x =-+;(2)当销售单价定为50元时,该纪念品每天的销售利润最大,最大利润为3000元.【分析】(1)利用“实际销售量=原销售量-10×302x -”可得日销售量y (台)与销售单价为x (元)之间的函数关系式;(2))设每天的销售利润为w 元,按照每件的利润乘以实际销量可得w 与x 之间的函数关系式,根据每天的销售量不少于15件,且每件纪念品的利润至少为30元求出x 的取值范围,利用二次函数的性质可得答案;【详解】(1)302001053502x y x -=-⋅=-+; (2)设每天的销售利润为w 元.则2(20)(5350)54507000w x x x x =--+=-+-25(45)3125x =--+,∵5350152030x x -+≥⎧⎨-≥⎩, ∴5067x ≤≤,∵50-<且对称轴为:直线45x =,∴抛物线开口向下,在对称轴的右侧,w 随着x 的增大而减小,∴当50x =时,w 取最大值为3000元.答:当销售单价定为50元时,该纪念品每天的销售利润最大,最大利润为3000元.【点睛】本题考查了一次函数的应用,二次函数的应用,以及一元一次不等式组的应用,熟练掌握二次函数的性质是解答本题的关键.24.(1)如图1,在⊙O 中,弦AB 与CD 相交于点F ,∠BCD =68°,∠CFA =108°,求∠ADC 的度数. (2)如图2,在正方形ABCD 中,点E 是CD 上一点(DE >CE ),连接AE ,并过点E 作AE 的垂线交BC 于点F ,若AB =9,BF =7,求DE 长.【答案】(1)40°;(2)1.【分析】(1)由∠BCD =18°,∠CFA =108°,利用三角形外角的性质,即可求得∠B 的度数,然后由圆周角定理,求得答案;(2)由正方形的性质和已知条件证明△ADE ∽△ECF ,根据相似三角形的性质可知:DE AD FC CE=,设DE =x ,则EC =9﹣x ,代入计算求出x 的值即可.【详解】(1)∵∠BCD =18°,∠CFA =108°,∴∠B =∠CFA ﹣∠BCD =108°﹣18°=40°,∴∠ADC =∠B =40°.(2)解:∵四边形ABCD 是正方形,∴CD =AD =BC =AB =9,∠D =∠C =90°,∴CF =BC ﹣BF =2,在Rt △ADE 中,∠DAE+∠AED =90°,∵AE ⊥EF 于E ,∴∠AED+∠FEC =90°,∴∠DAE =∠FEC ,∴△ADE ∽△ECF , ∴DE AD FC CE =, 设DE =x ,则EC =9﹣x , ∴929x x =-, 解得x 1=3,x 2=1, ∵DE >CE ,∴DE =1.【点睛】此题考查三角形的外角的性质,圆周角定理,正方形的性质,三角形相似的判定及性质.25.如图,正方形ABCD 的顶点A 在x 轴的正半轴上,顶点C 在y 轴的正半轴上,点B 在双曲线4-y x =(x <0)上,点D 在双曲线k y x=(x >0)上,点D 的坐标是 (3,3) (1)求k 的值;(2)求点A 和点C 的坐标.【答案】(1)k=9,(2)A (1,0), C (0,5).【分析】(1)根据反比例函数过点D,将坐标代入即可求值,(2)利用全等三角形的性质,计算AM,AN,CH 的长即可解题.【详解】解:将点D 代入(0)k y x x=>中, 解得:k=9,(2)过点B 作BN⊥x 轴于N, 过点D 作DM ⊥x 轴于M ,∵四边形ABCD 是正方形,∴∠BAD=90°,AB=AD,∵∠BAN+∠ABN=90°,∴∠BAN=∠ADM,∴△ABN ≌△DAM (AAS ),∴DM=AN=3,设A (a,0),∴N (a-3,0),∵B 在4(0)y x x =-< 上, ∴BN=43a --=AM, ∵OM=a 43a --=3,整理得:a 2-6a+5=0, 解得:a=1或a =5(舍去),经检验,a=1是原方程的根,∴A (1,0),过点D 作DH⊥Y 轴于H,同理可证明△DHC ≌△DMA,∴CH=AM=2,∴C (0,5),综上, A (1,0), C (0,5).【点睛】本题考查了反比例函数的性质,三角形的全等,难度较大,作辅助线,通过全等得到长度是解题关键. 26.如图,在平面直角坐标系xOy 中,曲线()0k y x x=>经过点A .(1)求曲线()0k y x x=>的表达式; (2)直线y=ax+3(a≠0)与曲线()0k y x x =>围成的封闭区域为图象G .①当1a =-时,直接写出图象G 上的整数点个数是 ;(注:横,纵坐标均为整数的点称为整点,图象G 包含边界.)②当图象G 内只有3个整数点时,直接写出a 的取值范围.【答案】(1)y=()10xx >;(2)①3;②-1≤a -23 【分析】(1)由题意代入A 点坐标,求出曲线()0k y x x =>的表达式即可; (2)①当1a =-时,根据图像直接写出图象G 上的整数点个数即可;②当图象G 内只有3个整数点时,根据图像直接写出a 的取值范围.【详解】解:(1)∵A (1,1),∴k=1,∴1(0)y x x=>. (2)①观察图形1a =-时,可知个数为3; ②观察图像得到213a -≤<-. 【点睛】本题考查反比例函数图像相关性质,熟练掌握反比例函数图像相关性质是解题关键.27.已知,如图,斜坡PA 的坡度为1:2.4,斜坡AP 的水平长度为24米.在坡顶A 处的同一水平面上有一座5G 信号塔BC ,在斜坡底P 处测得该塔的塔顶B 的仰角为45,在坡项A 处测得该塔的塔顶B 的仰角为60.求:()1坡顶A 到地面PQ 的距离;()2信号塔BC 的高度3 1.73≈,结果精确到0.1米)【答案】(1)10米;(2)33.1米.【分析】(1)首先作AD PQ ⊥于D ,延长BC 交PQ 于E ,然后根据斜坡的坡度和水平长度即可得出坡顶A 到地面PQ 的距离;(2)首先设BC x =米,在Rt ABC 中,解得AC ,然后在Rt BPE 中,利用45BPE ∠=︒构建方程,即可得出BC .【详解】()1作AD PQ ⊥于D ,延长BC 交PQ 于E ,则四边形ADEC 为矩形,AD CE ∴=,∵斜坡AP 的坡度为1:2.4,斜坡AP 的水平长度为24米,10AD ∴=,即坡项A 到地面PQ 的距离为10米;()2设BC x =米,在Rt ABC 中,BC tan BAC AC ∠=3=x AC, 解得3AC x =, 在Rt BPE 中,45BPE ∠=︒,PE BE ∴=,即32410x x +=+ 解得,2173x =+2173217 1.7333.1BC ∴=+≈+⨯≈(米)答:塔BC 的高度约为33.1米.【点睛】此题主要考查解直角三角形的实际应用,熟练掌握,即可解题.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.一次函数y ax c =+与二次函数2y ax bx c =++在同一平面直角坐标系中的图像可能是( ) A . B . C . D .【答案】D【分析】本题可先由一次函数y=ax+c 图象得到字母系数的正负,再与二次函数y=ax 2+bx+c 的图象相比较看是否一致.【详解】A 、一次函数y=ax+c 与y 轴交点应为(0,c ),二次函数y=ax 2+bx+c 与y 轴交点也应为(0,c ),图象不符合,故本选项错误;B 、由抛物线可知,a >0,由直线可知,a <0,a 的取值矛盾,故本选项错误;C 、由抛物线可知,a <0,由直线可知,a >0,a 的取值矛盾,故本选项错误;D 、由抛物线可知,a <0,由直线可知,a <0,且抛物线与直线与y 轴的交点相同,故本选项正确. 故选D .【点睛】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法.2.把二次函数y =﹣(x+1)2﹣3的图象沿着x 轴翻折后,得到的二次函数有( )A .最大值y =3B .最大值y =﹣3C .最小值y =3D .最小值y =﹣3【答案】C【分析】根据二次函数图象与几何变换,将y 换成-y ,整理后即可得出翻折后的解析式,根据二次函数的性质即可求得结论.【详解】把二次函数y =﹣(x+1)2﹣3的图象沿着x 轴翻折后得到的抛物线的解析式为﹣y =﹣(x+1)2﹣3,整理得:y =(x+1)2+3,所以,当x =﹣1时,有最小值3,故选:C .【点睛】本题考查了二次函数图象与几何变换,求得翻折后抛物线解析式是解题的关键. 312x-在实数范围内有意义,则x 的取值范围是( ) A .12x < B .2x < C .12x ≤ D .0x ≥【答案】A【解析】根据二次根式有意义的条件:被开方数≥0和分式有意义的条件:分母≠0,列出不等式,解不等式即可.【详解】解:由题意可知: 120x -> 解得:12x <故选A .【点睛】此题考查的是二次根式有意义的条件和分式有意义的条件,掌握二次根式有意义的条件:被开方数≥0和分式有意义的条件:分母≠0是解决此题的关键.4.下列事件中,必然发生的是 ( )A .某射击运动射击一次,命中靶心B .通常情况下,水加热到100℃时沸腾C .掷一次骰子,向上的一面是6点D .抛一枚硬币,落地后正面朝上 【答案】B【解析】A 、某射击运动射击一次,命中靶心,随机事件;B 、通常加热到100℃时,水沸腾,是必然事件.C 、掷一次骰子,向上的一面是6点,随机事件;D 抛一枚硬币,落地后正面朝上,随机事件;故选B . 5.一元二次方程(1)(1)23x x x +-=+的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根 【答案】A【分析】先化成一般式后,在求根的判别式,即可确定根的状况.【详解】解:原方程可化为:2240x x --=, 1a ,2b =-,4c =-,2(2)41(4)200∴∆=--⨯⨯-=>,∴方程由两个不相等的实数根.故选A .【点睛】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.6.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E 的正方体平移至如图2所示的位置,下列说法中正确的是( )A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同【答案】B【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.7.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1m,另一边减少了2m,剩余空地的面积为18m2,求原正方形空地的边长.设原正方形的空地的边长为xm,则可列方程为()A.(x+1)(x+2)=18 B.x2﹣3x+16=0 C.(x﹣1)(x﹣2)=18 D.x2+3x+16=0【答案】C【详解】试题分析:可设原正方形的边长为xm ,则剩余的空地长为(x ﹣1)m ,宽为(x ﹣2)m .根据长方形的面积公式列方程可得()()-1-2x x =1.故选C .考点:由实际问题抽象出一元二次方程.8.《孙子算经》中有一道题: “今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为( )A . 4.512x y y x -=⎧⎪⎨-=⎪⎩B . 4.512y x x y -=⎧⎪⎨-=⎪⎩C . 4.512x y x y -=⎧⎪⎨-=⎪⎩D . 4.512y x y x -=⎧⎪⎨-=⎪⎩【答案】D 【分析】根据“一根绳子去量一根木条,绳子剩余4.5尺”可知:绳子-木条=4.5,再根据“将绳子对折再量木条,木条剩余1尺”可知:木条-12绳子=1,据此列出方程组即可. 【详解】由题意可得, 4.512y x y x -=⎧⎪⎨-=⎪⎩. 故选:D .【点睛】本题考查二元一次方程组的实际应用,解题的关键是明确题意,找出等量关系,列出相应的二元一次方程组.9.三角形的两边长分别为3和2,第三边的长是方程2560x x -+=的一个根,则这个三角形的周长是( )A .10B .8或7C .7D .8【答案】B【分析】因式分解法解方程求得x 的值,再根据三角形的三边关系判断能否构成三角形,最后求出周长即可.【详解】解:∵2560x x -+=,∴(x -2)(x -3)=0,∴x -2=0或x -3=0,解得:x =2或x =3,当x =2时,三角形的三边2+2>3,可以构成三角形,周长为3+2+2=7;当x =3时,三角形的三边满足3+2>3,可以构成三角形,周长为3+2+3=8,故选:B .【点睛】本题主要考查解一元二次方程的能力和三角形三边的关系,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键. 10.函数y=ax +b 和y=ax 2+bx+c (a≠0)在同一个坐标系中的图象可能为( )A .B .C .D .【答案】D 【分析】本题可先由一次函数y=ax +b 图象得到字母系数的正负,再与二次函数ax 2+bx +c 的图象相比较看是否一致.【详解】解:A .由一次函数的图象可知a >0,b >0,由抛物线图象可知,开口向上,a >0,对称轴x=﹣2b a>0,b <0;两者相矛盾,错误; B .由一次函数的图象可知a >0,b <0,由抛物线图象可知a <0,两者相矛盾,错误;C .由一次函数的图象可知a <0,b >0,由抛物线图象可知a >0,两者相矛盾,错误;D .由一次函数的图象可知a >0,b <0,由抛物线图象可知a >0,对称轴x=﹣2b a>0,b <0;正确. 故选D .【点睛】解决此类问题步骤一般为:(1)根据图象的特点判断a 取值是否矛盾;(2)根据二次函数图象判断其顶点坐标是否符合要求.11.如图所示,在⊙O 中,AB=AC ,∠A=30°,则∠B=( )A .150°B .75°C .60°D .15°【答案】B 【详解】∵在⊙O 中,AB =AC ,∴AB=AC ,∴△ABC 是等腰三角形,∴∠B=∠C ;又∠A=30°,∴∠B=180302︒︒-=75°(三角形内角和定理). 故选B .考点:圆心角、弧、弦的关系.12.下列图形中,是中心对称图形但不是轴对称图形的是( ).A .B .C .D .【答案】B【分析】根据轴对称图形与中心对称图形的定义进行判断.【详解】A 、既是中心对称图形,又是轴对称图形,不符合题意;B 、是中心对称图形但不是轴对称图形,符合题意;C 、不是中心对称图形,但是轴对称图形,不符合题意;D 、不是中心对称图形,但是轴对称图形,不符合题意;故选B .【点睛】本题考查中心对称图形与轴对称图形的识别,熟练掌握中心对称图形与轴对称图形的定义是解题的关键.二、填空题(本题包括8个小题)13.已知x =2y ﹣3,则代数式4x ﹣8y+9的值是_____.【答案】-1.【分析】根据x =2y ﹣1,可得:x ﹣2y =﹣1,据此求出代数式4x ﹣8y+9的值是多少即可.【详解】∵x =2y ﹣1,∴x ﹣2y =﹣1,∴4x ﹣8y+9=4(x ﹣2y )+9=4×(﹣1)+9=﹣12+9=﹣1故答案为:﹣1.【点睛】本题考查的是求代数式的值,解题关键是由x =2y ﹣1得出x ﹣2y =﹣1.14.如图,在Rt ABC 中,90,10,16C AC BC ∠=︒==.动点P 以每秒3个单位的速度从点A 开始向点C 移动,直线l 从与AC 重合的位置开始,以相同的速度沿CB 方向平行移动,且分别与,CB AB 边交于,E F 两点,点P 与直线l 同时出发,设运动的时间为t 秒,当点P 移动到与点C 重合时,点P 和直线l 同时停止运动.在移动过程中,将PEF 绕点E 逆时针旋转,使得点P 的对应点M 落在直线l 上,点F 的对应点记为点N ,连接BN ,当//BN PE 时,t 的值为___________.【答案】4021 【分析】由题意得CP=10-3t ,EC=3t,BE=16-3t ,又EF//AC 可得△ABC ∽△FEB ,进而求得EF 的长;如图,由点P 的对应点M 落在EF 上,点F 的对应点为点N ,可知∠PEF=∠MEN ,由EF//AC ∠C=90°可以得出∠PEC=∠NEG ,又由//BN PE ,就有∠CBN=∠CEP.可以得出∠CEP=∠NEP=∠B,过N 做NG ⊥BC,可得EN=BN,最后利用三角函数的关系建立方程求解即可;【详解】解:设运动的时间为t 秒时//BN PE ;由题意得:CP=10-3t ,EC=3t,BE=16-3t∵EF//AC∴△ABC ∽△FEB∴BC BE AC EF= ∴1616310t EF-= ∴EF=80158t - 在Rt △PCE 中,PE=2221860100PC PE t t +=-+如图:过N 做NG ⊥BC,垂足为G。

2017-2018学年湖北省武汉市九年级(上)期末数学试卷(详细解析)(解析版)

2017-2018学年湖北省武汉市九年级(上)期末数学试卷(详细解析)(解析版)

2017-2018学年湖北省武汉市九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.方程x(x﹣5)=0化成一般形式后,它的常数项是()A. ﹣5B. 5C. 0D. 1【答案】C【解析】【分析】将x(x-5)=0化为一般式即可解答.【详解】将x(x-5)=0化为一般式得到x2-5x=0,故它的常数项为0.故选C.【点睛】本题主要考查一元二次方程,将题中所给一元二次方程化为一般式是解题的关键.2.二次函数y=2(x﹣3)2﹣6()A. 最小值为﹣6B. 最大值为﹣6C. 最小值为3D. 最大值为3【答案】A【解析】【分析】根据题中所给二次函数的顶点式和图象开口方向即可解答.【详解】根据二次函数解析式y=2(x-3)2-6可知它的开口方向向上,故应该有最小值,它的顶点是(3,﹣6),故最小值是﹣6.故选A.【点睛】本题主要考查二次函数的图像和性质,正确理解二次函数的顶点式是解题关键.3.下列交通标志中是中心对称图形的是A. B. 学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...学%科%网...C. D.【答案】D【解析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中性对称图形,即可判断出.解:∵A.此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;B:∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;C.∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;D.此图形旋转180°后能与原图形重合,此图形是中心对称图形,故此选项正确;故选D.“点睛“此题主要考查了中心对称图形的定义,根据定义得出图形形状是解决问题的关键.考点:中心对称图形.4.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则( )A. 事件①是必然事件,事件②是随机事件B. 事件①是随机事件,事件②是必然事件C. 事件①和②都是随机事件D. 事件①和②都是必然事件【答案】C【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:射击运动员射击一次,命中靶心是随机事件;购买一张彩票,没中奖是随机事件,故选:C.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,下列说法正确的是()A. 连续抛掷2次必有1次正面朝上B. 连续抛掷10次不可能都正面朝上C. 大量反复抛掷每100次出现正面朝上50次D. 通过抛掷硬币确定谁先发球的比赛规则是公平的【答案】D【解析】【分析】概率是频率(多个)的波动稳定值,是对事件发生可能性大小的量的表现,据此逐项判断即可.【详解】A、概率只表示事件发生的可能性,抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,并不是连续抛掷2次必有1次正面朝上,A项表述错误;B、连续抛掷10次都正面朝上的概率介于0与1之间,所以这个事件是有可能发生的,所以B项表述错误;C、抛掷硬币100次,正面朝上的概率是0.5,所以正面朝上的次数不一定是50次,但接近50次或是50次,C项表述错误;D、因为抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,所以双方是公平的,D项表述正确.故选D.【点睛】本题主要考查概率的定义,正确理解概率表示事件发生的可能性是解答的关键.6.一元二次方程x2+2x+m=0有两个不相等的实数根,则()A. m>3B. m=3C. m<3D. m≤3【答案】C【解析】【分析】根据一元二次方程有两个不相等的实数根,判别式∆>0进行计算解答即可.【详解】∵一元二次方程x2+2x+m=0有两个不相等的实数根,∴∆=(2)2-4m>0,解得m<3.故选C.【点睛】本题主要考查一元二次方程根的情况与∆的关系,熟练掌握一元二次方程根与判别式的关系是解题的关键.7.圆的直径是13cm,如果圆心与直线上某一点的距离是6.5cm,那么该直线和圆的位置关系是()A. 相离B. 相切C. 相交D. 相交或相切【答案】D【解析】【分析】比较圆心到直线距离与圆半径的大小关系,进行判断即可.【详解】圆的直径是13cm,故半径为6.5cm. 圆心与直线上某一点的距离是6.5cm,那么圆心到直线的距离可能等于6.5cm也可能小于6.5cm,因此直线与圆相切或相交.故选D.【点睛】本题主要考查直线与圆的位置关系,需注意圆的半径为6.5cm,那么圆心与直线上某一点的距离是6.5cm是指圆心到直线的距离可能等于6.5cm也可能小于6.5cm.8.如图,等边△ABC的边长为4,D、E、F分别为边AB、BC、AC的中点,分别以A、B、C三点为圆心,以AD长为半径作三条圆弧,则图中三条圆弧的弧长之和是()A. πB. 2πC. 4πD. 6π【答案】B【解析】【分析】根据弧长公式求解即可.【详解】以等边三角形ABC的三个顶点为圆心,以AD长为半径,且D是AB的中点,三角形边长为4,∴三条圆弧的所对圆心角都为60°,半径是2,根据弧长公式得到一条圆弧长为=,所以图中三条圆弧的弧长之和是2π.故选B.【点睛】本题主要考查弧长公式,熟记弧长公式并理解题意是解答关键.9.如图,△ABC的内切圆与三边分别相切于点D、E、F,则下列等式:①∠EDF=∠B;②2∠EDF=∠A+∠C;③2∠A=∠FED+∠EDF;④∠AED+∠BFE+∠CDF=180°,其中成立的个数是()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据内接圆与圆的内接三角形的性质进行判断.【详解】由题意可知AD=AE,CD=CF,∴∠ADE=∠AED,∠CDF=∠CFD,∴∠EDF=180°-∠ADE-∠CDF=180°-(180°-∠A)-(180°-∠C)=∠A+∠C,∴2∠EDF=∠A+∠C,②成立;易得∠AED=(180°-∠A),∠BFE=(180°-∠B),∠CDF=(180°-∠C),∴∠AED+∠BFE+∠CDF=[1 80°×3-(∠A+∠B+∠C)]=180°,∴④成立;若∠EDF=∠B,则∠BEF=∠B,∴=∠B,∴∠B=60°,与题中条件不不符,①不成立;若2∠A=∠FED+∠EDF,则2∠A=∠FDC+∠BEF,∴2∠A=,∴2∠A=,解得∠A=60°,与题中条件不符,故③不成立.故选B.【点睛】本题主要考查内接圆的性质、圆的内接三角形的性质、三角形内角和定理,熟练掌握有关知识点并结合题意灵活应用是解题的关键.10.二次函数y=﹣x2﹣2x+c在﹣3≤x≤2的范围内有最小值﹣5,则c的值是()A. ﹣6B. ﹣2C. 2D. 3【答案】D【解析】【分析】把二次函数y=﹣x2-2x+c化为顶点式,判断二次函数的开口方向与对称轴,再判断在﹣3≤x≤2的范围内,当二次函数有最小值时x的取值,再根据在﹣3≤x≤2的范围内二次函数的最小值为﹣5进行计算解答即可. 【详解】把二次函数y=﹣x2-2x+c化为顶点式得y=﹣(x+1)2+c+1,故抛物线的开口向下,对称轴为直线x=﹣1,∴在﹣3≤x≤2的范围内,当x=2时,二次函数有最小值,为﹣9+c+1,故﹣9+c+1=﹣5,解得c=3.故选D.【点睛】本题主要考查二次函数的解析式以及它的图像与性质,判断在﹣3≤x≤2的范围内二次函数何时取得最小值是解答本题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11.一元二次方程x2﹣a=0的一个根是2,则a的值是_____.【答案】4【解析】【分析】将x=2代入x2-a=0,解方程即可求得a的值.【详解】将x=2代入x2-a=0,解得a=4.故答案是4.【点睛】本题主要考查一元二次方程的根,正确理解一元二次函数的根的意义是解题的关键.12.把抛物线y=2x2先向下平移1个单位,再向左平移2个单位,得到的抛物线的解析式是_____.【答案】y=2(x+2)2﹣1【解析】【分析】先确定抛物线y=2x2的顶点坐标是(0,0),再把点(0,0)先向下平移1个单位,再向左平移2个单位得到点的坐标为(﹣2,﹣1),然后根据顶点式写出平移后抛物线的解析式.【详解】抛物线y=2x2的顶点坐标是(0,0),再把点(0,0)先向下平移1个单位,再向左平移2个单位得到点的坐标为(﹣2,﹣1),所以得到抛物线的解析式为y=2(x+2)2-1.【点睛】本题考查了二次函数图像和几何变换,求出新二次函数的顶点坐标是解题的关键.13.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4.随机摸取一个小球然后放回,再随机摸出一个小球,两次取出的小球标号的和等于5的概率是_____.【答案】【解析】【分析】先利用树状图列出两次取出的小球标号和的所有可能情况数,再找出两次取出的小球标号的和等于5的情况数,最后求出概率即可.【详解】两次取出的小球标号和的所有可能情况共有16种,其中和为5的情况有4种,故两次取出的小球标号的和等于5的概率是4÷16=.故答案为.【点睛】本题主要考查求随机事件概率的方法,列出两次取出的小球标号和的所有可能情况是解答本题的关键.14.设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为2m,那么上部应设计为多高?设雕像的上部高x m,列方程,并化成一般形式是_____.【答案】x2﹣6x+4=0【解析】【分析】设雕像上部高xm,那么下部高(2-x)m,根据雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比列方程即可.【详解】设雕像上部高xm,那么下部高(2-x)m,∵雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,∴有,化为一般式是x2-6x+4=0.故答案是x2-6x+4=0. 【点睛】本题主要考查一元二次方程的应用,根据题中所给等量关系列方程是解答此类题目的关键.15.如图,正六边形ABCDEF中,P是边ED的中点,连接AP,则=_____.【答案】【解析】【分析】设正六边形ABCDEF的边长是2,如图连结AE,根据正六边形的性质求出∠F的大小,进一步得到∠FEA 的大小,从而证得∠AEP=90°,然后求出AE与EP的长,根据勾股定理求出AP的长,最后求出即可.【详解】设正六边形ABCDEF的边长是2,如图连结AE,在正六边形中,∠F=×(6-2)•180°=120°,∵AF=EF,∴∠AEF=∠EAF=(180°-120°)=30°,∴∠AEP=120°-30°=90°,AE=2×2cos30°=2×2×=2,∵点P是ED的中点,∴EP=×2=1,在Rt△AEP中,AP=.∴=.【点睛】本题主要考查正多边形的性质、锐角三角函数、勾股定理等知识点的综合应用,熟练掌握这些知识点并灵活运用是解题关键.16.在⊙O中,弧AB所对的圆心角∠AOB=108°,点C为⊙O上的动点,以AO、AC为边构造▱AOD C.当∠A=_____°时,线段BD最长.【答案】27°【解析】【分析】如图,连接OC,延长OA交⊙O于F,连接DF.由△DOF≌△CAO,可得DF=OC,推出点D的运动轨迹是F为圆心OC为半径的圆,推出当点D在BF的延长线上时,BD的值最大,由此即可解决问题.【详解】如图,连接OC,延长OA交⊙O于F,连接DF.∵四边形ACDO是平行四边形,∴∠DOF=∠A,DO=AC,∵OF=AO,∴△DOF≌△CAO,∴DF=OC,∴点D的运动轨迹是F为圆心OC为半径的圆,∴当点D在BF的延长线上时,BD的值最大,∵∠AOB=108°,∴∠FOB=72°,∵OF=OB,∴∠OFB=54°,∵FD=FO,∴∠FOD=∠FDO=27°,∴∠A=∠FOD=27°.故答案为27°.【点睛】本题主要考查动点问题,找出BD的值最大时D的位置是解决本题的关键.三、解答题(共8题,共72分)17.解方程:x2+x﹣3=0.【答案】x1=,x2=【解析】【分析】利用公式法解方程即可.【详解】∵a=1,b=1,c=﹣3,∴b2﹣4ac=1+12=13>0,∴x=,∴x1=,x2=.【点睛】本题主要考查解一元二次方程,熟练掌握一元二次方程的几种解法是解答的关键.18.如图,在⊙O中,半径OA与弦BD垂直,点C在⊙O上,∠AOB=80°(1)若点C在优弧BD上,求∠ACD的大小;(2)若点C在劣弧BD上,直接写出∠ACD的大小.【答案】(1) 40°;(2) 140°或40°.【解析】【分析】(1)由AO与BD垂直,利用垂径定理得到两条弧相等,再利用等弧对等角,以及圆周角定理求出所求即可;(2)如图所示,点C有两个位置,利用圆周角定理求出即可.【详解】解:(1)∵AO⊥BD,∴,∴∠AOB=2∠ACD,∵∠AOB=80°,∴∠ACD=40°;(2)①当点C1在上时,∠AC1D=∠ACD=40°;②当点C2在上时,∵∠AC2D+∠ACD=180°,∴∠AC2D=140°综上所述,∠ACD=140°或40°.【点睛】此题考查了圆周角定理,垂径定理等知识,解本题的关键是学会用分类讨论的思想思考问题.19.甲、乙、丙三个盒子中分别装有除颜色外都相同的小球,甲盒中装有两个球,分别为一个红球和一个绿球;乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个绿球,从三个盒子中各随机取出一个小球(1)请画树状图,列举所有可能出现的结果(2)请直接写出事件“取出至少一个红球”的概率.【答案】(1)见解析;(2)【解析】【分析】(1)画树状图展示所有12种等可能的结果数;(2)在12种等可能的结果中找出至少一个红球的结果数,然后根据概率公式求解.【详解】(1)如图所示:所有等可能结果为 ( 红、绿、红 ) 、 ( 红、绿、绿 ) 、 ( 红、绿、红 ) 、 ( 红、绿、绿 ) 、 ( 红、红、红 ) 、 ( 红、红、绿 ) ,( 绿、绿、红 ) 、 ( 绿、绿、绿 ) 、 ( 绿、绿、红 ) 、 ( 绿、绿、绿 )( 绿、红、红 ) 、 ( 绿、红、绿 ) 这 12 种等可能结果;(2)P(取出至少一个红球)=.【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.20.如图,在平面直角坐标系中有点A(﹣4,0)、B(0,3)、P(a,﹣a)三点,线段CD与AB关于点P 中心对称,其中A、B的对应点分别为C、D(1)当a=﹣4时①在图中画出线段CD,保留作图痕迹②线段CD向下平移个单位时,四边形ABCD为菱形;(2)当a=时,四边形ABCD为正方形.【答案】(1)①见解析;②2;(2)-【解析】【分析】(1)①分别作出A、B关于点P对称点C、D即可;②判断出平移前后点C的坐标即可解决问题;(2)当PA=PB=时,四边形ABCD是正方形,由此构建方程即可解决问题.【详解】(1)①线段CD如图所示;②当AB=BC时,四边形ABCD是菱形,此时C(﹣4,6),原来点C坐标(﹣4,8),∴线段CD向下平移2个单位时,四边形ABCD为菱形;故答案为2.(2)由题意AB=5,当P A=PB=时,四边形ABCD是正方形,∴(a)2+(﹣a﹣3)2=()2,解得a=﹣或(舍弃)∴当a=﹣时,四边形ABCD为正方形.故答案为﹣.【点睛】本题主要考查对称点、直角坐标系中点的平移、正方形的性质及应用,熟练掌握这些知识点并结合题目灵活运用是解答此类题目的关键.21.如图,点D在⊙O的直径AB的延长线上,CD切⊙O于点C,AE⊥CD于点E(1)求证:AC平分∠DAE;(2)若AB=6,BD=2,求CE的长.【答案】(1)见解析;(2)【解析】【分析】(1)连接OC.只要证明AE∥OC即可解决问题;(2)根据角平分线的性质定理可知CE=CF,利用面积法求出CF即可;【详解】(1)证明:连接O C.∵CD是⊙O的切线,∴∠OCD=90°,∵∠AEC=90°,∴∠OCD=∠AEC,∴AE∥OC,∴∠EAC=∠ACO,∵OA=OC,∴∠OAC=∠OCA,∴∠EAC=∠OAC,∴AC平分∠DAE.(2)作CF⊥AB于F.在Rt△OCD中,∵OC=3,OD=5,∴CD=4,∵•OC•CD=•OD•CF,∴CF=,∵AC平分∠DAE,CE⊥AE,CF⊥AD,∴CE=CF=.【点睛】本题主要考查平行线的判定、角平分线的性质,熟练掌握这些知识点是解答的关键.22.投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造.墙长24 m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m.(1)设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;(2)若菜园面积为384 m2,求x的值;(3)求菜园的最大面积.【答案】(1)x=18;(2) 416 m2.【解析】【分析】(1)根据“÷2”可得函数解析式;(2)根据矩形的面积公式列方程求解可得;(3)根据矩形的面积公式列出总面积关于x的函数解析式,配方成顶点式后利用二次函数的性质求解可得.【详解】(1)根据题意知,y==-x+;(2)根据题意,得(-x+)x=384,解得x=18或x=32.∵墙的长度为24 m,∴x=18.(3)设菜园的面积是S,则S=(-x+)x=-x2+x=-(x-25)2+.∵-<0,∴当x<25时,S随x的增大而增大.∵x≤24,∴当x=24时,S取得最大值,最大值为416.答:菜园的最大面积为416 m2.【点睛】本题主要考查二次函数和一元二次方程的应用,解题的关键是将实际问题转化为一元二次方程和二次函数的问题.23.如图,点C为线段AB上一点,分别以AB、AC、CB为底作顶角为120°的等腰三角形,顶角顶点分别为D、E、F(点E、F在AB的同侧,点D在另一侧)(1)如图1,若点C是AB的中点,则∠AED=;(2)如图2,若点C不是AB的中点①求证:△DEF为等边三角形;②连接CD,若∠ADC=90°,AB=3,请直接写出EF的长.【答案】(1) 90°;(2)①见解析;②【解析】【分析】(1)如图1,过E作EH⊥AB于H,连接CD,设EH=x,则AE=2x,AH=x,根据等腰三角形的性质得到∠DAC=30°,进而得到DC=CE,又因为EH∥DC,∴∠HED=∠EDC=∠CED,再进一步得到∠AEH=60°,∠HED=30°,即可求出∠AED的大小;(2)①延长FC交AD于H,连接HE,如图2,根据等腰三角形的性质得到∠FCB=∠FBC=30°,∠DAB=∠DBA=30°,∠EAC=∠ECA=30°,进而得到AD∥EC∥BF,AE∥CF∥BD,所以四边形BDHF、四边形AECH是平行四边形,进而得到△AEH是等边三角形,再根据SAS判定定理得到△DHE≌△FCE,∴∠DEF=∠CEH=60°,∴△DEF是等边三角形;②如图3,过E作EM⊥AB于M,根据等腰三角形的性质,求出CD、CE的长,再根据勾股定理求出DE的长,因为△DEF是等边三角形,∴EF=DE,即可得解.【详解】(1)如图1,过E作EH⊥AB于H,连接CD,设EH=x,则AE=2x,AH=x,∵AE=EC,∴AC=2AH=2x,∵C是AB的中点,AD=BD,∴CD⊥AB,∵∠ADB=120°,∴∠DAC=30°,∴DC=2x,∴DC=CE=2x,∵EH∥DC,∴∠HED=∠EDC=∠CED,∵∠AEH=60°,∠AEC=120°,∴∠HEC=60°,∴∠HED=30°,∴∠AED=∠AEH+∠HED=90°;故答案为:90°;(2)①延长FC交AD于H,连接HE,如图2,∵CF=FB,∴∠FCB=∠FBC,∵∠CFB=120°,新人教部编版初中数学“活力课堂”精编试题∴∠FCB=∠FBC=30°,同理:∠DAB=∠DBA=30°,∠EAC=∠ECA=30°,∴∠DAB=∠ECA=∠FBD,∴AD∥EC∥BF,同理AE∥CF∥BD,∴四边形BDHF、四边形AECH是平行四边形,∴EC=AH,BF=HD,∵AE=EC,∴AE=AH,∵∠HAE=60°,∴△AEH是等边三角形,∴AE=AH=HE=CE,∠AHE=∠AEH=60°,∴∠DHE=120°,∴∠DHE=∠FCE.∵DH=BF=FC,∴△DHE≌△FCE(SAS),∴DE=EF,∠DEH=∠FEC,∴∠DEF=∠CEH=60°,∴△DEF是等边三角形;②如图3,过E作EM⊥AB于M,∵∠ADC=90°,∠DAC=30°,∴∠ACD=60°,∵∠DBA=30°,∴∠CDB=∠DBC=30°,∴CD=BC=AC,∵AB=3,∵AC=2,BC=CD=1,∵∠ACE=30°,∠ACD=60°,∴∠ECD=30°+60°=90°,∵AE=CE,∴CM=AC=1,∵∠ACE=30°,∴CE=,Rt△DEC中,DE===,由①知:△DEF是等边三角形,∴EF=DE=.【点睛】本题主要考查等腰三角形的性质、等腰三角形的判定和性质等知识点的综合运用,熟练掌握这些知识点并结合图形是解答这类问题的关键.24.已知抛物线y=ax2+2x+c与x轴交于A(﹣1,0)、B(3,0)两点,一次函数y=kx+b的图象l经过抛物线上的点C(m,n)(1)求抛物线的解析式;(2)若m=3,直线l与抛物线只有一个公共点,求k的值;(3)若k=﹣2m+2,直线l与抛物线的对称轴相交于点D,点P在对称轴上.当PD=PC时,求点P的坐标.【答案】(1)抛物线的解析式为y=﹣x2+2x+3;(2)k=﹣4;(3)P(1,)【解析】【分析】(1)将点A、B的坐标代入抛物线解析式得到关于b、c的方程组,然后求解得到b、c的值,即可得解;(2)根据题意得到一次函数的解析式为y=kx-3k,当直线l与抛物线只有一个公共点时,方程kx-3k=-x2+2x+3有两个相等的实数根,进而得到(k-2)2+4(3k+3)=0,解关于k的方程即可;(3)过C点作CH⊥PD于H,根据题意得到n=(-2m+2)m+b,n=-m2+2m+3,即可得到b=m2+3,所以直线l为y=(-2m+2)x+m2+3,由对称轴为x=1,求得D为(1,8-n),设P(1,p),则PD=8-n-p,HC=m-1,PH=p-n,在Rt△PCH中,PC=PD=8-n-p,根据勾股定理得到(8-n-p)2=(p-n)2+(m-1)2,变形得到(8-2n)(8-2p)=m2-2m+1,进一步得到2(4-n)(8-2p)=4-n,即2(8-2p)=1,求得p的值,即可得到P的坐标.【详解】(1)∵抛物线y=ax2+2x+c与x轴交于A(﹣1,0)、B(3,0)两点,∴,解得.所以,抛物线的解析式为y=﹣x2+2x+3;(2)∵抛物线上的点C(m,n),∴n=﹣m2+2m+3,当m=3时,n=0,∴C(3,0),∴一次函数y=kx+b的图象l经过抛物线上的点C(m,n),∴3k+b=0,∴b=﹣3k,∴一次函数的解析式为y=kx﹣3k,∵直线l与抛物线只有一个公共点,∴方程kx﹣3k=﹣x2+2x+3有两个相等的实数根,∴(k﹣2)2+4(3k+3)=0,解得k=﹣4;(3)如图,过C点作CH⊥PD于H,C(m,n)在直线y=kx+b上,∴n=(﹣2m+2)m+b,∵点C在抛物线上,∴n=﹣m2+2m+3,∴b=m2+3,∴直线l为y=(﹣2m+2)x+m2+3,∵直线l与抛物线的对称轴相交于点D,∴D的横坐标为1,代入得:y=﹣2m+2+m2+3=8﹣(﹣m2+2m+3)=8﹣n,∴D(1,8﹣n),设P(1,p),则PD=8﹣n﹣p,HC=m﹣1,PH=p﹣n,在Rt△PCH中,PC=PD=8﹣n﹣p,∴(8﹣n﹣p)2=(p﹣n)2+(m﹣1)2∴(8﹣n﹣p)2﹣(p﹣n)2=(m﹣1)2,∴(8﹣2n)(8﹣2p)=m2﹣2m+1,∵n=﹣m2+2m+3,∴2(4﹣n)(8﹣2p)=4﹣n,∵k=﹣2m+2≠0,∴m≠1,∴n≠4,∴4﹣n≠0,∴2(8﹣2p)=1,∴p=,∴P(1,).新人教部编版初中数学“活力课堂”精编试题【点睛】本题主要考查一次函数的图像与性质、二次函数的图像与性质、二次函数与一次函数的交点,熟练掌握相关知识点,仔细分析题意灵活运用是解决此类问题的关键.新人教部编版初中数学“活力课堂”精编试题。

〖汇总3套试卷〗武汉市2018年九年级上学期数学期末学业质量监测试题

〖汇总3套试卷〗武汉市2018年九年级上学期数学期末学业质量监测试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.用配方法解下列方程时,配方有错误的是( ) A .22990x x --=化为()21100x -=B .22740x x --=化为2781416x ⎛⎫-= ⎪⎝⎭C .2890x x ++=化为()2+4=25x D .23-420x x -=化为221039x ⎛⎫-= ⎪⎝⎭ 【答案】C【分析】根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方分别进行配方,即可求出答案. 【详解】A 、由原方程,得22990x x --=,等式的两边同时加上一次项系数2的一半的平方1,得()21100x -=; 故本选项正确;B 、由原方程,得22740x x --=,等式的两边同时加上一次项系数−7的一半的平方,得,2781416x ⎛⎫-= ⎪⎝⎭,故本选项正确;C 、由原方程,得2890x x ++=,等式的两边同时加上一次项系数8的一半的平方16,得(x +4)2=7; 故本选项错误;D 、由原方程,得3x 2−4x =2, 化二次项系数为1,得x 2−43x =23等式的两边同时加上一次项系数−43的一半的平方169,得221039x ⎛⎫-= ⎪⎝⎭;故本选项正确. 故选:C . 【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.2.在ABC ∆中,90C ∠=︒,若cos B =,则sin A 的值为( )A .3 B.3 C .32D .12【答案】C【分析】根据特殊角的三角函数值求出∠B ,再求∠A ,即可求解. 【详解】在ABC ∆中,90C ∠=︒,若3cos B =,则∠B=30° 故∠A=60°,所以sinA=3 故选:C 【点睛】本题考查的是三角函数,掌握特殊角的三角函数值是关键.3.如图,E 为平行四边形ABCD 的边AB 延长线上的一点,且BE:AB=2:3,△BEF 的面积为4,则平行四边形ABCD 的面积为()A .30B .27C .14D .32【答案】A【解析】∵四边形ABCD 是平行四边形, ∴AB//CD ,AB=CD ,AD//BC , ∴△BEF ∽△CDF ,△BEF ∽△AED ,∴22BEF BEF CDF AED S S BE BE S CD S AE ∆∆∆∆⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, , ∵BE :AB=2:3,AE=AB+BE , ∴BE :CD=2:3,BE :AE=2:5,∴44925BEF BEF CDF AED S S S S ∆∆∆∆==, , ∵S △BEF =4,∴S △CDF =9,S △AED =25,∴S 四边形ABFD =S △AED -S △BEF =25-4=21, ∴S 平行四边形ABCD =S △CDF +S 四边形ABFD =9+21=30, 故选A.【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键. 4.把分式2aa b-中的a 、b 都扩大3倍,则分式的值( ) A .扩大3倍 B .扩大6倍C .不变D .缩小3倍【答案】C【分析】依据分式的基本性质进行计算即可. 【详解】解:∵a 、b 都扩大3倍,∴()3262333a a aa b a b a b⨯==---∴分式的值不变. 故选:C . 【点睛】本题主要考查的是分式的基本性质,熟练掌握分式的基本性质是解题的关键.5.如图,将n 个边长都为2的正方形按如图所示摆放,点A 1、A 2、A 3,…,A n 分别是正方形的中心,则这n 个正方形重叠的面积之和是( )A .nB .n-1C .4nD .4(n-1)【答案】B【分析】根据题意可得,阴影部分的面积是正方形的面积的14,已知两个正方形可得到一个阴影部分,则n 个这样的正方形重叠部分即为(n-1)个阴影部分的和. 【详解】解:如图示,由分别过点A 1、A 2、A 3,垂直于两边的垂线,由图形的割补可知:一个阴影部分面积等于正方形面积的14,即阴影部分的面积是1414⨯=,n 个这样的正方形重叠部分(阴影部分)的面积和为:()111n n ⨯-=-. 故选:B . 【点睛】此题考查了正方形的性质,解决本题的关键是得到n 个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积.6.下列图形中,既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个【答案】B【解析】解:第一个图是轴对称图形,又是中心对称图形; 第二个图是轴对称图形,不是中心对称图形; 第三个图是轴对称图形,又是中心对称图形; 第四个图是轴对称图形,不是中心对称图形;既是轴对称图形,又是中心对称图形的有2个.故选B . 7.如图所示几何体的左视图正确的是( )A .B .C .D .【答案】A【分析】左视图是从物体的左面看得到的视图,找到从左面看所得到的图形即可. 【详解】该几何体的左视图为:是一个矩形,且矩形中有两条横向的虚线. 故选A . 【点睛】本题考查了三视图的知识,左视图是从物体的左面看得到的视图8.如图,在正方形网格中,线段A′B′是线段AB 绕某点逆时针旋转角α得到的,点A′与A 对应,则角α的大小为( )A.30°B.60°C.90°D.120°【答案】C【详解】分析:先根据题意确定旋转中心,然后根据旋转中心即可确定旋转角的大小.详解:如图,连接A′A,BB′,分别A′A,BB′作的中垂线,相交于点O.显然,旋转角为90°,故选C.点睛:考查了旋转的性质,解题的关键是能够根据题意确定旋转中心,难度不大.先找到这个旋转图形的两对对应点,连接对应两点,然后就会出现两条线段,分别作这两条线段的中垂线,两条中垂线的交点就是旋转中心.9.如图坐标系中,O(0,0),A(3,33),B(6,0),将△OAB沿直线CD折叠,使点A恰好落在线段OB上的点E处,若OE=65,则AC:AD的值是()A.1:2 B.2:3 C.6:7 D.7:8【答案】B【分析】过A作AF⊥OB于F,如图所示:根据已知条件得到AF=3OF=1,OB=6,求得∠AOB=60°,推出△AOB是等边三角形,得到∠AOB=∠ABO=60°,根据折叠的性质得到∠CED=∠OAB=60°,求得∠OCE=∠DEB,根据相似三角形的性质得到BE=OB﹣OE=6﹣65=245,设CE=a,则CA=a,CO=6﹣a,ED=b,则AD=b,DB=6﹣b,于是得到结论.【详解】过A 作AF ⊥OB 于F ,如图所示:∵A (1,3),B (6,0), ∴AF =3OF =1,OB =6, ∴BF =1, ∴OF =BF , ∴AO =AB , ∵tan ∠AOB =3AFOF= ∴∠AOB =60°,∴△AOB 是等边三角形, ∴∠AOB =∠ABO =60°,∵将△OAB 沿直线CD 折叠,使点A 恰好落在线段OB 上的点E 处, ∴∠CED =∠OAB =60°,∵∠OCE +∠COE =∠OCE +60°=∠CED +∠DEB=60°+∠DEB , ∴∠OCE =∠DEB , ∴△CEO ∽△EDB , ∴OE BD =CE ED =COBE, ∵OE =65, ∴BE =OB ﹣OE =6﹣65=245, 设CE =a ,则CA =a ,CO =6﹣a ,ED =b ,则AD =b ,DB =6﹣b ,则656a b b =-,6245a ab -=, ∴6b =10a ﹣5ab ①,24a =10b ﹣5ab ②, ②﹣①得:24a ﹣6b =10b ﹣10a , ∴23a b =, 即AC :AD =2:1.故选:B . 【点睛】本题考查了翻折变换-折叠问题,相似三角形的判定和性质,等边三角形的判定和性质,证得△AOB 是等边三角形是解题的关键.10.如图所示的几何体的左视图为( )A .B .C .D .【答案】D【解析】根据左视图是从几何体左面看得到的图形,认真观察实物,可得这个几何体的左视图为长方形,据此观察选项即可得.【详解】观察实物,可知这个几何体的左视图为长方形,只有D 选项符合题意, 故选D.【详解】本题考查了几何体的左视图,明确几何体的左视图是从几何体的左面看得到的图形是解题的关键.注意错误的选项B 、C.11.如图,已知AE 是O 的直径,40B ∠=︒,则CAE ∠的度数为( )A .40︒B .50︒C .60︒D .70︒【答案】B【分析】根据同弧所对的圆周角相等可得∠E=∠B=40°,再根据直径所对的圆周角是直角得到∠ACE=90°,最后根据直角三角形两锐角互余可得结论. 【详解】∵在⊙O 中,∠E 与∠B 所对的弧是AC , ∴ ∠E=∠B=40°, ∵AE 是⊙O 的直径,∴∠ACE=90°,∴∠AEC=90°-∠E=90°-40°=50°,故选:B.【点睛】此题主要考查了圆周角定理以及直径所对的圆周角是直角和直角三角形两锐角互余等知识,求出∠E=40°,是解此题的关键.12.对于二次函数y=-12x2+2x-3,下列说法正确的是()A.当x>0,y随x的增大而减少B.当x=2时,y有最大值-1 C.图像的顶点坐标为(2,-5)D.图像与x轴有两个交点【答案】B【分析】根据题目中函数解析式和二次函数的性质,可以逐一判断各选项即可.【详解】∵二次函数y=-12x2+2x-3的图象开口向下,且以2x=为对称轴的抛物线,A. 当x>2,y随x的增大而减少,该选项错误;B. 当x=2时,y有最大值-1,该选项正确;C. 图像的顶点坐标为(2,-1),该选项错误;D. 图像与x轴没有交点,该选项错误;故选:B.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的最值和顶点,关键是明确题意,利用二次函数的性质作答.二、填空题(本题包括8个小题)13.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为_____.【答案】4π【解析】解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S阴影=S扇形COD=2901360π⨯=4π.故答案为4π.14.一个扇形的圆心角为120°,半径为3,则这个扇形的面积为(结果保留π)【答案】3π【解析】试题分析:此题考查扇形面积的计算,熟记扇形面积公式2360n rSπ=,即可求解.根据扇形面积公式,计算这个扇形的面积为212033360Sππ==.考点:扇形面积的计算15.已知Rt△ABC中,AC=3,BC=4,以C为圆心,以r为半径作圆.若此圆与线段AB只有一个交点,则r的取值范围为_____.【答案】3<r≤1或r=125.【解析】根据直线与圆的位置关系得出相切时有一交点,再结合图形得出另一种有一个交点的情况,即可得出答案.【详解】解:过点C作CD⊥AB于点D,∵AC=3,BC=1.∴AB=5,如果以点C为圆心,r为半径的圆与斜边AB只有一个公共点,当直线与圆相切时,d=r,圆与斜边AB只有一个公共点,∴CD×AB=AC×BC,∴CD=r=125,当直线与圆如图所示也可以有一个交点,∴3<r≤1,故答案为3<r≤1或r=125.【点睛】此题主要考查了直线与圆的位置关系,结合题意画出符合题意的图形,从而得出答案,此题比较容易漏解.16.连掷两次骰子,它们的点数都是4的概率是__________.【答案】1 36【分析】首先根据题意列表,然后根据表格求得所有等可能的结果与它们的点数都是4的情况数,再根据概率公式求解即可.【详解】解:列表得: 1 2 3 4 5 6 1 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) 2 (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) 3 (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) 4 (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) 5 (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) 6(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)∴一共有36种等可能的结果,它们的点数都是4的有1种情况, ∴它们的点数都是4的概率是:136, 故答案为:136. 【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.17.如图,在平面直角坐标系中,111222333,,,n n n ABC A B C A B C A B C A B C ∆∆∆∆∆都是等腰直角三角形,点123,,,n B B B B B 都在x 轴上,点1B 与原点重合,点123,,,A C C C n C 都在直线14:33l y x =+上,点C 在y 轴上,1122//////////n n AB A B A B A B y 轴, 1122n ////////C //n AC AC A C A x 轴,若点A 的横坐标为﹣1,则点n C 的纵坐标是_____.【答案】1232n n --【解析】由题意(11)A -,,可得(01)C ,,设1(,)C m m ,则1433m m =+,解得2m =,求出1C 的坐标,再设2(,2)C n n =-,则14233n n -=+,解得5n =,故求出2C 的坐标,同理可求出3C 、4C 的坐标,根据规律 即可得到n C 的纵坐标.【详解】解:由题意(11)A -,,可得(01)C ,,设1(,)C m m ,则1433m m =+,解得2m =, ∴1(2,2)C , 设2(,2)C n n =-,则14233n n -=+,解得5n =, ∴2(5,3)C ,设3(,5)C a a -,则14533a a -=+,解得192a =, ∴3199(,)22C ,同法可得46527(,)44C ,…,n C 的纵坐标为1232n n --, 故答案为1232n n --. 【点睛】此题主要考查一次函数图像的应用,解题的关键是根据题意求出1C 、2C 、3C ,再发现规律即可求解. 18.如图,河坝横断面迎水坡AB 的坡比是1:3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),坝高BC=3m ,则坡面AB 的长度是 .【答案】6米.【解析】试题分析:在Rt △ABC 中,已知坡面AB 的坡比以及铅直高度BC 的值,通过解直角三角形即可求出斜面AB 的长.试题解析:在Rt △ABC 中,BC=3米,tanA=13∴3米,∴22333()6+=米.考点:解直角三角形的应用.三、解答题(本题包括8个小题)19.如图,已知反比例函数1k y x=和一次函数21y ax =+的图象相交于第一象限内的点A ,且点A 的横坐标为1.过点A 作AB ⊥x 轴于点B ,△AOB 的面积为1.(1)求反比例函数和一次函数的解析式.(2)若一次函数21y ax =+的图象与x 轴相交于点C ,求∠ACO 的度数.(3)结合图象直接写出:当1y >2y >0时,x 的取值范围.【答案】(1)y 1=2x;y 2=x+1;(2)∠ACO=45°;(3)0<x<1. 【解析】(1)根据△AOB 的面积可求AB ,得A 点坐标.从而易求两个函数的解析式;(2)求出C 点坐标,在△ABC 中运用三角函数可求∠ACO 的度数;(3)观察第一象限内的图形,反比例函数的图象在一次函数的图象的上面部分对应的x 的值即为取值范围.【详解】(1)∵△AOB 的面积为1,并且点A 在第一象限,∴k=2,∴y 1=2x; ∵点A 的横坐标为1,∴A(1,2).把A(1,2)代入y 2=ax+1得,a=1.∴y 2=x+1.(2)令y 2=0,0=x+1,∴x=−1,∴C(−1,0).∴OC=1,BC=OB+OC=2.∴AB=CB,∴∠ACO=45°.(3)由图象可知,在第一象限,当y 1>y 2>0时,0<x<1.在第三象限,当y 1>y 2>0时,−1<x<0(舍去).【点睛】此题考查反比例函数与一次函数的交点问题,解题关键在于结合函数图象进行解答.20.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.【答案】(1)证明见解析(1)1或1【解析】试题分析:(1)要证明方程有两个不相等的实数根,只要证明原来的一元二次方程的△的值大于0即可;(1)根据根与系数的关系可以得到关于m 的方程,从而可以求得m 的值.试题解析:(1)证明:∵()230x m x m ---=,∴△=[﹣(m ﹣3)]1﹣4×1×(﹣m )=m 1﹣1m +9=(m ﹣1)1+8>0,∴方程有两个不相等的实数根;(1)∵()230x m x m ---=,方程的两实根为1x ,2x ,且2212127x x x x +-=,∴123x x m +=- ,12x x m =- ,∴()2121237x x x x +-=,∴(m ﹣3)1﹣3×(﹣m )=7,解得,m 1=1,m 1=1,即m 的值是1或1.21.如图①,在ABC ∆与ADE ∆中,AB AC =,AD AE =.(1)BD 与CE 的数量关系是:BD ______CE .(2)把图①中的ABC ∆绕点A 旋转一定的角度,得到如图②所示的图形.①求证:BD CE =.②若延长DB 交EC 于点F ,则DFE ∠与DAE ∠的数量关系是什么?并说明理由.(3)若8AD =,5AB =,把图①中的ABC ∆绕点A 顺时针旋转()0360αα︒<︒,直接写出BD 长度的取值范围.【答案】(1)=;(2)①详见解析;②DFE DAE ∠=∠,理由详见解析;(3)313BD .【分析】(1)根据线段的和差定义即可解决问题;(2)①②只要证明DAB EAC ∆∆≌,即可解决问题;(3)由三角形的三边关系即可解决问题【详解】解:(1)=(2)①证明:由旋转的性质,得DAE BAC ∠=∠.∴DAE BAE BAC BAE ∠+∠=∠+∠,即DAB EAC ∠=∠.∵AB AC =,AD AE =,∴DAB EAC ∆∆≌.∴BD CE =.②DFE DAE ∠=∠.理由:∵DAB EAC ∆∆≌,∴ADB AEC ∠=∠.∵AOD EOF ∠=∠,∴180180ADB AOD AEC EOF ︒-∠-∠=︒-∠-∠,∴DFE DAE ∠=∠.(3)313BD .【点睛】本题考查了三角形全等的证明和三角形三边之间的关系,注意三角形证全等的几种方法要熟练掌握 22.如图,AB 为半圆O 的直径,点C 在半圆上,过点O 作BC 的平行线交AC 于点E ,交过点A 的直线于点D ,且∠D =∠BAC(1)求证:AD 是半圆O 的切线;(2)求证:△ABC ∽△DOA ;(3)若BC =2,CE 2,求AD 的长.【答案】(1)见解析;(2)见解析;(3)6AD =【分析】(1)要证AD 是半圆O 的切线只要证明∠DAO=90°即可;(2)根据两组角对应相等的两个三角形相似即可得证;(3)先求出AC 、AB 、AO 的长,由第(2)问的结论△ABC ∽△DOA ,根据相似三角形的性质:对应边成比例可得到AD 的长.【详解】(1)证明:∵AB 为直径,∴∠ACB=90°,又∵OD ∥BC ,∴∠AEO=∠ACB=90°,∴∠AOD+∠BAC=90°,又∵∠D=∠BAC ,∴∠AOD+∠D=90°,∴∠OAD=90°,∴AD ⊥OA ,∴AD 是半圆O 的切线;(2)证明:由(1)得∠ACB=∠OAD=90°,又∵∠D=∠BAC ,∴△ABC ∽△DOA ;(3)解:∵O 为AB 中点,OD ∥BC ,∴OE 是△ABC 的中位线,则E 为AC 中点,∴AC=2CE ,∵BC=2,,∴AC=∴==∴OA=12 由(2)得:△ABC ∽△DOA , ∴=AC BC AD OA,∴AD =∴AD =【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.同时考查了相似三角形的判定与性质,难度适中.23.如图,抛物线y =x 2+bx +c 过点A(3,0),B(1,0),交y 轴于点C ,点P 是该抛物线上一动点,点P 从C 点沿抛物线向A 点运动(点P 不与A 重合),过点P 作PD ∥y 轴交直线AC 于点D .(1)求抛物线的解析式;(2)求点P 在运动的过程中线段PD 长度的最大值;(3)△APD 能否构成直角三角形?若能,请直接写出所有符合条件的点P 坐标;若不能,请说明理由.【答案】(1)y =x 2-4x +1;(2)点P 在运动的过程中,线段PD 长度的最大值为94;(1)能,点P 的坐标为:(1,0)或(2,-1).【分析】(1)把点A 、B 的坐标代入抛物线解析式,解方程组得到b 、c 的值,即可得解;(2)求出点C 的坐标,再利用待定系数法求出直线AC 的解析式,再根据抛物线解析式设出点P 的坐标,然后表示出PD 的长度,再根据二次函数的最值问题解答;(1)分情况讨论①∠APD 是直角时,点P 与点B 重合,②求出抛物线顶点坐标,然后判断出点P 为在抛物线顶点时,∠PAD 是直角,分别写出点P 的坐标即可;【详解】(1)把点A(1,0)和点B(1,0)代入抛物线y =x 2+bx +c ,得:93010b c b c ++=⎧⎨++=⎩ 解得43b c =-⎧⎨=⎩∴y =x 2-4x +1.(2)把x =0代入y =x 2-4x +1,得y =1.∴C(0,1).又∵A(1,0),设直线AC 的解析式为:y =kx +m ,把点A ,C 的坐标代入得:31m k =⎧⎨=-⎩ ∴直线AC 的解析式为:y =-x +1. PD =-x +1- (x 2-4x +1)=-x 2+1x =23-2x -()+94. ∵0<x<1,∴x =32时,PD 最大为94.即点P在运动的过程中,线段PD长度的最大值为94.(1)①∠APD是直角时,点P与点B重合,此时,点P(1,0),②∵y=x2﹣4x+1=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1),∵A(1,0),∴点P为在抛物线顶点时,∠PAD=45°+45°=90°,此时,点P(2,﹣1),综上所述,点P(1,0)或(2,﹣1)时,△APD能构成直角三角形;【点睛】本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,二次函数的最值问题,二次函数的对称性以及顶点坐标的求解,直角三角形存在性问题时需要分类讨论.24.某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.请根据统计图表中的信息,解答下列问题:(1)求被抽查的学生人数和m的值;(2)求本次抽查的学生文章阅读篇数的中位数和众数;(3)若该校共有1200名学生,根据抽查结果,估计该校学生在这一周内文章阅读的篇数为4篇的人数。

湖北省黄冈市黄州区2018届九年级上学期期末考试数学试题

湖北省黄冈市黄州区2018届九年级上学期期末考试数学试题

黄州区九年级(上)期末数学试卷一、选择题(每小题3分,共21分)1.下列所给图形是中心对称图形但不是轴对称图形的是()A.B.C.D.2.用配方法解一元二次方程x2+4x﹣5=0,此方程可变形为()A.(x+2)2=9 B.(x﹣2)2=9 C.(x+2)2=1 D.(x﹣2)2=1 3.下列事件中,属于必然事件的是()A.明天我市下雨B.抛一枚硬币,正面朝上C.走出校门,看到的第一辆汽车的牌照的末位数字是偶数D.一个口袋中装有2个红球和一个白球,从中摸出2个球,其中有红球4.已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,3)B.若x>1,则﹣3<y<0C.图象在第二、四象限内D.y随x的增大而增大5.如图1,AB是⊙O的直径,CD是⊙O的弦,若∠BAD=48°,则∠DCA的大小为()A.48°B.42°C.45°D.24°图1 图2 图36.如图2,一农户要建一个矩形花圃,花圃的一边利用长为12m的住房墙,另外三边用25m长的篱笆围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,花圃面积为80m2,设与墙垂直的一边长为x m(已标注在图中),则可以列出关于x的方程是()A.x(26﹣2x)=80 B.x(24﹣2x)=80C.(x﹣1)(26﹣2x)=80 D.x(25﹣2x)=807.如图3,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,给出下列结论:①b2=4ac;②abc>0;③a>c;④4a﹣2b+c>0,其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共21分)8.已知关于x的方程x2+x+m=0的一个根是2,则m=,另一根为.9.已知二次函数y=2(x﹣h)2的图象上,当x>3时,y随x的增大而增大,则h的取值范围是.10.如图4,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠B′AB=°.图4 图511.如图5,⊙O的直径AB=20cm,CD是⊙O的弦,AB⊥CD,垂足为E,OE:EB=3:2,则CD的长是________ cm.12.在一个不透明的袋子中装有除颜色外其余均相同的7个小球,其中红球2个,黑球5个,若再放入n个一样的黑球并摇匀,此时,随机摸出一个球是黑球的概率等于,则n的值为.13.如图6,用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽,则这个纸帽的高是cm.图6 图714.如图7,设点P在函数y=的图象上,PC⊥x轴于点C,交函数y=的图象于点A,PD⊥y轴于点D,交函数y=的图象于点B,则四边形P AOB的面积为.三、解答题(共78分)15.(5分)解方程:x2﹣9=2(x+3).16.(7分)如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4).(1)按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A1B1C1绕点B1逆时针旋转90°,得到△A2B2C2;(2)求点C1在旋转过程中所经过的路径长.17.(7分)如今网上购物已经成为一种时尚,某网店“双十一”全天交易额逐年增长,2015年交易额为50万元,2017年交易额为72万元.(1)求2015年至2017年“双十一”交易额的年平均增长率;(2)如果按(1)中的增长率,到2018年“双十一”交易额是否能达到100万元?请说明理由.18.(6分)如图,在⊙O中,=,∠ACB=60°,求证:∠AOB=∠BOC=∠AOC.19.(8分)已知关于x的方程x2﹣(k+1)x+k2+1=0有两个实数根.(1)求k的取值范围;(2)若方程的两实数根分别为x1,x2,且x12+x22=6x1x2﹣15,求k的值.20.(7分)如图,已知一次函数y1=﹣x+a与x轴、y轴分别交于点D、C两点和反比例函数交于A、B两点,且点A的坐标是(1,3),点B的坐标是(3,m)(1)求a,k,m的值;(2)求C、D两点的坐标,并求△AOB的面积.21.(8分)四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.(1)随机抽取一张卡片,求恰好抽到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则如图所示.你认为这个游戏公平吗?请说明理由.22.(9分)如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.23.(10分)某商业集团新建一小车停车场,经测算,此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800元.为制定合理的收费标准,该集团对一段时间每天小车停放辆次与每辆次小车的收费情况进行了调查,发现每辆次小车的停车费不超过5元时,每天来此处停放的小车为1440辆;当每辆次小车的停车费超过5元时,每增加1元,到此处停放的小车就减少120辆次.为便于结算,规定每辆次小车的停车费x(元)只取整数,用y(元)表示此停车场的日净收入,且要求日净收入不低于2512元.(日净收入=每天共收取的停车费一每天的固定支出)(1)当x≤5时,写出y与x之间的关系式,并说明每辆小车的停车费最少不低于多少元;(2)当x>5时,写出y与x之间的函数关系式(不必写出x的取值范围);(3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次较多,又要有较大的日净收入.按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?24.(11分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.2017-2018学年黄州区九年级(上)期末数学试卷答案1.C 2.A 3.D 4.D 5.B 6.A 7.C8.﹣6,﹣3 9.h≤3 10.50 11.16 12.3 13.414.4 15.方程可化为(x+3)(x﹣3)﹣2(x+3)=0,(x+3)(x﹣3﹣2)=0,……………3分x+3=0或x﹣3﹣2=0,……………4分∴x1=﹣3,x2=5.……………5分16.(1)①如图,△A1B1C1为所作;……………2分②如图,△A2B2C2为所作;……………4分(2)点C1在旋转过程中所经过的路径长==2π.……………7分17.(1)设所求的增长率为x,依据题意,得50(1+x)2=72,……………2分解得x1=0.2=20%,x2=﹣2.2(不合题意,舍去).……………4分答:2015年至2017年“双十一”交易额的年平均增长率为20%.……………5分(2)依据题意,可得,72(1+20%)=72×1.2=86.4(万元),……………6分∵86.4<100,∴到2018年“双十一”交易额不能达到100万元.……………7分18.∵=,∴AB=AC,∴△ABC是等腰三角形.……………2分∵∠ACB=60°,∴△ABC是等边三角形,……………4分∴AB=BC=CA,∴∠AOB=∠BOC=∠COA.……………6分19.(1)由题意,得△=[﹣(k+1)]2﹣4(k2+1)=2k﹣3≥0,……………2分解得k≥.∴k的取值范围为k≥.……………3分(2)∵由根与系数的关系,得x1+x2=k+1,x1•x2=k2+1.……………4分∵x12+x22=6x1x2﹣15,∴(x1+x2)2﹣8x1x2+15=0,……………5分∴k2﹣2k﹣8=0,解得:k1=4,k2=﹣2.……………7分又∵k≥,∴k=4.……………8分20.(1)∵反比例函数经过A、B两点,且点A的坐标是(1,3),∴3=,∴k=3,……………1分而点B的坐标是(3,m),∴m==1,……………2分∵一次函数y1=﹣x+a经过A点,且点A的坐标是(1,3),∴3=﹣1+a,∴a=4.……………3分(2)∵y1=﹣x+4,当x=0时,y=4,当y=0时,x=4,∴C的坐标为(0,4),D的坐标为(4,0),……………5分∴S△AOB=S△COB﹣S△COA=×4×3﹣×4×1=4.……………7分21.(1)P(抽到数字2)==.……………3分(2)公平.理由如下:列表:2 23 62 (2,2)(2,2)(2,3)(2,6)2 (2,2)(2,2)(2,3)(2,6)3 (3,2)(3,2)(3,3)(3,6)6 (6,2)(6,2)(6,3)(6,6)由上表可以看出,可能出现的结果共有16种,它们出现的可能性相同,所有的结果中,满足两位数不超过30的结果有8种.……………6分∴P(小贝胜)=,P(小晶胜)=.∴游戏公平.……………8分22.(1)直线DE与⊙O相切.……………1分理由如下:连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°﹣90°=90°,∴直线DE与⊙O相切;……………5分(2)连接OE,设DE=x,则EB=ED=x,CE=8﹣x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,……………7分∴42+(8﹣x)2=22+x2,解得x=4.75,则DE=4.75.……………9分23.(1)由题意,得,y=1440x﹣800,……………1分∵1440x﹣800≥2512,∴x≥2.3,∵x取整数,∴x最小取3,即每辆次小车的停车费最少不低于3元.……………3分(2)由题意,得y=[1440﹣120(x﹣5)]x﹣800,即y=﹣120x2+2040x﹣800;……………5分(3)当x≤5时,停车1440辆次,最大日净收入y=1440×5﹣800=6400(元);……………6分当x>5时,y=﹣120x2+2040x﹣800=﹣120(x2﹣17x)﹣800=﹣120(x﹣)2+7870 ∴当x=时,y有最大值.但x只能取整数,∴x取8或9.显然,x取8时,小车停放辆次较多,此时最大日净收入为y=﹣120×+7870=7840(元)……………9分综上,每辆次小车的停车费应定为8元,此时日净收入为7840元.……………10分24.(1)把A(﹣1,0),C(0,2)代入y=﹣x2+mx+n,得,解得,∴抛物线解析式为y=﹣x2+x+2;……………3分(2)存在.抛物线的对称轴为直线x=﹣=,则D(,0),∴CD===,如图1,当CP=CD时,则P1(,4);当DP=DC时,则P2(,),P3(,﹣),∴满足条件的P点坐标为(,4),(,),(,﹣);……………6分(3)当y=0时,=﹣x2+x+2=0,解得x1=﹣1,x2=4,则B(4,0),设直线BC的解析式为y=kx+b,把B(4,0),C(0,2)代入得,解得,∴直线BC的解析式为y=﹣x+2,设E(x,﹣x+2)(0≤x≤4),则F(x,﹣x2+x+2),∴FE=﹣x2+x+2﹣(﹣x+2)=﹣x2+2x,∵S△BCF=S△BEF+S△CEF=•4•EF=2(﹣x2+2x)=﹣x2+4x,而S△BCD=×2×(4﹣)=,∴S四边形CDBF=S△BCF+S△BCD=﹣x2+4x+=﹣(x﹣2)2+,……………9分∵0≤x≤4,∴当x=2时,S四边形CDBF有最大值,最大值为,此时E点坐标为(2,1).……………11分。

2018-2019学年湖北省武汉市九年级(上)期末数学试卷(解析版)

2018-2019学年湖北省武汉市九年级(上)期末数学试卷(解析版)

2018-2019学年湖北省武汉市部分学校九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是﹣6,常数项是1的方程是()A.3x2+1=6x B.3x2﹣1=6x C.3x2+6x=1 D.3x2﹣6x=1 2.(3分)下列图形中,是中心对称图形的是()A.B.C.D.3.(3分)将抛物线y=x2向右平移1个单位长度,再向上平移2个单位长度所得的抛物线解析式为()A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=(x﹣1)2﹣2 D.y=(x+1)2﹣2 4.(3分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于125.(3分)已知⊙O的半径等于8cm,圆心O到直线l的距离为9cm,则直线l与⊙O的公共点的个数为()A.0 B.1 C.2 D.无法确定6.(3分)如图,“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”用几何语言可表述为:CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD 的长为()A.12.5寸B.13寸C.25寸D.26寸7.(3分)假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雌鸟的概率是()A.B.C.D.8.(3分)如图,将半径为1,圆心角为120°的扇形OAB绕点A逆时针旋转一个角度,使点O的对应点D落在弧AB上,点B的对应点为C,连接BC,则图中CD、BC和弧BD围成的封闭图形面积是()A.﹣B.﹣C.﹣D.﹣9.(3分)欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长10.(3分)已知抛物线y=ax2+bx+c(a<0)的对称轴为x=﹣1,与x轴的一个交点为(2,0).若于x的一元二次方程ax2+bx+c=p(p>0)有整数根,则p的值有()A.2个B.3个C.4个D.5个二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)已知3是一元二次方程x2=p的一个根,则另一根是.12.(3分)在平面直角坐标系中,点P(﹣1,﹣2)关于原点对称点的坐标是.13.(3分)一个口袋有3个黑球和若干个白球,在不允许将球倒出来的前提下,小明为估计其中的白秋数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,再放回口袋中,…,不断重复上述过程,小明共摸了100次,其中20次摸到黑球.根据上述数据,小明正估计口袋中的白球的个数是.14.(3分)第七届世界军人运动会将于2019年10月18日至27日在中国武汉矩形,小郑幸运获得了一张军运会吉祥物“兵兵”的照片.如图,该照片(中间的矩形)长29cm、宽为20cm,她想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的.为求镜框的宽度,他设镜框的宽度为xcm,依题意列方程,化成一般式为.15.(3分)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.水面下降2.5m,水面宽度增加m.16.(3分)如图,正方形ABCD的边长为4,点E是CD边上一点,连接AE,过点B作BG⊥AE于点G,连接CG并延长交AD于点F,则AF的最大值是.三、解答题(共8题,共72分)17.(8分)解方程:x2﹣3x﹣1=0.18.(8分)如图,A、B、C、D是⊙O上四点,且AD=CB,求证:AB=CD.19.(8分)武汉的早点种类丰富,品种繁多,某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A、B、C、D);乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E、F、G、H),共八种美食.小童和小郑同时去品尝美食,小童准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A、B、E、F)这四种美食中选择一种,小郑准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C、D、G、H)这四种美食中选择一种,用列举法求小童和小郑同时选择的美食都会甲类食品的概率.20.(8分)如图,在边长为1的正方形网格中,A(1,7)、B(5,5)、C(7,5)、D(5,1).(1)将线段AB绕点B逆时针旋转,得到对应线段BE.当BE与CD第一次平行时,画出点A运动的路径,并直接写出点A运动的路径长;(2)线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标.21.(8分)如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆.(1)如图1,求证:AD是⊙O的切线;(2)如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G.①求证:AG=BG;②若AD=2,CD=3,求FG的长.22.(10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y (件)与当天的销售单价x(元/件)满足一次函数关系,并且当x=25时,y=550;当x=30时,y=500.物价部门规定,该商品的销售单价不能超过48元/件.(1)求出y与x的函数关系式;(2)问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元?(3)直接写出商家销售该商品每天获得的最大利润.23.(10分)如图,等边△ABC与等腰三角形△EDC有公共顶点C,其中∠EDC=120°,AB=CE=2,连接BE,P为BE的中点,连接PD、AD(1)为了研究线段AD与PD的数量关系,将图1中的△EDC绕点C旋转一个适当的角度,使CE与CA重合,如图2,请直接写出AD与PD的数量关系;(2)如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)如图3,若∠ACD=45°,求△PAD的面积.24.(12分)如图,在平面直角坐标系中,抛物线y=x2+(1﹣m)x﹣m交x轴于A、B 两点(点A在点B的左边),交y轴负半轴于点C(1)如图1,m=3.①直接写出A、B、C三点的坐标.②若抛物线上有一点D,∠ACD=45°,求点D的坐标.(2)如图2,过点E(m,2)作一直线交抛物线于P、Q两点,连接AP、AQ,分别交y轴于M、N两点,求证:OM•ON是一个定值.2018-2019学年湖北省武汉市部分学校九年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【解答】解:3x2﹣6x+1=0,其二次项系数是3,一次项系数是﹣6,常数项是1,故选:A.2.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意;故选:C.3.【解答】解:将抛物线y=x2向右平移1个单位长度,再向上平移+2个单位长度所得的抛物线解析式为y=(x﹣1)2+2.故选:A.4.【解答】解:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.5.【解答】解:∵⊙O的半径等于8cm,圆心O到直线l的距离为9cm,即圆心O到直线l的距离大于圆的半径,∴直线l和⊙O相离,∴直线l与⊙O没有公共点.故选:A.6.【解答】解:设直径CD的长为2x,则半径OC=x,∵CD为⊙O的直径,弦AB⊥CD于E,AB=10寸,∴AE=BE=AB=×10=5寸,连接OA,则OA=x寸,根据勾股定理得x2=52+(x﹣1)2,解得x=13,CD=2x=2×13=26(寸).故选:D.7.【解答】解:画树状图,如图所示:所有等可能的情况数有8种,其中三只雏鸟中恰有两只雌鸟的情况数有3种,则P=.故选:B.8.【解答】解:如图,连接OD.由题意:OA=OD=AD,∴△AOD是等边三角形,∴∠ADO=∠AOD=60°,∵∠ADC=∠AOB=120°,∴∠ADO+∠ADC=180°,∴O,D,C共线,∴图中CD、BC和弧BD围成的封闭图形面积=S△OBC﹣S扇形ODB=×1×﹣=﹣,故选:B.9.【解答】解:欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=,设AD=x,根据勾股定理得:(x+)2=b2+()2,整理得:x2+ax=b2,则该方程的一个正根是AD的长,故选:B.10.【解答】解:∵抛物线y=ax2+bx+c(a<0)的对称轴为x=﹣1 ∴﹣=﹣1,解得b=2a.又∵抛物线y=ax2+bx+c(a<0)与x轴的一个交点为(2,0).把(2,0)代入y=ax2+bx+c得,0=4a+4a+c解得,c=﹣8a.∴y=ax2+2ax﹣8a(a<0)对称轴h=﹣1,最大值k==﹣9a如图所示,顶点坐标为(﹣1,﹣9a)令ax2+2ax﹣8a=0即x+2x﹣8=0解得x=﹣4或x=2∴当a<0时,抛物线始终与x轴交于(﹣4,0)与(2,0)∴ax2+bx+c=p即常函数直线y=p,由p>0∴0<y≤﹣9a由图象得当0<y≤﹣9a时,﹣4<x<2,其中x为整数时,x=﹣3,﹣2,﹣1,0,1 ∴一元二次方程ax2+bx+c=p(p>0)的整数解有5个.又∵x=﹣3与x=1,x=﹣2与x=0关于直线x=﹣1轴对称当x=﹣1时,直线y=p恰好过抛物线顶点.所以p值可以有3个.故选:B.二、填空题(本大题共6个小题,每小题3分,共18分)11.【解答】解:把x=3代入x2=p,得p=32=9.则原方程为x2=9,即x2﹣9=0.设方程的另一根为x,则3x=﹣9.所以x=﹣3.故答案是:﹣3.12.【解答】解:点(﹣1,﹣2)关于原点对称的点的坐标是(1,2).故答案为:(1,2).13.【解答】解:3÷=12(个).故答案为:12.14.【解答】解:根据题意可得:2(29+2x)•x+20x•2=20×29×,整理得:4x2+98x﹣145=0.故答案是:4x2+98x﹣145=0.15.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降2米,通过抛物线在图上的观察可转化为:当y=﹣2时,对应的抛物线上两点之间的距离,也就是直线y=﹣2与抛物线相交的两点之间的距离,可以通过把y=﹣2代入抛物线解析式得出:﹣2.5=﹣0.5x2+2,解得:x=±3,所以水面宽度增加到6米,比原先的宽度当然是增加了6﹣4=2米,故答案为:2.16.【解答】解:以AB为直径作圆,因为∠AGB=90°,所以G点在圆上.当CF与圆相切时,AF最大.此时FA=FG,BC=CG.设AF=x,则DF=4﹣x,FC=4+x,在Rt△DFC中,利用勾股定理可得:42+(4﹣x)2=(4+x)2,解得x=1.故答案为1.三、解答题(共8题,共72分)17.【解答】解:∵a=1,b=﹣3,c=﹣1,∴b2﹣4ac=(﹣3)2﹣4×1×(﹣1)=13,∴x1=,x2=.18.【解答】证明:∵AD=CB,∴=,∴+=+,即=,∴AB=CD.19.【解答】解:根据题意画树状图如下:由树状图可知,所有可能出现的结果共有16种,并且这些结果出现的可能性相等,小童和小郑同时选择的美食都会甲类食品的结果共有4种,则小童和小郑同时选择的美食都会甲类食品的概率是=.20.【解答】解:(1)点A运动的路径如图所示,出点A运动的路径长为=;(2)如图所示,旋转中心P的坐标为(3,3)或(6,6).21.【解答】(1)证明:如图1,连接OA,OB,OC.在△OAC和△OAB中,,∴△OAC≌△OAB(SSS),∴∠OAC=∠OAB,∴AO平分∠BAC,∴AO⊥BC.又∵AD∥BC,∴AD⊥AO,∴AD是⊙O的切线.(2)①证明:如图2,连接AE.∵∠BCE=90°,∴∠BAE=90°.又∵AF⊥BE,∴∠AFB=90°.∵∠BAG+∠EAF=∠AEB+∠EAF=90°,∴∠BAG=∠AEB.∵∠ABC=∠ACB=∠AEB,∴∠BAG=∠ABC,∴AG=BG.②解:在△ADC和△AFB中,,∴△ADC≌△AFB(AAS),∴AF=AD=2,BF=CD=3.设FG=x,在Rt△BFG中,FG=x,BF=3,BG=AG=x+2,∴FG2+BF2=BG2,即x2+32=(x+2)2,∴x=,∴FG=.22.【解答】解:(1)设y=kx+b,根据题意可得,解得:,则y=﹣10x+800;(2)根据题意,得:(x﹣20)(﹣10x+800)=8000,整理,得:x2﹣100x+2400=0,解得:x1=40,x2=60,∵销售单价最高不能超过48元/件,∴x=40,答:销售单价定为40元/件时,工艺厂试销该工艺品每天获得的利润8000元;(3)利润w=(x﹣20)(﹣10x+800)=﹣10(x﹣80)(x﹣20),∵﹣10<0,故w有最大值,当x=50时,w最大值为9000.23.【解答】解:(1)如图2中,由题意:在Rt△APD中,∠APD=90°,∠PAD=30°,∴AD=2PD.(2)结论成立.理由:如图1中,延长ED到F,使得DF=DE,连接BF,CF.∵BP=EP,DE=DF,∴BF=2PD,BF∥PD,∵∠EDC=120°,∴∠FDC=60°,∵DF=DE=DC,∴△DFC是等边三角形,∵CB=CA,∠BCA=∠DCF=60°,∴∠BCF=∠ACD,∵CF=CD,∴△BCF≌△ACD(SAS),∴BF=AD,∴AD=2PD.(3)如图1中,延长BF交AD于G,由(2)得到∠FBC=∠DAC,∴∠AGB=∠ACB=60°,∵DP∥BG,∴∠ADP=∠AGB=60°,如图3中,作DM⊥AC于M,PN∠AD于N.在等腰△CDE中,∵CE=2,∠CDE=120°,∴CD=DE=2,∵∠ACD=45°,∴CM=DM=2.AM=2﹣2,在Rt△ADM中,AD2=(2﹣2)2+22=32﹣8.在Rt△PAD中,S△PAD=•AD•PN=AD2=4﹣3.24.【解答】解:(1)①当m=3时,y=x2﹣2x﹣3,当x=0时,y=﹣3,当y=0时,x2﹣2x﹣3=0,解得:x=﹣1或x=3,∴A(﹣1,0),B(3,0),C(0,﹣3)②如图1,过A作AK⊥AC交CD于点K,作KH⊥x轴于点H,∵∠ACD=45°,∴AC=AK,∵∠AOC=∠KHA=90°,∠ACO=90°﹣∠OAC=∠KAH,∴△OAC≌△HKA(AAS),∴AH=CO=3,KH=OA=1,∴K(2,1),设直线CD的解析式为y=kx﹣3∴2k﹣3=1,∴k=2,∴设直线CD的解析式为y=2x﹣3,联立,解得x=0(舍去),或x=4,∴D(4,5)(2)∵y=x2+(1﹣m)x﹣m,当y=0时,x2+(1﹣m)x﹣m=0,解得x=﹣1或x=m,∴A(﹣1,0),B(m,0),∵过点E(m,2)作一直线交抛物线于P、Q两点,设直线PQ的解析式为y=ax+b,P(x1,y1),Q(x2,y2),∴2=am+b,b=2﹣am,∴直线PQ的解析式为y=ax+2﹣am,联立,消去y,得:x2+(1﹣m﹣a)x+am﹣m+2=0,∴x1+x2=a+m﹣1,x1•x2=am﹣m﹣2,如图2,作PS⊥x轴于点S,作QT⊥x轴于点T,则△AMO∽△APS,∴,即∴OM=x1﹣m,同理,ON=﹣(x2﹣m),∴OM•ON=﹣(x1﹣m)(x2﹣m)==﹣[am﹣m﹣2﹣m(a+m ﹣1)+m2]=2,为定值.。

湖北省2017-2018学年度上学期期末考试九年级数学试卷 带答案

湖北省2017-2018学年度上学期期末考试九年级数学试卷 带答案

2017-2018学年度上学期期末测试九年级数学试题一、选择题(每小题3分,共计30分)( )1.下面生活中的实例,不是旋转的是:A.传送带传送货物B.螺旋桨的运动C.风车风轮的运动D.自行车车轮的运动( )2.下列方程中,一元二次方程的个数是:①0122=--x x ;②02=-x ;③02=++c bx ax ;④05312=-+x x;⑤2)1(22=+-y x ;⑥2)3)(1(x x x =--. A.1个 B.2个 C.3个 D.4个( )3.用配方法将1282+-=x x y 化成k h x a y +-=2)(的形式为:A.4)4(2+-=x yB.4)4(2--=x yC.4)8(2+-=x yD.4)8(2--=x y( )4.如图,圆锥的底面半径r 为6cm,高h 为8cm,则圆锥的侧面积为:A.230cm π B.248cm π C.260cm π D.280cm π( )5.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是:A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球 ( )6.反比例函数xy 3-=的图象在: A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限 ( )7.如果两个相似三角形的面积的比是4:9,那么它们的周长的比是: A.4:9 B.1:9 C.1:3 D.2:3( )8.如图,AB 是⊙O 的直径,点C 为⊙O 外一点,CA 、CD 是⊙O 的切线,A 、D 为切点,连接BD 、AD.若∠ACD =48º,则∠DBA 的大小是:A.48ºB.60ºC.66ºD.32º( )9.下列说法正确的是:A.与圆有公共点的直线是圆的切线B.过三点一定可以作一个圆C.垂直于弦的直径一定平分这条弦D.三角形的外心到三边的距离相等( )10.二次函数的图象如图所示,对称轴为1=x ,给出下列结论:①0<abc ;②ac b 42>;③024<++c b a ;④02=+b a .其中正确的结论有:A.4个B.3个C.2个D.1个二、填空题(每小题3分,共18分)11.先后两次抛掷一枚质地均匀的硬币,落地后恰好一次正面向上,一次正面向下的概率是___________. 12.关于x 的方程051242=-+x kx 有实数根,则k 的取值范围是_________. 13.如图,点A 是双曲线xky =上的任意一点,过点A 作AB ⊥x 轴于B,若△OAB 的面积为8,则k =__________.ABCDE第14题图第15题图oxyA B 第13题图14.如图,在△ABC 中,AC =9,AB =6,点D 与点A 在直线BC 的同侧,且∠ACD =∠ABC,CD =3,点E 是线段BC 延长线上的动点,当△ABC 和△DCE 相似时,线段CE 的长为__________.15.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E,若AB =10,CD =6,则BE =__________. 16.二次函数223212--=x x y 的图象如图所示,若线段AB 在x 轴上,且AB=334,以AB 为边作等边△ABC,使点C 落在该函数第四象限的图象上,则点C 的坐标是____________.三、解答题(共72分)17.(7分)先化简,再求值:)12(12xx x x +-÷-,其中3=x18.(7分)如图,在Rt △ABC 中,∠A =90º,AB =6,BC =10,D 是AC 上一点,CD =5,DE ⊥BC 于E.求线段DE 的长. ABCD19.(8分)如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为)3,1(,请解答下列问题: (1)画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点B 1的坐标; (2)画出△ABC 绕原点O 逆时针旋转90°后得到的△A 2B 2C 2,并写出点C 2的坐标.20.(7分)珍珍与环环两人一起做游戏,游戏规则如下:每人从1,2,3,4,5,6,7,8中任意选择一个数字,然后两人各转动一次如图所示的转盘(转盘被分为面积相等的四个扇形),两人转出的数字之和等于谁事先选择的数,谁就获胜;若两人转出的数字之和不等于她们各自选择的数,就再做一次上述游戏,直到决出胜负.若环环事先选择的数是5,用列表法或画树状图的方法,求她获胜的概率.21.(8分)已知关于x 的方程022=-++m mx x .(1)若此方程的一个根为1,求m 的值;(2)求证:不论m 取何实数,此方程都有两个不相等的实数根.22.(8分)如图,CD 是⊙O 的直径,AB 是⊙O 的弦,AB ⊥CD 于G ,OG:OC =3:5,AB=8. (1)求⊙O 的半径;(2)点E 为圆上一点,∠ECD =15º,将弧CE 沿弦CE 翻折,交CD 于点F,求图中阴影部分的面积.123423.(8分)如左图,某小区的平面图是一个400⨯300平方米的矩形,正中央的建筑区是与整个小区长宽比例相同的矩形.如果要使四周的空地所占面积是小区面积的36%,并且南北空地与东西空地的宽度各自相同. (1)求该小区南北空地的宽度; (2)如右图,该小区在东西南三块空地上做如图所示的矩形绿化带,绿化带与建筑区之间为小区道路,小区道路宽度一致.已知东西侧绿化带完全相同,其长约为200米,南侧绿化带的长为300米,绿化面积为18000平方米,请求出小区道路的宽度.绿化带绿化带绿化带建筑区小区道路小区道路小区道路建筑区空地空地空地空地24.(9分)如图,已知EC ∥AB,∠EDA =∠ABF. (1)求证:四边形ABCD 是平行四边形;(2)图中存在几对相似三角形?分别是什么?请直接写出来不必证明; (3)求证:OF OE OA ⋅=2.25.(10分)如图,在平面直角坐标系中,抛物线42++=bx ax y 与坐标轴分别交于点A 、点B 、点C,并且∠ACB =90º,AB =10.(1)求证:△OAC ∽△OCB; (2)求该抛物线的解析式;ABCDEF(3)若点P 是(2)中抛物线对称轴上的一个动点,是否存在点P 使得△PAC 为等腰三角形,若存在,请直接写出点P 的坐标;若不存在,请说明理由.OxyABC襄城区2016-2017学年度上学期期末测试九年级数学试题参考答案一.选择题二.填空题 11.21 12.59-≥k 13.16- 14.2或4.5 15.1 16.)2,3(- (第14题只填一种情况并且对了的,给2分;若填了两种情况,但有一种错误的,给0分)三.解答题17.解:原式xx x x x 1212--÷-=…………………………………………………………2分 2)1(1--⋅-=x xx x …………………………………………………………3分 11--=x …………………………………………………………5分 当3=x 时,原式131--=………………………………………………………6分 21-= …………………………………………………………7分 18.解: ∵DE ⊥BC∴∠DEC =∠A =90° …………………………………………………………2分 又∵∠C =∠C …………………………………………………………3分 ∴△ABC ∽△EDC …………………………………………………………4分 ∴CDDEBC AB = …………………………………………………………5分 即5106DE = …………………………………………………………6分 ∴DE =3 …………………………………………………………7分19.解:)5,4(1-B )5,1(2-C(两个图,两个坐标共四个得分点,每个2分,共计8分)20.两次转动的点数之和为5(记为事件A)的结果共有4种 所以P(A)=41164= 答:环环获胜的概率是41. (列表或树状图给4分,说明有限性与等可能性给1分,算出概率给1分,回答给1分)21.解:(1)将1=x 代入022=-++m mx x 得……………………………………………1分 021=-++m m …………………………………………………………3分 解得21=m …………………………………………………………4分 (2)ac b 42-=∆)2(142-⨯⨯-=m m 842+-=m m4)2(2+-=m …………………………………………………………6分 ∵不论m 取任何实数,都有04)2(2>+-m即不论m 取任何实数,都有0>∆……………………………………………7分 ∴不论m 取任何实数,原方程都有两个不相等的实数根. ……………………8分22.解(1)连接OB,设⊙O 的半径为r ∵OG:OC=3:5 ∴r OG 53=……………………………………………1分 ∵AB ⊥CD ∴482121=⨯==AB BG ……………………………………………2分 又 ∵在Rt △OBG 中,222OB BG OG =+∴2224)53(r r =+ ……………………………………………3分 解得5=r答:⊙O 的半径为5. ……………………………………………4分 (2)如图,过点C 作∠ECH =∠DCE=15°,交⊙O 于点H 由轴对称的性质可知:H BC S S 弓形阴=∵∠ECH =∠DCE=15° ∴∠DCH=30°∵OH=OC ∴∠OHC =∠DCH=30° ∴∠COH=180°-∠OHC-∠DCH=120°……………………………………5分 过点O 作OM ⊥CH 于M在Rt △OCM 中2552121=⨯==OC OM 325)25(52222=-=-=OM OC CM ∴CH=352==CM ……………………………………6分 ∴ O H C O H C H BC S S S ∆-=扇形弓形 25352136012052⨯⨯-︒︒⨯⨯=π 3425325-=π ……………………………………7分 答:阴影部分的面积为3425325-π.……………………………8分23.解:(1)设建筑区的长为x 4米,则建筑区的长为x 3米,那么%)361(30040034-⨯⨯=⋅x x ………………………2分 解得8080-==x x 或(不合题意舍去)………………………3分 ∴302)803300(2)3300(=÷⨯-=÷⨯-x 答:南北的空地宽30米.………………………4分 (2)设小区道路的宽度为x 米,那么402)804400(2)4400(=÷⨯-=÷⨯-x ………………………5分 18000)30(300200)40(2=-+⨯-⨯x x ………………………6分 解得10=x ………………………7分答:小区道路的宽度为10米.………………………8分 24. (1)证明:∵EC ∥AB∴∠EDA =∠1……………………………………1分 又∵∠EDA =∠ABF∴∠ABF =∠1……………………………………2分 ∴AD ∥CF∴四边形ABCD 是平行四边形……………………………………3分(2)图中有六对相似三角形,分别是: ①△FAB ∽△FEC;②△OAB ∽△OED;……………………………………4分 ③△EAD ∽△EFC;④△OFB ∽△OAD;……………………………………5分 ⑤△EAD ∽△AFB⑥△ABD ∽△CDB……………………………………6分 (回答多少对忽略不计分,每写出1对加0.5分共3分) (3)∵EC ∥AB∴△OAB ∽△OED……………………………………7分 ∴ODOBOE OA = 又∵AD ∥CF∴△OFB ∽△OAD ∴OD OBOA OF =……………………………………8分 ∴OEOAOA OF = ∴OF OE OA ⋅=2……………………………………9分25.(1)证明:∵x 轴⊥y 轴∴∠AOC =∠COB=90°…………………………………1分 ∴∠A+∠ACO=90°又∵∠ACB =∠OCB+∠ACO=90°∴∠A =∠OCB…………………………………2分∴△OAC ∽△OCB…………………………………3分(2) ∵在42++=bx ax y 中,当0=x 时,4=y ∴OC=4…………………………………4分 又∵△OAC ∽△OCB ∴OCOBOA OC = ∴)(2OA AB OA OB OA OC -⋅=⋅= ∴)10(42OA OA -=解得OA=2或OA=8(不合题意,舍去) ∴OB=AB-OA=10-2=8∴点A 、B 的坐标分别为)0,8(),0,2(-…………………………………5分 将上述坐标代入42++=bx ax y 得⎩⎨⎧=++=+-048640424b a b a 解得⎪⎪⎩⎪⎪⎨⎧=-=2341b a∴所求作的解析式为:423412++-=x x y …………………………………6分 (3)存在点P 使得△PAC 为等腰三角形,点P 的坐标如下:)114,3(+ )114,3(- )0,3(…………………………………10分 (回答存在,就给1分,每写对1个坐标再加1分,共计4分)。

[试卷合集3套]武汉市2018年九年级上学期期末学业质量检查模拟数学试题

[试卷合集3套]武汉市2018年九年级上学期期末学业质量检查模拟数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,四边形ABCD 内接于O ,若:5:7A C ∠∠=,则C ∠=( )A .210︒B .150︒C .105︒D .75︒【答案】C 【分析】根据圆内接四边形对角互补可得∠C =180°×757+=105°. 【详解】∵∠A +∠C =180°,∠A :∠C =5:7,∴∠C =180°×757+=105°. 故选:C .【点睛】 此题主要考查了圆内接四边形,关键是掌握圆内接四边形对角互补.2.如图,一农户要建一个矩形花圃,花圃的一边利用长为12 m 的住房墙,另外三边用25 m 长的篱笆围成,为方便进出,在垂直于住房墙的一边留一个1 m 宽的门,花圃面积为80 m 2,设与墙垂直的一边长为x m ,则可以列出关于x 的方程是( )A .x(26-2x)=80B .x(24-2x)=80C .(x -1)(26-2x)=80D .x(25-2x)=80【答案】A 【分析】设与墙垂直的一边长为xm ,则与墙平行的一边长为(26-2x )m ,根据题意可列出方程.【详解】解:设与墙垂直的一边长为xm ,则与墙平行的一边长为(26-2x )m ,根据题意得:x (26-2x )=1.故选A .【点睛】本题考核知识点:列一元二次方程解应用题.解题关键点:找出相等关系,列方程.3.关于二次函数224y x =+,下列说法错误..的是( ) A .它的图象开口方向向上 B .它的图象顶点坐标为(0,4)C .它的图象对称轴是y 轴D .当0x =时,y 有最大值4【答案】D 【分析】由抛物线的解析式可求得其开口方向、对称轴、函数的最值即可判断.【详解】∵224y x =+,∴抛物线开口向上,对称轴为直线x =0,顶点为(0,4),当x =0时,有最小值4,故A 、B 、C 正确,D 错误;故选:D .【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y =a (x−h )2+k 中,对称轴为x =h ,顶点坐标为(h ,k ).4.如图,⊙O 是等边△ABC 的外接圆,其半径为 3,图中阴影部分的面积是( )A .πB .32πC .2πD .3π【答案】D 【分析】根据等边三角形的性质得到∠A=60°,再利用圆周角定理得到∠BOC=120°,然后根据扇形的面积公式计算图中阴影部分的面积即可.【详解】∵△ABC 为等边三角形,∴∠A=60°,∴∠BOC=2∠A=120°,∴图中阴影部分的面积= 21203360π⨯=3π. 故选D .【点睛】本题考查了三角形的外接圆与外心、圆周角定理及扇形的面积公式,求得∠BOC=120°是解决问题的关键.5.若关于x 的一元二次方程220x x m --= 有实数根,则m 的值不可能是( )A .2-B .1-C .0D .2018【答案】A【分析】由题意直接根据一元二次方程根的判别式,进行分析计算即可求出答案.【详解】解:由题意可知:△=24b ac -=4+4m ≥0,∴m ≥-1, m 的值不可能是-2.故选:A .【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的根的判别式进行分析求解.6.为了解某地区九年级男生的身高情况,随取了该区100名九年级男生,他们的身高x (cm )统计如根据以上结果,抽查该地区一名九年级男生,估计他的身高不高于180cm 的概率是( )A .0.05B .0.38C .0.57D .0.95 【答案】D【分析】先计算出样本中身高不高于180cm 的频率,然后根据利用频率估计概率求解.【详解】解:样本中身高不高于180cm 的频率=1005100-=0.1, 所以估计他的身高不高于180cm 的概率是0.1.故选:D .【点睛】本题考查了概率,灵活的利用频率估计概率是解题的关键.7.用配方法解方程x 2+6x+4=0,下列变形正确的是( )A .(x+3)2=﹣4B .(x ﹣3)2=4C .(x+3)2=5D .(x+3)2【答案】C【解析】x 2+6x+4=0,移项,得x 2+6x=-4,配方,得x 2+6x+32=-4+32,即(x+3)2=5.故选C.8.下列一元二次方程中,两个实数根之和为2的是( )A .2x 2+x ﹣2=0B .x 2+2x ﹣2=0C .2x 2﹣x ﹣1=0D .x 2﹣2x ﹣2=0 【答案】D【分析】利用根与系数的关系进行判断即可.【详解】方程1x 1+x ﹣1=0的两个实数根之和为12-; 方程x 1+1x ﹣1=0的两个实数根之和为﹣1;方程1x 1﹣x ﹣1=0的两个实数根之和为12;方程x 1﹣1x ﹣1=0的两个实数根之和为1.故选D .【点睛】本题考查了根与系数的关系:若x 1,x 1是一元二次方程ax 1+bx+c=0(a ≠0)的两根时,x 1+x 1b a =-,x 1x 1c a=. 9.如图,一段抛物线26 (0)6y x x x =-+≤≤,记为抛物线1C ,它与x 轴交于点1O A 、;将抛物线1C 绕点1A 旋转180︒得抛物线2C ,交x 轴于点2A ;将抛物线2C 绕点2A 旋转180︒得抛物线3C ,交x 轴于点3A .···如此进行下去,得到一条“波浪线”,若点()2020,M m 在此“波浪线”上,则m 的值为( )A .6-B .6C .8-D .8【答案】D 【分析】根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m 的值.【详解】∵一段抛物线:26 (0)6y x x x =-+≤≤,∴图象与x 轴交点坐标为:(0,0),(6,0),∵将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;……如此进行下去,直至得C n .∴C n 的与x 轴的交点横坐标为(6n ,0),(6n+3,0),∴()2020,M m 在C 337,且图象在x 轴上方,∴C 337的解析式为:()()33720162022y x x =---,当2020x =时,()()20202016202020228y =---=.即8m =,故答案为D.【点睛】此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键.10.如图,ABC 的面积为12,点D 、E 分别是边AB 、AC 的中点,则ADE 的面积为( )A .6B .5C .4D .3【答案】D 【分析】先由点D 、E 分别是边AB 、AC 的中点,得DE ∥BC ,从而得△ADE ∽△ABC ,根据相似三角形的面积比等于相似比的平方及△ABC 的面积为12,可得S ADE =1.【详解】解:∵点D 、E 分别是边AB 、AC 的中点,∴DE ∥BC ,1=2AD AB , ∴△ADE ∽△ABC ,∴S ADE :S △ABC =1:4∵△ABC 的面积为12∴S ADE =1. 故选D .【点睛】本题考查了三角形中位线定理,相似三角形的判定与性质,熟练掌握形似三角形的判定方法与性质定理是解答本题的关键.11.如图,一个可以自由转动的转盘被平均分成7个大小相同的扇形,每个扇形上分别写有“中”、“国”、“梦”三个字指针的位置固定,转动转盘停止后,指针指向“中”字所在扇形的概率是( )A .47B .37C .17D .13【答案】B【分析】直接利用概率公式计算求解即可.【详解】转动转盘停止后,指针指向“中”字所在扇形的概率是37,故选:B . 【点睛】本题考查概率的计算,解题的关键是熟练掌握概率的计算公式.12.如图,在平行四边形ABCD 中,AC 、BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F ,已知AEF ∆的面积为4,则OBE ∆的面积为( )A .12B .28C .36D .38【答案】A 【分析】根据平行是四边形的性质得到AD ∥BC ,OA=OC ,得到△AFE ∽△CEB ,根据点E 是OA 的中点,得到13AE EC =,△AEB 的面积=△OEB 的面积,计算即可. 【详解】∵四边形ABCD 是平行四边形,∴AD ∥BC ,OA=OC ,∴△AFE ∽△CEB , ∴2AFE CEB S AE S EC ⎛⎫= ⎪⎝⎭ ∵点E 是OA 的中点,∴13AE EC =,AEB OEB OAB OCB 1122S S S S ===, ∴22AFE CBE AE 11EC 39S S⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, ∴CBE AFE 936S S ==, ∴OEB CBE 11361233S S ==⨯=. 故选:A . 【点睛】本题考查的是相似三角形的判定和性质、平行四边形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.二、填空题(本题包括8个小题)13.10件外观相同的产品中有1件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是______.【答案】110【解析】试题分析:P(抽到不合规产品)=110. 14.已知1x ,2x 是关于x 的方程230x kx +-=的两根,且满足121234x x x x +-=,则k 的值为_______.【答案】5【分析】由韦达定理得12x x k +=-,123x x =-,将其代入121234x x x x +-=即可求得k 的值.【详解】解:1x 、2x 是方程230x kx +-=的两个根,∴12x x k +=-,123x x =-.112394x x x x k +-=-+=,∴5k =.故答案为:5.【点睛】本题主要考查根与系数的关系,解题的关键是掌握韦达定理与方程的解的定义.15.如图,在□ABCD 中,AC 与BD 交于点M ,点F 在AD 上,AF =6cm ,BF =12cm ,∠FBM =∠CBM ,点E 是BC 的中点,若点P 以1cm/秒的速度从点A 出发,沿AD 向点F 运动;点Q 同时以2cm/秒的速度从点C 出发,沿CB 向点B 运动.点P 运动到F 点时停止运动,点Q 也同时停止运动.当点P 运动_____秒时,以点P 、Q 、E 、F 为顶点的四边形是平行四边形.【答案】3或1【分析】由四边形ABCD 是平行四边形得出:AD ∥BC ,AD=BC ,∠ADB=∠CBD ,又由∠FBM=∠CBM ,即可证得FB=FD ,求出AD 的长,得出CE 的长,设当点P 运动t 秒时,点P 、Q 、E 、F 为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠ADB=∠CBD ,∵∠FBM=∠CBM ,∴∠FBD=∠FDB ,∴FB=FD=12cm ,∵AF=6cm ,∴AD=18cm ,∵点E 是BC 的中点,∴CE=12BC=12AD=9cm , 要使点P 、Q 、E 、F 为顶点的四边形是平行四边形,则PF=EQ 即可,设当点P 运动t 秒时,点P 、Q 、E 、F 为顶点的四边形是平行四边形,根据题意得:6-t=9-2t 或6-t=2t-9,解得:t=3或t=1.故答案为3或1.【点睛】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质以及一元一次方程的应用等知识.注意掌握分类讨论思想的应用是解此题的关键.16.若抛物线23y x x m =-+与x 轴没有交点,则m 的取值范围是__________. 【答案】94m >; 【分析】利用根的判别式△<0列不等式求解即可.【详解】解:∵抛物线23y x x m =-+与x 轴没有交点, ∴2=40b ac ∆-<,即2410m -⨯⨯<(-3), 解得:94m >; 故答案为:94m >. 【点睛】本题考查了抛物线与x 轴的交点问题,利用根的判别式列出不等式是解题的关键.17.若点A(m ,n)是双曲线2y x=与直线3y x =--的交点,则22m n +=_________. 【答案】5【分析】联立两函数解析式求出交点坐标,得出m ,n 的值,即可解决本题. 【详解】解:联立两函数解析式:23⎧=⎪⎨⎪=--⎩y x y x , 解得:1112x y =-⎧⎨=-⎩或2221=-⎧⎨=-⎩x y , 当1,2m n =-=-时,()()2222125+=-+-=m n ,当2,1m n =-=-时,()()2222215+=-+-=m n ,综上,22m n +=5,故答案为5.【点睛】本题是对反比例函数和一次函数的综合考查,熟练掌握反比例函数及解一元二次方程知识是解决本题的关键.18.如图所示的抛物线形拱桥中,当拱顶离水面2m 时,水面宽4m .如果以拱顶为原点建立直角坐标系,且横轴平行于水面,那么拱桥线的解析式为_____.【答案】y =1-2x 1【解析】根据题意以拱顶为原点建立直角坐标系,即可求出解析式.【详解】如图:以拱顶为原点建立直角坐标系,由题意得A (1,−1),C (0,−1),设抛物线的解析式为:y =ax 1把A (1,−1)代入,得 4a =−1,解得a =−12,所以抛物线解析式为y =−12x 1.故答案为:y =−12x 1.【点睛】本题考查了二次函数的应用,解决本题的关键是根据题意建立平面直角坐标系.三、解答题(本题包括8个小题)19.已知,矩形ABCD 中,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O . (1)如图(1),连接AF 、CE .①四边形AFCE 是什么特殊四边形?说明理由;②求AF 的长;(2)如图(2),动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.【答案】(1) ①菱形,理由见解析;②AF =1;(2) 43秒. 【分析】(1)①先证明四边形ABCD 为平行四边形,再根据对角线互相垂直平分的平行四边形是菱形作出判定;②根据勾股定理即可求AF 的长;(2)分情况讨论可知,P 点在BF 上;Q 点在ED 上时;才能构成平行四边形,根据平行四边形的性质列出方程求解即可.【详解】(1)①∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠CAD =∠ACB ,∠AEF =∠CFE .∵EF 垂直平分AC ,∴OA =OC .在△AOE 和△COF 中,CAD ACB AEF CFE A C O O ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AOE ≌△COF(AAS),∴OE =OF(AAS).∵EF ⊥AC ,∴四边形AFCE 为菱形.②设菱形的边长AF =CF =xcm ,则BF =(8﹣x)cm ,在Rt △ABF 中,AB =4cm ,由勾股定理,得16+(8﹣x)2=x 2,解得:x =1,∴AF =1.(2)由作图可以知道,P 点AF 上时,Q 点CD 上,此时A ,C ,P ,Q 四点不可能构成平行四边形; 同理P 点AB 上时,Q 点DE 或CE 上,也不能构成平行四边形.∴只有当P 点在BF 上,Q 点在ED 上时,才能构成平行四边形,∴以A ,C ,P ,Q 四点为顶点的四边形是平行四边形时,∴PC =QA ,∵点P的速度为每秒1cm,点Q的速度为每秒4cm,运动时间为t秒,∴PC=1t,QA=12﹣4t,∴1t=12﹣4t,解得:t=43.∴以A,C,P,Q四点为顶点的四边形是平行四边形时,t=43秒.【点睛】本题考查了矩形的性质的运用,菱形的判定及性质的运用,勾股定理的运用,平行四边形的判定及性质的运用,解答时分析清楚动点在不同的位置所构成的图形的形状是解答本题的关键.20.如图1,⊙O是△ABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B,连接AD.(1)求证:CD是⊙O的切线;(2)若AD⊥CD,AB=10,AD=8,求AC的长;(3)如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出AC、EC、BC之间的数量关系并证明.【答案】(1)见解析;(2)AC的长为5(3)AC=2EC,理由见解析【分析】(1)连接OC,由直径所对圆周角是直角可得∠ACB=90°,由OC=OB得出∠OCB=∠B,由因为∠DCA=∠B,从而可得∠DCA=∠OCB,即可得出∠DCO=90°;(2) 由题意证明△ACD∽△ABC,根据对应边成比例列出等式求出AC即可;(3) 在AC上截取AF使AF=BC,连接EF、BE,通过条件证明△AEF≌△BEC,根据性质推出△EFC为等腰直角三角形,即可证明AC、EC、BC的数量关系.【详解】(1)证明:连接OC,如图1所示:∵AB是⊙O的直径,∴∠ACB=90°,∵OC=OB,∴∠B=∠OCB,∵∠DCA=∠B,∴∠DCA=∠OCB,∴∠DCO=∠DCA+∠OCA=∠OCB+∠OCA=∠ACB=90°,∴CD⊥OC,∴CD是⊙O的切线;(2)解:∵AD⊥CD∴∠ADC=∠ACB=90°又∵∠DCA=∠B∴△ACD∽△ABC∴AC ADAB AC=,即810ACAC=,∴AC=45,即AC的长为45;(3)解:AC=BC+2EC;理由如下:在AC上截取AF使AF=BC,连接EF、BE,如图2所示:∵AB是直径,∴∠ACB =∠AEB =90°,∵∠DAB =45°,∴△AEB 为等腰直角三角形,∴∠EAB =∠EBA =∠ECA =45°,AE =BE ,在△AEF 和△BEC 中,AE BE EAF EBC AF BC =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BEC (SAS ),∴EF =CE ,∠AFE =∠BCE =∠ACB+∠ECA =90°+45°=135°,∴∠EFC =180°﹣∠AFE =180°﹣135°=45°,∴∠EFC =∠ECF =45°,∴△EFC 为等腰直角三角形.∴CF =2EC ,∴AC =AF+CF =BC+2EC .【点睛】本题考查圆与三角形的结合,关键在于牢记基础性质,利用三角形的相似对应边以及三角形的全等进行计算.21.在Rt ABC 中,9030C A D E F ∠︒∠︒=,=,,,分别是AC AB BC ,,的中点,连接ED EF ,. ()1求证:四边形DEFC 是矩形;()2请用无刻度的直尺在图中作出ABC ∠的平分线(保留作图痕迹,不写作法).【答案】(1)证明见解析;(2)作图见解析.【解析】()1首先证明四边形DEFC 是平行四边形,再根据有一个角是直角的平行四边形是矩形即可判断. ()2连接EC DF ,交于点O ,作射线BO 即可.【详解】()1证明:D E F ,,分别是AC AB BC ,,的中点,////DE FC EF CD ∴,,∴四边形DEFC 是平行四边形,90DCF ∠︒=,∴四边形DEFC 是矩形()2连接EC DF ,交于点O ,作射线BO ,射线BO 即为所求.【点睛】本题考查三角形中位线定理,矩形的判定和性质,等边三角形的判定和性质等知识,解题的关键是熟练掌握基本知识.22.如图,反比例函数的图象过点A (2,3).(1)求反比例函数的解析式;(2)过A 点作AC ⊥x 轴,垂足为C .若P 是反比例函数图象上的一点,求当△PAC 的面积等于6时,点P 的坐标.【答案】 (1) y =6x;(2)(1,1),(﹣2,﹣3). 【分析】(1)把点A 的坐标代入反比例函数解析式,列出关于系数m 的方程,通过解方程来求m 的值;(2)设点P 的坐标是(a ,6x),然后根据三角形的面积公式来求点P 的坐标. 【详解】解:(1)设反比例函数为y =m x, ∵反比例函数的图象过点A (2,3).则2m =3,解得m =1. 故该反比例函数的解析式为y =6x; (2)设点P 的坐标是(a ,6x ). ∵A (2,3),∴AC =3,OC =2.∵△PAC 的面积等于1, ∴12×AC×|a ﹣2|=1,解得:|a ﹣2|=4,∴a 1=1,a 2=﹣2,∴点P 的坐标是(1,1),(﹣2,﹣3).【点睛】本题考查了反比例函数的面积问题,涉及的知识点有:待定系数法求函数解析式,坐标和图形性质,以及反比例函数的图像和性质,熟练掌握反比例函数的几何意义是解题的关键23.如图,一次函数1y k x b =+的图象与反比例函数2k y ?x=的图象交于()1,4A ,()4,B m 两点.(1)求一次函数和反比例函数的表达式;(2)直接写出AOB ∆的面积 .【答案】(1)y=﹣x+5,y=4x;(2)152 【分析】(1)由点B 在反比例函数图象上,可求出点B 的坐标,将点A 的坐标代入反比例函数2k y x =即可求出反比例函数解析式;将点A 和点B 的坐标代入一次函数y=k 1x+b 即可求出一次函数解析式;(2)延长AB 交x 轴与点C ,由一次函数解析式可找出点C 的坐标,通过分割图形利用三角形的面积公式即可得出结论; 【详解】⑴解:将A (1,4)代入y=2k x , 得k 2=4,∴该反比例函数的解析式为y=4x, 当x=4时代入该反比例函数解析式可得y=1,即点B 的坐标为(4,1),将A (1,4)B (4,1)代入y=k 1x+b 中,得11414k b k b =+=+⎧⎨⎩, 解得k 1=﹣1,b=5,∴该一次函数的解析式为y=﹣x+5;(2)设直线y=﹣x+5与x 轴交于点C ,如图,当y=0时,−x+5=0,解得:x=5,则C(5,0),∴S△AOB=S△AOC−S△BOC=12×5×4−12×5×1=152.【点睛】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征、三角形的面积公式以及解二元一次方程组,掌握知识点是解题的关键.24.已知关于x的方程x2-(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m-1)2+(3+m)(3-m)+7m-5的值(要求先化简再求值).【答案】(1)证明见解析;(2)2.【解析】试题分析:(1)找出a,b及c,表示出根的判别式,变形后得到其值大于1,即可得证.(2)把x=1代入方程即可求m的值,然后化简代数式再将m的值代入所求的代数式并求值即可.试题解析:(1)∵关于x的一元二次方程x2-(2m+1)x+m(m+1)=1.∴△=(2m+1)2-4m(m+1)=1>1,∴方程总有两个不相等的实数根;(2)∵x=1是此方程的一个根,∴把x=1代入方程中得到m(m+1)=1,∴m=1或m=-1,∵(2m-1)2+(3+m)(3-m)+7m-2=4m2-4m+1+9-m2+7m-2=3m2+3m+2,把m=1代入3m2+3m+2得:3m2+3m+2=2;把m=-1代入3m2+3m+2得:3m2+3m+2=3×1-3+2=2.考点:1.根的判别式;2.一元二次方程的解.25.如图,在长为32m,宽为20m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪,要使道路的面积比草坪面积少4402cm.(1)求草坪面积;(2)求道路的宽.【答案】(1)5402cm ;(2)2m【分析】(1)根据地面的长宽得到地面的面积,再根据草坪面积加道路面积等于地面面积列方程,求解即可得到答案;(2) 设道路的宽为ym ,根据题意列方程求解即可得到答案;【详解】解: (1)设草坪面积为xcm ,得(440)3220x x +-=⨯,解得540x = ,所以,草坪面积为5402cm .(2) 设道路的宽为ym ,原图经过平移转化为图1.因此,根据题意得(32)(20)540y y --=整理得(2)(50)0y y --=解得2x =或50x =(不合题意,舍去)因此,道路的宽为2m .【点睛】考查了一元二次方程、一元一次方程的实际应用应用,对于面积问题应熟记各种图形的面积公式.本题中按原图进行计算比较复杂时,可根据图形的性质适当的进行转换化简,然后根据题意列出方程求解. 26.如图,射线MN 表示一艘轮船的航行路线,从M 到N 的走向为南偏东30°,在M 的南偏东60°方向上有一点A ,A 处到M 处的距离为200海里.(1)求点A 到航线MN 的距离.(2)在航线MN 上有一点B .且23MAB ∠=︒,若轮船沿的速度为50海里/时,求轮船从M 处到B 处所用时间为多少小时.(参考数据:tan 230.424,tan370.754,3 1.732︒≈︒≈≈)【答案】(1)100海里(2)约为1.956小时【分析】(1)过A 作AH ⊥MN 于H .由方向角的定义可知∠QMB=30°,∠QMA=60°,那么∠NMA=∠QMA-∠QMB=30°.解直角△AMH 中,得出AH=12AM ,问题得解; (2)先根据直角三角形两锐角互余求出∠HAM=60°,由∠MAB=15°,得出∠HAB=∠HAM-∠MAB=45°,那么△AHB 是等腰直角三角形,求出BH=AH 距离,然后根据时间=路程÷速度即可求解.【详解】解:(1)如图,过A 作AH MN ⊥于H .∵30,60QMB QMA ∠=︒∠=︒,∴30NMA QMA QMB ∠=∠-∠=︒在直角AMH 中,∵90AHM ∠=︒,30AMH ∠=︒,200AM =海里,∴11002AH AM ==海里. 答:点A 到航线MN 的距离为100海里.(2)在直角AMH 中,90,30AHM AMH ∠=︒∠=︒,由(1)可知1003MH =,∵23MAB ∠=︒∴602337,BH BAN tan BAH AH∠=︒-︒=︒∠=, ∴100310037173.275.497.8BM MH BH tan =-=-⋅︒≈-=,∴轮船从M 处到B 处所用时间约为97.850 1.956÷=小时.答:轮船从M 处到B 处所用时间约为1.956小时.【点睛】本题考查了解直角三角形的应用-方向角问题,含30°角的直角三角形的性质,等腰直角三角形的判定与性质,直角三角形两锐角互余的性质,准确作出辅助线构造直角三角形是解题的关键.27.解方程:x2+2x=1.【答案】x1=﹣,x2=﹣1【解析】利用配方法解一元二次方程即可. 解:∵x2+2x=1,∴x2+2x+1=1+1,∴(x+1)2=2,∴,∴x1=﹣x2=﹣1【详解】请在此输入详解!九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()A.0.845×104亿元B.8.45×103亿元C.8.45×104亿元D.84.5×102亿元【答案】B【解析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).8450一共4位,从而8450=8.45×2.故选B.考点:科学记数法.2.在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,46.则这组数据的中位数为()A.42 B.45 C.46 D.48【答案】C【解析】根据中位数的定义,把8个数据从小到大的顺序依次排列后,求第4,第5位两数的平均数即为本组数据的中位数.【详解】解:把数据由小到大排列为:42,44,45,46,46,46,47,48∴中位数为4646462+=.故答案为:46.【点睛】找中位数的时候一定要先排好大小顺序,再根据奇数个数和偶数个数来确定中位数.如果是奇数个,则正中间的数字即为中位数;如果是偶数个,则找中间两个数的平均数为中位数.先将数据按从小到大顺序排列是求中位数的关键.3.如图,将∠AOB放置在5×5的正方形网格中,则tan∠AOB的值是A.23B.32C213D313【答案】B【解析】分析:认真读图,在以∠AOB 的O 为顶点的直角三角形里求tan ∠AOB 的值:tan ∠AOB=32.故选B . 4.如图,在平面直角坐标系中,将正方形OABC 绕点O 逆时针旋转45°后得到正方形111OA B C .依此方式,绕点O 连续旋转2020次,得到正方形202020202020OA B C ,如果点A 的坐标为()2,0,那么点2020A 的坐标为( )A .()2,0-B .()1,1C .()0,2D .()1,1-【答案】A 【分析】根据图形可知:点B 在以O 为圆心,以OB 为半径的圆上运动,由旋转可知:将正方形OABC 绕点O 逆时针旋转45°后得到正方形OA 1B 1C 1,相当于将线段OB 绕点O 逆时针旋转45°,可得对应点B 的坐标,根据规律发现是8次一循环,可得结论.【详解】解:∵四边形OABC 是正方形,且OA=2,∴A 1(1,1),如图,由旋转得:OA=OA 1=OA 2=OA 3=…2,∵将正方形OABC 绕点O 逆时针旋转45°后得到正方形OA 1B 1C 1,相当于将线段OA 绕点O 逆时针旋转45°,依次得到∠AOA 1=∠A 1OA 2=∠A 2OA 3=…=45°,∴A 1(1,1),A 2(02),A 3(1-,1-),A 4(2-,0)…,发现是8次一循环,所以2020÷8=252 (4)∴点A 2020的坐标为(2-,0);故选:A.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.5.在平面直角坐标系中,将()1,4A -关于x 轴的对称点B 绕原点逆时针旋转90︒得到B ',则点B '的坐标是( )A .()1,4--B .()4,1-C .()41-,D .()4,1--【答案】C【分析】先求出点B 的坐标,再根据旋转图形的性质求得点B '的坐标【详解】由题意,()1,4A -关于x 轴的对称点B 的坐标为(-1,-4),如图所示,点B 绕原点逆时针旋转90︒得到B ',过点B’作x 轴的垂线,垂足为点C则OC=4,B’C=1,所以点B’的坐标为()41-,故答案选:C.【点睛】本题考查平面直角坐标系内图形的旋转,把握旋转图形的性质是解题的关键.6.设A ( x 1 , y 1)、B (x 2 , y 2)是反比例函数 2y x =图象上的两点.若x 1<x 2<0,则y 1与y 2之间的关系是( )A .y 1<y 2<0B .y 2<y 1<0C .y 2>y 1>0D .y 1>y 2>0 【答案】B【解析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x 1<x 1<0即可得出结论.【详解】∵反比例函数2y x=中,k=1>0, ∴函数图象的两个分支位于一、三象限,且在每一象限内y 随x 的增大而减小,∵x1<x1<0,∴0>y1>y1.故选:B【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7.如图所示,河堤横断面迎水坡AB的坡比是1:3,坡高BC=20,则坡面AB的长度()A.60 B.1002C.503D.2010【答案】D【分析】在Rt△ABC中,已知坡面AB的坡比以及铅直高度BC的值,通过解直角三角形即可求出斜面AB 的长.【详解】Rt△ABC中,BC=20,tanA=1:3;∴AC=BC÷tanA=60,∴AB22=+=2010.2060故选:D.【点睛】本题考查了学生对坡度坡角的掌握及三角函数的运用能力,熟练运用勾股定理是解答本题的关键.⨯的正方形网格中,是相似三角形的是()8.如图,在大小为44A.甲和乙B.乙和丙C.甲和丙D.乙和丁【答案】C【分析】分别求得四个三角形三边的长,再根据三角形三边分别成比例的两三角形相似来判定.2210;253;丙中的三角形的三边分别是:2,25丁中的三角形的三边分别是:317,2;只有甲与丙中的三角形的三边成比例:21022225==, ∴甲与丙相似.故选:C .【点睛】 本题主要考查了相似三角形的判定方法、勾股定理等,熟记定理的内容是解题的关键.9.下列四个图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个【答案】B【解析】试题分析:A 选项既是轴对称图形,也是中心对称图形;B 选项中该图形是轴对称图形不是中心对称图形;C 选项中既是中心对称图形又是轴对称图形;D 选项中是中心对称图形又是轴对称图形.故选B .考点: 1.轴对称图形;2.中心对称图形.10.用配方法解方程240x x -=,下列配方正确的是( )A .2(2)0x +=B .2(2)0x -=C .2(2)4x +=D .2(2)4x -=【答案】D【分析】把方程两边都加上4,然后把方程左边写成完全平方形式即可.【详解】∵240x x -=,∴2444x x -+=,∴()224x -=.故选:D .【点睛】本题考查了配方法解一元二次方程,解题时要注意解题步骤的正确应用.①把常数项移到等号的右边;②把二次项的系数化为1;③等式两边同时加上一次项系数一半的平方得出即可.11.如图,PA 、PB 、分别切⊙O 于A 、B 两点,∠P=40°,则∠C 的度数为( )A .40°B .140°C .70°D .80°【答案】C 【分析】连接OA ,OB 根据切线的性质定理,切线垂直于过切点的半径,即可求得∠OAP ,∠OBP 的度数,根据四边形的内角和定理即可求的∠AOB 的度数,然后根据圆周角定理即可求解.【详解】∵PA 是圆的切线,∴90OAP ∠=,同理90OBP ∠=,根据四边形内角和定理可得:360360909040140,AOB OAP OBP P ∠=-∠-∠-∠=---= ∴170.2ACB AOB ∠=∠= 故选:C.【点睛】考查切线的性质以及圆周角定理,连接圆心与切点是解题的关键.12.已知点A (1,a )、点B (b ,2)关于原点对称,则a+b 的值为( )A .3B .-3C .-1D .1 【答案】B【分析】由关于原点对称的两个点的坐标之间的关系直接得出a 、b 的值即可.【详解】∵点A (1,a )、点B (b ,2)关于原点对称,∴a=﹣2,b=﹣1,∴a+b=﹣3.故选B.【点睛】关于原点对称的两个点,它们的横坐标互为相反数,纵坐标也互为相反数.二、填空题(本题包括8个小题)13.如图,小颖周末晚上陪父母在斜江绿道上散步,她由路灯下A 处前进3米到达B 处时,测得影子BC 长的1米,已知小颖的身高1.5米,她若继续往前走3米到达D 处,此时影子DE 长为____米.【答案】2【分析】根据题意可知,本题考查相似三角形性质,根据中心投影的特点和规律以及相似三角形性质,运用相似三角形对应边成比例进行求解.【详解】解:根据题意可知当小颖在BG 处时,CBG CAP △△ ∴BG CB AP CA =,即1.514AP = ∴AP=6 当小颖在DH 处时, EDHEAP △△ ∴DH DE AP AE =,即1.5633DE DE =++ ∴1.596DE DE +=∴DE=2故答案为:2【点睛】本题考查了中心投影的特点和规律以及相似三角形性质的运用,解题关键是运用相似三角形对应边相等. 14.步步高超市某种商品为了去库存,经过两次降价,零售价由100元降为64元.则平均每次降价的百分率是____________.【答案】20%【分析】设平均每次降价的百分率是x ,根据“经过两次降价,零售价由100元降为64元”,列出一元二次方程,求解即可.【详解】设平均每次降价的百分率是x ,根据题意得:100(1﹣x)2=64,解得:x 1=0.2,x 2=1.8(舍去),即平均每次降价的百分率是20%.故答案为:20%.。

2018-2019学年湖北省重点中学九年级(上)期末数学试卷 含答案

2018-2019学年湖北省重点中学九年级(上)期末数学试卷 含答案

2018-2019学年九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是﹣6,常数项是1的方程是()A.3x2+1=6x B.3x2﹣1=6x C.3x2+6x=1D.3x2﹣6x=1 2.(3分)下列图形中,是中心对称图形的是()A.B.C.D.3.(3分)将抛物线y=x2向右平移1个单位长度,再向上平移2个单位长度所得的抛物线解析式为()A.y=(x﹣1)2+2B.y=(x+1)2+2C.y=(x﹣1)2﹣2D.y=(x+1)2﹣2 4.(3分)投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于125.(3分)已知⊙O的半径等于8cm,圆心O到直线l的距离为9cm,则直线l与⊙O的公共点的个数为()A.0B.1C.2D.无法确定6.(3分)如图,“圆材埋壁”是我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何.”用几何语言可表述为:CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为()A.12.5寸B.13寸C.25寸D.26寸7.(3分)假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雌鸟的概率是()A.B.C.D.8.(3分)如图,将半径为1,圆心角为120°的扇形OAB绕点A逆时针旋转一个角度,使点O的对应点D落在弧AB上,点B的对应点为C,连接BC,则图中CD、BC和弧BD 围成的封闭图形面积是()A.﹣B.﹣C.﹣D.﹣9.(3分)欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=.则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长10.(3分)已知抛物线y=ax2+bx+c(a<0)的对称轴为x=﹣1,与x轴的一个交点为(2,0).若于x的一元二次方程ax2+bx+c=p(p>0)有整数根,则p的值有()A.2个B.3个C.4个D.5个二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)已知3是一元二次方程x2=p的一个根,则另一根是.12.(3分)在平面直角坐标系中,点P(﹣1,﹣2)关于原点对称点的坐标是.13.(3分)一个口袋有3个黑球和若干个白球,在不允许将球倒出来的前提下,小明为估计其中的白秋数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,再放回口袋中,…,不断重复上述过程,小明共摸了100次,其中20次摸到黑球.根据上述数据,小明正估计口袋中的白球的个数是.14.(3分)第七届世界军人运动会将于2019年10月18日至27日在中国武汉矩形,小郑幸运获得了一张军运会吉祥物“兵兵”的照片.如图,该照片(中间的矩形)长29cm、宽为20cm,她想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的.为求镜框的宽度,他设镜框的宽度为xcm,依题意列方程,化成一般式为.15.(3分)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.水面下降2.5m,水面宽度增加m.16.(3分)如图,正方形ABCD的边长为4,点E是CD边上一点,连接AE,过点B作BG⊥AE于点G,连接CG并延长交AD于点F,则AF的最大值是.三、解答题(共8题,共72分)17.(8分)解方程:x2﹣3x﹣1=0.18.(8分)如图,A、B、C、D是⊙O上四点,且AD=CB,求证:AB=CD.19.(8分)武汉的早点种类丰富,品种繁多,某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A、B、C、D);乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E、F、G、H),共八种美食.小童和小郑同时去品尝美食,小童准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A、B、E、F)这四种美食中选择一种,小郑准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C、D、G、H)这四种美食中选择一种,用列举法求小童和小郑同时选择的美食都会甲类食品的概率.20.(8分)如图,在边长为1的正方形网格中,A(1,7)、B(5,5)、C(7,5)、D(5,1).(1)将线段AB绕点B逆时针旋转,得到对应线段BE.当BE与CD第一次平行时,画出点A运动的路径,并直接写出点A运动的路径长;(2)线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标.21.(8分)如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆.(1)如图1,求证:AD是⊙O的切线;(2)如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G.①求证:AG=BG;②若AD=2,CD=3,求FG的长.22.(10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系,并且当x=25时,y=550;当x=30时,y=500.物价部门规定,该商品的销售单价不能超过48元/件.(1)求出y与x的函数关系式;(2)问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元?(3)直接写出商家销售该商品每天获得的最大利润.23.(10分)如图,等边△ABC与等腰三角形△EDC有公共顶点C,其中∠EDC=120°,AB=CE=2,连接BE,P为BE的中点,连接PD、AD(1)为了研究线段AD与PD的数量关系,将图1中的△EDC绕点C旋转一个适当的角度,使CE与CA重合,如图2,请直接写出AD与PD的数量关系;(2)如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)如图3,若∠ACD=45°,求△P AD的面积.24.(12分)如图,在平面直角坐标系中,抛物线y=x2+(1﹣m)x﹣m交x轴于A、B两点(点A在点B的左边),交y轴负半轴于点C(1)如图1,m=3.①直接写出A、B、C三点的坐标.②若抛物线上有一点D,∠ACD=45°,求点D的坐标.(2)如图2,过点E(m,2)作一直线交抛物线于P、Q两点,连接AP、AQ,分别交y 轴于M、N两点,求证:OM•ON是一个定值.参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【解答】解:3x2﹣6x+1=0,其二次项系数是3,一次项系数是﹣6,常数项是1,故选:A.2.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意;故选:C.3.【解答】解:将抛物线y=x2向右平移1个单位长度,再向上平移+2个单位长度所得的抛物线解析式为y=(x﹣1)2+2.故选:A.4.【解答】解:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.5.【解答】解:∵⊙O的半径等于8cm,圆心O到直线l的距离为9cm,即圆心O到直线l的距离大于圆的半径,∴直线l和⊙O相离,∴直线l与⊙O没有公共点.故选:A.6.【解答】解:设直径CD的长为2x,则半径OC=x,∵CD为⊙O的直径,弦AB⊥CD于E,AB=10寸,∴AE=BE=AB=×10=5寸,连接OA,则OA=x寸,根据勾股定理得x2=52+(x﹣1)2,解得x=13,CD=2x=2×13=26(寸).故选:D.7.【解答】解:画树状图,如图所示:所有等可能的情况数有8种,其中三只雏鸟中恰有两只雌鸟的情况数有3种,则P=.故选:B.8.【解答】解:如图,连接OD.由题意:OA=OD=AD,∴△AOD是等边三角形,∴∠ADO=∠AOD=60°,∵∠ADC=∠AOB=120°,∴∠ADO+∠ADC=180°,∴O,D,C共线,∴图中CD、BC和弧BD围成的封闭图形面积=S△OBC﹣S扇形ODB=×1×﹣=﹣,故选:B.9.【解答】解:欧几里得的《原本》记载,形如x2+ax=b2的方程的图解法是:画Rt△ABC,使∠ACB=90°,BC=,AC=b,再在斜边AB上截取BD=,设AD=x,根据勾股定理得:(x+)2=b2+()2,整理得:x2+ax=b2,则该方程的一个正根是AD的长,故选:B.10.【解答】解:∵抛物线y=ax2+bx+c(a<0)的对称轴为x=﹣1∴﹣=﹣1,解得b=2a.又∵抛物线y=ax2+bx+c(a<0)与x轴的一个交点为(2,0).把(2,0)代入y=ax2+bx+c得,0=4a+4a+c解得,c=﹣8a.∴y=ax2+2ax﹣8a(a<0)对称轴h=﹣1,最大值k==﹣9a如图所示,顶点坐标为(﹣1,﹣9a)令ax2+2ax﹣8a=0即x+2x﹣8=0解得x=﹣4或x=2∴当a<0时,抛物线始终与x轴交于(﹣4,0)与(2,0)∴ax2+bx+c=p即常函数直线y=p,由p>0∴0<y≤﹣9a由图象得当0<y≤﹣9a时,﹣4<x<2,其中x为整数时,x=﹣3,﹣2,﹣1,0,1∴一元二次方程ax2+bx+c=p(p>0)的整数解有5个.又∵x=﹣3与x=1,x=﹣2与x=0关于直线x=﹣1轴对称当x=﹣1时,直线y=p恰好过抛物线顶点.所以p值可以有3个.故选:B.二、填空题(本大题共6个小题,每小题3分,共18分)11.【解答】解:把x=3代入x2=p,得p=32=9.则原方程为x2=9,即x2﹣9=0.设方程的另一根为x,则3x=﹣9.所以x=﹣3.故答案是:﹣3.12.【解答】解:点(﹣1,﹣2)关于原点对称的点的坐标是(1,2).故答案为:(1,2).13.【解答】解:3÷=12(个).故答案为:12.14.【解答】解:根据题意可得:2(29+2x)•x+20x•2=20×29×,整理得:4x2+98x﹣145=0.故答案是:4x2+98x﹣145=0.15.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C 点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降2米,通过抛物线在图上的观察可转化为:当y=﹣2时,对应的抛物线上两点之间的距离,也就是直线y=﹣2与抛物线相交的两点之间的距离,可以通过把y=﹣2代入抛物线解析式得出:﹣2.5=﹣0.5x2+2,解得:x=±3,所以水面宽度增加到6米,比原先的宽度当然是增加了6﹣4=2米,故答案为:2.16.【解答】解:以AB为直径作圆,因为∠AGB=90°,所以G点在圆上.当CF与圆相切时,AF最大.此时F A=FG,BC=CG.设AF=x,则DF=4﹣x,FC=4+x,在Rt△DFC中,利用勾股定理可得:42+(4﹣x)2=(4+x)2,解得x=1.故答案为1.三、解答题(共8题,共72分)17.【解答】解:∵a=1,b=﹣3,c=﹣1,∴b2﹣4ac=(﹣3)2﹣4×1×(﹣1)=13,∴x1=,x2=.18.【解答】证明:∵AD=CB,∴=,∴+=+,即=,∴AB=CD.19.【解答】解:根据题意画树状图如下:由树状图可知,所有可能出现的结果共有16种,并且这些结果出现的可能性相等,小童和小郑同时选择的美食都会甲类食品的结果共有4种,则小童和小郑同时选择的美食都会甲类食品的概率是=.20.【解答】解:(1)点A运动的路径如图所示,出点A运动的路径长为=;(2)如图所示,旋转中心P的坐标为(3,3)或(6,6).21.【解答】(1)证明:如图1,连接OA,OB,OC.在△OAC和△OAB中,,∴△OAC≌△OAB(SSS),∴∠OAC=∠OAB,∴AO平分∠BAC,∴AO⊥BC.又∵AD∥BC,∴AD⊥AO,∴AD是⊙O的切线.(2)①证明:如图2,连接AE.∵∠BCE=90°,∴∠BAE=90°.又∵AF⊥BE,∴∠AFB=90°.∵∠BAG+∠EAF=∠AEB+∠EAF=90°,∴∠BAG=∠AEB.∵∠ABC=∠ACB=∠AEB,∴∠BAG=∠ABC,∴AG=BG.②解:在△ADC和△AFB中,,∴△ADC≌△AFB(AAS),∴AF=AD=2,BF=CD=3.设FG=x,在Rt△BFG中,FG=x,BF=3,BG=AG=x+2,∴FG2+BF2=BG2,即x2+32=(x+2)2,∴x=,∴FG=.22.【解答】解:(1)设y=kx+b,根据题意可得,解得:,则y=﹣10x+800;(2)根据题意,得:(x﹣20)(﹣10x+800)=8000,整理,得:x2﹣100x+2400=0,解得:x1=40,x2=60,∵销售单价最高不能超过48元/件,∴x=40,答:销售单价定为40元/件时,工艺厂试销该工艺品每天获得的利润8000元;(3)利润w=(x﹣20)(﹣10x+800)=﹣10(x﹣80)(x﹣20),∵﹣10<0,故w有最大值,当x=50时,w最大值为9000.23.【解答】解:(1)如图2中,由题意:在Rt△APD中,∠APD=90°,∠P AD=30°,∴AD=2PD.(2)结论成立.理由:如图1中,延长ED到F,使得DF=DE,连接BF,CF.∵BP=EP,DE=DF,∴BF=2PD,BF∥PD,∵∠EDC=120°,∴∠FDC=60°,∵DF=DE=DC,∴△DFC是等边三角形,∵CB=CA,∠BCA=∠DCF=60°,∴∠BCF=∠ACD,∵CF=CD,∴△BCF≌△ACD(SAS),∴BF=AD,∴AD=2PD.(3)如图1中,延长BF交AD于G,由(2)得到∠FBC=∠DAC,∴∠AGB=∠ACB=60°,∵DP∥BG,∴∠ADP=∠AGB=60°,如图3中,作DM⊥AC于M,PN∠AD于N.在等腰△CDE中,∵CE=2,∠CDE=120°,∴CD=DE=2,∵∠ACD=45°,∴CM=DM=2.AM=2﹣2,在Rt△ADM中,AD2=(2﹣2)2+22=32﹣8.在Rt△P AD中,S△P AD=•AD•PN=AD2=4﹣3.24.【解答】解:(1)①当m=3时,y=x2﹣2x﹣3,当x=0时,y=﹣3,当y=0时,x2﹣2x﹣3=0,解得:x=﹣1或x=3,∴A(﹣1,0),B(3,0),C(0,﹣3)②如图1,过A作AK⊥AC交CD于点K,作KH⊥x轴于点H,∵∠ACD=45°,∴AC=AK,∵∠AOC=∠KHA=90°,∠ACO=90°﹣∠OAC=∠KAH,∴△OAC≌△HKA(AAS),∴AH=CO=3,KH=OA=1,∴K(2,1),设直线CD的解析式为y=kx﹣3∴2k﹣3=1,∴k=2,∴设直线CD的解析式为y=2x﹣3,联立,解得x=0(舍去),或x=4,∴D(4,5)(2)∵y=x2+(1﹣m)x﹣m,当y=0时,x2+(1﹣m)x﹣m=0,解得x=﹣1或x=m,∴A(﹣1,0),B(m,0),∵过点E(m,2)作一直线交抛物线于P、Q两点,设直线PQ的解析式为y=ax+b,P(x1,y1),Q(x2,y2),∴2=am+b,b=2﹣am,∴直线PQ的解析式为y=ax+2﹣am,联立,消去y,得:x2+(1﹣m﹣a)x+am﹣m+2=0,∴x1+x2=a+m﹣1,x1•x2=am﹣m﹣2,如图2,作PS⊥x轴于点S,作QT⊥x轴于点T,则△AMO∽△APS,∴,即∴OM=x1﹣m,同理,ON=﹣(x2﹣m),∴OM•ON=﹣(x1﹣m)(x2﹣m)==﹣[am﹣m﹣2﹣m(a+m ﹣1)+m2]=2,为定值.。

精品湖北省武汉市江夏区2018届精品九年级上期末模拟数学试卷(含答案)

精品湖北省武汉市江夏区2018届精品九年级上期末模拟数学试卷(含答案)

2019-2020学年湖北省武汉市江夏区九年级(上)期末模拟数学试卷一、填空题(共8题;共24分)1.在分别写有﹣1,0,1,2的四张卡片中随机抽取一张,所抽取的数字平方后等于1的概率为 ________.2.把方程2x2﹣1=x(x+3)化成一般形式是________.3.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:则抛物线的对称轴是________.4.如图,以点P(2,0)为圆心,为半径作圆,点M(a,b)是⊙P上的一点,则的最大值是________ .5.如图,在⊙O中,直径AB∥弦CD,若∠COD=110°,则的度数为 ________6.已知⊙A的半径是2,如果B是⊙A外一点,那么线段AB长度的取值范围是________.7.若A(1,2),B(3,﹣3),C(x,y)三点可以确定一个圆,则x、y需要满足的条件是________8.关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,则a的值是________.二、选择题(共10题;共30分)9. 用配方法解方程x2-4x+2=0,下列配方正确的是()A. (x-2)2=2B. (x+2)2=2C. (x-2)2=-2D. (x-2)2=610.如图,点P在以AB为直径的半圆内,连接AP、BP,并延长分别交半圆于点C、D,连接AD、BC并延长交于点F,作直线PF,下列说法一定正确的是()①A C垂直平分BF;②AC平分∠BAF;③FP⊥AB;④BD⊥AF.A. ①③B. ①④C. ②④D. ③④11.方程的根是()A. B. C. D.12.下列图形中是中心对称图形的是()A. 正三角形B. 正方形C. 等腰梯形D. 正五边形13.下列说法中,不正确的是()A. 与圆只有一个交点的直线是圆的切线B. 经过半径的外端,且垂直于这条半径的直线是圆的切线C. 与圆心的距离等于这个圆的半径的直线是圆的切线D. 垂直于半径的直线是圆的切线14.下列命题正确的是()A. 三点可以确定一个圆B. 以定点为圆心, 定长为半径可确定一个圆C. 顶点在圆上的三角形叫圆的外接三角形D. 等腰三角形的外心一定在这个三角形内15.一元二次方程x2﹣4x+3=0的根是()A. ﹣1B. ﹣3C. 1和3D. ﹣1和﹣316.如图,从圆O外一点P引圆O的两条切线PA,PB,切点分别为A,B.如果∠APB=60°,PA=8,那么弦AB 的长是()A. 4B. 8C. 4D. 817.某厂前年缴税30万元,今年缴税36.3万元,若该厂缴税的年平均增长率为x,则可列方程()A. 0x2=36.3B. 30(1-x)2=36.3C. 30+30(1+x)+30(1+x)2=36.3D. 30(1+x)2=36.318.已知反比例函数y= 的图象经过点P(﹣1,2),则这个函数的图象位于()A. 第一、三象限B. 第二、三象限C. 第二、四象限D. 第三、四象限三、解答题(共6题;共36分)19.一个口袋里有若干个白球,没有其他颜色的球,而且不许将球倒出来数,那么你该如何来估计出其中的白球数呢?试设计出两种不同的方案.20.解方程:x2-3x+2=021.解方程:(1)2x2+x﹣3=0(用公式法)(2)(x﹣1)(x+3)=12.22.已知如图所示,A,B,C是⊙O上三点,∠AOB=120°,C是的中点,试判断四边形OACB形状,并说明理由.23.解方程:x2﹣3x+1=0.24.2017•通辽)小兰和小颖用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形,转动两个转盘各一次,若两次指针所指数字之和小于4,则小兰胜,否则小颖胜(指针指在分界线时重转),这个游戏对双方公平吗?请用树状图或列表法说明理由.四、综合题(共10分)25.如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ 的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2 DQ,求点F的坐标.2019-2020学年湖北省武汉市江夏区九年级(上)期末模拟数学试卷参考答案与试题解析一、填空题1.【答案】【考点】概率公式【解析】【解答】解:因为﹣1,0,1,2的四张卡片中随机抽取一张,所抽取的数字平方后等于1有2张,所以所抽取的数字平方后等于1的概率为=,故答案为:【分析】让所抽取的数字平方后等于1的卡片数除以总卡片数即为所求的概率,即可选出.2.【答案】x2﹣3x﹣1=0【考点】一元二次方程的定义【解析】【解答】解:2x2﹣1=x(x+3)2x2﹣1=x2+3x,则2x2﹣x2﹣3x﹣1=0,故x2﹣3x﹣1=0.故答案为:x2﹣3x﹣1=0.【分析】直接去括号,进而移项合并同类项进而得出答案.3.【答案】x=【考点】二次函数的性质【解析】【解答】解:由抛物线过(0,6)、(1,6)两点知:抛物线的对称轴为x= = .故答案为:x= .【分析】首先找出纵坐标相等的两个点,可根据这两个点的横坐标判断出抛物线的对称轴.4.【答案】【考点】切线的性质【解析】【解答】解:当有最大值时,即tan∠MOP有最大值,也就是当OM与圆相切时,tan∠MOP有最大值,此时tan∠MOP=,在Rt△OMP中,由勾股定理得:OM===1,则tan∠MOP====,故答案为:.【分析】当有最大值时,得出tan∠MOP有最大值,推出当OM与圆相切时,tan∠MOP有最大值,根据解直角三角形得出tan∠MOP=,由勾股定理求出OM,代入求出即可.5.【答案】35°【考点】圆心角、弧、弦的关系【解析】【解答】解:∵OC=OD,∴∠C=∠D,∴∠C=(180°﹣∠COD)=×(180°﹣110°)=35°,∵CD∥AB,∴∠AOC=∠C=35°,∴的度数为35°.故答案为35°.【分析】先根据等腰三角形的性质和三角形内角和定理计算出∠C=35°,再根据平行线的性质∠AOC=∠C=35°,然后根据圆心角的度数等于它所对弧的度数求解.6.【答案】AB>2【考点】点与圆的位置关系【解析】【解答】解:∵⊙A的半径是2,B是⊙A外一点,∴线段AB长度的取值范围是AB>2.故答案为:AB>2.【分析】根据点P在圆外⇔d>r,可得线段AB长度的取值范围是AB>2.7.【答案】5x+2y≠9【考点】确定圆的条件【解析】【解答】解:设直线AB的解析式为y=kx+b,∵A(1,2),B(3,﹣3),∴,解得:k=﹣,b=,∴直线AB的解析式为y=﹣x+,∵点A(1,2),B(3,﹣3),C(x,y)三点可以确定一个圆时,∴点C不在直线AB上,∴5x+2y≠9,故答案为:5x+2y≠9.【分析】能确定一个圆就是不在同一直线上,首先确定直线AB的解析式,然后点C不满足求得的直线即可;8.【答案】﹣1【考点】一元二次方程的解【解析】【解答】∵关于x的一元二次方程(a﹣1)x2+x+(a2﹣1)=0的一个根是0,∴a2﹣1=0,且a﹣1≠0.∴a=﹣1.故答案是:﹣1.【分析】将x=0代入一元二次方程,得a2﹣1=0,且a﹣1≠0,由此即可得出答案.二、单选题9.【答案】A【考点】解一元二次方程-配方法【解析】【分析】在本题中,把常数项2移项后,应该在左右两边同时加上一次项系数-4的一半的平方.【解答】把方程x2-4x+2=0的常数项移到等号的右边,得到x2-4x=-2,方程两边同时加上一次项系数一半的平方,得到x2-4x+4=-2+4,配方得(x-2)2=2.故选:A.10.【答案】D【考点】圆周角定理【解析】【解答】证明:①∵AB为直径,∴∠ACB=90°,∴AC垂直BF,但不能得出AC平分BF,故①错误,②如图1,连结CD,∵AB为直径,∴∠ADB=90°,∴∠BDF=90°,假设AC平分∠BAF成立,则有DC=BC,∴在RT△FDB中,DC=BC=FC,∴AC⊥BF,且平分BF,∴AC垂直BF,但不能得出AC平分BF,与①中的AC垂直BF,但不能得出AC平分BF相矛盾,故②错误,③如图2:∵AB为直径,∴∠ACB=90°,∠ADB=90°,∴D、P、C、F四点共圆,∴∠CFP和∠CDB都对应,∴∠CFP=∠CDB,∵∠CDB=∠CAB,∴∠CFP=∠CAB,又∵∠FPC=∠APM,∴△AMP∽△FCP,∠ACF=90°,∴∠AMP=90°,∴FP⊥AB,故③正确,④∵AB为直径,∴∠ADB=90°,∴BD⊥AF.故④正确,综上所述只有③④正确.故选:D.【分析】①AB为直径,所以∠ACB=90°,就是AC垂直BF,但不能得出AC平分BF,故错,②只有当FP通过圆心时,才平分,所以FP不通过圆心时,不能证得AC平分∠BAF,③先证出D、P、C、F四点共圆,再利用△AMP ∽△FCP,得出结论.④直径所对的圆周角是直角.11.【答案】D【考点】解一元二次方程-因式分解法【解析】【分析】原方程可化为x2-3x=0,x(x-3)=0,x=0或x-3=0,解得:x1=0,x2=3.故选D.12.【答案】B【考点】中心对称及中心对称图形【解析】【解答】解:正三角形是轴对称图形,不是中心对称图形,正方形是中心对称图形,等腰梯形是轴对称图形,不是中心对称图形,正五边形是轴对称图形,不是中心对称图形,故选B.【分析】根据中心对称图形的定义可以判断哪个图形是中心对称图形,本题得以解决.13.【答案】D【考点】切线的判定【解析】【解答】解:A、与圆只有一个交点的直线是圆的切线这是切线的定义同时也是切线的一种判定方法,故本选项说法是正确的;B、经过半径的外端,且垂直于这条半径的直线是圆的切线是切线的判定定理,故本选项说法是正确的;C、与圆心的距离等于这个圆的半径的直线是圆的切线即d=r,故本选项说法是正确的;D、垂直于半径的直线是圆的切线也有可能是圆的割线,故本选项说法是不正确的;故选D.【分析】根据切线的判定方法逐项分析即可.14.【答案】B【考点】确定圆的条件,三角形的外接圆与外心【解析】A:不在同一条直线上的三点可以确定一个圆,所以A错误;B:根据圆的定义知道B正确;C:三个顶点都在圆上的三角形叫圆的外接三角形,所以C错误;D:当的等腰三角形是锐角三角形时外心在内部,如果是等腰直角三角形,外心在斜边上,如果是钝角直角三角形外心在外部,所以D错误;故选B。

[试卷合集3套]湖北省名校2018年九年级上学期期末复习检测数学试题

[试卷合集3套]湖北省名校2018年九年级上学期期末复习检测数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.若圆锥的底面半径为2,母线长为5,则圆锥的侧面积为()A.5πB.10πC.20πD.40π【答案】B【分析】利用圆锥面积=Rr计算.【详解】Rr=2510,故选:B.【点睛】此题考查圆锥的侧面积公式,共有三个公式计算圆锥的面积,做题时依据所给的条件恰当选择即可解答. 2.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sinA=35B.cosA=35C.tanA=35D.cosA=45【答案】B【分析】利用勾股数求出BC=4,根据锐角三角函数的定义,分别计算∠A的三角函数值即可.【详解】解:如图所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sinA=45,故A错误;cosA=35,故B正确;tanA=43,故C错误;cosA=35,故D错误;故选:B.【点睛】本题考查了锐角三角函数的定义,勾股数的应用,掌握锐角三角函数的定义是解题的关键.3.某市为了改善城市容貌,绿化环境,计划过两年时间,绿地面积增加44%,这两年平均每年绿地面积的增长率是( )A.19%B.20%C.21%D.22%【答案】B【解析】试题分析:设这两年平均每年绿地面积的增长率是x ,则过一年时间的绿地面积为1+x ,过两年时间的绿地面积为(1+x )2,根据绿地面积增加44%即可列方程求解.设这两年平均每年绿地面积的增长率是x ,由题意得(1+x )2=1+44%解得x 1=0.2,x 2=-2.2(舍)故选B.考点:一元二次方程的应用点评:提升对实际问题的理解能力是数学学习的指导思想,因而此类问题是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.4.二次函数y=ax 2+bx+c 的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b 与反比例函数y=c x在同一平面直角坐标系中的图象可能是( )A .B .C .D .【答案】C【解析】试题分析:∵二次函数图象开口方向向下,∴a <0,∵对称轴为直线2b x a=->0,∴b >0,∵与y 轴的正半轴相交,∴c >0,∴y ax b =+的图象经过第一、二、四象限,反比例函数c y x=图象在第一三象限,只有C 选项图象符合.故选C .考点:1.二次函数的图象;2.一次函数的图象;3.反比例函数的图象.5.如图,已知⊙O 的内接正六边形ABCDEF 的边长为6,则弧BC 的长为( )A .2πB .3πC .4πD .π【答案】A 【分析】连接OC 、OB ,求出圆心角∠AOB 的度数,再利用弧长公式解答即可.【详解】解:连接OC 、OB∵六边形ABCDEF 为正六边形,∴∠COB =13606︒⨯=60°, ∵OA=OB∴△OBC 是等边三角形,∴OB =OC =BC =6,弧BC 的长为:6062180ππ⨯= . 故选:A .【点睛】此题考查了扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质,解题的关键是掌握扇形的弧长公式.6.如图,AB 是半圆O 的直径,半径OC ⊥AB 于O ,AD 平分∠CAB 交BC 于点D ,连接CD ,OD ,BD .下列结论中正确的是( )A .AC ∥ODB .CE OE =C .△ODE ∽△ADOD .2AC CD =【答案】A【分析】A.根据等腰三角形的性质和角平分线的性质,利用等量代换求证∠CAD=∠ADO即可;B.过点E作EF⊥AC,根据角平分线上的点到角的两边的距离相等可得OE=EF,再根据直角三角形斜边大于直角边可证;C.两三角形中,只有一个公共角的度数相等,其它两角不相等,所以不能证明③△ODE∽△ADO;D.根据角平分线的性质得出∠CAD=∠BAD,根据在同圆或等圆中,相等的圆周角所对的弦相等,可得CD=BD,又因为CD+BD>BC,又由AC=BC可得AC<2CD,从而可判断D错误.【详解】解:解:A.∵AB是半圆直径,∴AO=OD,∴∠OAD=∠ADO,∵AD平分∠CAB交弧BC于点D,∴∠CAD=∠DAO=12∠CAB,∴∠CAD=∠ADO,∴AC∥OD,∴A正确.B.如图,过点E作EF⊥AC,∵OC⊥AB,AD平分∠CAB交弧BC于点D,∴OE=EF,在Rt△EFC中,CE>EF,∴CE>OE,∴B错误.C.∵在△ODE和△ADO中,只有∠ADO=∠EDO,∵∠COD=2∠CAD=2∠OAD,∴∠DOE≠∠DAO,∴不能证明△ODE和△ADO相似,∴C错误;D.∵AD平分∠CAB交BC于点D,∴∠CAD=∠BAD.∴CD=BD∴BC<CD+BD=2CD,∵半径OC⊥AB于O,∴AC=BC,∴AC<2CD,∴D错误.故选A.【点睛】本题主要考查相似三角形的判定与性质,圆心角、弧、弦的关系,圆周角定理,等腰三角形的性质,三角形内角和定理等知识点的灵活运用,此题步骤繁琐,但相对而言,难易程度适中,很适合学生的训练.7.下列说法正确的个数是()①相等的弦所对的弧相等;②相等的弦所对的圆心角相等;③长度相等的弧是等弧;④相等的弦所对的圆周角相等;⑤圆周角越大所对的弧越长;⑥等弧所对的圆心角相等;A.1个B.2个C.3个D.4个【答案】A【分析】根据圆的相关知识和性质对每个选项进行判断,即可得到答案.【详解】解:在同圆或等圆中,相等的弦所对的弧相等;故①错误;在同圆或等圆中,相等的弦所对的圆心角相等;故②错误;在同圆或等圆中,长度相等的弧是等弧;故③错误;在同圆或等圆中,相等的弦所对的圆周角相等;故④错误;在同圆或等圆中,圆周角越大所对的弧越长;故⑤错误;等弧所对的圆心角相等;故⑥正确;∴说法正确的有1个;故选:A.【点睛】本题考查了弧,弦,圆心角,圆周角定理,要求学生对基本的概念定理有透彻的理解,解题的关键是熟练掌握所学性质定理.8.反比例函数y=kx图象经过A(1,2),B(n,﹣2)两点,则n=()A.1 B.3 C.﹣1 D.﹣3【答案】C【解析】根据反比例函数图象上点的坐标特征得到:k=1×2=-2n,然后解方程即可.【详解】解:∵反比例函数y=kx图象经过A(1,2),B(n,﹣2)两点,∴k=1×2=﹣2n.解得n=﹣1.故选C .【点睛】本题考查反比例函数图象上点的坐标特征.图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k . 9.把多项式241a -分解因式,结果正确的是( )A .()()4141a a +-B .()()2121a a +-C .()21a -D .()221a + 【答案】B【分析】如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.平方差公式:22a b a b a b +﹣=()(﹣);完全平方公式:2222a ab b a b ±+±=() ; 【详解】解:2412121a a a +﹣=()(﹣), 故选B .【点睛】本题考查了分解因式,熟练运用平方差公式是解题的关键10.下列关于x 的方程是一元二次方程的有( )①ax 2+bx+c=0 ②x 2=0 ③21110234x x +-= ④21x x = A .②和③B .①和②C .③和④D .①和④ 【答案】A【解析】根据一元二次方程的定义进行解答即可.【详解】①ax 2+bx+c=0,当a=0时,该方程不是一元二次方程;②x 2=0符合一元二次方程的定义; ③21110234x x +-=符合一元二次方程的定义; ④21x x =是分式方程. 综上所述,其中一元二次方程的是②和③.故选A .【点睛】本题考查了一元二次方程的定义,利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.11.下列四个函数图象中,当x >0时,函数值y 随自变量x 的增大而减小的是( )A.B.C.D.【答案】C【分析】直接根据图象判断,当x>0时,从左到右图象是下降的趋势的即为正确选项.【详解】A、当x>0时,y随x的增大而增大,错误;B、当x>0时,y随x的增大而增大,错误;C、当x>0时,y随x的增大而减小,正确;D、当x>0时,y随x的增大先减小而后增大,错误;故选:C.【点睛】本题主要考查根据函数图象判断增减性,掌握函数的图象和性质是解题的关键.12.下列事件中,属于必然事件的是()A.小明买彩票中奖B.投掷一枚质地均匀的骰子,掷得的点数是奇数a<C.等腰三角形的两个底角相等D.a是实数,0【答案】C【分析】由题意根据事件发生的可能性大小判断相应事件的类型即可判断选项.【详解】解:A. 小明买彩票中奖,是随机事件;B. 投掷一枚质地均匀的骰子,掷得的点数是奇数,是随机事件;C. 等腰三角形的两个底角相等,是必然事件;a<,是不可能事件;D. a是实数,0故选C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题(本题包括8个小题)13.如图,将面积为2的矩形ABCD沿对角线BD折叠,点A的对应点为点P,连接AP交BC于点E.若2,则AP的长为_____.【答案】1623 【解析】设AB=a ,AD=b ,则ab=322,构建方程组求出a 、b 值即可解决问题.【详解】设AB=a ,AD=b ,则ab=322,由ABE ∽DAB 可得:BE AB AB AD=, ∴22b a =, ∴3a 64=,∴a 4=,b 82=,设PA 交BD 于O ,在Rt ABD 中,22BD AB AD 12=+=, ∴AB AD 82OP OA BD ⋅=== ∴16AP 23= 1623【点睛】本题考查翻折变换、矩形的性质、勾股定理、相似三角形的判定与性质等知识,熟练掌握和应用相关的性质定理是解题的关键.14.请写出一个符合以下两个条件的反比例函数的表达式:___________________.①图象位于第二、四象限;②如果过图象上任意一点A 作AB ⊥x 轴于点B ,作AC ⊥y 轴于点C ,那么得到的矩形ABOC 的面积小于1.【答案】5y x=-,答案不唯一【解析】设反比例函数解析式为y=k x , 根据题意得k<0,|k|<1, 当k 取−5时,反比例函数解析式为y=−5x . 故答案为y=−5x.答案不唯一. 15.如图,网格中的四个格点组成菱形ABCD ,则tan ∠DBC 的值为___________ .【答案】3【解析】试题分析:如图,连接AC 与BD 相交于点O ,∵四边形ABCD 是菱形,∴AC ⊥BD ,BO=12BD ,CO=12AC ,由勾股定理得,AC=2233+=32,BD=2211+=2,所以,BO=122⨯=22,CO=1322⨯=322,所以,tan ∠DBC=CO BO =3222=3.故答案为3.考点:3.菱形的性质;3.解直角三角形;3.网格型.16.已知两个相似三角形的周长比是1:3,它们的面积比是________.【答案】1:9【解析】根据相似三角形的性质直接解答即可.解:∵两个相似三角形的周长比是1:3,∴它们的面积比是21139=(),即1:1. 故答案为1:1. 本题考查的是相似三角形的性质,即相似三角形(多边形)的周长的比等于相似比;面积的比等于相似比的平方.17.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x … -1 0 1 2 3 4 …下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,;④=3m -.其中,正确的有___________________.【答案】①③.【解析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax 2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x 轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1; ∴①抛物线y =ax 2+bx+c (a≠0)的顶点为(2,-3),结论正确;②b 2﹣4ac =0,结论错误,应该是b 2﹣4ac>0;③关于x 的方程ax 2+bx+c =﹣2的解为x 1=1,x 2=3,结论正确;④m =﹣3,结论错误,∴其中,正确的有. ①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.18.在一个不透明的袋中有2个红球,若干个白球,它们除颜色外其它都相同,若随机从袋中摸出一个球,摸到红球的概率是14,则袋中有白球_________个. 【答案】6【分析】根据概率公式结合取出红球的概率即可求出袋中球的总个数.【详解】解:设袋中有x 个球.根据题意得214x =, 解得x=8(个),8-2=6个,∴袋中有8个白球.故答案为:6.【点睛】此题考查了概率的计算方法,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n. 三、解答题(本题包括8个小题)19.如图1,抛物线y=-x 2+bx +c 的顶点为Q ,与x 轴交于A (-1,0)、B(5,0)两点,与y 轴交于点C .(1)求抛物线的解析式及其顶点Q 的坐标;(2)在该抛物线的对称轴上求一点P ,使得△PAC 的周长最小,请在图中画出点P 的位置,并求点P 的坐标;(3)如图2,若点D 是第一象限抛物线上的一个动点,过D 作DE ⊥x 轴,垂足为E .①有一个同学说:“在第一象限抛物线上的所有点中,抛物线的顶点Q 与x 轴相距最远,所以当点D 运动至点Q 时,折线D -E -O 的长度最长”,这个同学的说法正确吗?请说明理由.②若DE 与直线BC 交于点F .试探究:四边形DCEB 能否为平行四边形?若能,请直接写出点D 的坐标;若不能,请简要说明理由.【答案】(1)y-(x-2)2+9,Q (2,9);(2)(2,3);作图见解析;(3)①不正确,理由见解析;②不能,理由见解析.【分析】(1)将A (-1,0)、B (1,0)分别代入y=-x 2+bx+c 中即可确定b 、c 的值,然后配方后即可确定其顶点坐标;(2)连接BC ,交对称轴于点P ,连接AP 、AC .求得C 点的坐标后然后确定直线BC 的解析式,最后求得其与x=2与直线BC 的交点坐标即为点P 的坐标;(3)①设D (t ,-t 2+4t+1),设折线D-E-O 的长度为L ,求得L 的最大值后与当点D 与Q 重合时L=9+2=11<454相比较即可得到答案; ②假设四边形DCEB 为平行四边形,则可得到EF=DF ,CF=BF .然后根据DE ∥y 轴求得DF ,得到DF >EF ,这与EF=DF 相矛盾,从而否定是平行四边形.【详解】解:(1)将A (-1,0)、B (1,0)分别代入y=-x2+bx+c 中,得102550b c b c --+=⎧⎨-++=⎩,解得45b c =⎧⎨=⎩∴y=-x 2+4x+1.∵y=-x 2+4x+1=-(x-2)2+9,∴Q (2,9).(2)如图1,连接BC ,交对称轴于点P ,连接AP 、AC .∵AC 长为定值,∴要使△PAC 的周长最小,只需PA+PC 最小.∵点A 关于对称轴x=2的对称点是点B (1,0),抛物线y=-x2+4x+1与y 轴交点C 的坐标为(0,1). ∴由几何知识可知,PA+PC=PB+PC 为最小.设直线BC 的解析式为y=kx+1,将B (1,0)代入1k+1=0,得k=-1,∴y=-x+1,∴当x=2时,y=3,∴点P 的坐标为(2,3).(3)①这个同学的说法不正确.∵设D (t ,-t 2+4t+1),设折线D-E-O 的长度为L ,则L=−t 2+4t+1+t=−t 2+1t+1=−(t−52)2+454, ∵a <0,∴当t=52时,L 最大值=454. 而当点D 与Q 重合时,L=9+2=11<454, ∴该该同学的说法不正确.②四边形DCEB 不能为平行四边形.如图2,若四边形DCEB 为平行四边形,则EF=DF ,CF=BF .∵DE ∥y 轴, ∴1OE CF EB BF==,即OE=BE=2.1. 当xF=2.1时,yF=-2.1+1=2.1,即EF=2.1;当xD=2.1时,yD=−(2.1−2)2+9=8.71,即DE=8.71.∴DF=DE-EF=8.71-2.1=6.21>2.1.即DF >EF ,这与EF=DF 相矛盾,∴四边形DCEB 不能为平行四边形.【点睛】本题考查二次函数及四边形的综合,难度较大.20.如图,已知二次函数212y x bx c =-++的图象经过()2,0A ,()0,6B -两点.(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x 轴交于点C ,连接BA ,BC ,求ABC ∆的面积.【答案】见解析【分析】(1)二次函数图象经过A (2,0)、B (0,-6)两点,两点代入y=-12x 2+bx+c ,算出b 和c ,即可得解析式;(2)先求出对称轴方程,写出C 点的坐标,计算出AC ,然后由面积公式计算值.【详解】(1)把()2,0A ,()0,6B -代入212y x bx c =-++得 2206b c c -++=⎧⎨=-⎩, 解得46b c =⎧⎨=-⎩. ∴这个二次函数解析式为21462y x x =-+-. (2)∵抛物线对称轴为直线44122x =-=⎛⎫⨯- ⎪⎝⎭, ∴C 的坐标为()4,0,∴422AC OC OA =-=-=, ∴1126622ABC S AC OB ∆=⨯=⨯⨯=. 【点睛】本题是二次函数的综合题,要会求二次函数的对称轴,会运用面积公式.21.若一条圆弧所在圆半径为9,弧长为52π,求这条弧所对的圆心角.【答案】50n =【分析】根据弧长公式计算即可. 【详解】∵180n r l π=, 5,92l r π==,∴59 2180nππ⨯=,∴50n=【点睛】此题考查弧长公式,熟记公式并掌握各字母的意义即可正确解答.22.“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.【答案】(1) 60,90;(2)见解析;(3) 300人【解析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;(2)由(1)可求得了解的人数,继而补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【详解】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:1560×360°=90°;故答案为60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×15560+=300(人), 则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.【点睛】本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.23.教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃停止加热,水温开始下降,此时水温y (℃)与开机后用时x (min )成反比例关系,直至水温降至30℃,饮水机关机,饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时接通电源,水温y (℃)与时间x (min )的关系如图所示:(1)分别写出水温上升和下降阶段y 与x 之间的函数关系式;(2)怡萱同学想喝高于50℃的水,请问她最多需要等待多长时间?【答案】(1)y 与x 的函数关系式为: 1030,0770070,73x x y x x+≤≤⎧⎪=⎨<≤⎪⎩,y 与x 的函数关系式每703分钟重复出现一次;(2)她最多需要等待343分钟; 【解析】(1)分情况当07x ,当7x >时,用待定系数法求解;(2)将50y =代入1030y x =+,得2x =,将50y =代入700y x=,得14x =,可得结果. 【详解】(1)由题意可得,(10030)1070107a =-÷=÷=,当07x 时,设y 关于x 的函数关系式为:y kx b =+,307100b k b =⎧⎨+=⎩,得1030k b =⎧⎨=⎩,即当07x 时,y 关于x 的函数关系式为1030y x =+,当7x >时,设a y x =, 1007a =,得700a=, 即当7x >时,y 关于x 的函数关系式为700y x =, 当30y =时,703x =, ∴y 与x 的函数关系式为: 1030,0770070,73x x y x x +≤≤⎧⎪=⎨<≤⎪⎩,y 与x 的函数关系式每703分钟重复出现一次; (2)将50y =代入1030y x =+,得2x =,将50y =代入700y x=,得14x =, ∵14212-=,70341233-= ∴怡萱同学想喝高于50℃的水,她最多需要等待343分钟; 【点睛】考核知识点:一次函数和反比例函数的综合运用.根据实际结合图象分析问题是关键.24.小瑜同学想测量小区内某栋楼房MA 的高度,设计测量方案如下:她从楼底A 处前行5米到达B 处,沿斜坡BD 向上行走16米,到达坡顶D 处(A 、B 、C 在同一条直线上),已知斜坡BD 的坡角α为12.8°,小瑜的眼睛到地面的距离DE 为1.7米,她站在坡顶测得楼顶M 的仰角恰好为45°.根据以上数据,请你求出楼房MA 的高度.(计算结果精确到0.1米)(参考数据:sin12.8°≈1150,cos12.8°≈3940,tan12.8°≈940)【答案】楼房MA 的高度约为25.8米【分析】根据△BCD 是直角三角形,利用正弦和余弦可以求出CD ,BC 的长度,则可得到EC ,EF 的长度,再根据45MEF , EF MF =,利用四边形ECAF 是矩形,即可得到MA 的长.【详解】解:在Rt △BCD 中,11sin12.816 3.5250CD BD39cos12.81615.640BC BD∴ 3.52 1.7 5.22ECCD DE , 15.6520.6AC BC AB在矩形ECAF 中,AF=EC=5.22,EF=AC=20.6在Rt △EFM 中,tan 4520.6MF EF =⋅︒=∴20.6 5.2225.8225.8MA MF AF ,答:楼房MA 的高度约为25.8米【点睛】本题考查的是解直角三角形的应用-仰角俯角问题和坡度坡角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.25.在正方形ABCD 中,AB =6,M 为对角线BD 上任意一点(不与B 、D 重合),连接CM ,过点M 作MN ⊥CM ,交AB (或AB 的延长线)于点N ,连接CN .感知:如图①,当M 为BD 的中点时,易证CM =MN .(不用证明)探究:如图②,点M 为对角线BD 上任一点(不与B 、D 重合).请探究MN 与CM 的数量关系,并证明你的结论.应用:(1)直接写出△MNC 的面积S 的取值范围 ;(2)若DM :DB =3:5,则AN 与BN 的数量关系是 .【答案】探究:见解析;应用:(1)9≤S<1;(2)AN =6BN .【分析】探究:如图①中,过M 分别作ME ∥AB 交BC 于E ,MF ∥BC 交AB 于F ,证明△MFN ≌△MEC (ASA )即可解决问题.应用:(1)求出△MNC 面积的最大值以及最小值即可解决问题.(2)利用平行线分线段成比例定理求出AN ,BN 即可解决问题.【详解】解:探究:如图①中,过M分别作ME∥AB交BC于E,MF∥BC交AB于F,则四边形BEMF是平行四边形,∵四边形ABCD是正方形,∴∠ABC=90°,∠ABD=∠CBD=∠BME=45°,∴ME=BE,∴平行四边形BEMF是正方形,∴ME=MF,∵CM⊥MN,∴∠CMN=90°,∵∠FME=90°,∴∠CME=∠FMN,∴△MFN≌△MEC(ASA),∴MN=MC;应用:(1)当点M与D重合时,△CNM的面积最大,最大值为1,当DM=BM时,△CNM的面积最小,最小值为9,综上所述,9≤S<1.(2)如图②中,由(1)得FM∥AD,EM∥CD,∴AFAB =CEBC=DMBD=35,∵AN=BC=6,∴AF=3.6,CE=3.6,∵△MFN≌△MEC,∴FN =EC =3.6,∴AN =7.2,BN =7.2﹣6=1.2,∴AN =6BN ,故答案为AN =6BN .【点睛】本题是四边形的综合问题,考查了正方形的判定与性质、等腰直角三角形的判定与性质及全等三角形的判定与性质等知识点,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题. 26.随着私家车的增多,“停车难”成了很多小区的棘手问题.某小区为解决这个问题,拟建造一个地下停车库.如图是该地下停车库坡道入口的设计示意图,其中,入口处斜坡AB 的坡角为20︒,水平线12,, 1.5AC m CD AC CD m =⊥=.根据规定,地下停车库坡道入口上方要张贴限高标志,以提醒驾驶员所驾车辆能否安全驶入.请求出限制高度为多少米,(结果精确到 0.1m ,参考数据:200.34sin ≈,200.94cos ≈,200.36tan ≈).【答案】2.6米.【分析】根据锐角三角函数关系得出CF 以及DF 的长,进而得出DE 的长即可得出答案.【详解】过点D 作DE ⊥AB 于点E ,延长CD 交AB 于点F .在△ACF 中,∠ACF=90°,∠CAF=20°,AC=12, ∴CF tan CAF AC∠=, ∴tan 20120.36 4.32CF AC =︒≈⨯=(m),∴ 4.32 1.5 2.82DF CF CD =-=-=(m),在△DFE 中,90902070DFE CAF ∠∠=︒-=︒-︒=︒,又∵DE ⊥AB ,∴907020FDE ∠=︒-︒=︒, ∴DE cos FDE DF∠=, ∴ 2.8220 2.820.94 2.65 2.6DE DF cos FDE cos ∠==⨯︒≈⨯=≈(m),答: 地下停车库坡道入口限制高度约为2.6m .【点睛】本题考查了解直角三角形的应用,主要是余弦、正切概念及运算,关键把实际问题转化为数学问题加以计算.27.如图,一栋居民楼AB 的高为16米,远处有一栋商务楼CD ,小明在居民楼的楼底A 处测得商务楼顶D 处的仰角为60°,又在商务楼的楼顶D 处测得居民楼的楼顶B 处的俯角为45°.其中A 、C 两点分别位于B 、D 两点的正下方,且A 、C 两点在同一水平线上,求商务楼CD 的高度. (参考数据:2≈1.414,3≈1.1.结果精确到0.1米)【答案】商务楼CD 的高度为37.9米.【解析】首先分析图形,根据题意构造直角三角形.本题涉及两个直角三角形,即Rt △BED 和Rt △DAC ,利用已知角的正切分别计算,可得到一个关于AC 的方程,从而求出DC .【详解】过点B 作BE ⊥CD 与点E ,由题意可知∠DBE=045, ∠DAC=060,CE=AB=16设AC=x ,则3CD x =,BE=AC=x∵316DE CD CE x =-=-∵009045BED DBE ∠=∠=,∴BE=DE ∴316x x =-∴31x =- ∴)831x = ∴3248337.9CD x ==+≈答: 商务楼CD 的高度为37.9米.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是()A.B.C.D.【答案】D【解析】点E沿A→B运动,△ADE的面积逐渐变大;点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小.故选D.点睛:本题考查函数的图象.分三段依次考虑△ADE的面积变化情况是解题的关键.2.某林业部门要考察某幼苗的成活率,于是进行了试验,下表中记录了这种幼苗在一定条件下移植的成活情况,则下列说法不正确的是()移植总数n400 1500 3500 7000 9000 14000成活数m369 1335 3203 6335 8073 12628成活的频率mn0923 0.890 0915 0.905 0.897 0.902A.由此估计这种幼苗在此条件下成活的概率约为0.9B.如果在此条件下再移植这种幼苗20000株,则必定成活18000株C.可以用试验次数累计最多时的频率作为概率的估计值D.在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率【答案】B【分析】大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率即可得到答案.【详解】解:由此估计这种幼苗在此条件下成活的概率约为0.9,故A 选项正确;如果在此条件下再移植这种幼苗20000株,则大约成活18000株,故B 选项错误;可以用试验次数累计最多时的频率作为概率的估计值,故C 选项正确;在大量重复试验中,随着试验次数的增加,幼苗成活的频率会越来越稳定,因此可以用频率估计概率,故D 选项正确.故选:B .【点睛】本题主要考查的是利用频率估计概率,大量反复试验下频率稳定值即概率,掌握这个知识点是解题的关键.3.如图,正方形ABCD 的边长为4,点E 在CD 的边上,且1DE =,AFE ∆与ADE ∆关于AE 所在的直线对称,将ADE ∆按顺时针方向绕点A 旋转90︒得到ABG ∆,连接FG ,则线段FG 的长为( )A .4B .42C .5D .6【答案】C 【分析】如图,连接BE ,根据轴对称的性质得到AF=AD ,∠EAD=∠EAF ,根据旋转的性质得到AG=AE ,∠GAB=∠EAD .求得∠GAB=∠EAF ,根据全等三角形的性质得到FG=BE ,根据正方形的性质得到BC=CD=AB=1.根据勾股定理即可得到结论.【详解】解:如图,连接BE ,∵△AFE 与△ADE 关于AE 所在的直线对称,∴AF=AD ,∠EAD=∠EAF ,∵△ADE 按顺时针方向绕点A 旋转90°得到△ABG ,∴AG=AE ,∠GAB=∠EAD .∴∠GAB=∠EAF ,∴∠GAB+∠BAF=∠BAF+∠EAF .∴∠GAF=∠EAB .∴△GAF ≌△EAB (SAS ).∴FG=BE ,∵四边形ABCD 是正方形,∴BC=CD=AB=1.∵DE=1,∴CE=2.∴在Rt △BCE 中,BE=22345+=,∴FG=5,故选:C .【点睛】本题考查了正方形的性质,勾股定理,全等三角形的判定与性质以及旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.4.如图平行四边变形ABCD 中,E 是BC 上一点,BE ∶EC=2∶3,AE 交BD 于F ,则S △BFE ∶S △FDA 等于( )A .2∶5B .4∶9C .4∶25D .2∶3 【答案】C 【分析】由四边形ABCD 是平行四边形,可得AD ∥BE ,由平行得相似,即△BEF ∽△DAF ,再利用相似比解答本题.【详解】∵:2:3BE EC =,∴:2:5BE BC =,∵四边形ABCD 是平行四边形,∴AD BC =,AD ∥BE ,∴:2:5BE AD =,BEF DAF ∽,∴::2:5BF FD BE AD ==,BFE FDA :S S 4:25=,故选:C .【点睛】本题考查了相似三角形的判定与性质.正确运用相似三角形的相似比是解题的关键.5.如图,抛物线y =﹣(x+m )2+5交x 轴于点A ,B ,将该抛物线向右平移3个单位后,与原抛物线交于点C ,则点C 的纵坐标为( )A.52B.114C.3 D.134【答案】B【分析】将抛物线y=﹣(x+m)2+5向右平移3个单位后得到y=﹣(x+m﹣3)2+5,然后联立组成方程组求解即可.【详解】解:将抛物线y=﹣(x+m)2+5向右平移3个单位后得到y=﹣(x+m﹣3)2+5,根据题意得:22()5{(3)5y x my x m=-++=-+-+,解得:32{114x my=-=,∴交点C的坐标为(32m-,114),故选:B.【点睛】考查了抛物线与坐标轴的交点坐标等知识,解题的关键是了解抛物线平移规律,并利用平移规律确定平移后的函数的解析式.6.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠BQP=45;④S四边形ECFG=2S△BGE.A.4 B.3 C.2 D.1【答案】B【解析】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,∵AB=BC,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,二次函数()20y ax bx c a =++≠的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C,对称轴为直线2x =,且OA=OC,则下列结论:①0abc >;②930a b c ++<;③1c ->;④关于x 的方程()200++=≠ax bx c a 有一个根为4c +,其中正确的结论个数有( )A .1个B .2个C .3个D .4个【答案】C 【解析】由二次函数图象的开口方向、对称轴及与y 轴的交点可分别判断出a 、b 、c 的符号,从而可判断①;由图象可知当x =3时,y >0,可判断②;由OA =OC ,且OA <1,可判断③;由OA =OC ,得到方程有一个根为-c ,设另一根为x ,则2x c -=2,解方程可得x=4+c 即可判断④;从而可得出答案. 【详解】由图象开口向下,可知a <0,与y 轴的交点在x 轴的下方,可知c <0,又对称轴方程为x =2,所以2b a->0,所以b >0,∴abc >0,故①正确; 由图象可知当x =3时,y >0,∴9a+3b+c >0,故②错误;由图象可知OA <1.∵OA =OC ,∴OC <1,即﹣c <1,∴c >﹣1,故③正确;∵OA =OC ,∴方程有一个根为-c ,设另一根为x .∵对称轴为直线x=2,∴2x c -=2,解得:x=4+c .故④正确; 综上可知正确的结论有三个.故选C .【点睛】本题考查了二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA =OC ,是解题的关键.2.已知抛物线y=﹣x 2+bx+4经过(﹣2,﹣4),则b 的值为( )A .﹣2B .﹣4C .2D .4【答案】C 【分析】将点()24--,的坐标代入抛物线的解析式求解即可.【详解】因为抛物线y=﹣x 1+bx+4经过(﹣1,﹣4),所以﹣4=﹣(﹣1)1﹣1b+4,解得:b=1.故选:C .【点睛】本题主要考查的是二次函数的性质.解题的关键是掌握二次函数的性质,明确抛物线经过的点的坐标满足抛物线的解析式是解题的关键.3.若关于x 的一元二次方程kx 2﹣2x+1=0有两个不相等的实数根,则实数k 的取值范围是( ) A .k >1B .k <1C .k >1且k≠0D .k <1且k≠0【答案】D【解析】根据一元二次方程的定义和△的意义得到k≠1且△>1,即(﹣2)2﹣4×k×1>1,然后解不等式即可得到k 的取值范围.【详解】∵关于x 的一元二次方程kx 2﹣2x+1=1有两个不相等的实数根,∴k≠1且△>1,即(﹣2)2﹣4×k×1>1,解得k <1且k≠1.∴k 的取值范围为k <1且k≠1.故选D .【点睛】本题考查了一元二次方程ax 2+bx+c =1(a≠1)的根的判别式△=b 2﹣4ac :当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根.也考查了一元二次方程的定义. 4.如图,在矩形ABCD 中,AD =22AB .将矩形ABCD 对折,得到折痕MN ,沿着CM 折叠,点D 的对应点为E ,ME 与BC 的交点为F ;再沿着MP 折叠,使得AM 与EM 重合,折痕为MP ,此时点B 的对应点为G .下列结论:①△CMP 是直角三角形;②AB =2BP ;③PN =PG ;④PM =PF ;⑤若连接PE ,则△PEG ∽△CMD .其中正确的个数为( )A .5个B .4个C .3个D .2个【答案】B 【分析】根据折叠的性质得到DMC EMC AMP EMP ∠=∠∠=∠,,于是得到1180902PME CME ∠+∠=⨯︒=︒,求得CMP 是直角三角形;设AB =x ,则AD =x ,由相似三角形的性质可得CP =2x ,可求BP =PG =2x =PN ,可判断②③,由折叠的性质和平行线的性质可得∠PMF =∠FPM ,可证PF =FM ;由PG CD GE MG=,且∠G =∠D =90°,可证△PEG ∽△CMD ,则可求解. 【详解】∵沿着CM 折叠,点D 的对应点为E ,∴∠DMC =∠EMC ,∵再沿着MP 折叠,使得AM 与EM 重合,折痕为MP ,∴∠AMP =∠EMP ,∵∠AMD =180°,∴∠PME+∠CME =12×180°=90°, ∴△CMP 是直角三角形;故①符合题意;∵AD =AB ,∴设AB =x ,则AD=BC =x ,CD x =,∵将矩形ABCD 对折,得到折痕MN ;∴AM =DM =12AD x =BN =NC ,∴CM ===, ∵∠PMC =90°=∠CNM ,∠MCP =∠MCN ,∴△MCN ∽△NCP ,∴CM 2=CN •CP ,∴3x 2x ×CP ,∴CP ,∴22BP BC CP x x =-=-=∴AB BP ,故②符合题意;∵PN =CP ﹣CN=2x x =2x , ∵沿着MP 折叠,使得AM 与EM 重合,∴BP =PG =2x ,∴PN=PG,故③符合题意;∵AD∥BC,∴∠AMP=∠MPC,∵沿着MP折叠,使得AM与EM重合,∴∠AMP=∠PMF,∴∠PMF=∠FPM,∴PF=FM,故④不符合题意,如图,∵沿着MP折叠,使得AM与EM重合,∴AB=GE=x,BP=PG=22x,∠B=∠G=90°∴2222xPGGE x==,∵222CDMD x==,∴PG CDGE MD=,且∠G=∠D=90°,∴△PEG∽△CMD,故⑤符合题意,综上:①②③⑤符合题意,共4个,故选:B.【点睛】本题是相似形综合题,考查了相似三角形的判定和性质,折叠的性质,勾股定理,直角三角形的性质,矩形的性质等知识,利用参数表示线段的长度是解题的关键.5.已知O的半径为3,点O到直线m的距离为d,若直线m与O公共点的个数为2个,则d可取()A.0B.3C.3.5D.4【答案】A【分析】根据直线和圆的位置关系判断方法,可得结论.【详解】∵直线m与⊙O公共点的个数为2个,∴直线与圆相交,∴d<半径,∴d<3,故选:A.【点睛】本题考查了直线与圆的位置关系,掌握直线和圆的位置关系判断方法:设⊙O的半径为r,圆心O到直线l的距离为d:①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r,③直线l和⊙O相离⇔d>r.6.如图,在Rt△ABC中,∠C=90°,若AB=5,AC=4,则cosB的值( )A.34B.35C.74D.45【答案】B【分析】先由勾股定理求得BC的长,再由锐角三角函数的定义求出cosB即可;【详解】由题意得BC=2222543AB AC-=-=,则cosB=35 BCAB=;故答案为:B.【点睛】本题主要考查了勾股定理,锐角三角函数的定义,掌握勾股定理,锐角三角函数的定义是解题的关键. 7.如图,在▱ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为()A.152B.43C.215D55【答案】C【解析】∵∠ABC的平分线交CD于点F,∴∠ABE=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CBE=∠CFB=∠ABE=∠E ,∴CF=BC=AD=8,AE=AB=12,∵AD=8,∴DE=4,∵DC ∥AB , ∴DE EF AE EB =, ∴4212EB =, ∴EB=6,∵CF=CB ,CG ⊥BF ,∴BG=12BF=2, 在Rt △BCG 中,BC=8,BG=2,根据勾股定理得,CG=22BC BG -=2282-=215,故选C .点睛:此题是平行四边形的性质,主要考查了角平分线的定义,平行线分线段成比例定理,等腰三角形的性质和判定,勾股定理,解本题的关键是求出AE ,记住:题目中出现平行线和角平分线时,极易出现等腰三角形这一特点.8.一个袋中有黑球6个,白球若干,小明从袋中随机一次摸出10个球,记下其黑球的数目,再把它们放回,搅匀后重复上述过程20次,发现共有黑球30个.由此估计袋中的白球个数是( )A .40个B .38个C .36个D .34个【答案】D【分析】同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,根据题中条件求出黑球的频率再近似估计白球数量.【详解】解:设袋中的白球的个数是x 个,根据题意得: 63061020x =+⨯ 解得34x =故选:D【点睛】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.9.若关于x 的一元二次方程(a +1)x 2+x +a 2-1=0的一个解是x =0,则a 的值为( )A .1B .-1C .±1D .0【答案】A【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于a 的方程,从而求得a 的值,且(a +1)x 2+x +a 2-1=0为一元二次方程,+10a ≠即-1a ≠.【详解】把x=0代入方程得到:a 2-1=0解得:a=±1.(a +1)x 2+x +a 2-1=0为一元二次方程∴+10a ≠即-1a ≠.综上所述a=1.故选A .【点睛】此题考查一元二次方程的解,解题关键在于掌握一元二次方程的求解方法.10.二次函数y=-2(x+1)2+3的图象的顶点坐标是( )A .(1,3)B .(-1,3)C .(1,-3)D .(-1,-3) 【答案】B【解析】分析:据二次函数的顶点式,可直接得出其顶点坐标;解:∵二次函数的解析式为:y=-(x-1)2+3,∴其图象的顶点坐标是:(1,3);故选A .11.函数(0)k y k x=≠的图象如图所示,那么函数y kx k =-的图象大致是( )A .B .C .D .【答案】D 【解析】首先由反比例函数k y x=的图象位于第二、四象限,得出k <0,则-k >0,所以一次函数图象经过第二四象限且与y 轴正半轴相交.【详解】解:反比例函数k y x=的图象在第二、四象限, 0,k ∴< 0.k ->函数y kx k =-的图象应经过第一、二、四象限.故选D.【点睛】本题考查的知识点:(1)反比例函数k y x 的图象是双曲线,当k <0时,它的两个分支分别位于第二、四象限. (2)一次函数y=kx+b 的图象当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限. 12.已知点A (x 1,y 1),B (x 2,y 2)在双曲线y =8x 上,如果x 1<x 2,而且x 1•x 2>0,则以下不等式一定成立的是( )A .y 1+y 2>0B .y 1﹣y 2>0C .y 1•y 2<0D .12y y <0 【答案】B【分析】根据题意可得x 1<x 2,且x 1、x 2同号,根据反比例函数的图象与性质可得y 1>y 2,即可求解.【详解】反比例函数y =8x的图象分布在第一、三象限,在每一象限y 随x 的增大而减小, 而x 1<x 2,且x 1、x 2同号,所以y 1>y 2,即y 1﹣y 2>0,故选:B .【点睛】本题考查反比例函数的图象与性质,掌握反比例函数的图象与性质是解题的关键.二、填空题(本题包括8个小题)13.如图,在⊙O 中,AB 是直径,点D 是⊙O 上一点,点C 是AD 的中点,CE⊥AB 于点E ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CE ,CB 于点P ,Q ,连接AC ,关于下列结论:①∠BAD=∠ABC;②GP=GD ;③点P 是△ACQ 的外心,其中结论正确的是________(只需填写序号).【答案】②③【解析】试题分析:∠BAD 与∠ABC 不一定相等,选项①错误;∵GD 为圆O 的切线,∴∠GDP=∠ABD ,又AB 为圆O 的直径,∴∠ADB=90°,∵CF ⊥AB ,∴∠AEP=90°,∴∠ADB=∠AEP ,又∠PAE=∠BAD ,∴△APE ∽△ABD ,∴∠ABD=∠APE ,又∠APE=∠GPD ,∴∠GDP=∠GPD ,∴GP=GD ,选项②正确;由AB 是直径,则∠ACQ=90°,如果能说明P 是斜边AQ 的中点,那么P 也就是这个直角三角形外接圆的圆心了.Rt △BQD 中,∠BQD=90°-∠6, Rt △BCE 中,∠8=90°-∠5,而∠7=∠BQD ,∠6=∠5, 所以∠8=∠7,所以CP=QP;由②知:∠3=∠5=∠4,则AP=CP;所以AP=CP=QP,则点P是△ACQ的外心,选项③正确.则正确的选项序号有②③.故答案为②③.考点:1.切线的性质;2.圆周角定理;3.三角形的外接圆与外心;4.相似三角形的判定与性质.14.设x1、x2是关于x的方程x2+3x-5=0的两个根,则x1+x2-x1•x2=________.【答案】1【分析】先根据根与系数的关系得出两根之和与两根之积,代入即可得出结论.【详解】解:∵x1,x1是关于x 的方程x1+3x-5=0的两个根,根据根与系数的关系,得,x1+x1=-3,x1x1=-5,则x1+x1-x1x1=-3-(-5)=1,故答案为1.【点睛】本题考查了一元二次方程的根与系数的关系,求出x1+x1=-3,x1x1=-5是解题的关键.15.边长为1的正方形ABCD,在BC边上取一动点E,连接AE,作EF AE⊥,交CD边于点F,若CF的长为316,则CE的长为__________.【答案】14或34【分析】根据正方形的内角为90°,以及同角的余角相等得出三角形的两个角相等,从而推知△ABE∽△ECF,得出AB BECE CF=,代入数值得到关于CE的一元二次方程,求解即可.【详解】解:∵正方形ABCD,∴∠B=∠C,∠BAE+∠BEA=90°,∵EF⊥AE,∴∠BEA+∠CEF=90°,∴∠BAE=∠CEF,∴△ABE∽△ECF,AB BE CE CF∴=.21,1131661630,CECECE CE-∴=∴-+=解得,CE=14或34.故答案为:14或34.【点睛】考查了四边形综合题型,需要掌握三角形相似的判定与性质,正方形的性质以及一元二次方程的应用,解题的关键是根据相似三角形得出一元二次方程,难度不大.16.已知一段公路的坡度为1:20,沿着这条公路前进,若上升的高度为2m,则前进了________米【答案】2401.【分析】利用垂直高度,求出水平宽度,利用勾股定理求解即可.【详解】解:如图所示:根据题意,在Rt△ABC中,BC=2m,1tan20BCAAC==,解得AC=40m,根据勾股定理22224022401AB AC BC=+=+=故答案为:401【点睛】此题主要考查解直角三角形的应用,勾股定理.理解坡度坡角的定义,由勾股定理得出AB是解决问题的关键.17.点A(﹣2,y1),B(0,y2),2,y3)是二次函数y=ax2﹣ax(a是常数,且a<0)的图象上的三点,则y1,y2,y3的大小关系为_____(用“<”连接).【答案】y1<y3<y1【分析】求出抛物线的对称轴,求出C关于对称轴的对称点的坐标,根据抛物线的开口方向和增减性,即可求出答案.【详解】y=ax1﹣ax(a是常数,且a<0),对称轴是直线x 122a a -=-=, 即二次函数的开口向下,对称轴是直线x 12=, 即在对称轴的左侧y 随x 的增大而增大,C 点关于直线x=1的对称点是(12-,y 3).∵﹣1<12-<12, ∴y 1<y 3<y 1.故答案为:y 1<y 3<y 1.【点睛】本题考查了学生对二次函数图象上点的坐标特征的理解和运用,主要考查学生的观察能力和分析能力,本题比较典型,但是一道比较容易出错的题目.18.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若∠CDB =30°,⊙O 的半径为5cm 则圆心O 到弦CD 的距离为_____.【答案】2.5cm .【分析】根据圆周角定理得到∠COB=2∠CDB=60°,然后根据含30度的直角三角形三边的关系求出OE 即可.【详解】∵CD ⊥AB ,∴∠OEC =90°,∵∠COB =2∠CDB =2×30°=60°,∴OE =12OC =12×5=2.5, 即圆心O 到弦CD 的距离为2.5cm .故答案为2.5cm .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.三、解答题(本题包括8个小题)19.某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点A 、B ,以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程()cm l 与时间()s t 满足关系()230l t t t =+≥,乙以8cm /s 的速度匀速运动,半圆的长度为42cm .(1)甲运动4s 后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?【答案】(1)28cm ;(2)3s ;(3)7s【分析】(1)将t=4代入公式计算即可;(2)第一次相遇即是共走半圆的长度,据此列方程23842t t t,求解即可; (3)第二次相遇应是走了三个半圆的长度,得到238126t t t,解方程即可得到答案. 【详解】解:(1)当 t=4s 时,23161228l t t cm.答:甲运动 4s 后的路程是 28?c m .(2) 由图可知,甲乙第一次相遇时走过的路程为半圆 21?c m ,甲走过的路程为 2t 3t +,乙走过的路程为 4t ,则23842t t t .解得 3t = 或 14t =-(不合题意,舍去).答:甲、乙从开始运动到第一次相遇时,它们运动了 3s .(3) 由图可知,甲乙第二次相遇时走过的路程为三个半圆 342126cm ,则238126t t t解得 7t = 或 18t =-(不合题意,舍去).答:甲、乙从开始运动到第二次相遇时,它们运动了 7s .【点睛】此题考查一元二次方程的实际应用,正确理解题意是解题的关键.20.如图,抛物线22y x x =+-与x 轴交于A 、B 两点,与y 轴交于点C .(1)求点A ,点B 和点C 的坐标;(2)在抛物线的对称轴上有一动点P ,求PB PC +的值最小时的点P 的坐标;(3)若点M 是直线AC 下方抛物线上一动点,M 运动到何处时四边形ABCM 面积最大,最大值面积是多少?【答案】(1)A(﹣1,0),B(l,0),C(0,﹣1);(1)P(1 -2,32-);(3)(-1,-1);2【分析】(1)令x=0,y=0,代入函数解析式,即可求解;(1)连接AC与对称轴的交点即为点P.求出直线AC的解析式即可解决问题.(3)过点M作MN⊥x轴与点N,设点M(x,x1+x-1),则AN=x+1,ON=-x,OB=1,OC=1,MN=-(x1+x-1)=-x1-x+1,根据S 四边形ABCM=S△AOM+S△OCM+S△BOC构建二次函数,利用二次函数的性质即可解决问题.【详解】解:(1)由y=0,得x1+x﹣1=0 解得x1=﹣1,x1=l,∴A(﹣1,0),B(l,0),由x=0,得y=﹣1,∴C(0,﹣1).(1)连接AC与对称轴的交点即为点P.设直线AC 为y=kx+b,则202k bb+=⎧⎨=⎩﹣﹣,得k=﹣l,∴y=﹣x﹣1.对称轴为x=1-2,当x=1-2时,y=-(1-2)﹣1=32-,∴P(1-2,32-).(3)过点M作MN丄x轴与点N,设点M (x ,x 1+x ﹣1),则OA=1,ON=﹣x ,OB=1,OC=1,MN=﹣(x 1+x ﹣1)=﹣x 1﹣x+1,S 四边形ABCM =S △AOM +S △OCM +S △BOC =12×1×(﹣x 1﹣x+1)+12×1(﹣x )+12×1×1 =﹣x 1﹣1x+3=﹣(x+1)1+2.∵a=﹣1<0,∴当x=﹣1时,S 四边形ABCM 的最大值为2.∴点M 坐标为(﹣1,﹣1)时,S 四边形ABCM 的最大值为2.【点睛】本题考查二次函数综合题、待定系数法、两点之间线段最短、最值问题等知识,解题的关键是灵活运用所学知识解决问题,学会利用对称解决在性质问题,学会构建二次函数解决最值问题.21.在2019年国庆期间,王叔叔的服装店进回一种女装,进价为400元,他首先在进价的基础上增加100元,由于销量非常好,他又连续两次涨价,结果标价比进价的2倍还多45元,求王叔叔这两次涨价的平均增长率是百分之多少?【答案】30%【分析】设甲卖家这两次涨价的平均增长率为x ,则首次标价为500(1+x ),二次标价为500(1+x )(1+x )即500(1+x )2,据此即可列出方程.【详解】解:设王叔叔这两次涨价的平均增长率为x ,根据题意得,2(400100)(1)400245++=⨯+x解之得,10.330%x ==,2 2.3x =-(不符合题意,故舍去)∴王叔叔这两次涨价的平均增长率为30%【点睛】本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22.解方程:(1)x 2﹣2x ﹣1=0 (2) 2(x ﹣3)=3x (x ﹣3)【答案】 (1)112x =+,212x =- (2)13x =或223x =【分析】(1)利用公式法求解可得;(2)利用因式分解法求解可得;【详解】(1)a =1,b =﹣2,c =﹣1,△=b 2﹣4ac =4+4=8>0,方程有两个不相等的实数根, 242812b b ac x -±-±===±, ∴121212x x =+=-,;(2)()()2333xx x =﹣﹣, 移项得:()()23330xx x =﹣﹣﹣, 因式分解得:()()323xx ﹣﹣=0, ∴30x =﹣或230x =﹣,解得:13x =或223x =. 【点睛】本题主要考查了解一元二次方程-配方法和因式分解法,根据方程的不同形式,选择合适的方法是解题的关键.23.如图,在△ABC 中,∠ACB =90º,∠ABC =45 º,点O 是AB 的中点,过A 、C 两点向经过点O 的直线作垂线,垂足分别为E 、F .(1)如图①,求证:EF =AE+CF .(2)如图②,图③,线段EF 、AE 、CF 之间又有怎样的数量关系?请直接写出你的猜想.【答案】(1)见解析;(2)图②:EF =AE+CF 图③:EF =AE-CF ,见解析【分析】(1)连接OC ,运用AAS 证△AOE ≌△OCF 即可;(2)按(1)中的方法,连接OC ,证明△AOE ≌△OCF ,即可得出结论【详解】(1)连接OC ,∵△ABC 是等腰直角三角形,∴∠AOC=90°,AO=CO ,∵∠AOE+∠COF=90°,∠EAO+∠AOE=90°,∴∠EAO=∠COF,又∵AO=CO,∠AEO=∠CFO,∴△AOE≌△OCF(AAS)∴OE=CF,AE=OF ∴EF=AE+CF(2)如图②,连接OC,∵△ABC是等腰直角三角形,∴∠AOC=90°,AO=CO,∵∠AOE+∠COF=90°,∠EAO+∠AOE=90°,∴∠EAO=∠COF,又∵AO=CO,∠AEO=∠CFO,∴△AOE≌△OCF(AAS)∴OE=CF,AE=OF∴EF=AE+CF.【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和全等三角形的性质(即全等三角形的对应边相等、对应角相等)是解题的关键.24.解方程:(1)x2+4x﹣5=0(2)x(2x+3)=4x+6【答案】(1)x1=-5,x2=1;(2)x1=-1.5,x2=2【分析】(1)根据因式分解法即可求解;(2)根据因式分解法即可求解.【详解】解:(1)x²+4x-5=0因式分解得, (x+5)(x-1)=0则,x+5=0或者x-1=0∴x 1=-5,x 2=1(2)x(2x+3)=4x+6提公因式得,x(2x+3)=2(2x+3)移项得,x(2x+3)-2(2x+3)=0则,(2x+3)(x-2)=0∴2x+3=0或者x-2=0∴x 1=-1.5,x 2=2.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法解方程.25.求值:1sin 60cos 4522︒⨯︒+2sin30°-tan60°- tan 45°【解析】先得出式子中的特殊角的三角函数值,再按实数溶合运算顺序进行计算即可.解:原式=112122⨯-118=+2== 26.新华商场销售某种冰箱,每台进货价为2500元,市场调研表明:当销售价为3000元时,平均每天能售出10台,而当销售价每降低100元时,平均每天就能多售出5台.双“十一”期间,商场为了减少库存进行降价促销,如果在降价促销的同时还要保证这种冰箱的销售利润平均每天达到6000元,这种冰箱每台应降价多少元?【答案】这种冰箱每台应降价200元.【分析】根据题意,利用利润=每台的利润×数量列出方程并解方程即可.【详解】解:设这种冰箱每台应降价x 元,根据题意得()300025001056000100x x ⎛⎫--+⨯= ⎪⎝⎭解得:1200x =,2100x =为了减少库存200x ∴=答:这种冰箱每台应降价200元.【点睛】本题主要考查一元二次方程的实际应用,能够根据题意列出方程是解题的关键.27.如图,正方形ABCD ,△ABE 是等边三角形,M 是正方形ABCD 对角线AC (不含点A )上任意一点,将线段AM 绕点A 逆时针旋转60°得到AN ,连接EN 、DM .求证:EN =DM .【答案】证明见解析【分析】利用等边三角形的性质以及旋转的性质,即可判定△EAN ≌△DAM (SAS ),依据全等三角形的对应边相等,即可得到EN =DM .【详解】证明:∵△ABE 是等边三角形,∴∠BAE =60°,BA =EA ,由旋转可得,∠MAN =60°,AM =AN ,∴∠BAE =∠MAN ,∴∠EAN =∠BAM ,∵四边形ABCD 是正方形,∴BA =DA ,∠BAM =∠DAM =45°,∴EA =DA ,∠EAN =∠DAM ,在△EAN 和△DAM 中,EA =DA .∠EAN=∠DAM ,AN=AM ,∴△EAN ≌△DAM (SAS ),∴EN =DM .【点睛】本题主要考查了旋转的性质以及全等三角形的判定与性质,解决本题的关键是要熟练掌握旋转图形的性质和全等三角形的判定和性质.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.若()2111m m x ++=是一元二次方程,则m 的值是( )A .-1B .0C .1D .±1【答案】C【分析】根据一元二次方程的概念即可列出等式,求出m 的值. 【详解】解:若()2111mm x ++=是一元二次方程,则212m +=,解得1m =± , 又∵10m +≠, ∴1m ≠-, 故1m=, 故答案为C . 【点睛】本题考查了一元二次方程的定义,熟知一元二次方程的定义并列出等式是解题的关键. 2.某微生物的直径为0.000 005 035m ,用科学记数法表示该数为( ) A .5.035×10﹣6 B .50.35×10﹣5 C .5.035×106 D .5.035×10﹣5【答案】A【解析】试题分析:0.000 005 035m ,用科学记数法表示该数为5.035×10﹣6,故选A . 考点:科学记数法—表示较小的数.3.某班学生做“用频率估计概率”的实验时,给出的某一结果出现的频率折线图,则符合这一结果的实验可能是( )A .抛一枚硬币,出现正面朝上B .从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数C .从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球D .一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃 【答案】C【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P ≈0.33,计算四个选项的频率,约为0.33者即为正确答案.【详解】解:A 、抛一枚硬币,出现正面朝上的频率是12=0.5,故本选项错误; B 、从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数频率约为:36=12=0.5,故本选项错误; C 、从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球概率是39=13≈0.33,故本选项正确; D 、一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是1352=0.25,故本选项错误;故选:C . 【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.4.如图,从一张腰长为90cm ,顶角为120︒的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为( )A .15cmB .12cmC .10cmD .20cm【答案】A【分析】根据等腰三角形的性质得到OE 的长,再利用弧长公式计算出弧CD 的长,设圆锥的底面圆半径为r ,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长可得到r . 【详解】过O 作OE AB ⊥于E ,90120OA OB cm AOB ︒∠==,=, 30A B ︒∴∠∠==,1452OE OA cm ∴==,∴弧CD 的长1204530180ππ⨯==,设圆锥的底面圆的半径为r ,则230r ππ=,解得15r =.故选A .【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.5.若12,x x 是方程2680x x -+=的两根,则12x x +的值是( ) A .8 B .8-C .6-D .6【答案】D【解析】试题分析:x 1+x 2=-=6,故选D考点: 根与系数的关系6.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是( ) A .B .C .D .【答案】A【解析】解:将矩形木框立起与地面垂直放置时,形成B 选项的影子; 将矩形木框与地面平行放置时,形成C 选项影子; 将木框倾斜放置形成D 选项影子;根据同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A 选项中的梯形,因为梯形两底不相等. 故选A .7.如图,以△ABC 的三条边为边,分别向外作正方形,连接EF ,GH ,DJ ,如果△ABC 的面积为8,则图中阴影部分的面积为( )A .28B .24C .20D .16【答案】B【分析】过E 作EM ⊥FA 交FA 的延长线于M ,过C 作CN ⊥AB 交AB 的延长线于N ,根据全等三角形的性质得到EM =CN ,于是得到S △AEF =S △ABC =8,同理S △CDJ =S △BHG =S △ABC =8,于是得到结论. 【详解】解:过E 作EM ⊥FA 交FA 的延长线于M ,过C 作CN ⊥AB 交AB 的延长线于N , ∴∠M =∠N =90°,∠EAM+∠MAC =∠MAC+∠CAB =90°,∴∠EAM=∠CAB∵四边形ACDE 、四边形ABGF 是正方形, ∴AC=AE,AF =AB , ∴∠EAM ≌△CAN , ∴EM =CN , ∵AF =AB , ∴S △AEF =12AF•EM ,S △ABC =12AB•CN =8, ∴S △AEF =S △ABC =8,同理S △CDJ =S △BHG =S △ABC =8, ∴图中阴影部分的面积=3×8=24, 故选:B .【点睛】本题主要考查了正方形的性质,全等三角形判定和性质,正确的作辅助线是解题的关键. 8.如果53a b b -=,那么a bb+的值等于( ) A .85 B .115C .83D .113【答案】D 【分析】依据53a b b -=,即可得到a=83b ,进而得出a bb+的值. 【详解】∵53a b b -=,∴3a ﹣3b=5b ,∴3a=8b ,即a=83b ,∴a b b +=83b b b+=113. 故选D . 【点睛】本题考查了比例的性质,解决问题的关键是运用内项之积等于外项之积. 9.如图,O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交O 于点E ,连结EC .若8AB =,2CD =,则EC 的长为( )A.5 B.25C.213D.310【答案】C【分析】连接BE,设⊙O的半径为r,然后由垂径定理和勾股定理列方程求出半径r,最后由勾股定理依次求BE和EC的长即可.【详解】解:如图:连接BE设⊙O的半径为r,则OA=OD=r,OC=r-2∵OD⊥AB,∴∠ACO=90°∴AC=BC=12AB=4,在Rt△ACO中,由勾股定理得:r2-42=(r-2)2,解得:r=5∴AE=2r=10,∵AE为⊙O的直径∴∠ABE=90°由勾股定理得:2222108-=-AE AB=6在Rt△ECB中,222264213BE BC+=+=.故答案为C.【点睛】本题主要考查了垂径定理和勾股定理,根据题意正确作出辅助线、构造出直角三角形并利用勾股定理求解是解答本题的关键.10.为了估计抛掷某枚啤酒瓶盖落地后凸面向下的概率,小明做了大量重复试验.经过统计得到凸面向上的次数为420次,凸面向下的次数为580次,由此可估计抛掷这枚啤酒瓶盖落地后凸面向下的概率约为()A.0.12B.0.42C.0.5D.0.58【答案】D【分析】由向上和向下的次数可求出向下的频率,根据大量重复试验下,随机事件发生的频率可以作为概率的估计值即可得答案.【详解】∵凸面向上的次数为420次,凸面向下的次数为580次,∴凸面向下的频率为580÷(420+580)=0.58,∵大量重复试验下,随机事件发生的频率可以作为概率的估计值,∴估计抛掷这枚啤酒瓶盖落地后凸面向下的概率约为0.58,故选:D.【点睛】本题考查利用频率估计概率,熟练掌握大量重复试验下,随机事件发生的频率可以作为概率的估计值是解题关键.11.为了解圭峰会城九年级女生身高情况,随机抽取了圭峰会城九年级100名女生,她们的身高x(cm)统计如下:根据以上结果,随机抽查圭峰会城九年级1名女生,身高不低于155cm的概率是()A.0.25 B.0.52 C.0.70 D.0.75【答案】D【分析】直接利用不低于155cm的频数除以总数得出答案.【详解】∵身高不低于155cm的有52+18+5=1(人),∴随机抽查圭峰会城九年级1名女生,身高不低于155cm的概率是:75100=0.1.故选:D.【点睛】本题考查了概率公式,正确应用概率公式是解题关键.12.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是()A.12B.18C.38D.14【答案】B【分析】画出树状图,根据概率公式即可求得结果. 【详解】画树状图,得∴共有8种情况,经过每个路口都是绿灯的有一种, ∴实际这样的机会是18. 故选:B . 【点睛】本题考查随机事件的概率计算,关键是要熟练应用树状图,属基础题. 二、填空题(本题包括8个小题)13.点()2,5A -关于原点对称的点为_____. 【答案】()2,5-【分析】根据平面直角坐标系中,关于原点的对称点的坐标变化规律,即可得到答案. 【详解】∵平面直角坐标系中,关于原点的对称点的横纵坐标分别互为相反数, ∴点()2,5A -关于原点对称点的坐标为()2,5-. 故答案是:()2,5-. 【点睛】本题主要考查平面直角坐标系中,关于原点的对称点的坐标变化规律,掌握关于原点的对称点的横纵坐标分别互为相反数,是解题的关键.14.若35a b =,则a b b +=____.【答案】85【解析】根据比例的性质进行求解即可. 【详解】∵a 3b 5=, ∴设a=3k ,b=5k ,∴a b 3k 5k b 5k ++==85, 故答案为:85.【点睛】本题考查了比例的性质,熟练掌握是解题的关键.15.将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上,点A 、B 的度数分别为86︒、30,。

相关文档
最新文档