人教版小学四年级下册三步计算应用题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三步计算的应用题

教学内容:教材14页例3

一、素质教育目标

1、使学生学会分步解答含有四个已知条件的三步应用题,在理解数量关

系的基础上明确接替思路,掌握接替方法。

2、培养学生运用所学数学知识解决简单的实际问题的能力,体验数学的

应用价值。

3、结合内容渗透思想教育。

二、学法指导

1.引导学生从新旧知识的生长点出发引出新课,运用知识迁移,指导学生学习新知。

2.引导学生试算,掌握计算方法。

三、重点、难点

1,教学重点:分析理解题目的数量关系,确定求某个问题需知道哪两个直接条件,进而确定解题步骤。

2.教学难点:利用线段图帮助学生理解数量关系。

四、教具准备

小黑板、投影片。

五、教学步骤

(一)铺垫孕伏

1.根据问题补充相应的条件并列式2.改(3)为下面习题。

新镇小学三年级有四个班,每班40人,————。三年级和四

年级一共有多少人?

这道题要求三、四年级一共有多少人,必须知道哪些条件?缺少什么条件? 要求学生直接补充四年级人数。列式,分步解答。

(二)探究新知

有个学生是这样补充的条件,同学们看一看,这道题你能不能解答呢?

如果能解答,该怎样解答呢?

出示例3:

(通过补充条件的练习,自然引出例题,可使学生容易建立起三步计算应用题与一步、两步计算应用题间的联系,进而理解三步计算应用题的数量关系。)

(1) 、读题,找出已知条件和所求问题,分析与复习题的区别和联系。

(补充了两个条件,有四个已知条件,所求问题没有改变。)

(2) 、问:要想求“三、四年级共多少人”,应该知道哪两个条件呢?

三年级有多少人?四年级有多少人?

(3)、让学生自己解答。

(4)、想一想,如果把上题的问题改成“三年级比四年级多多少人?”该怎样解答?

4.反馈练习:“做一做”第2题。

(三)、巩固发展

1.练习四第1、2题

先讨论分析解题思路,再独立解答。

2.投影出示下图情景,分组根据图意补充条件,分别组成一步、两步应用题,并请其他组口头列算式解答。

菊花和芍药花共有多少盆?

(通过此题的练习,使学生进一步理解三步计算应用题与一、二步计算应用题间的联系,深化对数量关系的理解。)

(四)课堂小结

引导学生总结解三步应用题的解答思路及解答方法。

六、布置作业

练习四第3题

七、板书设计(略)

教学内容:教材15页例4

素质教育目标:

1、使学生借助线段图能够理解简单应用题的数量关系,并会用两种方法解答

这类应用题。

2、进一步培养学生的分析问题能力和灵活解题的能力。

3、渗透数形结合和事物相互联系的辩证唯物主义观点。

教学重点:掌握三步应用题的解题方法。

教学难点:分析并理解三步应用题的解题思路。

教学过程:1、根据条件补充问题,使之成为一道三步计算的应用题。

(1)、请说说解题的思路和相应的算式。

(2)、这道题还可以怎样解答?

2、教学例4:

出示例题

(1)指名读题,找出题中的已知条件和所求问题。

(2)借助线段图分析数量关系。

想一想:根据题里的条件,前面的线段图该怎样修改?所求问题在线段图上怎样表示?

讨论题:

(3)比较两种方法哪种比较简便。

3、引导概括

解答应用题不但方法可以不一样,而且计算的步骤也不相同。有的三步题可以用两步来解答。这样使计算变得比较简便。所以解题时应该注意选择合理、简便的方法进行解答。

4、综合与应用:(课件)

5、板书

教学内容:教科书例5及第19页“做一做”,练习五第1、2题。

一、素质教育目标

(一)、知识教学点

1.理解三步计算的应用题的数量关系:掌握解题思路。

2.能分步解答较容易的三步计算应用题。

(二)能力训练点

1.培养学生类推能力、分析比较能力。

2.培养学生理解应用题数量关系的能力。

(三)德育渗透点

渗透事物间相互联系的思想。

(四)美育渗透点

使学生感悟到数学知识内在联系的逻辑之美,提高审美意识。

二、学法引导

指导学生运用已有经验,合作学习、讨论、试算,感知算理和计算方法。

三、重点、难点

教学重点:理解应用题的数量关系。

教学难点:确定应用题的解题步骤。

四、教具准备

小黑板、投影片等。

五、教学步骤

(一)、铺垫孕伏

1.练习:(出示口算卡片)

56×2+56 78×4—78

168—17×4 100—100÷5×3

2.复习题:

读题,分析解题思路。

提示:要想求出“三、四年级一共栽树多少棵”,必须知道哪两个条件?四年级栽树棵数怎样求?为什么用“56×2”,你们是根据哪句话这样求的?

学生独立解答、订正。

(二)探索新知

1.利用投影片改复习题为例5。(课件演示)

(抓住复习和例5的联系点,设计了复习题,为学习例5做好铺垫,有利于学生思维的发展。)

2.读题,找出已知条件和所求问题。

讨论:你认为这道题的关键句是哪一句?

(教师在“五年级栽的比四年级总数少10棵”下面画出曲线。)

3,怎样用线段图表示题中的数量关系呢?

引导学生画线段图。

4.根据线段图和题意,讨论思考:

要想求出五年级栽树多少棵?必须先知道什么?你是根据什么这样说的?为什么?

启发学生:“三、四年级一共栽树多少棵”能直接求出来吗?解答这道题,第一步求什么?第二步求什么?第三步求什么?

(通过线段图,从直观到抽象,帮助学生理解算理。)

5,通过交流汇报,确定解题思路,教师板书小标题,再让学生直接在书中填空,指定一名学生板演。

形成板书:

四年级栽树多少棵?

56×2=112(棵)

三、四年级一共栽树多少棵?

56+112=168(棵)

五年级栽树多少棵?

168—10=158(棵)

答:五年级栽树158棵。

6.小结:

引导学生回顾例5的解题过程,解答这类题时应注意什么?

抓住关键句理解数量关系,依据关键句确定数量关系,确定先算什么,再算什么,最后算什么,并分步解答。

引导学生观察:在解题过程中,56这个已知条件用到了几次?分别是在求什么时候用的?通过讨论,使学生明确:解答应用题时,有的已知条件不止用一次,具体怎样用,要根据题目内容确定。

7.反馈练习:教材第19页“做一做”第1题。

同桌讨论,关键句是哪一句,再根据题意确定先求什么,再求什么,最后求

相关文档
最新文档