电脑主板CPU供电电路原理图解
图解cpu,内存,显示卡供电图文教程
CPU 内存显卡供电CPU、内存、显卡这三大配件直接决定了整机的性能表现,我们所购买的主板是否能够为这三大配件提供充足稳定的供电环境,也就成为了一个相当重要的因素。
CPU的供电电路通常是由电容、电感线圈、场效应管(MOSFET管)这三大部分所组成。
除了能够为CPU提供更加纯净稳定的电流之外,还起到了降压限流的作用,以此来保证CPU的正常工作。
现在最常见的组合方案是由“N颗电容+1个电感线圈+N个场效应管”组成一个相对独立的单相供电电路(图1),这样的组成通常会在CPU供电部分出现2~4次,也就因此出现了两相供电、三相供电甚至是四相供电。
CPU供电图分解由于现在主流CPU的功耗过高,所以CPU供电电路采用多相供电是降低主板内阻及发热量的有效途径,少数主板甚至在场效应管上安装散热片,也是为了保证CPU供电电路的稳定运行。
虽然三相或两相电源并不完全决定CPU供电电路的好坏(比如说华硕主板很多都采用了两相电源),但对于大多数二三线主板厂商的产品来说,三相确实要比两相电源优秀了许多。
此主题相关图片如下:单相供电电路组成部分中国IT芯片级维修联盟 更多资料中国IT 芯片级维修联盟 更多资料在单相供电电路中,电容和电感线圈的规格越高以及场效应管的数量越多,就代表了供电电路的品质越好。
一般情况下,日系的SANY(三洋)、Rubycon(红宝石)、KZG 电容比较优秀(图2),台系的TAIC ON 、OST 、TEAPO 、CAPXON 等品牌的电容也可以考虑。
少数高端的超频版主板还会采用化学稳定性极好的固态电容(图3),彻底杜绝了电容爆浆现象的发生此主题相关图片如下:日系电容和固态电容至于电感线圈的辨别也颇为困难,有些主板采用的线圈线径很细,绕组很多的电感线圈。
有些则采用了绕线圈数较少,线径很粗的线圈(图4)。
线径很粗的线圈采用的是高导磁率、不易饱和的新型磁芯,所以不需要很多的绕线圈数就可以得到足够的磁通量,因此也被越来越多的主板生产商所采用。
主板供电全解析【最详尽图解】
主板供电全解析前言:从奔三后期开始,玩家逐渐接触到多相供电这个概念。
时至今日,CPU三相供电已经成为基本配置,最高供电相数可达夸张的16相,而内存和芯片组供电也开始用上两相乃至三相供电。
数电路相数的时候玩家有时会犯一点错误,甚至一些见多识广的编辑也免不了要犯错,那么如何准确地识别主板供电的相数呢?首先让我们来认识一下CPU供电电路的器件,找一片技嘉X48做例子。
上图中我们圈出了一些关键部件,分别是PWM控制器芯片(PWM Controller)、MOSFET 驱动芯片(MOSFET Driver)、每相的MOSFET、每相的扼流圈(Choke)、输出滤波的电解电容(Electrolytic Capacitors)、输入滤波的电解电容和起保护作用的扼流圈等。
下面我们分开来看。
5楼图)PWM控制器(PWM Controller IC)在CPU插座附近能找到控制CPU供电电路的中枢神经,就是这颗PWM主控芯片。
主控芯片受VID的控制,向每相的驱动芯片输送PWM的方波信号来控制最终核心电压Vcore的产生MOSFET驱动芯片(MOSFET Driver)MOSFET驱动芯片(MOSFET Driver)。
在CPU供电电路里常见的这个8根引脚的小芯片,通常是每相配备一颗。
每相中的驱动芯片受到PWM主控芯片的控制,轮流驱动上桥和下桥MOS管。
很多PWM控制芯片里集成了三相的Driver,这时主板上就看不到独立的驱动芯片了。
早一点的主板常见到这种14根引脚的驱动芯片,它每一颗负责接收PWM控制芯片传来的两相驱动信号,并驱动两相的MOSFET的开关。
换句话说它相当于两个8脚驱动芯片,每两相电路用一个这样的驱动芯片。
MOSFET,中文名称是场效应管,一般被叫做MOS管。
这个黑色方块在供电电路里表现为受到栅极电压控制的开关。
每相的上桥和下桥轮番导通,对这一相的输出扼流圈进行充电和放电,就在输出端得到一个稳定的电压。
(完整版)主板供电电路图解说明
主板供电电路图解说明主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定地运行,同时也是主板上信号强度最大的地方,处理得不好会产生串扰cross talk效应,而影响到较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。
简单地说,供电部分的最终目的就是在CPU 电源输入端达到CPU对电压和电流的要求,满足正常工作的需要。
但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和经验。
主板上的供电电路原理图1图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。
+12V是来自A TX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW Control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。
再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。
单相供电一般可以提供最大25A的电流,而现今常用的处理器早已超过了这个数字,P4处理器功率可以达到70~80W,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。
图2就是一个两相供电的示意图,很容易看懂,其实就是两个单相电路的并联,因此它可以提供双倍的电流,理论上可以绰绰有余地满足目前处理器的需要了。
图2但上述只是纯理论,实际情况还要添加很多因素,如开关元件性能、导体的电阻,都是影响Vcore的要素。
主板维修-CPU供电电路ppt课件
由于CPU核心电压较低,且有着越来越低的趋势,ATX电源供给主板 的12V和5V直流电不能直接供给给CPU,所以需要一定的供电电路来 进行高电流电压到低电流电压的转换(即DC-DC转换),这些转换 电路就是CPU供电电路。
CPU供电电路的功能:为CPU提供电能,保证CPU在高频,大电流工 作状态下稳定的运行。同时由于CPU功耗非常大,从低负荷到满负 荷,电流变化非常大,为了保证CPU能够在快速负荷变化中,不会 因为电流供应不上而无法工作,CPU供电电路要求具有非常快速的 大电流响应能力。
可编辑ppt
1
CPU供电电路组成
CPU供电电路主要有电源管理芯片,场效应管(上下管),电感, 滤波电容等元件组成。
可编辑ppt
2
CPU三相核心供电电路
可编辑ppt
3
上下管的区分
1.上管D极与P4 12V相通。 2.上管S极接下管D极。 3.下管S极接地。 4.上下管G极都通电源IC。
CPU核心供电测试点
8
上下管形式: 1.一个上管、一个下管 2.一个上管、两个下管 3.两个上管、两个下管
可编辑ppt
9
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!感谢你的观看!
可编辑ppt
5
CPU核心供电短路维修方法
1.电解电容有无击穿损坏。 2.上下管有无击穿。 3.黑色钽电容有无击穿。 4.检测电源IC有无短路损坏。 5.南北桥有无短路。
插上P4就掉电。 1.上下管有无击穿。 2.滤波电解电容有无击穿。
3.电源IC有无短路损坏。
可编辑ppt
6
可编辑ppt
7
可编辑ppt
1.上管S极 2.下管D极 3.供电电感 4.电容正极
CPU单相及多相供电电路图
1、单项供电图
2、多项供电图
说明:图中Q1、Q2很多主板都为场管,多项供电中坏一组Q1Q2会使CPU工作不正常,引起重启等故障,如果有一组不正常,小电源IC损坏多;坏一组其它二组可能发热量大,逐个拆排除故障
3、多项供电作用
多项供电就是多组单项并联,可以提高稳定功率(电流),多项供电可以平均负载、平均热能;电流变小有可能引起CPU热、工作不稳定
可以通过主板上的电感线圈数量识别,单项供电二个电感线圈,二项供电三个电感线圈,三相供电四个电感线圈
5、故障现象
主供电滤波电容大都鼓包漏液;12V对地短路,有电源保护现象,CPU供电测试点对地短路,正常时测试点对地数值在30以上,加上CPU之后对地数值可能为20左右。
造故障现象可能是Q2被击穿、北桥坏(80%)。
计算机主板各供电电路图解
计算机主板各供电电路图解主板上的供电电路常见有CPU供电电路,内存供电电路,AGP、PCI、ISA供电电路以及I/O供电电路等,这些电源电路一种是开关电源,由双场效应管(MOSFT管)和电感线圈、电解电容组成;另一种是低压差线性调压芯片组成的调压电路。
这两种电路都能够为主板上不同的芯片和组件提供精密的电源电压。
1、CPU供电电路为了降低CPU制造成本,CPU核心电压变得越来越低,于是把ATX电源供给主板的12V、5V和3.3V直流电通过CPU的供电电路来进行高直流电压到低直流电压转换。
(1)CPU供电电路组成由于CPU工作在高频、大电流状态,它的功耗非常大。
因此,CPU供电电路要求具有非常快速的大电流响应能力,同时干扰少。
CPU供电电路使用开关电源,该电源由控制(电源管理)芯片、场效应管、电感线圈和电解电容等元件组成,其中控制芯片主要负责识别CPU供电幅值,振荡产生相应的矩形波,推动后级电路进行功率输出(控制芯片的型号常见有:HIP630l、CS5301、TL494、FAN5056等),场效应管起开关控制作用,电感线圈和电解电容起滤波作用。
主板的CPU供电电路框图如图1所示。
主板的CPU供电电路框:图1 CPU供电电路框图开机后,当控制芯片获得ATX电源输出的+5V或+12V供电后,为CPU提供电压,接着CPU电压自动识别引脚发出电压识别信号VID 给控制芯片,控制芯片通过控制两个场效应管导通的顺序和频率,使其输出的电压与电流达到CPU核心供电要求,为CPU提供工作需要的供电。
CPU的供电方式又分为许多种,有单相供电电路、两相供电电路、多相供供电电路。
(2)CPU供电电路原理图2是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源。
+12V是来自ATX电源的输入,通过一个由电感线圈L1和电容C1组成的滤波电路,然后进入两个开关管(场效应管)组成的电路,此电路受到PMW控制芯片控制(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的输出所要求的电压和电流,再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线,这就是“多相”供电中的“一相”,即单相。
(完整版)主板供电电路图解说明
主板供电电路图解说明主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定地运行,同时也是主板上信号强度最大的地方,处理得不好会产生串扰cross talk效应,而影响到较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。
简单地说,供电部分的最终目的就是在CPU 电源输入端达到CPU对电压和电流的要求,满足正常工作的需要。
但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和经验。
主板上的供电电路原理图1图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。
+12V是来自A TX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW Control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。
再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。
单相供电一般可以提供最大25A的电流,而现今常用的处理器早已超过了这个数字,P4处理器功率可以达到70~80W,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。
图2就是一个两相供电的示意图,很容易看懂,其实就是两个单相电路的并联,因此它可以提供双倍的电流,理论上可以绰绰有余地满足目前处理器的需要了。
图2但上述只是纯理论,实际情况还要添加很多因素,如开关元件性能、导体的电阻,都是影响Vcore的要素。
主板上CPU核心供电电路的简单示意图
主板上CPU核心供电电路的简单示意图说明电脑主板供电电路原理(维修系列二)下图(1)下图(2)主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定地运行,同时也是主板上信号强度最大的地方,处理得不好会产生串扰cross talk 效应,而影响到较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。
简单地说,供电部分的最终目的就是在CPU电源输入端达到CPU对电压和电流的要求,满足正常工作的需要。
但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和经验。
图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。
+12V是来自ATX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW Control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。
再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。
单相供电一般可以提供最大25A的电流,而现今常用的处理器早已超过了这个数字,P4处理器功率可以达到70~80W,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。
图2就是一个两相供电的示意图,很容易看懂,其实就是两个单相电路的并联,因此它可以提供双倍的电流,理论上可以绰绰有余地满足目前处理器的需要了。
但上述只是纯理论,实际情况还要添加很多因素,如开关元件性能、导体的电阻,都是影响Vcore的要素。
CPU供电电路原理图
CPU供电电路原理图我们知道CPU核心电压有着越来越低的趋势,我们用的ATX电源供给主板的12V,5V直流电不可能直接给CPU供电,所以我们要一定的电路来进行高直流电压到低直流电压的转换,这种电路不仅仅用在CPU的供电上,但是今天我们把注意力集中在这里。
我们先简单介绍一下供电电路的原理,以便大家理解。
一般而言,有两种供电方式。
1.线性电源供电方式:通过改变晶体管的导通程度来实现,晶体管相当于一个可变电阻,串接在供电回路中。
上图只要是学过初中物理的都懂,通过电阻分压使得负载(这里想像为CPU)上的电压降低。
虽然方法简单,但由于可变电阻与负载流过相同的电流,要消耗掉大量的能量并导致升温,电压转换效率非常低,一般主板不可能用这种方法。
2.开关电源供电方式:我们平时用的主板基本都用这种方式,原理图如下。
ATX供给的12V电通过第一级LC电路滤波(图上L1,C1组成),送到两个场效应管和PWM控制芯片组成的电路,两个场效应管在PWM控制芯片的控制下轮流导通,提供如图所示的波形,然后经过第二级LC电路滤波形成所需要的Vcore。
上图中的电路就是我们说的“单相”供电电路,使用到的元器件有输入部分的一个电感线圈、一个电容,控制部分的一个PWM控制芯片、两个场效应管,还有输出部分的一个线圈、一个电容。
强调这些元器件是为了后文辨认几相供电做准备。
由于场效应管工作在开关状态,导通时的内阻和截止时的漏电流都较小,所以自身耗电量很小,避免了线性电源串接在电路中的电阻部分消耗大量能量的问题。
3、多相供电的引入单相供电一般能提供最大25A的电流,而现今常用的处理器早已超过了这个数字,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。
上图就是一个两相供电的示意图,其实就是两个单相电路的并联,因此它可以提供双倍的电流。
三相供电当然就是三个单相电路并联而成的,因此可以提供三倍的电流。
上图是一个典型的三相供电电路,读者抓住本质的话,就可以看到此图和上面图片的一致。
主板CPU供电电路完全图解
主板CPU供电电路完全图解12007-11-12 01:35:09 业界| 评论(1) | 浏览(5618)相信大家看主板导购文章的时候经常听到说这块主板是三相供电,那块是两相供电的说法,而且一般总是推荐三相供电的主板。
那么两相三相到底代表什么,对于普通消费者来说应该怎么选择呢?本文将就这个问题展开,尽量让大家能够自己分辨出主板到底几相供电,并且提供一点购买建议。
CPU供电电路原理图我们知道CPU核心电压有着越来越低的趋势,我们用的ATX电源供给主板的12V,5V直流电不可能直接给CPU供电,所以我们要一定的电路来进行高直流电压到低直流电压的转换,这种电路不仅仅用在CPU的供电上,但是今天我们把注意力集中在这里。
我们先简单介绍一下供电电路的原理,以便大家理解。
一般而言,有两种供电方式。
1.线性电源供电方式:通过改变晶体管的导通程度来实现,晶体管相当于一个可变电阻,串接在供电回路中。
上图只要是学过初中物理的都懂,通过电阻分压使得负载(这里想像为CPU)上的电压降低。
虽然方法简单,但由于可变电阻与负载流过相同的电流,要消耗掉大量的能量并导致升温,电压转换效率非常低,一般主板不可能用这种方法。
2.开关电源供电方式:我们平时用的主板基本都用这种方式,原理图如下。
其工作原理比刚刚的电路复杂很多,笔者只能简单说说:ATX供给的12V电通过第一级LC电路滤波(图上L1,C1组成),送到两个场效应管和PWM控制芯片组成的电路,两个场效应管在PWM控制芯片的控制下轮流导通,提供如图所示的波形,然后经过第二级LC电路滤波形成所需要的Vcore。
上图中的电路就是我们说的“单相”供电电路,使用到的元器件有输入部分的一个电感线圈、一个电容,控制部分的一个PWM控制芯片、两个场效应管,还有输出部分的一个线圈、一个电容。
强调这些元器件是为了后文辨认几相供电做准备。
由于场效应管工作在开关状态,导通时的内阻和截止时的漏电流都较小,所以自身耗电量很小,避免了线性电源串接在电路中的电阻部分消耗大量能量的问题。
主板CPU的PWM供电电路路图
主板CPU的PWM供电电路路图这是一个三相供电图,Q1和Q2组成一相,Q3和Q4组成一相,Q5和Q6组成一相。
每一相都是在PWM控制IC(CS5301)的控制下,轮流导流的,而不是同时导通。
CS5301通过Gate1(H)脚输出控制Q1导通与截止,通过Gate2(L)输出控制Q2的导通与截止。
当Gate1(H)输出时,Q1导通,此时Q2截止(Gate1(L)无输出),+12V端L4及滤波电容C15和C16的储能,通过Q1释放并向L1及其后并联的滤波电容充电,L1储能。
当Q1截止Q2导通时,L1上的储能通过Q2向滤波电容充电。
一相完成一个导通截止期后,下一相再工作。
多相轮流工作的好处是,功率管有更多的休息时间,减小了发热。
有的主板为减小发热,每一相上还并联一个MOS管,或预留有并联的位置。
(发给媒体评测的板子就焊上并联管,零售的就取消了变成了预留并联位)因为CPU的供电电压为低电压(1.1-1.8V),而电源为CPU供电的电压比较高(P4为+12V,AMD大部分是+5V现在AMD也越来越多的用+12V供电了),所以Q1通过的电流比Q2要小,Q1可以取指标小点。
同样,储能电感L4的指标也比后面的L1(L2、L3)小,我们在主板实物中看到:如果是环形的L4(和L1、L2、L3外形相同),但它上面绕的线也比L1等要稀。
这也是我们在一些主板上看到MOS管大小不一样的情景。
大多数主板为了采购生产方便,Q1和Q2型号相同。
以上实质上就是一个DC-DC变换,L4及C15-16组成前级DC。
L1(L2、L3及并联的滤波电容)构成后级DC通过上面介绍,我们知道PWM供电电路必须包含前DC-DC的前级电路和DC -DC后级各相组成的电路。
根据这个特点,我们就比较好分辨出主板是几相供电了。
电脑主板CPU供电电路工作原理分析
电脑主板CPU供电电路工作原理分析CPU的供电主要是由电源控制芯片控制场效应管,以得到符合要求的电压和电流供CPU使用,它的原理如图4-1所示。
开机时,电源控制芯片通过CPU的VID0~VID4五个引脚,识别CPU所需要的核心电压。
然后电源控制芯片输出控制脉冲,控制场效应管的导通和截止,这其实就是一个开关电路。
场效应管将这个脉冲放大,经过电感和电容的滤波后,得到平稳的电压、电流供CPU使用。
在场效应管输出处有电流反馈,在CPU核心电压输入处有电压反馈,均反馈至电源控制芯片。
电源管理芯片通过反馈回来的电流和电压调整控制脉冲的占空比,控制场效应管的导通顺序和频率,最终得到符合要求的电压和电流。
还有一个问题是:电源控制芯片是如何通过CPU的VID0~VID4五个引脚识别CPU所需电压的呢?这就涉及VRM(电压调整组件)的定义。
为了减少人工干预的复杂性,简化稳压电路的电压控制设计,Intel专门为自家CPU制定了电压标准。
根据VRM标准制定的电源电路能够满足不同CPU的要求,CPU管脚定义也属于VRM标准的范围。
VRM电源规范基本上是随着Intel处理器的发展而发展的。
早期的PII、PLL l 遵循VRM8.1-8.4电源规范,Tualatin核心的PIII及赛扬则开始遵循VRM8.5标准,Intel在推出willamette、NorthWood核心的P4 CPU时引入了VRM9.O标准,而到了Prescott处理器则需要VRM10标准来支持。
现在,英特尔又为最新的Conroe系列处理器制定了VR M11规范。
VRM各个版本所支持的CPU及其电压调节范围如表4-1所示。
表4-1 VRM各个版本所支持的CPU及其电压调节范围CPU 要求的电压调节最小电压版本为例来说明。
表4-2所示为VRM9.0的电压识别码,VIDO~VID4是CPU的5个电压识别引脚,“1”表示该引脚接高电平(通常为3.3V),“0”表示该引脚接低电平(通常接地)。
电脑主板CPU供电电路原理图解
电脑主板CPU供电电路原理图解一.多相供电模块的优点1.可以提供更大的电流,单相供电最大能提供25A的电流,相对现在主流的处理器来说,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计,比如K7、K8多采用三相供电系统,而LGA755的Pentium系列多采用四相供电系统。
2.可以降低供电电路的温度。
因为多了一路分流,每个器件的发热量就减少了。
3.利用多相供电获得的核心电压信号也比两相的来得稳定。
一般多相供电的控制芯片(PWM芯片)总是优于两相供电的控制芯片,这样一来在很大程度上保证了日后升级新处理器的时候的优势。
二.完整的单相供电模块的相关知识该模块是由输入、输出和控制三部分组成。
输入部分由一个电感线圈和一个电容组成;输出部分同样也由一个电感线圈和一个组成;控制部分则由一个PWM控制芯片和两个场效应管(MOS-FET)组成(如图1)。
图1单相供电电路图主板除了给大功率的CPU供电外,还要给其它设备的供电,如果做成单相电路,需要采用大功率的管,发热量很大,成本也比较高。
所以各大主板厂商都采用多相供电回路。
多相供电是将多个单相电路并联而成的,它可以提供N倍的电流。
小知识场效应管:是一种单极性的晶体管,最基本的作用是开关,控制电流,其应用比较广泛,可以放大、恒流,也可以用作可变电阻。
PWM芯片:PWM即Pulse Width Modulation(脉冲宽度调制),该芯片是供电电路的主控芯片,其作用为提供脉宽调制,并发出脉冲信号,使得两个场效应管轮流导通。
实际电感线圈、电容和场效应管位于CPU插槽的周围(如图2)。
图2 主板上的电感线圈和场效应管了解了以上知识后,我们就可以轻松判断主板的采用了几相供电了。
三.判断方法1.一个电感线圈、两个场效应管和一个电容构成一相电路。
这是最标准的供电系统,很多人认为:判定供电回路的相数与电容的个数无关。
这是因为在主板供电电路中电容很富裕,所以,一个电感加上两个场效应管就是一相;两相供电回路则是两个电感加上四个场效应管;三相供电回路则是三个电感加上六个场效应管。
电脑主板CPU供电电路原理图解
电脑主板C P U供电电路原理图解Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】电脑主板CPU供电电路原理图解一.多相供电模块的优点1.可以提供更大的电流,单相供电最大能提供25A的电流,相对现在主流的处理器来说,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计,比如K7、K8多采用三相供电系统,而LGA755的Pentium系列多采用四相供电系统。
2.可以降低供电电路的温度。
因为多了一路分流,每个器件的发热量就减少了。
3.利用多相供电获得的核心电压信号也比两相的来得稳定。
一般多相供电的控制芯片(PWM芯片)总是优于两相供电的控制芯片,这样一来在很大程度上保证了日后升级新处理器的时候的优势。
二.完整的单相供电模块的相关知识该模块是由输入、输出和控制三部分组成。
输入部分由一个电感线圈和一个电容组成;输出部分同样也由一个电感线圈和一个组成;控制部分则由一个PWM控制芯片和两个场效应管(MOS-FET)组成(如图1)。
图1单相供电电路图主板除了给大功率的CPU供电外,还要给其它设备的供电,如果做成单相电路,需要采用大功率的管,发热量很大,成本也比较高。
所以各大主板厂商都采用多相供电回路。
多相供电是将多个单相电路并联而成的,它可以提供N倍的电流。
小知识场效应管:是一种单极性的晶体管,最基本的作用是开关,控制电流,其应用比较广泛,可以放大、恒流,也可以用作可变电阻。
PWM芯片:PWM即Pulse Width Modulation(脉冲宽度调制),该芯片是供电电路的主控芯片,其作用为提供脉宽调制,并发出脉冲信号,使得两个场效应管轮流导通。
实际电感线圈、电容和场效应管位于CPU插槽的周围(如图2)。
图2 主板上的电感线圈和场效应管了解了以上知识后,我们就可以轻松判断主板的采用了几相供电了。
三.判断方法1.一个电感线圈、两个场效应管和一个电容构成一相电路。
电脑主板CPU供电电路的维修
电脑主板CPU供电电路的维修CPU供电电路是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定地运行,满足正常工作的需要。
CPU供电电路通常采用PWM(PtilseWidthMedulation脉冲带宽调制)开关电源,该部分电路主要是由PWM电源管理芯片、场效应管(MOSFET管)、储能线圈和滤波电容'等元器件完成。
CPU供电电路的电路框图如下图所示。
一、CPU供电电路的工作原理不同的CPU需要的工作电流和工作电压是不同的,P3CPU有内核和外核两种供电电压,内核供电电压Vcore为1.2V-2V,外核供电电压为固定的2.5V(外核供电电压一般由三端稳压器得到):P4CPU的供电电压有内核供电电压Vcore(通常为1.O5V-1.5V)和AGTL总线终端电压VTT(针对不同型号的CPU有1.8V、1.5V、1.l25V,这个供电电压一般由北桥供电电路提供,电路比较简单)。
CPU的核心电压供电电路是最容易损坏的电路,因此在维修工作中所指的CPU供电电路一般都是指核心供电电路(Vcore电路)。
主板上所用的PWM电源管理芯片都有几个电压识别控制踹(通常为VIDO-VID4),这些引脚通常与CPU相连(如不接CPU,则这几个控制端默认为高电平),通过控制这些引脚的电平,就可以控制输出的直流电压值,即CPU的供电电压。
不同型号的CPU在出厂时已通过对相应的VIDO-VID引脚悬空和短按的方法设定了CPU的供电电压值,如不接CPU则VIDO-VID4引脚为默认高电平,电源PWM电源管理芯片停止工作。
接上CPU后,电源电路中的PWM电源管理芯片就会先判断CPU需要多高的供电电压,然后就会通过改变驱动脉冲输出端脉冲信号的占空比(即单位时间内场效应管的导通时间和总时间之比)来控制场效应管的导通,从而控制输出电压,如下右图所示。
由于单个MOSFET管的输出电流通常为20A左右,而对于一些耗电量大的CPU(如Pentium4、AthlonXP系列CPU)其需要电流通常高于45A,这时就需要将多个供电电路并联起来为CPU供电,有几路供电电路并联就称为“几相”供电。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电脑主板CPI 供电电路原理图解.多相供电模块的优点1. 可以提供更大的电流,单相供电最大能提供25A 的电流,相对现在主流的处 理器来说,单相供电无法提供足够可靠的动力, 所以现在主板的供电电路设计都 采用了两相甚至多相的设计,比如 K7、K8多采用三相供电系统,而LGA755的 Pentium 系列多采用四相供电系统。
2. 可以降低供电电路的温度。
因为多了一路分流,每个器件的发热量就减少了。
3. 利用多相供电获得的核心电压信号也比两相的来得稳定。
一般多相供电的控 制芯片(PWM 芯片)总是优于两相供电的控制芯片,这样一来在很大程度上保证 了日后升级新处理器的时候的优势。
.完整的单相供电模块的相关知识该模块是由输入、输出和控制三部分组成。
输入部分由一个电感线圈和一个电容 组成;输出部分同样也由一个电感线圈和一个组成; 控制部分则由一个PW 控制 芯片和两个场效应管(MOS-FE )组成(如图1)。
0丁1艸 ------ 1 中国旭日电器輸入气分I::控制部分中国旭日电器符栋梁CPU 供电外,还要给其它设备的供电,如果做成 单相电路,需要采用大功率的管,发热量很大,成本也比较高。
所以各大主板厂商都采用多相供电回路。
多相供电是将多个单相电路XX 而成的,它可以提供N 倍的电流。
小知识 场效应管:是一种单极性的晶体管,最基本的作用是开关,控制电流,输出部分 i« IVcor^其应用比较广泛,可以放大、恒流,也可以用作可变电阻。
PWM^片:PWM 卩 Pulse Width Modulation (脉冲宽度调制),该芯 片是供电电路的主控芯片,其作用为提供脉宽调制,并发出脉冲信号,使得两个场效应管轮流导通。
图2主板上的电感线圈和场效应管 了解了以上知识后,我们就可以轻松判断主板的采用了几相供电了。
三.判断方法1. 一个电感线圈、两个场效应管和一个电容构成一相电路。
这是最标准的供电系统,很多人认为:判定供电回路的相数与电容的 个数无关。
这是因为在主板供电电路中电容很富裕,所以,一个电感 实际电感线圈、电容和场效应管位于 CPU 插槽的周围(如图2)。
管 应 J场加上两个场效应管就是一相;两相供电回路则是两个电感加上四个场 效应管;三相供电回路则是三个电感加上六个场效应管。
依次类推,N 相也就是N 个电感加上2N 个场效应管。
当然这里说的是最标准的供电系统,对一些加强的供电系统的辨认就需要大家多多积累了。
图3 一个电感线圈和两个场效应管组成一相回路 该图是一个两相供电电路,其中一个电感线圈和两个场效应管组成一 相回路。
这是最常见的,也是最为标准的一种供电模式。
2. 电感线圈数目减一等于相数。
由于许多主板有CPU 辅助供电电路,其第一级电感线圈也做在附近, ■ ■ ■ 1;IK 珀A2-「— _ - 7 :&茫7所以,有了电感线圈数目减一等于相数的说法。
但对于没有CPU辅助供电的主板,这种方法就不太适用。
SEISBBiSWO.r 4图4带有辅助供电电路的主板该图所示的是一个两相供电电路,最左面的那个电感线圈是单独用来给CPU供电的(既第一级电感线圈),所以三个电感线圈减一即为两相供电。
查看PWM芯片编号PWM^片一般位于电感线圈或场效应管的周围,该芯片的功能在出厂的时候都已经确定,如一个两相的控制芯片是不可能用在三相的供电电路上。
所以查询主板使用的PWM控制芯片的型号,就可以知道主板采用几相供电了。
PWM^片设计厂商众多,大约有一百多家,包括IGS、CMA ITE、CWWinbond Atmel、SANYO Intersil 以及Richtek 等RidiTdc RT9241CS4KR5注:有的控制芯片是有一定的弹性的,比如 Richtek RT9237就是个2-4相的控制芯片。
这时我们需要通过观察元器件数量, 才能最终 判断是几相供电回路。
这种方法应该是最为简易,也最为准确的。
两相和三相或多相的到底孰优孰劣?笔者认为主板几相供电并不重要,贵在设计和用料的选择。
1.一个合理的电路设计应该考虑诸多因素,如信号的稳定性、干扰、 散热等。
如果一个三相回路的设计仅仅只是为了实现大功率的电流转 换分配,忽视了电源的稳定性,因而产生了大幅度纹波干扰等情况的 副作用,那它必然是个失败的设计!2.同样设计下的三相供电理论上优于两相供电。
3. 从电路工作原理上来讲,电源做的越简单越好。
从概率上计算, 每个元件都有一个“失效率”的问题, 用的元件越多,组成系统的总失效率就越大。
这样多相供电的系统就更容易出现问题, 所以选料用 料对多相供电电路来说就更为重要。
不过,我们没有必要怀疑两相供电的稳定性,只要稳定、设计合理, 没有理由拒绝两相供电的产品。
■・ ' L Ir-A J ■?muM 汇••我们经常会听到主板供电回路的相数、电容、电感线圈和场效应管(Mos t)等这些关键词,可对这神秘的供电电路部分,你又知道多少呢?我们这里谈的主板供电系统,一般是指CPU内存和显卡供电单元。
CPU供电单元是大家经常接触到的,我们平时所说的N相供电指的就是CPU供电,同时CPU供电电路也是整个主板中最重要的供电单元,这部分的品质好坏,直接关系着系统的稳定性。
阅读完本文您将对主板供电模块有一个更加深刻的了解E t——,_■1 V«r«Fj■力■这就是一个单相供电系统:由ATX电源提供的+12V电源输入后,先通过由一个电感线圈和电容组成的L1振荡电路进行滤波处理,然后经过PWM控制芯片与两个晶体管,导通后达到需要的输出电压,再经过L2和C2组成的滤波电路后,就可以达到CPL所需要的Vcore 了。
从电路工作原理上来讲,电源做的越简单越好。
从概率上计算,每个元件都有一个“失效率”的问题,用的元件越多,组成系统的总失效率就越大。
所以供电电路越简单,越能减少出问题的概率。
单相电路元器件最少,但是主板除了要承受大功率的 CPU 外,还要承受显卡等以提供N 倍的电流。
有了上面的知识做铺垫,我们来看一下目前主流的供电模块的构成。
这是最常见,最正规的供电模块,由“1个线圈+2个场效应管” 组成一相电路。
目前市场XX 大多数的主板供电模块都米用此设计, 不管是K7还是K8,甚至耗电大户Pentium D 的主板也采用此设计。
图2XX 靠近4Pin 插头部位还有一个线圈(没有场效应管与之匹配,F 面的图示XX ,如果出现这种情况,其作用是类似的),是第一级 电感线圈,也有人认为是为CPU 辅助供电的线圈,所以此图示为三相 供电。
,- ■ I L- I _常大家看到图3中的供电系统,便会用“完整的供电模块”来说 明。
这种方式或许在散热方面更有优势, 但实际使用效果应该没有太大的差别。
图3是由“一个线圈+ 三个场效应管”组成一相电路,所 以图3是两相供电。
其实,两相供电系统未必就比三相供电差,虽然 更多的相数可以有效地控制热量,但更容易出现问题也是事实;另外, 选料设计更重要。
所以请理智看待供电相数。
其他设备的功耗,做成单相电路需要采用大功率的MOS-FE 管,发热 量会很恐怖,而且花费的成本也不是小数目。
所以,大部分厂商都采 用多相供电回路。
多相供电就是将多个单相电路XX 而成的,所以可供时:::这个供电模块比较少见,这是xxATi RS482芯片的主板。
此系统采用“1个线圈+4场效应管”构成一相电路的设计。
如果说“ 1+3” 是完整电路,那么“1+4”就只能用豪华来形容了。
此系统采用四相供电,电路设计可谓豪华;但相数和采用的场效应管的个数并不是豪华的代名词。
采用何种线圈,何种场效管,也就是说用料本身的性能更为关键;豪华的用料离开科学合理的设计恐怕也是白白的浪费材料。
所以DIYer要修炼硬功夫,不要仅仅局限在供电相数的判断上。
图5是EPO)在8RDA6+X)采用的供电模块。
其供电系统就在DIYerxx引起争议,有人说这是四相供电,判断理由:线圈数一1。
图XX明显有5个线圈,那么5-1=4是很显然的事情。
有人说这是三相供电,判断理由:1个线圈+2个场效应管为一相电路。
显然图XX 有6个场效应管,所以最多也就是三相供电了。
第一种说法没有了解 供电线路的组成,虽然大多数供电系统可以这样判断, 不代表这种方 法就是完全准确的。
第二种说法就会产生一种困惑:多余的那个线圈 是用来做什么的呢?之后EPOX 勺设计师说明:这是一个两相加强供 电系统,其XX “2个线圈+3个场效应管”为一相电路。
但 DIYer 对此供电系统认可度不高。
是目前最常见的In tel 9 系列(包括i915/925、i945/955 )主 板的供电系统,多采用四相供电。
图5是采用“1个线圈+3个场效应 管”构成一相电路的四相供电系统。
在这里需要说明一下,支持Prescott 主板要求供电部分的线圈必须采用单股粗线绕制 (如图6); 另外,In tel 技术XX 要求CPU 周围的电容要采用固态电容(这也是 在一系列主板爆浆事件后无奈而又XX 的做法)。
关于In tel 的供电 于采用四相供电系统。
d 叱kF 规范这里笔者简单地谈一下(如附表)。
Prescott 最大要求的电流,而单相电路可以提供的电流,似乎成熟 的两相供电就能够满足了。
但巨大的热量I2R 还是让主板厂商更趋向J: *电脑主板CPU 供电电路原理图解随着主板设计技术的发展,有好多配件的安装或外在形式都发生了变化,如图7中的加固线圈,将线圈包住可以减少电磁干扰并对线圈起到加固作用,在场效应管上加上散热片来加强散热等等。
还有某些主板竟然将场效应管“竖立”安装(既省空间又利用散热)。
最后,希望本文对您轻松分辨供电电路的相数有一定帮助,并通过对供电电路的了解轻松选购高品质主板。
原理图分析主板的供电部分设计好坏,关系到主板工作的稳定性和XX,历来是广大DIYer 评价一块主板优劣的重要依据之一。
供电部分的电路设计制造要求通常都比较高,一套好的设计,需要考虑到PCB板及元器件特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和经验。
现在的主板基本上都为开关供电方式,将输入的直流电通过一个开关电路转换为宽度可调的脉冲电流,然后再通过滤波电路转换回直流电。
通过PWM 控制器IC芯片发出脉冲信号控制MOSFE场效应管轮流导通和关闭。
其工作原理为ATX供给的12V电通过第一级LC电路滤波(图上L1, C1组成),送到两个场效应管和PWM控制成的电路,两个场效应管?WM控制芯片的控制下轮流导通,提供如图所示的波形,然后经过第二级LC电路滤波形成所需要的Vcore。
上图中的电路就是我们说的“单相”供电电路。