第七章:牛顿迭代法,弦截法
7、解非线性方程的迭代法

§3 迭代收敛的加速方法
一、埃特金加速收敛方法
对于收敛的迭代过程,由迭代公式校正一次得 x1 = ϕ ( x0 ),
二分法优、缺点; 用途。
§2
一、不动点迭代
迭代法
将非线性方程f ( x) = 0化为等价形式 x = ϕ ( x).
(2.1)
f ( x*) = 0 ⇔ x* = ϕ ( x*) ; 称x * 为函数ϕ ( x)的一个不动点.
给定初始近似值x0 , 可以得到x1 = ϕ ( x0 ). 如此反复,构造迭代公式 xk +1 = ϕ ( xk ), k = 0,1,2,⋯. 称ϕ ( x)为迭代函数. (2.2)
(ϕ ( x) − x) 2 . ψ ( x) = x − ϕ (ϕ ( x)) − 2ϕ ( x) + x
(3.4)
(3.5)
定理5 定理5 若x * 为ψ ( x)的不动点, 则x * 为ϕ ( x)的不动点. 反之, x * 为ϕ ( x)的不动点,设ϕ ′′( x)存在, ϕ ′( x*) ≠ 1,则x * 为ψ ( x) 的不动点,且斯蒂芬森迭代法(3.3)是2阶收敛的.
k +1
.
(1.ቤተ መጻሕፍቲ ባይዱ)
例2 求x3 − x − 1 = 0在[1.0,1.5]内的一个实根,准确到 小数点后2位.
k ak 0 1.0 1 1.25 2 3 1.3125 4 5 6 1.3203 bk 1.5 1.375 1.3438 1.3281 xk 1.25 1.375 1.3125 1.3438 1.3281 1.3203 1.3242 f(xk)符号 − + − + + − −
数值分析第

数值分析第7章答案第七章非线性方程求根一、重点内容提要 (一)问题简介 求单变量函数方程()0f x = (7.1)的根是指求*x (实数或复数),使得(*)0f x =.称*x 为方程(7.1)的根,也称*x 为函数()f x 的零点.若()f x 可以分解为()(*)()mf x x xg x =- 其中m 为正整数,()g x 满足()0g x ≠,则*x 是方程(7.1)的根.当m=1时,称*x 为单根;当m>1时,称*x 为m 重根.若()g x 充分光滑,*x 是方程(7.1)的m 重根,则有(1)()(*)'(*)...(*)0,(*)0m m f x f x f x f x -====≠ 若()f x 在[a,b]上连续且()()0f a f b <,则方程(7.1)在(a,b)内至少有一个实根,称[a,b]为方程(7.1)的有根区间.有根区间可通过函数作图法或逐次搜索法求得. (二)方程求根的几种常用方法 1.二分法设()f x 在[a,b]上连续,()()0f a f b <,则()0f x =在(a,b)内有根*x .再设()0f x =在(a,b)内仅有一个根.令00,a a b b ==,计算0001()2x a b =+和0()f x .若0()0f x =则*x x =,结束计算;若00()()0f a f x >,则令10,1a x b b ==,得新的有根区间11[,]a b ;若00()()0f a f x <,则令10,10a ab x ==,得新的有根区间11[,]a b .0011[,][,]a b a b ⊂,11001()2b a b a -=-.再令1111()2x a b =+计算1()f x ,同上法得出新的有根区间22[,]a b ,如此反复进行,可得一有根区间套1100...[,][,]...[,]n n n n a b a b a b --⊂⊂⊂⊂且110011*,0,1,2,...,()...()22n n n n n n a x b n b a b a b a --<<=-=-==-. 故 1lim()0,lim lim ()*2n n n n n n n n b a x a b x →∞→∞→∞-==+= 因此,1()2n n n x a b =+可作为()0f x =的近似根,且有误差估计11|*|()2n n x x b a +-≤- (7.2)2.迭代法将方程式(7.1)等价变形为 ()x x ϕ= (7.3)若要求*x 满足(*)0f x =则*(*)x x ϕ=;反之亦然.称*x 为函数()x ϕ的一个不动点.求方程(7.1)的根等价于求()x ϕ的不动点由式(7.3)产生的不动点迭代关系式(也称简单迭代法)为1(),0,1,2...k k x x k ϕ+== (7.4)函数()x ϕ称为迭代函数.如果对任意1(),0,1,2...k k x x k ϕ+==,由式(7.4)产生的序列{}k x 有极限 lim *k k x x →∞= 则称不动点迭代法(7.4)收敛.定理7.1(不动点存在性定理)设()[,]x C a b ϕ∈满足以下两个条件: 1.对任意[,]x a b ∈有();a x b ϕ≤≤2.存在正常数1L <,使对任意,[,]x y a b ∈,都有|()()|||x y x y ϕϕ-≤- (7.5) 则()x ϕ在[,]a b 上存在惟一的不动点*x .定理7.2(不动点迭代法的全局收敛性定理)设()[,]x C a b ϕ∈满足定理7.1中的两个条件,则对任意0[,]x a b ∈,由(7.4)式得到的迭代序列{}k x 收敛.到()x ϕ的不动点,并有误差估计式1|*|||1k k k Lx x x x L --≤-- (7.6)和 1|*|||1kk k k L x x x x L --≤-- (7.7)定理7.3(不动点迭代法的局部收敛性定理)设*x 为()x ϕ的不动点,'()x ϕ在*x 的某个邻域连续,且|'()|1x ϕ<,则迭代法(7.4)局部收敛.收敛阶的概念 设迭代过程(7.4)收敛于方程()x x ϕ=的根*x ,如果迭代误差*k k e x x =-当k →∞时成产下列渐近关系式1(0)k k e C C e +→≠常数 (7.8)则称该迭代过程是p 阶收敛的.特别地,p=1时称线性收敛,p>1时称超线性收敛,p=2时称平方收敛.定理7.4(收敛阶定理)对于迭代过程(7.4),如果()()K x ϕ在所求根*x 的邻近连续,并且(1)()'(*)''(*)...(*)0(*)0p p x x x x ϕϕϕϕ-====≠ (7.9)则该迭代过程在点*x 的邻近是收敛的,并有()11lim(*)!p k p k ke x e p ϕ+→∞= (7.10)斯蒂芬森(Steffensen)迭代法 当不动点迭代法(7.4)只有线性收敛阶,甚至于不收敛时,可用斯蒂芬森迭代法进行加速.具体公式为21(),()()20,1,2,...k k k k k k k k k k ky x z y y x x x z y x k ϕϕ+==-=--+= (7.11)此法也可写成如下不动点迭代式12(),0,1,2,...(())()(())2()k k x x k x x x x x x x ψϕψϕϕϕ+==-=--+ (7.12) 定理7.5(斯蒂芬森迭代收敛定理) 设*x 为式(7.12)中()x ψ的不动点,则*x 是()x ϕ的不动点;设''()x ϕ存在,'(*)1x ϕ≠,则*x 是()x ψ的不动点,则斯蒂芬森迭代法(7.11)是2阶收敛的. 3.牛顿迭代法牛顿迭代法是一种特殊的不动点迭代法,其计算公式为其迭代函数为1(),0,1,2,...'()k k k k f x x x k f x +=-= (7.13)()()'()f x x x f x ϕ=-牛顿迭代法的收敛速度 当(*)0,'(*)0,''(*)0f x f x f x =≠≠时,容易证明,'(*)0f x ≠,''(*)''(*)0'(*)f x x f x ϕ=≠,由定理7.4知,牛顿迭代法是平方收敛的,且12''(*)lim2'(*)k k k e f x e f x +→∞=(7.14) 重根情形的牛顿迭代法 当*x 是()0f x =的m 重根(2)m ≥时,迭代函数()()'()f x x x f x ϕ=-在*x 处的导数1'(*)10x m ϕ=-≠,且|'(*)|1x ϕ<.所以牛顿迭代法求重根只是线性收敛.若*x 的重数m 知道,则迭代式1(),0,1,2,...'()k k k k f x x x mk f x +==-= (7.15)求重根二阶收敛.当m 未知时,*x 一定是函数()()'()f x x f x μ=的单重零点,此时迭代式1()()'()'()['()]()''()0,1,2,...k k k k k k k k k k x f x f x x x x x f x f x f x k μμ+=-=--= (7.16)也是二阶收敛的.简化牛顿法 如下迭代法10(),0,1,2,...'()k k k f x x x k f x +=-=称为简化牛顿法或平行弦法.牛顿下山法 为防止迭代不收敛,可采用牛顿下山法.具体方法见教材. 4.弦截法将牛顿迭代法(7.13)中的'()k f x 用()f x 在1k x -,k x处的一阶差商来代替,即可得弦截法111()()()()k k k k k k k f x x x x x f x f x ++-=--- (7.17)定理7.6假设()f x 在其零点*x 的邻域:|*|x x δ∆-≤内具有二阶连续导数,且对任意x ∈∆有'()0f x ≠,又初值01,x x ∈∆,,则当邻域∆充分小时,弦截法(7.17)将按阶1.618p =≈收敛到*x .这里p 是方程210λλ--=的正根.5.抛物线法弦截法可以理解为用过11(,()),(())k k k k x f x x f x ---两点的直线方程的根近似替()0f x =的根.若已知()0f x =的三个近似根k x ,1k x -,2k x -用过1122(,()),(,()),(,())k k k k k k x f x x f x x f x ----的抛物线方程的根近似代替()0f x =的根,所得的迭代法称为抛物线法,也称密勒(Muller)法. 当()f x 在*x 的邻近有三阶连续导数,'(*)0f x ≠,则抛物线法局部收敛,且收敛阶为 1.839 1.84p =≈.二、知识结构图10[1,2]1x x --=≤≤--∈3-3-6k k 32三、常考题型及典型题精解例7-1 证明方程x 在上有一个实根x*,并用二分法求这个根,要求|x -x*|10.若要求|x -x*|10,需二分区间[1,2]多少次?解 设f(x)=x ,则f(1)=-1<0,f(2)=5>0,故方程f(x)=0在[1,2]上有根x*.又因f'(x)=3x -1,所以当x [1,2]时,f'(x)>0,即f (x)=0在[1,2]上有惟一实根x*.用二分法计算结果如表7-1所示.表7-1k ka kb kx ()k f x 的符号0 1 2 31 1 1.25 1.252 1.5 1.51.3751.51.25 1.375 1.3125+ - + -610x e -≤≤⨯≤≤≤≤≥∈-3-39910-6k k k+101此时x =1.3253满足|x -x*|0.9771010,可以作为x*的近2似值.1 若要求|x -x*|,只需|x -x*|10即可,解得k+119.932,2即只需把[1,2]二分20次就能满足精度要求.例7-2 已知函数方程(x-2)=1,(1)确定有根区间[a,b];(2)构造不动点迭代公式使之对任意初始近似x [a,b],31|10.k x ---<k 迭代方法均收敛;(3)用所构造的公式计算根的近似值,要求|x1lim lim x x x x x e e e e →+∞→-∞∞∞∞∈解 (1)令f(x)=(x-2)-1,由于f(2)=-1<0,f(3)=-1>0,因此区间[2,3]是方程f(x)=0的一个有根区间.又因f'(x)=(x-1),f(x)=+,f(x)=-1,f'(1)=--1<0,当x>1时f(x)单增,x<1时f(x)单减,故f(x)=0在(-,+)内有且仅有一根x*,即x*[2,3].2'k k x x x x x x e e e e e e e ϕϕϕ-----∈∈≤≤≤∀∈k+100k+1(2)将(x-2)=1等价变形为x=2+,x [2,3].则(x)=2+.由于当x [2,3]时2(x)3,|(x)|=|-|<1故不动点迭代法x =2+,k=0,1,2,...,对x [2,3]均收敛.(3)取x =2.5,利用x =2+进行迭代计算,结果如表7-2所示.表7-24 2.120094976.73cos 3120cos c k x x x x ϕ≈=--+=∈≤4k+10-30k+1k+1k 此时x 已满足误差要求,即x*例 考虑求解方程2的迭代公式2x =4+,k=0,1,2,...3(1)试证:对任意初始近似x R,该方法收敛;(2)取x =4,求根的近似值x ,要求|x -x |10;(3)所给方法的收敛阶是多少?2解 (1)由迭代公式知,迭代函数(x)=4+3{}os ,(,).|'sin |1(,)x x x ϕϕϕ∈-∞+∞≤<-∞+∞∀∈0k 022由于(x)的值域介于(4-)与(4+)之间,且3322(x)|=|-33故根据定理7.1,7.2知,(x)在内存在惟一的不动点x*,且对x R,迭代公式得到的序列x 收敛于x*.(2) 取x =4,迭代计算结果如表7-3所示.表7-3此时5x 已满足误差要求,即5* 3.347529903x x ≈=(3)由于'(*)0.1363231290x ϕ≈≠,故根据定理7 .4知方法是线性收敛的,并且有1lim'(*)k k k e x e ϕ+→∞=。
数值分析第7章-方程近似根

例7-2 求x x 1 0在1.5附近的根x *。
3
解:( 1)将方程改写成下列形 式 x 3 x1 据此建立迭代公式 x k 1 3 x k 1 (k 0,1,2, )
k xk
k
xk
k
xk
0 1.5 1 1.35721 2 1.33086
它表明定理中的条件(2)可用(2.5)代替。
机动 上页 下页 首页 结束
1 在例7-2中,当 (x) x 1时, (x) (x 1) 2/3 , 3 1 1 1 在区间[1, 2]中, (x) ( ) 3 1, 又因 3 4
3
1 3 2 (x) 3 3 2 故定理1中条件1成立。所以迭代法收敛。 而当 (x) x 3 1时, (x) 3x 2在区间[1,中 2] (x) 1 不满足定理条件。
对定理1的条件(2),在使用时如果
(2.4)
(x) C1[a, b]且对任意x [a, b]有 (x) L 1
则由中值定理可知对x, y [a, b]有 (2.5)
(x) (y ) ( )( x y ) L x - y , (a, b)
机动 上页 下页 首页 结束
例7 - 4 牛顿法求方程x x 5 0的近似根.
3
1)判断根的大致范围
f (0) 5, f (2) 5 x* ( 0,2 )
2)求导判断收敛性
f 3x 2 1 0 单调 f ( x) 6 x 0, 连续
定理2 在定理1的条件下, 对任意初值 x 0 [ a, b], 迭代序列 (2.2)均收敛于 ( x)的不动点x*, Lk | x k x* | | x1 x0 | . 1 L
牛顿法、简化牛顿法与牛顿下山法、弦截法、解非线性方程组的牛顿法

河北联合大学第7章 非线性方程组的数值解法§7.3 牛顿法 §7.4 简化牛顿法与牛顿下山法§7.5 弦截法 §7.6 解非线性方程组的牛顿法1. 什么是求解f x =0的牛顿法?它是否总是收敛的?若f *x =0,x *是单根,f 光滑,证明牛顿法是局部二阶收敛的。
答:按式x 1 n =x n —n n x f x f '(n=0,1,2……n )求方程f x =0的近似解的方法称为牛顿法;牛顿法不总是收敛的,它是局部收敛的;设函数()f x 在其零点*x 邻近二阶连续可微,且*()0f x ᄁᄁ,则存在0d >,使得对任意**0[,]x x x d d - �,Newton 法所产生的序列{}n x 至少二阶收敛于*x 。
证明 由1() (0,1,2,)()n n n n f x x x n f x =-=ᄁL 知迭代函数为()()()f x x x f x j =-ᄁ,且有2()()()[()]f x f x x f x j ᄁᄁᄁ=ᄁ,若()f x ᄁᄁ在*x 邻近连续,则()x j ᄁ在*x 邻近连续,且****2()()()01[()]f x f x x f x j ᄁᄁᄁ==<ᄁ当迭代函数()x j在*x 邻近有r 阶连续导数,且**=()x x j ,()*()0k x j =(1,,1)k r =-L ,0)(*)( x r j 则迭代序列{}n x 在点*x 邻近是r 阶收敛的。
可知Newton 法产生的迭代序列{}n x 至少二阶收敛于*x 。
2. 什么是弦截法?试从收敛阶及每步迭代计算量与牛顿法比较其差别。
答:弦截法是函数逼近法的一种,基本思想是用区间 x x kk ,1-上的割线近似代替目标函数的导函数的曲线。
并用割线与横轴交点的横坐标作为方程根的近似。
在Newton 迭代公式中,每次计算导数运算量很大,为了避免计算导数值,用差商代替导数)(x k f,得到迭代公式 按如下迭代公式计算方程的近似解称为弦截法。
数值分析迭代加速牛顿法及弦截法

以上两式相除得
xk1 xk1
C C
xk xk
C C
2 .
据此反复递推有
xk xk
C C
x0 x0
2k
C C
.
第14页/共34页
(4.6)
记
q x0 C x0 C
整理(4.6)式,得
q2k xk C 2 C 1 q2k .
对任意初值x0>0,总有|q|<1,故由上式推知,当 k→∞时xk C ,即迭代过程恒收敛.
值x0, x1△,那么当邻域△充分小时,弦截法(5.2)将 按阶
p 1 5 1.618. 2
收敛到x*. 这里p是方程λ2-λ-1=0的正根. 定理证明可见P116.
第26页/共34页
因为(5.2)式用到前两点xk-1和xk的值,故此方法又 称为双点割线法.
如果把(5.2)式中的xk-1改为x0,即迭代公式为
比较困难,为此可以利用已求函数值 f(xk),f(xk-1),来
回避导数值 f(xk)的计算. 这类方法是建立在插值原理
基础上的,下面介绍弦截法与抛物线法.
第22页/共34页
3.5.1 弦截(割线)法
设 xk, xk-1是 f(x)=0的近似根,我们利用 f(xk), f(xk-1) 构造一次插值多项式 p1(x),并用 p1(x)=0 的根作为方程 f(x)=0 的新的近似根 xk+1,由于
x*
x
(4.2)的计算结果.
y=f(x)
xk+2xk+1xk
第9页/共34页
牛顿迭代法的收敛性
牛顿迭代法的迭代函数为
(x) x f (x)
f ( x)
设x*是 f(x) 的一个单根,即 f(x*)=0,f(x*)≠0, 有
数学方法解决非线性方程组

数学方法解决非线性方程组非线性方程组在科学、工程和数学领域中具有重要的应用价值。
解决非线性方程组是一个复杂的任务,而数学方法为我们提供了一种有效的途径。
本文将介绍一些常用的数学方法,以解决非线性方程组的问题。
1. 牛顿法牛顿法是一种常用的数值解法,用于求解非线性方程组。
它基于泰勒级数的思想,通过迭代逼近方程组的根。
具体步骤如下:首先,选择一个初始点作为近似解。
然后,根据函数的导数来计算方程组在该点的切线,找到切线与坐标轴的交点。
将该交点作为新的近似解,继续迭代,直到满足收敛条件。
牛顿法具有快速收敛的特点,但在某些情况下可能会陷入局部极小值点。
2. 雅可比迭代法雅可比迭代法也是一种常见的数值解法。
它将非线性方程组转化为线性方程组的形式,然后通过迭代来逼近解。
具体步骤如下:首先,将非线性方程组表示为矩阵形式,其中包含未知数的系数矩阵和常数向量。
然后,将方程组进行变换,使得未知数的系数矩阵变为对角矩阵。
接下来,选择一个初始解向量,并通过迭代计算新的解向量,直到满足收敛条件。
雅可比迭代法适用于大规模的非线性方程组求解,但收敛速度较慢。
3. 高斯-赛德尔迭代法高斯-赛德尔迭代法是雅可比迭代法的改进版本。
它在每次迭代中使用新的解向量来更新未知数的值,从而加快收敛速度。
具体步骤如下:首先,选择一个初始解向量。
然后,通过迭代计算新的解向量,直到满足收敛条件。
高斯-赛德尔迭代法相对于雅可比迭代法而言,可以更快地收敛到解。
它在求解非线性方程组时具有较好的效果。
4. 弦截法弦截法是一种近似求解非线性方程组的方法。
它通过线段的截断来逼近方程组的根。
具体步骤如下:首先,选择一个初始的线段,其中包含方程组的两个近似解。
然后,通过截取线段上的新点,构造新的线段。
重复这个过程,直到满足收敛条件。
弦截法是一种迭代方法,它可以在不需要计算导数的情况下逼近方程组的根。
但是,它的收敛速度比牛顿法和雅可比迭代法要慢。
总结:数学方法提供了一种有效的途径来解决非线性方程组的问题。
非线性方程的数值求法牛顿迭代法和弦截法PPT课件

26
Newton下山法
原理:若由 xk 得到的 xk+1 不能使 | f | 减小,则在 xk 和 xk+1 之 间找一个更好的点 xk1,使得 f ( xk1) f ( xk ) 。
xk
xk+1
xk1 (1 )xk , [0, 1]
xk 1
[xk
)g( xn
)
n1
n
mng(xn ) mg( xn ) n g(
xn
)
n2 g( xn )
mg( xn ) n g( xn )
n1
2 n
g( xn )
mg( xn ) n g( xn )
若 xn 收敛,即
n 0 (n ),
没有具体的描述,而且若x0 的值没有取好,有可 能得不到收敛的结果。
以下定理,给出了 f x 满足一定的条件时,要使得牛顿
迭代法收敛,x0 应满足什么条件。
又 f ( ) 0
( ) 0 1,
牛顿迭代法局部收敛于
又 ( ) 0
即有:牛顿迭代法具有二阶(平方)收敛速度。
注. 定理要求 x0 充分接近 (局部收敛),充分的程度
没有具体的描述,而且若x0 的值没有取好,有可 能得不到收敛的结果。
以下定理,给出了 f x 满足一定的条件时,要使得牛顿
迭代法收敛,x0 应满足什么条件。
定理 设 f x 在区间 a,b 上的二阶导数存在,且满足: ① f (a) f (b) 0; (保证 a, b中至少存在一个根)
若 xn 收敛,即 n 0 (n )
lim n1 lim[1
非线性方程(组)的数值解法——牛顿法、弦切法

(3) 用 Newton 法解 (x) = 0
x ( x 2 2) 3 ( x) x x2 2
ex76.m
14
弦截法与抛物线法
弦截法与抛物线法
目的:避免计算 Newton 法中的导数,且具有较 高的收敛性(超线性收敛) 弦截法(割线法):用差商代替微商 抛物线法:用二次多项式近似 f(x)
2
x
k
C
2
2
xk 1 C xk C xk 1 C xk C 2k xk C x0 C xk C x0 C k q2 xk C 2 C 2k 1 q
q
2k
对任意 x0>0, 总有 |q|<1, 即牛顿法收敛
8
牛顿法
牛顿的优点
至少二阶局部收敛,收敛速度较快,特别是当迭代点 充分靠近精确解时。
牛顿法是目前求解非线性方程 (组) 的主要方法 牛顿的缺点
对重根收敛Βιβλιοθήκη 度较慢(线性收敛) 对初值的选取很敏感,要求初值相当接近真解 先用其它算法获取一个近似解,然后使用牛顿法
需要求导数!
9
简化的Newton法
f ( xk ) f '( xk ) 迭代格式: xk 1 xk [ f '( xk )]2 f ( xk ) f ''( xk )
13
举例
例:求 x4 - 4x2 + 4=0 的二重根 x* 2 (1) 普通 Newton 法
x2 2 1 ( x ) x 4x
(2) 改进的 Newton 法 x2 2 2 ( x) x
简化的 Newton 法
4.3弦截法

x k 1 x k
x xk 1 3x 1
k
,
k 0 , 1, 2 , 3,
取初始近似根
x k 1 x k
x 0 1, x 1 1 .5
,单点弦切公式为
x xk 1
3
k
x
3
k
xk 1 x x0 1
3
0
( xk x0 )
且 f ( x ) 在[1,2]上严格单调增加,则
x n 1 x n x n s in x n 1 1 cos xn
2 x n c o s x n s in x n 1 cos xn
, n 0 ,1, 2 ,
x n 1 x n
x n s in x n 1
P ,(x
k
k
, f ( x k ))
Pk
的弦为:
y f ( xk ) f ( x k ) f ( x k 1 ) x k x k 1 ( x xk )
x
Pk 1 x k 1
双点弦截法的优点是避 免了求导数。收敛速度介于
xk 2
y f
xk
x
x k 1
x 0 , x1
因为
x 6 x 5 0 .0 0 0 0 0 4 1 0
,所求近似根为x *
。
练习、设有非线性方程 x
s in x 1
,写出Newdon迭代公式
与单点弦切公式,并用双点弦截法求方程的一个正根。 解、令
f ( x ) x s in x 1,
则
f (1) 0 , f ( 2 ) 0 ,
牛顿法与弦截法的比较分析

牛顿法与弦截法的比较分析牛顿法与弦截法都是解决非线性方程组的数值方法,本文将从理论分析和实例验证两个方面对两种方法进行比较分析。
一、理论分析牛顿法是利用函数在某一点的切线来逼近函数的零点,具体公式为:$$ x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)} $$其中,$x_n$为第n次迭代时的值,$f(x_n)$与$f'(x_n)$分别为函数$f(x)$在$x_n$处的函数值和导数值。
弦截法是利用函数在两点的割线来逼近函数的零点,具体公式为:$$ x_{n+1}=x_n-\frac{f(x_n)(x_n-x_{n-1})}{f(x_n)-f(x_{n-1})} $$其中,$x_n$和$x_{n-1}$为第n次和n-1次迭代时的值,$f(x_n)$和$f(x_{n-1})$分别为函数$f(x)$在$x_n$和$x_{n-1}$处的函数值。
从公式上看,牛顿法需要求解函数的导数值,而弦截法需要求解两个点的函数值。
通常情况下,求导数比求函数值要容易,因此牛顿法的求解速度会比弦截法快。
但是,牛顿法也有其局限性,当$f'(x_n)$接近于零时,分母将趋近于零,公式失效,部分实验结果还容易出现发散的情况。
而弦截法没有这样的局限性,因为它只需要两个点的函数值,所以它更加稳定。
因此,对于导数很难或不容易求解的函数,或者函数的导数在最小值点或最大值点处为零的情况下,弦截法比牛顿法更加适合。
二、实例验证下面我们以一个简单的例子来验证牛顿法和弦截法之间的差异。
假设我们要求解$f(x)=x^3-x-1$的根,且我们需要知道的精度为$10^{-6}$。
先来看看牛顿法的迭代过程:$$ x_0=1,\space x_1=1.5,\space x_2=1.453333,\spacex_3=1.324719,\space x_4=1.326024,\space x_5=1.324718,\spacex_6=1.324718 $$可以看到,牛顿法在6次迭代后得到了精度为$10^{-6}$的根,但是这个过程中出现了两次迭代发散的情况。
牛顿法弦截法

f ( xk ) xk 1 [ xk ] (1 ) xk f ( x k ) f ( xk ) xk f ( x k )
xk 1 (1 ) xk , [0, 1]
注: = 1 时就是Newton’s Method 公式。
需要 2 个初值 x0 和 x1 。
弦截法与牛顿法相比较
相同之处:都是线性化方法
不同之处:牛顿法在计算xk+1时只用到前 一步的值xk,故这种方法称为单点迭代法。 而弦截法在求xk+1时要用到前两步的值xk 和xk-1,因此这种方法称为多点迭代法。
有关弦截法的收敛速度
与牛顿法相比,弦截法的收敛速度也是 比较快的。可以证明,弦截法具有超线 性收敛速度,收敛阶为
f ( x) ( x) f ( x )
则 f 的重根 = 的单根。
下山法 /* Descent Method */ ——Newton’s Method 局部微调:
原理:若由 xk 得到的 xk+1 不能使 | f | 减小, 则在 xk 和 xk+1 之间找一个更好的点 x k 1 ,使 得 f ( xk 1 ) f ( xk )
f ( x0 ) (2)计算 x1 x0 f ( x 0 )
(3)若
x1 x0 ,转向(4),
否则 x0 x1,转向(2); (4)输出满足精度的根 x1 ,结束。
例 用牛顿迭代法求方程 xe 1 0 在 x=0.5 附近的根。取 0.00005
x
解
其牛顿迭代公式为
在 x0 和 x*之间。
将 (x* x0)2看成高阶小量,则有:
0 f ( x*) f ( x0 ) f ( x0 )( x * x0 )
第二节_牛顿迭代法

标即为 xk 1 。 y
( x0 , f ( x0 ))
1 m 2时,1 0 m
由定义1
该迭代法对 m( 2)重根是线性收敛的
例4.
设f (a) 0, 且f (a) 0, 证明迭代法
xk 1 xk f ( xk ) f ( xk )
至少是平方收敛的
注意例4与例3的迭代法是相同的,两例有何区别? 证明: 令
( x) x
lim x n 注意到ξn 在xn 及x*之间,及 n
x n1 x* x n x*
2
x*
,故
f" ( n ) f " ( x* ) * 2 f ' ( xn ) 2 f' ( x )
0(二阶收敛)若 f "( x* ) 0 0(大于二阶收敛)若 f "( x* ) 0
Newton迭代公式是一种特殊的不动点迭代,其 迭代函数为: f ( x) ( x) x f '( x )
•
• Newton迭代是局部线性化方法,它在单根附近 具有较高的收敛速度.
• 方法有效前提: f ( xk ) 0
牛顿迭代法的优缺点
优点: 在单根附近, 牛顿迭代法具有平方收敛的速
显然, p越大, 收敛速度也就越快
那么, 如何确定 p , 从而确定收敛阶呢?
如果迭代函数 ( x )在精确解x * 处充分光滑, 即处处可导
牛顿-拉夫森(Newton-Raphson)迭代法

§3.4 牛顿迭代法牛顿迭代法也称为牛顿-拉夫森(Newton-Raphson)迭代法,它是数值分析中最重要的方法之一,它不仅适用于方程或方程组的求解,还常用于微分方程和积分方程求解。
3.4.1 牛顿迭代法用迭代法解非线性方程时,如何构造迭代函数是非常重要的,那么怎样构造的迭代函数才能保证迭代法收敛呢?牛顿迭代法就是常用的方法之一,其迭代格式的来源大概有以下几种方式:1设],[)(2b a C x f ∈,对)(x f 在点],[0b a x ∈作泰勒展开: !2))((''))((')()(20000x x f x x x f x f x f -+-+=ξ略去二次项,得到)(x f 的线性近似式:))((')()(000x x x f x f x f -+≈。
由此得到方程=)(x f 0的近似根(假定≠)('0x f 0),)(')(000x f x f x x -=即可构造出迭代格式(假定≠)('k x f 0):)(')(1k k k k x f x f x x -=+ 公式(3.4.1)这就是牛顿迭代公式,若得到的序列{k x }收敛于α,则α就是非线性方程的根。
2 牛顿迭代法也称为牛顿切线法,这是由于)(x f 的线性化近似函数)(x l =))((')(000x x x f x f -+是曲线y =)(x f 过点))(,(00x f x 的切线而得名的,求)(x f 的零点代之以求)(x l 的零点,即切线)(x l 与x 轴交点的横坐标,如右图所示,这就是牛顿切线法的几何解释。
实际上,牛顿迭代法也可以从几何意义上推出。
利用牛顿迭代公式,由k x 得到1+k x ,从几何图形上看,就是过点))(,(k k x f x 作函数)(x f 的切线k l ,切线k l 与x 轴的交点就是1+k x ,所以有1)()('+-=k k k k x x x f x f ,整理后也能得出牛顿迭代公式: )(')(1k k k k x f x f x x -=+。
《牛顿迭代法》PPT课件

类方法计算量省,但只有线性收敛,其几何意义是用平行 弦与 x轴交点作为 x的*近似. 如图7-4所示.
图7-4
11
(2) 牛顿下山法.
牛顿法收敛性依赖初值 的x0选取. 如果 偏离x0所求根 x较* 远,则牛顿法可能发散.
例如,用牛顿法求方程
x3 x 1 0.
(3.8)
在 x 1附.5近的一个根 . x *
f (x1,) 而0.656643 f ( x0 ) 1.384
显然 f ( x1) f. (x0 )
由 计x1算 x2时, x3 ,, 均能 使 1条件(3.10) 成立. 计算结果如下 :
x2 1.36181, x3 1.32628, x4 1.32472,
f ( x2 ) 0.1866; f ( x3 ) 0.00667; f ( x4 ) 0.0000086.
10.723805
4
10.723805
8
三 简化牛顿法与牛顿下山法
牛顿法的优点 收敛快, 牛顿法的缺点
一 每步迭代要计算 f及( xk ) ,计f (算x量k )较大
且有时 f ( x计k )算较困难,
二是初始近似 只x在0 根 附x近*才能保证收敛,
如 x给0 的不合适可能不收敛.
9
为克服这两个缺点,通常可用下述方法.
设取迭代初值 x0 , 1用.5牛顿法公式
xk 1
xk
xk3 xk 1 3xk2 1
计算得
x1 1.34783, x2 1.32520,
迭代3次得到的结果 x3有6位有效数字.
(3.9)
x3 1.32472.
12
但如果改用 x0 作 0为.6迭代初值,则依牛顿法公式 (3.9)迭代一次得
7.3牛顿迭代法和割线法PPT课件

计算,结果如表2.4.1所示。
k xk 01 12 2 1.166666667 3 1.253112023 4 1.337206444 5 1.323850096 6 1.324707936 7 1.324717965
f(xk) -1 5 -0.57870369 -0.28536302 0.053880579 -0.0036981168 -4.273521*10E-5 3.79*10E-8
2
由 f (x) 1 sinx及Newton迭代公式得
xn1
xn
xn cos xn 1 sin xn
n 0,1,......
取x0
4
得
x1 0.73936133;
x2 0.739085178
x3 0.739085133 x4 0.739085133
故取 x* x4 0.739085133
证明: 根的存在性
由条件(1)及f (x) C[a,b],知f (x) 0在 (a, b)内至少有一个根。
根的唯一性
由 f (x) 0, 及f (x) C[a, b],知f (x)保号, 故f (x)是[a,b]上严格单调函数,因此f (x) 0 在(a, b)内有唯一根, 记此根为x*。
解:取x0=1,x1=2,代入公式
xn1 xn
f
f (xn )
( xn f
) ( xn1 )
( xn
xn 1 )
(n 1,2,...)
xn
(
xn
3 1
xn
xn3 xn 1
1)
(
xn
3 1
xn1
1)
( xn
xn 1 )
xn
(
xn
第七章:牛顿迭代法,弦截法

二、弦截法(割线法)
研究目的:在牛顿法基础上,构造既有 较高的收敛速度,又不须导数的迭代公式.
f ( x k ) f ( x k 1 ) 代替导数 f ( xk ) 思想: 用差商 x k x k 1
弦截迭代公式
f ( xk ) xk 1 xk ( xk xk 1 ), f ( xk ) f ( xk 1 ) k 1, 2,
Newton迭代公式
0 xk 1 xk
x
xk 1
f ( xk ) xk , k 0,1, 2, f ( xk )
一、牛顿迭代法(切线法)
2. 牛顿迭代法的收敛性 ——局部收敛
定理 如果在有根区间[a,b]上 f´(x)≠0,f″(x)连续且不变
号, 在 [a, b]上取初始近似根 x0 , 使得 f ( x0 ) f ( x) 0 则牛顿迭代法收敛.
一、牛顿迭代法(切线法)
3. 牛顿迭代法的计算步骤
(1)给出x0 , ε;
f ( x0 ) x x (2)计算 1 0 f ( x0 )
(3)若 x1 x0 , 则转(4);否则 x0 x1 ,转(2);
(4)输出x1 , 结束.
例 用牛顿迭代法求方程 xex-1=0 在x=0.5
f ( x ) x ln x 2
取x0=2, x1=4经计算可得 x x3 3.146193221.
弦截法的计算框图
开始
输入x 0 , x1 ,
x 2 x1
f ( x1 ) ( x1 x0 ) f ( x1 ) f ( x0 )
| x 2 x1 | F x 0 x1 x1 x 2
1 x
例 用牛顿迭代法计算 3 .
牛顿下山法、弦截法、解非线性方程组的牛顿法 - 牛顿法、简化牛顿法

xk +1
xk
-
f ( xk ) f ᄁ( xk )
与前一步的近似值 xk 适当加权平均作为新的改进值,
xk+1 l xk+1 + (1- l)xk , 其中 l(0 < l ᄁ1) 称为下山因子。
xk +1
xk
-l
f (xk ) f '(xk )
(k 0,1, 2...)
解:设 f (x) x2 - a ,求 a 即计算 f (x) 0 的根。
则由牛顿迭代公式可得:
xk +1
xk
-
f (xk ) f ᄁ(xk )
xk
-
xk2 - a 2xk
1 2
� � �xk
+
a xk
� � �.
令初始值 x0 3 ,得
x1
1 2
� � �3 +
7 3
� � �
2.667,
xk +1
xk
-
f (xk ) f ᄁ(x0 )
(牛顿法) 2. 牛顿重根法
(简化牛顿法)
如果 x0 为 f (x) 的 k 重根,牛顿迭代公式修改为:
(k 0,1,L)
【注】若三种方法 都收敛,则一般 重根法收敛最快, 牛顿法次之,简 化迭代法最慢。
xk +1 xk
-k
f (xk ) f '(xk )
以方程
f (x) ᄁ f (x0 ) + f ᄁ(x0 )(x - x0 )
f (x0 ) + f ᄁ(x0 )(x - x0 ) 0
近似方程(7-1),其解
x1
求解非线性方程的三种新的迭代法

求解非线性方程的三种新的迭代法
非线性方程是一种不满足线性关系的方程,它们的解不易通过代数方法直接求解。
需要通过迭代法来逼近非线性方程的解。
迭代法是一种通过不断逼近的方法,寻找非线性方程的近似解的方法。
在本文中,我们将介绍三种新的迭代法,这些方法可以更有效地求解非线性方程。
1. 牛顿迭代法
牛顿迭代法是求解非线性方程的一种经典方法,它通过不断迭代来逼近方程的解。
该方法的基本思想是从方程的一个初始值开始,通过一定的迭代公式不断逼近方程的解。
具体的迭代公式为:
\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}\]
x_n表示第n次迭代的近似解,f(x)表示原非线性方程,f'(x)表示f(x)的导数。
牛顿迭代法的收敛速度非常快,但是需要计算方程的导数,对于复杂的非线性方程来说,计算导数较为困难。
2. 割线法
割线法的收敛速度较快,但是需要两个初始值,并且每次迭代都需要计算函数值,因此每次迭代的计算量较大。
3. 弦截法
\[x_{n+1} = x_n - \frac{f(x_n) \cdot (x_n - x_{n-1})}{f(x_n) - f(x_{n-1})} - \frac{f(x_n) \cdot (x_n - x_{n-1})^2}{f(x_n) - f(x_{n-1})}\]
弦截法通过引入截距值来加快收敛速度,虽然每次迭代的计算量较大,但是收敛速度也较快。
以上介绍了三种新的迭代法,它们可以更有效地求解非线性方程。
在实际应用中,可以根据具体问题的特点选取合适的迭代方法来求解非线性方程,从而得到更为准确和高效的解。
数值的分析2.2-2方程求根(牛顿法和弦截法)

ABCD
迭代公式
$x_{n+1} = x_n - frac{f(x_n)}{f(x_n) - f(x_{n-1})}$,其中 $f(x)$ 是要求根的方程。
实例
使用弦截法求解 $f(x) = x^3 - x - 1 = 0$ 的根。
06
结论
牛顿法和弦截法的总结
牛顿法
通过迭代的方式逼近方程的根,具有较高的收敛速度和精度,但在某些情况下可能会陷 入局部极小值。
弦截法
通过不断调整弦的长度来逼近方程的根,具有较稳定的收敛性和较小的误差,但需要更 多的迭代次数。
对未来研究的建议
进一步研究牛顿法和弦截法的收敛性和误差性质, 以提高求解方程根的精度和稳定性。
探索将其他优化算法与牛顿法和弦截法相结合,以 实现更高效的求解方程根的方法。
针对特定类型的方程,研究更适合的求解方法,以 提高求解效率。
03
弦截法
弦截法的原理
弦截法是一种迭代算法,用于求解非线性方程的根。其基本思想是通过不断逼近方程的根,逐步缩小 误差范围,最终找到满足精度要求的根。
在弦截法中,每次迭代都通过线性化方程来逼近根,然后利用已知的近似值和导数值来计算下一次迭 代的近似值。
弦截法的实现步骤
初始化
选择一个初始近似值$x_0$,设置精度要求$epsilon$ 和最大迭代次数$N$。
当相邻两次迭代点的差小于预设 的误差限时,停止迭代,输出近 似根。
牛顿法的优缺点
优点
收敛速度快,特别是对于一些具有简单零点的函数,牛顿法能够 快速逼近根。
缺点
对于一些具有多个零点的函数或者没有简单零点的函数,牛顿法 可能收敛到错误的根或者不收敛。此外,如果初始点选择不当, 牛顿法也可能陷入局部最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T
出 输出 x 2
结束
弦截迭代公式为 xk 1 k 0 1 2 3
xk e xk xk ( xk xk 1 ) xk xk 1 ( xk xk 1 ) (e e )
xk 0.5 0.6 0.567 54 0.567 15
x* x3 0.567
练习 用弦截法求方程 x-lnx=2 在[2,4]内的一个根. 答案:
二、弦截法(割线法)
研究目的:在牛顿法基础上,构造既有 较高的收敛速度,又不须导数的迭代公式.
f ( x k ) f ( x k 1 ) 代替导数 f ( xk ) 思想: 用差商 x k x k 1
弦截迭代公式
f ( xk ) xk 1 xk ( xk xk 1 ), f ( xk ) f ( xk 1 ) k 1, 2,
附近的根(取5位小数计算), 精度要求为ε=10–3. 答案: f ( x) xe x 1
f ( x) e x xe x
相应的牛顿迭代公式为 x k e xk 1 x k e xk xk 1 xk xk xk xk 1 xk e xk e 取x0=0.5,经计算可得
1 x
例 用牛顿迭代法计算 3 .
答案:
令 x 3 , 则x2-3=0, 求 3 等价于求方程 f ( x) x 2 3 0 的正实根. 因为 f´(x)=2x , 由牛顿迭代公式得
2 xk 3 1 3 xk 1 xk ( xk ) 2 xk 2 xk
k 0,1,2,
Newton迭代公式
0 xk 1 xk
x
xk 1
f ( xk ) xk , k 0,1, 2, f ( xk )
一、牛顿迭代法(切线法)
2. 牛顿迭代法的收敛性 ——局部收敛
定理 如果在有根区间[a,b]上 f´(x)≠0,f″(x)连续且不变
号, 在 [a, b]上取初始近似根 x0 , 使得 f ( x0 ) f ( x) 0 则牛顿迭代法收敛.
f ( x ) x ln x 2
取x0=2, x1=4经计算可得 x x3 3.146193221.
弦截法的计算框图
开始
输入x 0 , x1 ,
x 2 x1
f ( x1 ) ( x1 x0 ) f ( x1 ) f ( x0 )
| x 2 x1 | F x 0 x1 x1 x 2
x x3 0.567
练习 用牛顿迭代法求方程 x-lnx=2 在[2,4]内的一个根.
答案:
f ( x ) x ln x 2
f ( x ) 1
相应的牛顿迭代公式为 xk 1 xk
取x0=3,经计算可得 x x3 ቤተ መጻሕፍቲ ባይዱ.146193221.
xk ln xk 2 xk (1 ln xk ) 1 xk 1 1 xk
一、牛顿迭代法(切线法)
3. 牛顿迭代法的计算步骤
(1)给出x0 , ε;
f ( x0 ) x x (2)计算 1 0 f ( x0 )
(3)若 x1 x0 , 则转(4);否则 x0 x1 ,转(2);
(4)输出x1 , 结束.
例 用牛顿迭代法求方程 xex-1=0 在x=0.5
弦截法的特点: 计算 xk+1 时要用到前两步的信息xk, xk-1, 即这种迭代法为 两步法. 使用这种方法必须提供两个初始值x0, x1.
几何意义
例 用弦截迭代法求上一节的方程 xex-1=0 在x=0.5附近的根。
答案: 方程化为 x-e –x=0, 令 f ( x) x e x
一、牛顿迭代法
二、弦截法
一、牛顿迭代法(切线法)
1. 牛顿法的基本思想
把非线性方程线性化,用线性方程的解逐步逼 y 近非线性方程的解。 y f x 过曲线上的点pk(xk , f(xk))作切线, 取切线与轴的交点为 xk+1. pk x k , f ( x k ) 切线方程 y=f(xk)+f(xk)(x – xk) x* 点(xk+1, 0)满足该方程, 即 0= f(xk)+f(xk)(xk+1 – xk) 由此得 f(xk)(xk+1 – xk) = – f(xk) 若 f(xk )≠0, 则得
取初值 x0=1.5, 迭代5次可得 3≈1.732050808
问题 如何用牛顿法计算任意正数的算术平方根? 是否还能用牛顿法计算一个正数的立方根? 练习 用牛顿迭代法计算 115 . 答案: 10.723805
牛顿迭代法的优缺点: 优点: 公式简单, 使用方便, 易于编程, 收敛速
度快,易于求解非线性方程根的有效方法. 缺点: 计算量大, 每次迭代都要计算函数值与导数值.