初中数学几何定理公式大全汇总

合集下载

初中数学竞赛几何中常用的24个必备定理

初中数学竞赛几何中常用的24个必备定理

初中数学竞赛几何中常用的24个必备定理1. 同位角定理:同位角互相相等或互补。

2. 对顶角定理:对顶角相等。

3. 同旁内角定理:同旁内角互补。

4. 外角定理:与一个多边形任意一内角相对的外角相等。

5. 内角和定理:n边形的内角和为180度×(n-2)。

6. 相关角定理:相邻角互补,对顶角互相相等。

7. 垂直直角定理:垂线与直线相交,形成直角。

8. 垂线定理:直线上任意一点向另一直线作垂线,垂线所在直线与原直线垂直。

9. 三角形内角和定理:三角形内角和为180度。

10. 等腰三角形定理:等腰三角形的底角相等。

11. 等边三角形定理:等边三角形的三个内角均为60度。

12. 直角三角形性质:直角三角形斜边平方等于其他两条边平方和。

13. 等角定理:两角相等的两个三角形全等。

14. 外接圆定理:三角形三个顶点到外接圆圆心的距离相等。

15. 中线定理:连接三角形两边的中线相等。

16. 中位线定理:连接三角形两边中点的线段平分第三边。

17. 高线定理:连接三角形顶点与对边垂直的线段相交于三角形内心。

18. 海伦公式:用三角形三条边的长度求其面积:S=sqrt[p(p-a)(p-b)(p-c)],其中p=(a+b+c)/2。

19. 正多边形内角定理:正n边形的内角和为(180度×(n-2))/n。

20. 球面三角形定理:球面三角形三个顶点到球心的距离相等。

三条边为大圆弧。

21. 圆周角定理:圆周角等于对应的弧所夹的圆心角。

22. 切线定理:切线相切于圆,与该切点相切的直线垂直于切线。

23. 弦长定理:在同一圆上,两条弦所夹的圆心角相等,则它们的弦长相等。

24. 弧长定理:同一圆上,两个相等的圆心角所对应的弧长相等。

(完整版)初中数学几何公式大全

(完整版)初中数学几何公式大全

(完整版)初中数学几何公式大全直线和角度1. 同位角相等定理:若两条直线被一条横切,同位角相等。

同位角相等定理:若两条直线被一条横切,同位角相等。

2. 内错角相等定理:若两条直线被一条横切,内错角相等。

内错角相等定理:若两条直线被一条横切,内错角相等。

3. 同位角内错角互补定理:若两条直线被一条横切,同位角和内错角互为补角(和为180度)。

同位角内错角互补定理:若两条直线被一条横切,同位角和内错角互为补角(和为180度)。

4. 平行线定理:若一条直线与另外两条直线分别平行,则这两条直线也平行。

平行线定理:若一条直线与另外两条直线分别平行,则这两条直线也平行。

5. 直角定理:若两条直线相交且所成的角为直角,则这两条直线相互垂直。

直角定理:若两条直线相交且所成的角为直角,则这两条直线相互垂直。

线段1. 线段中点定理:若一条线段的中点同时是另一条线段的中点,则这两条线段等长。

线段中点定理:若一条线段的中点同时是另一条线段的中点,则这两条线段等长。

2. 线段延长定理:若一条线段的延长线上有一个点,与线段的两个端点分别构成等长线段,则这两个线段等长。

线段延长定理:若一条线段的延长线上有一个点,与线段的两个端点分别构成等长线段,则这两个线段等长。

三角形1. 三角形内角和定理:一个三角形的内角和为180度。

三角形内角和定理:一个三角形的内角和为180度。

2. 等腰三角形定理:若一条三角形的两条边等长,则这两条边所对的两个角也相等。

等腰三角形定理:若一条三角形的两条边等长,则这两条边所对的两个角也相等。

3. 全等三角形定理:若两个三角形的对应边和对应角分别相等,则这两个三角形全等。

全等三角形定理:若两个三角形的对应边和对应角分别相等,则这两个三角形全等。

4. 直角三角形定理:若一个三角形有一个直角,则它的斜边的平方等于两个直角边的平方和。

直角三角形定理:若一个三角形有一个直角,则它的斜边的平方等于两个直角边的平方和。

初中数学几何公式定理超全汇总

初中数学几何公式定理超全汇总

初中数学几何公式定理超全汇总140条01线1、同角或等角的余角相等2、过一点有且只有一条直线和已知直线垂直3、过两点有且只有一条直线4、两点之间线段最短5、同角或等角的补角相等6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、定理线段垂直平分线上的点和这条线段两个端点的距离相等10、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上11、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合12、定理1 关于某条直线对称的两个图形是全等形13、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线14、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上15、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称02角16、同位角相等,两直线平行17、内错角相等,两直线平行18、同旁内角互补,两直线平行19、两直线平行,同位角相等20、两直线平行,内错角相等21、两直线平行,同旁内角互补22、定理1 在角的平分线上的点到这个角的两边的距离相等23、定理2 到一个角的两边的距离相同的点,在这个角的平分线上24、角的平分线是到角的两边距离相等的所有点的集合03三角形25、定理三角形两边的和大于第三边26、推论三角形两边的差小于第三边27、三角形内角和定理三角形三个内角的和等于180°28、推论1 直角三角形的两个锐角互余29、推论2 三角形的一个外角等于和它不相邻的两个内角的和30、推论3 三角形的一个外角大于任何一个和它不相邻的内角31、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c32、勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形04等腰、直角三角形33、等腰三角形的性质定理等腰三角形的两个底角相等34、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边35、等腰三角形的顶角平分线、底边上的中线和高互相重合36、推论3 等边三角形的各角都相等,并且每一个角都等于60°37、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)38、推论1 三个角都相等的三角形是等边三角形39、推论 2 有一个角等于60°的等腰三角形是等边三角形40、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半41、直角三角形斜边上的中线等于斜边上的一半05相似、全等三角形42、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似43、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)44、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似45、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)46、判定定理3 三边对应成比例,两三角形相似(SSS)47、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似48、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比49、性质定理2 相似三角形周长的比等于相似比50、性质定理3 相似三角形面积的比等于相似比的平方51、边角边公理有两边和它们的夹角对应相等的两个三角形全等52、角边角公理有两角和它们的夹边对应相等的两个三角形全等53、推论有两角和其中一角的对边对应相等的两个三角形全等54、边边边公理有三边对应相等的两个三角形全等55、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等56、全等三角形的对应边、对应角相等06四边形57、定理四边形的内角和等于360°58、四边形的外角和等于360°59、多边形内角和定理n边形的内角的和等于(n-2)×180°60、推论任意多边的外角和等于360°61、平行四边形性质定理1 平行四边形的对角相等62、平行四边形性质定理2 平行四边形的对边相等63、推论夹在两条平行线间的平行线段相等64、平行四边形性质定理3 平行四边形的对角线互相平分65、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形66、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形67、平行四边形判定定理3 对角线互相平分的四边形是平行四边形68、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形初中几何公式定理:矩形69、矩形性质定理1 矩形的四个角都是直角70、矩形性质定理2 矩形的对角线相等71、矩形判定定理1 有三个角是直角的四边形是矩形72、矩形判定定理2 对角线相等的平行四边形是矩形初中几何公式:菱形73、菱形性质定理1 菱形的四条边都相等74、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角75、菱形面积=对角线乘积的一半,即S=(a×b)÷276、菱形判定定理1 四边都相等的四边形是菱形77、菱形判定定理2 对角线互相垂直的平行四边形是菱形07正方形78、正方形性质定理1 正方形的四个角都是直角,四条边都相等79、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角80、定理1 关于中心对称的两个图形是全等的81、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分82、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称08等腰梯形83、等腰梯形性质定理等腰梯形在同一底上的两个角相等84、等腰梯形的两条对角线相等85、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形86、对角线相等的梯形是等腰梯形09等分87、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等88、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰89、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边90、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半91、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h92 、(1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d93、(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d94、(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么,(a+c+…+m)/(b+d+…+n)=a/b95、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例96、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例97、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边98、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值10圆101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三个点确定一条直线110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论 1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2 圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理一条弧所对的圆周角等于它所对的圆心角的一半117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交d﹤r ②直线L和⊙O相切d=r ③直线L和⊙O相离d﹥r122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理圆的切线垂直于经过切点的半径124、推论1 经过圆心且垂直于切线的直线必经过切点125、推论2 经过切点且垂直于切线的直线必经过圆心126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等128、弦切角定理弦切角等于它所夹的弧对的圆周角129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上135、①两圆外离d﹥R+r ②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r) ⑤两圆内含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137、定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139、正n边形的每个内角都等于(n-2)×180°/n140、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141、正n边形的面积Sn=pnrn/2 p表示正n边形的周长142、正三角形面积√3a/4 a表示边长143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144、弧长计算公式:L=nπR/180145、扇形面积公式:S扇形=nπR/360=LR/2146、内公切线长= d-(R-r) 外公切线长= d-(R+r)。

初中数学几何公式、定理大全

初中数学几何公式、定理大全

初中数学几何公式、定理大全一、有关“线”的公式定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行二、有关“角”的公式定理1、同位角相等,两直线平行2、内错角相等,两直线平行3、同旁内角互补,两直线平行4、两直线平行,同位角相等5、两直线平行,内错角相等6、两直线平行,同旁内角互补三、有关“三角形”的公式定理1、定理三角形两边的和大于第三边2、推论三角形两边的差小于第三边3、三角形内角和定理三角形三个内角的和等于180°4、推论1 直角三角形的两个锐角互余5、推论2 三角形的一个外角等于和它不相邻的两个内角的和6、推论3 三角形的一个外角大于任何一个和它不相邻的内角7、全等三角形的对应边、对应角相等8、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等9、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等10、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等11、边边边公理(SSS) 有三边对应相等的两个三角形全等12、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等13、定理1 在角的平分线上的点到这个角的两边的距离相等14、定理2 到一个角的两边的距离相同的点,在这个角的平分线上15、角的平分线是到角的两边距离相等的所有点的集合四、有关“等腰三角形”的公式定理1、等腰三角形的性质定理等腰三角形的两个底角相等2、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边3、等腰三角形的顶角平分线、底边上的中线和高互相重合4、推论3 等边三角形的各角都相等,并且每一个角都等于60°5、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)6、推论1 三个角都相等的三角形是等边三角形7、推论 2 有一个角等于60°的等腰三角形是等边三角形8、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半9、直角三角形斜边上的中线等于斜边上的一半10、定理线段垂直平分线上的点和这条线段两个端点的距离相等11、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上12、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合13、定理1 关于某条直线对称的两个图形是全等形14、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线15、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上16、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称17、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^218、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形五、有关“四边形”的公式定理1、定理四边形的内角和等于360°2、四边形的外角和等于360°3、多边形内角和定理 n边形的内角的和等于(n-2)×180°4、推论任意多边的外角和等于360°5、平行四边形性质定理1 平行四边形的对角相等6、平行四边形性质定理2 平行四边形的对边相等7、推论夹在两条平行线间的平行线段相等8、平行四边形性质定理3 平行四边形的对角线互相平分9、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形10、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形11、平行四边形判定定理3 对角线互相平分的四边形是平行四边形12、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形六、有关“矩形”的公式定理1、矩形性质定理1 矩形的四个角都是直角2、矩形性质定理2 矩形的对角线相等3、矩形判定定理1 有三个角是直角的四边形是矩形4、矩形判定定理2 对角线相等的平行四边形是矩形七、有关“菱形”的公式定理1、菱形性质定理1 菱形的四条边都相等2、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角3、菱形面积=对角线乘积的一半,即S=(a×b)÷24、菱形判定定理1 四边都相等的四边形是菱形5、菱形判定定理2 对角线互相垂直的平行四边形是菱形八、有关“正方形”的公式定理1、正方形性质定理1 正方形的四个角都是直角,四条边都相等2、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角3、定理1 关于中心对称的两个图形是全等的4、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分5、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称九、有关“等腰梯形”的公式定理1、等腰梯形性质定理等腰梯形在同一底上的两个角相等2、等腰梯形的两条对角线相等3、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形4、对角线相等的梯形是等腰梯形十、有关“等分”的公式定理1、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等2、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰3、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边4、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半5、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)÷2 S=L×h6、(1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d7、(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d8、(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b9、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例10、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例11、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边12、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例13、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似14、相似三角形判定定理 1 两角对应相等,两三角形相似(ASA)15、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似16、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)17、判定定理3 三边对应成比例,两三角形相似(SSS)18、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似19、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比20、性质定理2 相似三角形周长的比等于相似比21、性质定理3 相似三角形面积的比等于相似比的平方22、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值23、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值十一、有关“圆”的公式定理(初中数学重难点)1、圆是定点的距离等于定长的点的集合2、圆的内部可以看作是圆心的距离小于半径的点的集合3、圆的外部可以看作是圆心的距离大于半径的点的集合4、同圆或等圆的半径相等5、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆6、和已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线7、到已知角的两边距离相等的点的轨迹,是这个角的平分线8、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线9、定理不在同一直线上的三个点确定一条直线10垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧11、推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧12、推论2 圆的两条平行弦所夹的弧相等13、圆是以圆心为对称中心的中心对称图形14、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等15、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等16、定理一条弧所对的圆周角等于它所对的圆心角的一半17、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等18、推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径19、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形20、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角21、①直线L和⊙O相交 d<r ②直线L和⊙O相切 d=r ③直线L和⊙O相离 d>r22、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线23、切线的性质定理圆的切线垂直于经过切点的半径24、推论1 经过圆心且垂直于切线的直线必经过切点25、推论2 经过切点且垂直于切线的直线必经过圆心26、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角27、圆的外切四边形的两组对边的和相等28、弦切角定理弦切角等于它所夹的弧对的圆周角29、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等30、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等31、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项32、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项33、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等34、如果两个圆相切,那么切点一定在连心线上35、①两圆外离 d>R+r ②两圆外切 d=R+r ③两圆相交R-r<d<R+r(R>r) ④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)36、定理相交两圆的连心线垂直平分两圆的公共弦37、定理把圆分成n(n≥3): ⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形38、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆39、正n边形的每个内角都等于(n-2)×180°/n40、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形41、正n边形的面积Sn=pnrn/2 p表示正n边形的周长42、正三角形面积√3a/4 a表示边长43、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=444、弧长计算公式:L==n兀R/18045、扇形面积公式:S扇形= n兀R^2/360=LR/246、内公切线长= d-(R-r) 外公切线长= d-(R+r)47、完全平方公式:(a+b)^2=a^2+2ab+b^2 (a-b)^2=a^2-2ab+b^248、平方差公式:(a+b)(a-b)=a^2-b^2初中三角函数公式表正弦函数 sin∠A = 对边比斜边余弦函数cos∠A = 邻边比斜边正切函数tan∠A = 对边比邻边与切函数 cot∠A = 邻边比对边。

初中几何证明的所有公理和定理

初中几何证明的所有公理和定理

初中几何证明的所有公理和定理几何学是数学的一个分支,研究平面和空间中的图形、形状、大小以及它们之间的关系。

在几何学中,有一些基本的公理和定理被广泛应用于证明其他几何结论。

以下是初中几何中常用的公理和定理。

一、公理1.尺规公理:任意两点可以用直尺连接,任意一点可以用剪刀间距来复原。

2.同位角公理:同位角互等。

3.平行公理:通过点外一条直线的直线,与这条直线平行的直线只有唯一一条。

4.直线偏转公理:过直线和不在直线上的一点,有且只有一条直线与该直线相交。

二、定理1.垂直平分线定理:平分一条线段的直线必垂直于该线段。

2.三角形内角和定理:三角形内角的和为180°。

3.直角三角形定理:在直角三角形中,两个直角三角形的边长和斜边相等。

4.点到直线的距离定理:点到直线的距离等于点到该直线上垂线的距离。

5.等腰三角形定理:等腰三角形的底边中点到顶点的距离等于底边的一半。

6.等边三角形定理:等边三角形的三条边相等。

7.三角形外角定理:三角形外角等于其对应内角的和。

8.直角三角形的勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方。

9.海伦公式:已知三角形的三边长,可以通过海伦公式求解其面积。

10.等周定理:等周的两角相等,反之亦成立。

11.三角形中位线定理:三角形两边中点连线中位线,且平分第三边。

12.周长定理:四边形周长等于各边长的和。

13.三角形周长定理:三角形的周长等于三边长的和。

14.三角形中线定理:三角形中线等分中位线,且平分第三边。

15.三角形终边定理:一个角的终边上的点,到另一个角所在的直线的距离永远相等。

16.五边形内角和定理:五边形的内角和是540°。

17.钝角三角形的边长关系:钝角三角形两边长的平方和小于斜边长的平方。

18.三角形的相似性定理:对应角等价、对应边成比例的两个三角形为相似三角形。

19.平行线的性质定理:平行条边分别过枚角且长度成正比,则连线为平行线。

20.重叠三角形定理:如果两个角和一个边分别相等,则两个三角形相等。

初中数学地所有几何定理及公式

初中数学地所有几何定理及公式

初中数学地所有几何定理及公式初中数学中涉及的几何定理和公式较多,以下列举其中常见的一些定理和公式。

一、直线与角度1.垂线定理:若两条直线相交且所成的四个相邻角中,有两个互补,则这两条直线互相垂直。

2.等角定理:当直线与两条平行线相交时,所成的对应角或同位角相等。

3.同旁内角定理:两条直线被一条第三条直线截断,所成的同旁内角互补。

4.同弧定理:在一个圆周上,两个弧所对的圆心角相等。

二、四边形1.矩形定理:矩形的四条边互相平行两两相等,对角线互相垂直且相等。

2.平行四边形定理:平行四边形的对边互相平行且相等,对角线互相平分且相等。

3.正方形定理:正方形的四条边互相平行且相等,对角线互相垂直且相等。

4.菱形定理:菱形的对角线互相垂直,对角线相等。

5.梯形定理:梯形的底边平行,两斜边或两底角相等。

三、三角形1.直角三角形定理:直角三角形斜边的平方等于两直角边平方的和。

2.等腰三角形定理:等腰三角形的两底角相等,两腰相等。

3.等边三角形定理:等边三角形三条边相等,三个内角为60度。

四、面积和周长1.三角形面积公式:三角形的面积等于底边乘以高再除以22.矩形面积公式:矩形的面积等于长乘以宽。

3.正方形面积公式:正方形的面积等于边长的平方。

4.圆面积公式:圆的面积等于半径的平方乘以π。

5.圆周长公式:圆的周长等于直径乘以π。

五、相似和全等1.相似三角形定理:两个三角形对应的各边成比例,这两个三角形相似。

2.全等三角形定理:两个三角形的三条边分别相等,这两个三角形全等。

六、勾股定理在直角三角形中,直角边的平方等于两直角边所对的锐角的两个外角的和的平方。

以上仅是初中数学中的一些常见的几何定理和公式,希望可以帮到你。

如果有需要可以继续探讨其他内容。

初中数学140条几何公式定理汇总

初中数学140条几何公式定理汇总

初中数学140条几何公式定理汇总几何学是研究空间和形状的数学分支。

在初中数学中,我们需要掌握并应用各种几何公式和定理来解决相应的问题。

下面汇总了140条初中数学常用的几何公式和定理。

1.点、线、面和体的概念2.点线距离公式(点到直线的距离)3.点线距离公式(点到平面的距离)4.点到点的距离公式5.点到线段的距离公式6.点到平面的距离公式7.点到坐标轴的距离公式8.平面的方程和一般方程9.垂直线段定理10.垂直平分线段定理11.平行线段定理12.平行平分线段定理13.余弦定理14.正弦定理15.直角三角形的性质16.等腰三角形的性质17.等边三角形的性质18.相似三角形19.相似三角形的判定方法20.合同三角形21.调和关系22.三角形的内角和定理23.外角和定理24.三角形的内角平分线定理25.三角形的外角平分线定理26.三角形的中线定理27.三角形的角平分线定理28.三角形的高定理29.三角形的垂心、重心、外心和内心30.角的概念31.圆的概念32.圆的面积和周长公式33.扇形的面积公式34.圆弧的长度公式35.弧长角度公式36.弧长夹角公式37.正多边形的内角和公式38.平行线的概念39.平行线的性质40.线相交定理41.对称的概念42.对称的性质43.对称轴的概念44.对称轴的性质45.相等的概念46.相等的性质47.异构的概念48.平移的概念49.平移的性质50.滑动的概念51.滑动的性质52.翻折的概念53.翻折的性质54.刻画平面图形55.嵌入平面图形56.平面图形的刻画57.垂直平行公理58.圆的轨迹59.二次函数的图像特征60.点在线上61.点在直线上62.点在角上63.点在三角形的内部64.点在三角形的中位线上65.点在三角形的高线上66.直线和直线的位置关系67.直线与平面的位置关系68.平面与平面的位置关系69.线段的性质70.线段连结定理71.线段分点定理72.线段复制定理73.多边形内角和公式74.市字形的性质75.梯形的性质76.等腰梯形的性质77.三角形的性质78.射影定理79.反射定理80.角平分线定理81.垂直平分线定理82.中位线定理83.三角形高连结定理84.重心的连结定理85.外心的连结定理86.内心的连结定理87.中心的连结定理88.三角形四心的连结定理89.关于等边三角形的四心定理90.关于直角三角形的四心定理91.三角形的比较关系92.相等三角形的性质93.三角形的判定定理94.三角形的相似判定定理95.平面切割空间96.空间的各种位置关系97.平面与平面的位置关系98.直线与直线的位置关系99.柱体的概念100.锥的概念101.球的概念102.圆柱的概念103.圆锥的概念104.球面的概念105.导出直线与平面的位置关系106.导出平面与平面的位置关系107.空间配置108.空间变换109.实际问题110.面积和体积之间的关系111.面积和体积的单位换算112.面积和体积的揭示113.体积和质量之间的关系114.镜像关系和反射定律115.镜面反射116.镜面反射规律117.折射现象118.折射定律119.光线在晶体中的传播120.光线经过晶体反射与折射的规律121.光的直线传播和吸收122.光传播的直线性123.光传播的速度124.光传播的形状125.赤道天顶系、空间坐标系和地理坐标系的互相转化126.天体坐标与地理坐标系的关系127.星体光赤经和光纬的特点128.星体视赤经和视黄纬的特点129.星体经纬变化规律130.天体坐标及其计算131.天体主要观测方法132.星体表面明亮度与视距的关系133.星体质量与距离的关系134.星体视距与距离的关系136.星体直径与视直径的关系137.星体稳定性与亮度的关系138.射线规定的平面140.海伦公式这些几何公式和定理是初中数学中常用的,通过学习和掌握它们,我们可以更好地理解和解决几何问题。

初中几何公式

初中几何公式

初中几何公式
在初中数学中,几何部分是非常重要的。

以下列举了一些常见的几何公式,希望能对大家的学习有所帮助。

1. 矩形面积公式:矩形的面积等于长乘以宽。

2. 三角形面积公式:三角形的面积等于底乘以高的一半。

3. 直角三角形勾股定理:直角三角形的两条直角边的平方之和等于斜边的平方。

即 a + b = c。

4. 圆的周长公式:圆的周长等于直径乘以π,即 2πr 或πd。

5. 圆的面积公式:圆的面积等于半径的平方乘以π,即πr。

6. 梯形面积公式:梯形的面积等于上底加下底乘以高的一半,即 (a+b)h/2。

7. 平行四边形面积公式:平行四边形的面积等于底乘以高,即bh。

以上是几个初中几何中常见的公式,希望大家能够熟练掌握并应用于实际问题的解答中。

- 1 -。

(完整版)初中几何公式定理

(完整版)初中几何公式定理

初中几何公式定理:线1、同角或等角的余角相等2、过一点有且只有一条直线和已知直线垂直3、过两点有且只有一条直线4、两点之间线段最短5、同角或等角的补角相等6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、定理线段垂直平分线上的点和这条线段两个端点的距离相等10、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上11、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合12、定理1关于某条直线对称的两个图形是全等形13、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线14、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上15、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称初中几何公式定理:角16、同位角相等,两直线平行17、内错角相等,两直线平行18、同旁内角互补,两直线平行19、两直线平行,同位角相等20、两直线平行,内错角相等21、两直线平行,同旁内角互补22、定理1在角的平分线上的点到这个角的两边的距离相等23、定理2到一个角的两边的距离相同的点,在这个角的平分线上24、角的平分线是到角的两边距离相等的所有点的集合初中几何公式定理:三角形25、定理三角形两边的和大于第三边26、推论三角形两边的差小于第三边27、三角形内角和定理三角形三个内角的和等于180°28、推论1直角三角形的两个锐角互余29、推论2三角形的一个外角等于和它不相邻的两个内角的和30、推论3三角形的一个外角大于任何一个和它不相邻的内角31、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c32、勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形初中几何公式定理:等腰、直角三角形33、等腰三角形的性质定理等腰三角形的两个底角相等34、推论1等腰三角形顶角的平分线平分底边并且垂直于底边35、等腰三角形的顶角平分线、底边上的中线和高互相重合36、推论3等边三角形的各角都相等,并且每一个角都等于60°37、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)38、推论1三个角都相等的三角形是等边三角形39、推论2有一个角等于60°的等腰三角形是等边三角形40、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半41、直角三角形斜边上的中线等于斜边上的一半初中几何公式定理:相似、全等三角形42、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似43、相似三角形判定定理1两角对应相等,两三角形相似(ASA)44、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似45、判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)46、判定定理3三边对应成比例,两三角形相似(SSS)47、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似48、性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比49、性质定理2相似三角形周长的比等于相似比50、性质定理3相似三角形面积的比等于相似比的平方51、边角边公理有两边和它们的夹角对应相等的两个三角形全等52、角边角公理有两角和它们的夹边对应相等的两个三角形全等53、推论有两角和其中一角的对边对应相等的两个三角形全等54、边边边公理有三边对应相等的两个三角形全等55、斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等56、全等三角形的对应边、对应角相等初中几何公式定理:四边形57、定理四边形的内角和等于360°58、四边形的外角和等于360°59、多边形内角和定理n边形的内角的和等于(n-2)×180°60、推论任意多边的外角和等于360°61、平行四边形性质定理1平行四边形的对角相等62、平行四边形性质定理2平行四边形的对边相等63、推论夹在两条平行线间的平行线段相等64、平行四边形性质定理3平行四边形的对角线互相平分65、平行四边形判定定理1两组对角分别相等的四边形是平行四边形66、平行四边形判定定理2两组对边分别相等的四边形是平行四边形67、平行四边形判定定理3对角线互相平分的四边形是平行四边形68、平行四边形判定定理4一组对边平行相等的四边形是平行四边形初中几何公式定理:矩形69、矩形性质定理1矩形的四个角都是直角70、矩形性质定理2矩形的对角线相等71、矩形判定定理1有三个角是直角的四边形是矩形72、矩形判定定理2对角线相等的平行四边形是矩形初中几何公式:菱形73、菱形性质定理1菱形的四条边都相等74、菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角75、菱形面积=对角线乘积的一半,即S=(a×b)÷276、菱形判定定理1四边都相等的四边形是菱形77、菱形判定定理2对角线互相垂直的平行四边形是菱形初中几何公式定理:正方形78、正方形性质定理1正方形的四个角都是直角,四条边都相等79、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角80、定理1关于中心对称的两个图形是全等的81、定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分82、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称初中几何公式定理:等腰梯形83、等腰梯形性质定理等腰梯形在同一底上的两个角相等84、等腰梯形的两条对角线相等85、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形86、对角线相等的梯形是等腰梯形初中几何公式:等分87、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等88、推论1经过梯形一腰的中点与底平行的直线,必平分另一腰89、推论2经过三角形一边的中点与另一边平行的直线,必平分第三边90、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半91、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h92、(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d93、(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d94、(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么,(a+c+…+m)/(b+d+…+n)=a/b95、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例96、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例97、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边98、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值初中几何公式:圆101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三个点确定一条直线110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理一条弧所对的圆周角等于它所对的圆心角的一半117、推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理圆的切线垂直于经过切点的半径124、推论1经过圆心且垂直于切线的直线必经过切点125、推论2经过切点且垂直于切线的直线必经过圆心126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等128、弦切角定理弦切角等于它所夹的弧对的圆周角129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上135、①两圆外离d﹥R+r②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r)⑤两圆内含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137、定理把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形面只是一些小技巧,接下来我们读完题开始找思路。

初中数学几何定理总结

初中数学几何定理总结

初中数学几何定理总结
一、初中数学几何定理
1、直角三角形定理
(1)直角三角形的两条直角边的乘积等于斜边的平方,即a*b=c2;
(2)两条直角边的和大于斜边,即a+b>c;
(3)两条直角边的差小于斜边,即a-b<c。

2、相似三角形定理
(1)两个相似三角形的两个相对应的角等于,即A=A’,B=B’,C=C’;
(2)两个相似三角形的两个相对应的边成比例,即
a:a’=b:b'=c:c’。

3、勾股定理
(1)直角三角形的两边的平方和等于斜边的平方,即a2+b2=c2;
(2)斜边大于两边之和,即c>a+b;
(3)两边之差小于斜边,即,a-b,<c。

4、周长和面积公式
(1)矩形的面积公式,即S=a*b;
(2)矩形的周长公式,即C=2*(a+b);
(3)三角形的面积公式,即S=1/2*a*h;
(4)三角形的周长公式,即C=a+b+c;(5)梯形的面积公式,即S=1/2*(a+b)*h;(6)梯形的周长公式,即C=a+b+c+d;(7)椭圆的面积公式,即S=π*a*b;(8)圆的面积公式,即S=π*r2;
(9)圆的周长公式,即C=2π*r。

5、体积公式
(1)正方体的体积公式,即V=a3;
(2)圆柱的体积公式,即V=π*r2*h;(3)圆球的体积公式,即V=4/3*π*r3
6、圆的角度公式。

初中数学几何公式

初中数学几何公式

初中数学几何公式初中数学几何公式几何学是数学中的一个重要分支,研究空间中的形状、大小、位置以及它们之间的关系。

初中时期,我们学习了许多几何公式,以下是其中一些重要的几何公式:一、长度和面积相关公式:1. 线段的中点公式:若AB是一条线段,其中点为M,则AM=MB。

2. 线段分线段比公式:若AM:MB=m:n,则AM/AB=m/(m+n),MB/AB=n/(m+n)。

3. 线段延长线分外部线段比公式:若AM:MB=m:n,则AM-MB=AB,MB-AM=AB。

4. 平行线分线段比公式:若AD:DB=AE:EC,则AD:DB=AE:EC=AB:BC。

5. 直角三角形斜边长公式:在直角三角形中,设边长分别为a、b,则斜边的长度 c 满足 c²=a²+b²。

6. 圆的周长公式:圆的周长等于直径乘以π,即C=2πr。

二、角度和三角形相关公式:1. 角度之和定理:任意三角形的三个内角之和等于180度,即∠A+∠B+∠C=180°。

2. 等腰三角形底角相等定理:等腰三角形的两个底角相等,即∠A=∠C。

3. 等腰三角形的斜边中线公式:等腰三角形的斜边中线长等于底边的一半,即BC=AC/2。

4. 正弦定理:在三角形 ABC 中,设三边长分别为 a、b、c,对应夹角为∠A、∠B、∠C,则有 sinA/a=sinB/b=sinC/c。

5. 余弦定理:在三角形 ABC 中,设三边长分别为 a、b、c,对应夹角为∠A、∠B、∠C,则有 c²=a²+b²-2abcosC。

6. 高度和面积公式:在三角形 ABC 中,设底边长为 a,对应高为 h,则三角形的面积 S=1/2ah。

三、面积和体积相关公式:1. 平行四边形面积公式:平行四边形的面积等于底边乘以高,即A=bh。

2. 矩形面积公式:矩形的面积等于长度乘以宽度,即A=lw。

3. 三角形面积公式:三角形的面积等于底边乘以高的一半,即A=1/2bh。

初中数学145条几何题公式定理汇总

初中数学145条几何题公式定理汇总

初中数学| 145条几何题公式定理汇总初中几何公式定理:线1、同角或等角的余角相等2、过一点有且只有一条直线和已知直线垂直3、过两点有且只有一条直线4、两点之间线段最短5、同角或等角的补角相等6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理:经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、定理:线段垂直平分线上的点和这条线段两个端点的距离相等10、逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上11、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合12、定理1:关于某条直线对称的两个图形是全等形13、定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线14、定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上15、逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称初中几何公式定理:角16、同位角相等,两直线平行17、内错角相等,两直线平行18、同旁内角互补,两直线平行19、两直线平行,同位角相等20、两直线平行,内错角相等21、两直线平行,同旁内角互补22、定理1:在角的平分线上的点到这个角的两边的距离相等23、定理2:到一个角的两边的距离相同的点,在这个角的平分线上24、角的平分线是到角的两边距离相等的所有点的集合初中几何公式定理:三角形25、定理:三角形两边的和大于第三边26、推论:三角形两边的差小于第三边27、定理:三角形三个内角的和等于180°28、推论1:直角三角形的两个锐角互余29、推论2:三角形的一个外角等于和它不相邻的两个内角的和30、推论3:三角形的一个外角大于任何一个和它不相邻的内角31、勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方32、勾股定理的逆定理:如果三角形的三边长a、b、c有关系a的平方+b的平方=c的平方,那么这个三角形是直角三角形初中几何公式定理:等腰、直角三角形33、等腰三角形的性质定理:等腰三角形的两个底角相等34、推论1:等腰三角形顶角的平分线平分底边并且垂直于底边35、等腰三角形的顶角平分线、底边上的中线和高互相重合36、推论3:等边三角形的各角都相等,并且每一个角都等于60°37、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)38、推论1:三个角都相等的三角形是等边三角形39、推论2:有一个角等于60°的等腰三角形是等边三角形40、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半41、直角三角形斜边上的中线等于斜边上的一半初中几何公式定理:相似、全等三角形42、定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似43、相似三角形判定定理1:两角对应相等,两三角形相似(ASA)44、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似45、判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)46、判定定理3:三边对应成比例,两三角形相似(SSS)47、定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似48、性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比49、性质定理2:相似三角形周长的比等于相似比50、性质定理3:相似三角形面积的比等于相似比的平方51、边角边公理:有两边和它们的夹角对应相等的两个三角形全等52、角边角公理:有两角和它们的夹边对应相等的两个三角形全等53、推论:有两角和其中一角的对边对应相等的两个三角形全等54、边边边公理:有三边对应相等的两个三角形全等55、斜边、直角边公理:有斜边和一条直角边对应相等的两个直角三角形全等56、全等三角形的对应边、对应角相等初中几何公式定理:四边形57、定理:四边形的内角和等于360°58、四边形的外角和等于360°59、定理:n边形的内角的和等于(n-2)×180°60、推论任意多边的外角和等于360°61、平行四边形性质定理1:平行四边形的对角相等62、平行四边形性质定理2:平行四边形的对边相等63、推论:夹在两条平行线间的平行线段相等64、平行四边形性质定理3:平行四边形的对角线互相平分65、平行四边形判定定理1:两组对角分别相等的四边形是平行四边形66、平行四边形判定定理2:两组对边分别相等的四边形是平行四边形67、平行四边形判定定理3:对角线互相平分的四边形是平行四边形68、平行四边形判定定理4:一组对边平行相等的四边形是平行四边形初中几何公式定理:矩形69、矩形性质定理1:矩形的四个角都是直角70、矩形性质定理2:矩形的对角线相等71、矩形判定定理1:有三个角是直角的四边形是矩形72、矩形判定定理2:对角线相等的平行四边形是矩形初中几何公式:菱形73、菱形性质定理1:菱形的四条边都相等74、菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角75、菱形面积=对角线乘积的一半,即S=(a×b)÷276、菱形判定定理1:四边都相等的四边形是菱形77、菱形判定定理2:对角线互相垂直的平行四边形是菱形初中几何公式定理:正方形78、正方形性质定理1:正方形的四个角都是直角,四条边都相等79、正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角80、定理1:关于中心对称的两个图形是全等的81、定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分82、逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称初中几何公式定理:等腰梯形83、等腰梯形性质定理:等腰梯形在同一底上的两个角相等84、等腰梯形的两条对角线相等85、等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形86、对角线相等的梯形是等腰梯形初中几何公式:等分87、平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等88、推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰89、推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边90、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半91、梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h92、比例的基本性质:如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d93、合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d94、等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么,(a+c+…+m)/(b+d+…+n)=a/b95、平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例96、推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例97、定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边98、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例初中几何公式定理:圆99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三个点确定一条直线110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2:圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理:一条弧所对的圆周角等于它所对的圆心角的一半117、推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交d﹤r;②直线L和⊙O相切d=r;③直线L和⊙O相离d﹥r122、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理:圆的切线垂直于经过切点的半径124、推论1:经过圆心且垂直于切线的直线必经过切点125、推论2:经过切点且垂直于切线的直线必经过圆心126、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等128、弦切角定理:弦切角等于它所夹的弧对的圆周角129、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等131、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上135、①两圆外离d﹥R+r;②两圆外切d=R+r;③两圆相交R-r﹤d﹤R+r(R﹥r);④两圆内切d=R-r(R﹥r);⑤两圆内含d﹤R-r(R﹥r)136、定理:相交两圆的连心线垂直平分两圆的公共弦137、定理:把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139、正n边形的每个内角都等于(n-2)×180°/n140、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141、正n边形的面积Sn=pnrn/2p表示正n边形的周长142、内公切线长=d-(R-r)外公切线长=d-(R+r)143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144、弧长计算公式:L=nπR/180145、扇形面积公式:S扇形=nπR/360=LR/2。

初中几何定理大全初中数学几何121个定理总结

初中几何定理大全初中数学几何121个定理总结

初中几何定理大全初中数学几何121个定理总结
一、三角形定理:
1、直角三角形三边定理:在直角三角形中,两个直角对边的平方和等于斜边的平方。

2、勾股定理:在直角三角形中,两条直角边的平方和等于斜边的平方。

3、余弦定理:在任意三角形中,每条边的平方等于其他两条边平方之和减去两倍乘积的余弦值。

4、正弦定理:在任意三角形中,每条边的平方等于其他两条边平方之和加上两倍乘积的正弦值。

5、比例定理:在任意三角形中,斜边的平方等于两条边的乘积除以其外角的余弦值的平方。

6、外接圆定理:任意三角形的外接圆半径等于其三边长的和除以4
7、外切圆定理:任意三角形的外切圆半径等于其两边长的乘积除以4倍其近角的正弦值。

8、锐角三角形边长定理:在锐角三角形中,一条边大于另外两条边的和,小于他们的差。

9、内切圆定理:任意三角形的内切圆半径等于其两边长的乘积除以4倍其外角的正弦值。

10、锐角三角形的内接圆定理:任意锐角三角形内接圆半径等于其三边长乘积除以4其外角的余弦值。

二、平行线定理:
1、平行线定理:平行线与平行线之间分别成等腰角和相邻角成等式。

2、垂线定理:垂线与平行线之间相邻角成等式。

【中考数学】初中数学全部几何定理

【中考数学】初中数学全部几何定理

【中考数学】初中数学全部几何定理在初中数学的学习中,几何定理是解决几何问题的重要工具。

掌握这些定理,不仅能够帮助我们应对考试中的各种题目,还能培养我们的逻辑思维和空间想象能力。

接下来,就让我们一起系统地梳理一下初中数学中的全部几何定理。

一、线与角1、两点之间,线段最短。

2、经过两点有且只有一条直线。

3、同角或等角的补角相等,同角或等角的余角相等。

4、对顶角相等。

二、平行线1、平行线的判定定理同位角相等,两直线平行。

内错角相等,两直线平行。

同旁内角互补,两直线平行。

2、平行线的性质定理两直线平行,同位角相等。

两直线平行,内错角相等。

两直线平行,同旁内角互补。

三、三角形1、三角形内角和定理:三角形三个内角的和等于 180°。

2、三角形的外角性质三角形的一个外角等于与它不相邻的两个内角的和。

三角形的一个外角大于任何一个与它不相邻的内角。

3、三角形的三边关系三角形任意两边之和大于第三边。

三角形任意两边之差小于第三边。

4、三角形全等的判定定理SSS(边边边):三边对应相等的两个三角形全等。

SAS(边角边):两边和它们的夹角对应相等的两个三角形全等。

ASA(角边角):两角和它们的夹边对应相等的两个三角形全等。

AAS(角角边):两角和其中一角的对边对应相等的两个三角形全等。

RHS(直角、斜边、边):斜边和一条直角边对应相等的两个直角三角形全等。

5、等腰三角形的性质等腰三角形的两腰相等。

等腰三角形的两底角相等(等边对等角)。

等腰三角形顶角的平分线、底边上的中线、底边上的高相互重合(三线合一)。

6、等腰三角形的判定有两边相等的三角形是等腰三角形。

有两个角相等的三角形是等腰三角形(等角对等边)。

7、等边三角形的性质等边三角形的三条边都相等。

等边三角形的三个角都相等,并且每个角都等于 60°。

8、等边三角形的判定三条边都相等的三角形是等边三角形。

三个角都相等的三角形是等边三角形。

有一个角是 60°的等腰三角形是等边三角形。

初中几何公式定理大全146条

初中几何公式定理大全146条

一、直线和角度1. 直线的性质2. 同位角、内错角、同旁内角、同旁外角、相交线性质3. 平行线性质4. 角的度量5. 角的性质6. 垂直角与互补角7. 角平分线的性质8. 三角形内角和为180°9. 三角形外角和等于对应的内角和二、平行四边形10. 平行四边形的性质11. 平行四边形对角线的性质12. 平行四边形的判定定理13. 等腰平行四边形性质三、三角形14. 三角形的定义15. 三角形的分类16. 三角形的内角和17. 三角形的外角和18. 等腰三角形的性质19. 等边三角形的性质20. 直角三角形的性质21. 斜角三角形的性质22. 三角形内心、外心、重心、垂心23. 三角形中位线定理24. 三角形的中线定理25. 三角形的高定理26. 三角形的中线定理27. 三角形的角平分线定理28. 三角形的正弦定理29. 三角形的余弦定理30. 三角形的海伦公式四、全等三角形31. 全等三角形的性质32. 三角形全等条件33. 全等三角形的判定定理五、相似三角形34. 相似三角形的性质35. 相似三角形的判定定理36. 相似三角形的应用六、勾股定理和勾股数37. 勾股定理的条件38. 勾股定理的应用39. 勾股数的构造和性质40. 勾股数的判定定理七、平面图形41. 正方形的性质42. 长方形的性质43. 菱形的性质44. 梯形的性质45. 正多边形的性质46. 圆的性质47. 圆的切线定理48. 圆的切割定理49. 圆的弦理论50. 圆的扇形面积八、平行线与比例51. 平行线分线段52. 线段比例定理53. 平行线的中位线定理54. 平行线的高度定理九、数学建模55. 数学建模的概念56. 数学建模的解题步骤57. 数学建模的应用实例十、平面几何命题证明58. 角平分线的性质证明59. 平行线性质证明60. 直角三角形的性质证明61. 狄尼茨定理证明62. 三等分角定理证明63. 正多边形内角和公式证明十一、解决几何问题64. 几何问题的解决方法65. 几何问题的三步走解题法66. 几何问题的类比辅助法67. 几何问题的逆向方法十二、空间图形68. 空间图形的概念69. 空间图形的分类70. 空间图形的性质71. 空间图形的体积公式十三、平面与立体坐标系72. 平面直角坐标系73. 立体坐标系74. 坐标变换定理十四、等差数列和等比数列75. 等差数列的性质76. 等差数列的应用77. 等比数列的性质78. 等比数列的应用十五、向量79. 向量的概念80. 向量的性质81. 向量的加法和减法82. 向量的数量积83. 向量的叉积84. 向量的应用十六、向量的平面几何应用85. 向量的平移86. 向量的夹角87. 向量的垂直和平行88. 向量作为平行四边形的对角线十七、圆锥曲线的方程89. 圆的方程90. 椭圆的方程91. 双曲线的方程92. 抛物线的方程十八、解析几何命题证明93. 直线的方程证明94. 圆的方程证明95. 椭圆的方程证明96. 双曲线的方程证明97. 抛物线的方程证明十九、三角函数98. 三角函数的概念99. 三角函数的正弦、余弦、正切、余切100. 三角函数的性质101. 三角函数的定义域和值域102. 三角函数图像二十、三角函数的一般式103. 三角函数的和差化积104. 三角函数的倍角公式105. 三角函数的半角公式106. 三角函数的和角公式107. 三角函数的差角公式108. 三角函数的积化和差二十一、三角函数的应用109. 三角函数的变量代换110. 三角函数的方程解法111. 三角函数的不等式解法112. 三角函数的应用实例二十二、立体几何113. 立体几何的基本概念114. 立体几何的三视图115. 立体几何的截面图116. 立体几何的投影图二十三、立体几何命题证明117. 立体几何的平行轴定理证明118. 立体几何的旋转定理证明119. 立体几何的平移定理证明120. 立体几何的镜像对称定理证明二十四、空间向量121. 空间向量的概念122. 空间向量的性质123. 空间向量的共线124. 空间向量的垂直125. 空间向量的平行二十五、空间向量运算126. 空间向量的和127. 空间向量的差128. 空间向量的数量积129. 空间向量的叉积二十六、立体几何和向量130. 空间平面的方程131. 空间直线的方程132. 空间平面和直线的位置关系133. 空间立体几何和向量的应用二十七、立体图形的几何性质134. 立体图形的视图和截面135. 立体图形的平面和直线位置关系136. 立体图形的边和面的关系137. 立体图形的三视图和投影图二十八、三视图的绘制138. 正交三视图的绘制139. 斜投影三视图的绘制140. 立体图形的三视图应用二十九、空间几何建模141. 空间几何建模的概念142. 空间几何建模的三步走解题法143. 空间几何建模的应用实例三十、空间曲面的方程144. 圆锥曲线的方程证明145. 曲面的方程证明146. 空间曲面的方程应用在初中阶段,学习几何公式定理是非常重要的,因为它为理解和解决各种几何问题打下了坚实的基础。

初中数学146个常见定理和公式大全

初中数学146个常见定理和公式大全

初中数学146个常见定理和公式大全1.定理1:两点之间的距离公式两点A(x1,y1)和B(x2,y2)之间的距离公式为d=√[(x2-x1)²+(y2-y1)²]。

2.定理2:两点之间的中点公式两点A(x1,y1)和B(x2,y2)的中点公式为M[(x1+x2)/2,(y1+y2)/2]。

3.定理3:两条平行线之间的距离公式平行于x轴的直线l1和l2之间的距离公式为d=,y1-y2;平行于y 轴的直线l1和l2之间的距离公式为d=,x1-x24.定理4:勾股定理直角三角形的斜边的平方等于两直角边的平方和,即a²+b²=c²。

5.定理5:勾股定理的逆定理若三边长度满足a²+b²=c²,则该三边构成一个直角三角形。

6.定理6:正方形的性质正方形每条边的长都相等,且每个角的大小为90°。

7.定理7:矩形的性质矩形相对的边相等,且每个角的大小为90°。

8.定理8:平行四边形的性质平行四边形相对的边平行且相等,相邻角互补(和为180°)。

9.定理9:三角形内角和定理三角形内角和等于180°,即∠A+∠B+∠C=180°。

10.定理10:等腰三角形的性质等腰三角形的两边相等,两底角也相等。

11.定理11:等边三角形的性质等边三角形的三边相等,且每个角的大小为60°。

12.定理12:圆的周长公式圆的周长公式为C=2πr,其中r为圆的半径。

13.定理13:圆的面积公式圆的面积公式为A=πr²,其中r为圆的半径。

14.定理14:同心圆的面积公式半径分别为r1和r2的两个同心圆的面积之比为(r1/r2)²。

15.定理15:棱台的体积公式棱台的体积公式为V=(1/3)Ah,其中A为底面积,h为高。

16.定理16:平行四边形的面积公式平行四边形的面积公式为A = bh,其中b为底边长,h为高。

初中数学几何定理大全

初中数学几何定理大全

bac c b a初中数学几何定理大全1.基本事实:过两点有且只有一条直线。

(简单说成:两点确定一条直线)2.基本事实:两点之间的所有连线中,线段最短。

(简单说成:两点之间,线段最短)3.补角性质:同角或等角的补角相等。

几何语言:∵∠A+∠B=180°,∠A+∠C =180°∴∠B=∠C(同角的补角相等)∵∠A+∠B=180°,∠C +∠D =180°,∠A=∠C ∴∠B=∠D(等角的补角相等)4.余角性质:同角或等角的余角相等。

几何语言:∵∠A+∠B=90°,∠A+∠C =90°∴∠B=∠C(同角的余角相等)∵∠A+∠B=90°,∠C +∠D =90°,∠A=∠C ∴∠B=∠D(等角的余角相等)5.对顶角性质:对顶角相等。

6.基本事实:在同一平面内,过一点有且只有一条直线与已知直线垂直。

7.直线外一点与直线上各点连接的所有线段中,垂线段最短。

(简单说成:垂线段最短)8.(基本事实)平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

9.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

几何语言:∵a∥b,a∥c ∴b∥c推论:在同一平面内,垂直于同一条直线的两条直线平行。

几何语言:∵a⊥c,b⊥c ∴a∥b推论:在同一平面内,如果一条直线垂直于两条平行线中的一条,那么这条直线垂直与另一条。

几何语言:∵a∥b,m⊥a ∴m⊥b10.两条直线平行的判定方法:几何语言:如图所示(1)同位角相等,两直线平行。

∵∠1=∠2 ∴a∥b(2)内错角相等,两直线平行。

∵∠3=∠4 ∴a∥b(3)同旁内角互补,两直线平行。

∵∠5+∠6=180°∴a∥bba11.平行线性质:几何语言:如图所示(1)两直线平行,同位角相等。

∵a∥b ∴∠1=∠2(2)两直线平行,内错角相等。

∵a∥b ∴∠3=∠4(3)两直线平行,同旁内角互补。

初中数学几何定理的公示大汇总

初中数学几何定理的公示大汇总

初中数学几何定理的公示大汇总1、过两点有且只有一条直线。

2、两点之间线段最短。

3、同角或等角的补角相等。

4、同角或等角的余角相等。

5、过一点有且只有一条直线和已知直线垂直。

6、直线外一点与直线上各点连接的所有线段中,垂线段最短。

7、平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

8、如果两条直线都和第三条直线平行,这两条直线也互相平行。

9、同位角相等,两直线平行。

10、内错角相等,两直线平行。

11、同旁内角互补,两直线平行。

12、两直线平行,同位角相等。

13、两直线平行,内错角相等。

14、两直线平行,同旁内角互补。

15、定理:三角形两边的和大于第三边。

16、推论:三角形两边的差小于第三边。

17、三角形内角和定理:三角形三个内角的和等于180°。

18、推论1:直角三角形的两个锐角互余。

19、推论2:三角形的一个外角等于和它不相邻的两个内角的和。

20、推论3:三角形的一个外角大于任何一个和它不相邻的内角。

21、全等三角形的对应边、对应角相等。

22、边角边公理:有两边和它们的夹角对应相等的两个三角形全等。

23、角边角公理:有两角和它们的夹边对应相等的两个三角形全等。

24、推论:有两角和其中一角的对边对应相等的两个三角形全等。

25、边边边公理:有三边对应相等的两个三角形全等。

26、斜边、直角边公理:有斜边和一条直角边对应相等的两个直角三角形全等。

27、定理1:在角的平分线上的点到这个角的两边的距离相等。

28、定理2:到一个角的两边的距离相同的点,在这个角的平分线上。

29、角的平分线是到角的两边距离相等的所有点的集合。

30、等腰三角形的性质定理:等腰三角形的两个底角相等31、推论1:等腰三角形顶角的平分线平分底边并且垂直于底边。

32、等腰三角形的顶角平分线、底边上的中线和高互相重合。

33、推论3:等边三角形的各角都相等,并且每一个角都等于60°。

34、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。

初中数学145条几何题公式定理汇总

初中数学145条几何题公式定理汇总

初中数学| 145条几何题公式定理汇总初中几何公式定理:线1、同角或等角的余角相等2、过一点有且只有一条直线和已知直线垂直3、过两点有且只有一条直线4、两点之间线段最短5、同角或等角的补角相等6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理:经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、定理:线段垂直平分线上的点和这条线段两个端点的距离相等10、逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上11、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合12、定理1:关于某条直线对称的两个图形是全等形13、定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线14、定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上15、逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称初中几何公式定理:角16、同位角相等,两直线平行17、内错角相等,两直线平行18、同旁内角互补,两直线平行19、两直线平行,同位角相等20、两直线平行,内错角相等21、两直线平行,同旁内角互补22、定理1:在角的平分线上的点到这个角的两边的距离相等23、定理2:到一个角的两边的距离相同的点,在这个角的平分线上24、角的平分线是到角的两边距离相等的所有点的集合初中几何公式定理:三角形25、定理:三角形两边的和大于第三边26、推论:三角形两边的差小于第三边27、定理:三角形三个内角的和等于180°28、推论1:直角三角形的两个锐角互余29、推论2:三角形的一个外角等于和它不相邻的两个内角的和30、推论3:三角形的一个外角大于任何一个和它不相邻的内角31、勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方32、勾股定理的逆定理:如果三角形的三边长a、b、c有关系a的平方+b的平方=c的平方,那么这个三角形是直角三角形初中几何公式定理:等腰、直角三角形33、等腰三角形的性质定理:等腰三角形的两个底角相等34、推论1:等腰三角形顶角的平分线平分底边并且垂直于底边35、等腰三角形的顶角平分线、底边上的中线和高互相重合36、推论3:等边三角形的各角都相等,并且每一个角都等于60°37、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)38、推论1:三个角都相等的三角形是等边三角形39、推论2:有一个角等于60°的等腰三角形是等边三角形40、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半41、直角三角形斜边上的中线等于斜边上的一半初中几何公式定理:相似、全等三角形42、定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似43、相似三角形判定定理1:两角对应相等,两三角形相似(ASA)44、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似45、判定定理2:两边对应成比例且夹角相等,两三角形相似(SAS)46、判定定理3:三边对应成比例,两三角形相似(SSS)47、定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似48、性质定理1:相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比49、性质定理2:相似三角形周长的比等于相似比50、性质定理3:相似三角形面积的比等于相似比的平方51、边角边公理:有两边和它们的夹角对应相等的两个三角形全等52、角边角公理:有两角和它们的夹边对应相等的两个三角形全等53、推论:有两角和其中一角的对边对应相等的两个三角形全等54、边边边公理:有三边对应相等的两个三角形全等55、斜边、直角边公理:有斜边和一条直角边对应相等的两个直角三角形全等56、全等三角形的对应边、对应角相等初中几何公式定理:四边形57、定理:四边形的内角和等于360°58、四边形的外角和等于360°59、定理:n边形的内角的和等于(n-2)×180°60、推论任意多边的外角和等于360°61、平行四边形性质定理1:平行四边形的对角相等62、平行四边形性质定理2:平行四边形的对边相等63、推论:夹在两条平行线间的平行线段相等64、平行四边形性质定理3:平行四边形的对角线互相平分65、平行四边形判定定理1:两组对角分别相等的四边形是平行四边形66、平行四边形判定定理2:两组对边分别相等的四边形是平行四边形67、平行四边形判定定理3:对角线互相平分的四边形是平行四边形68、平行四边形判定定理4:一组对边平行相等的四边形是平行四边形初中几何公式定理:矩形69、矩形性质定理1:矩形的四个角都是直角70、矩形性质定理2:矩形的对角线相等71、矩形判定定理1:有三个角是直角的四边形是矩形72、矩形判定定理2:对角线相等的平行四边形是矩形初中几何公式:菱形73、菱形性质定理1:菱形的四条边都相等74、菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角75、菱形面积=对角线乘积的一半,即S=(a×b)÷276、菱形判定定理1:四边都相等的四边形是菱形77、菱形判定定理2:对角线互相垂直的平行四边形是菱形初中几何公式定理:正方形78、正方形性质定理1:正方形的四个角都是直角,四条边都相等79、正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角80、定理1:关于中心对称的两个图形是全等的81、定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分82、逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称初中几何公式定理:等腰梯形83、等腰梯形性质定理:等腰梯形在同一底上的两个角相等84、等腰梯形的两条对角线相等85、等腰梯形判定定理:在同一底上的两个角相等的梯形是等腰梯形86、对角线相等的梯形是等腰梯形初中几何公式:等分87、平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等88、推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰89、推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边90、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半91、梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h92、比例的基本性质:如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d93、合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d94、等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么,(a+c+…+m)/(b+d+…+n)=a/b95、平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例96、推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例97、定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边98、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例初中几何公式定理:圆99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三个点确定一条直线110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111、推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论2:圆的两条平行弦所夹的弧相等113、圆是以圆心为对称中心的中心对称图形114、定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115、推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116、定理:一条弧所对的圆周角等于它所对的圆心角的一半117、推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118、推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径119、推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、①直线L和⊙O相交d﹤r;②直线L和⊙O相切d=r;③直线L和⊙O相离d﹥r122、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理:圆的切线垂直于经过切点的半径124、推论1:经过圆心且垂直于切线的直线必经过切点125、推论2:经过切点且垂直于切线的直线必经过圆心126、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127、圆的外切四边形的两组对边的和相等128、弦切角定理:弦切角等于它所夹的弧对的圆周角129、推论:如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等131、推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133、推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134、如果两个圆相切,那么切点一定在连心线上135、①两圆外离d﹥R+r;②两圆外切d=R+r;③两圆相交R-r﹤d﹤R+r(R﹥r);④两圆内切d=R-r(R﹥r);⑤两圆内含d﹤R-r(R﹥r)136、定理:相交两圆的连心线垂直平分两圆的公共弦137、定理:把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139、正n边形的每个内角都等于(n-2)×180°/n140、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141、正n边形的面积Sn=pnrn/2p表示正n边形的周长142、内公切线长=d-(R-r)外公切线长=d-(R+r)143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144、弧长计算公式:L=nπR/180145、扇形面积公式:S扇形=nπR/360=LR/2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学几何定理公式大全汇总
初中数学几何定理公式大全汇总。

本文旨在让学生了解初中数学中的初中数学几何定理、初中数理勾股定理等知识点概念,最后灵活运用到中考当中。

另外初中数学网也为大家准备了初中数学几何定理、初中数学的...
初中数学几何定理公式大全汇总。

本文旨在让学生了解初中数学中的初中数学几何定理、初中数理勾股定理等知识点概念,最后灵活运用到中考当中。

另外初中数学网也为大家准备了初中数学几何定理、初中数学的几何题等复习资料。

初中常用的定理(公理)大全
91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)
92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)
94 判定定理3 三边对应成比例,两三角形相似(SSS)
95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三
角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平
分线的比都等于相似比
97 性质定理2 相似三角形周长的比等于相似比
98 性质定理3 相似三角形面积的比等于相似比的平方
99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等
于它的余角的正弦值
100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等
于它的余角的正切值
101圆是定点的距离等于定长的点的集合
102圆的内部可以看作是圆心的距离小于半径的点的集合
103圆的外部可以看作是圆心的距离大于半径的点的集合
104同圆或等圆的半径相等
105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半
径的圆
106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直
平分线
107到已知角的两边距离相等的点的轨迹,是这个角的平分线
108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距
离相等的一条直线
109定理不在同一直线上的三个点确定一条直线
110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等
113圆是以圆心为对称中心的中心对称图形
114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦
相等,所对的弦的弦心距相等
115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两
弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
116定理一条弧所对的圆周角等于它所对的圆心角的一半
117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所
对的弦是直径
119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
120定理圆的内接四边形的对角互补,并且任何一个外角都等于它
的内对角
121①直线L和⊙O相交 d﹤r
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d﹥r
122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线
123切线的性质定理圆的切线垂直于经过切点的半径
124推论1 经过圆心且垂直于切线的直线必经过切点
125推论2 经过切点且垂直于切线的直线必经过圆心
126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角
127圆的外切四边形的两组对边的和相等
128弦切角定理弦切角等于它所夹的弧对的圆周角
129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等
130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积
相等
131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的
两条线段的比例中项
132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割
线与圆交点的两条线段长的比例中项
133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等
134如果两个圆相切,那么切点一定在连心线上
135①两圆外离 d﹥R+r ②两圆外切 d=R+r
③两圆相交 R-r﹤d﹤R+r(R﹥r)
④两圆内切 d=R-r(R﹥r) ⑤两圆内含d﹤R-r(R﹥r)
136定理相交两圆的连心线垂直平分两圆的公共弦
137定理把圆分成n(n≥3):
⑴依次连结各分点所得的多边形是这个圆的内接正n边形
⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
139正n边形的每个内角都等于(n-2)×180°/n
140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形
141正n边形的面积Sn=pnrn/2 p表示正n边形的周长
142正三角形面积√3a/4 a表示边长
143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为
360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4
144弧长计算公式:L=n∏R/180
145扇形面积公式:S扇形=n∏R/360=LR/2。

相关文档
最新文档