华师版数学七年级下册下期半期试卷(含答案)

合集下载

华师大版七年级下册数学期中考试试题及答案

华师大版七年级下册数学期中考试试题及答案

华师大版七年级下册数学期中考试试卷一、单选题1.下列各项中,是一元一次方程的是()A .x ﹣2y=4B .xy=4C .3y ﹣1=4D .144x -2.已知x y >,则下列不等式成立的是()A .11x y -<-B .33x y<C .x y-<-D .22x y <3.用“加减法”将方程组325353x y x y -=⎧⎨+=-⎩中的x 消去后得到的方程是()A .32y =B .78y =C .72y -=D .78y -=4.不等式组12x ≤<的解集在数轴上可表示为()A .B.C .D.5.不等式组26,x x x m-+<-⎧⎨>⎩的解集是4x >,那么m 的取值范围()A .4m ≤B .4m ≥C .4m <D .4m =6.方程组23x y x y +=⎧⎨+=⎩■的解为2x y =⎧⎨=⎩■,则被遮盖的前后两个数分别为()A .1、2B .1、5C .5、1D .2、47.下列变形正确的是()A .若m >n ,则mc >ncB .若m >n ,则mc 2>nc 2C .若m >b ,b <c ,则m >cD .若m+c 2>n+c 2,则m >n8.不等式组211112x x -≤⎧⎪⎨-<⎪⎩的整数解的个数为()A .0个B .2个C .3个D .无数个9.一件羽绒服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利250元.若设这件羽绒服的成本是x 元,根据题意,可得到的方程是A .x(1+50%)⨯80%=x-250B .x(1+50%)⨯80%=x+250C .(1+50%x)⨯80%=x-250D .(1+50%x)⨯80%=250-x10.某人要完成2.1千米的路程,并要在不超过18分钟的时间内到达,已知他每分钟走90米.若跑步每分钟可跑210米,问这人完成这段路程,至少要跑()A .3分钟B .4分钟C .4.5分钟D .5分钟二、填空题11.把二元一次方程2x+y—3=0化成用x 表示y 的形式,则y=_____.12.x 的3倍与5的和大于8,用不等式表示为________________.13.不等式1﹣2x <6的负整数解是___________.14.若x ay b =⎧⎨=⎩是方程2x+y=0的解,则6a+3b+2=______________.15.如图,由八块相同的长方形地砖拼成一个大长方形,则每块小长方形地砖的面积是_____.三、解答题16.解下列方程:(1)2(x +3)=5(x -3)2123x -()=435x--x17.解二元一次方程组:27{320x y x y -=+=.18.解不等式223xx -≤+,并把它的解集表示在数轴上.19.解不等式组:3(x 2)x 4{2x 1>x 13-≥-+-①②并写出它的所有的整数解.20.已知23x y =-⎧⎨=-⎩和41x y =⎧⎨=⎩是二元一次方程35mx ny -=的两个解.(1)求m 、n 的值;(2)若x <-2,求y 的取值范围.21.已知方程组331x y a x y a +=+⎧⎨-=-⎩的解是一对正数,求a 的取值范围.22.一项工程,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天后两队合作.()1求甲、乙合作多少天才能把该工程完成.()2在()1的条件下,甲队每天的施工费用为2500元,乙队每天的施工费用为3000元,求完成此项工程需付给甲、乙两队共多少元.23.某商店需要购进A 型、B 型两种节能台灯共160盏,其进价和售价如下表所示.类型价格A 型B 型进价/(元/盏)1535销售价/(元/盏)2045(1)若商店计划销售完这批台灯后能获利1100元,问A 型、B 型两种节能台灯应分别购进多少盏(注:获利=售价-进价)?(2)若商店计划投入资金少于4300元,且销售完这批台灯后获利多于1260元,请问有哪几种进货方案?并直接写出其中获利最大的进货方案.24.甲、乙两位同学在解方程组3141ax y bx y +=⎧⎨-=⎩①②时,甲把字母a 看错了得到方程组的解为274x y =⎧⎪⎨=-⎪⎩;乙把字母b 看错了得到方程组的解为21x y =⎧⎨=-⎩.(1)求a ,b 的正确值;(2)求原方程组的解.参考答案1.C 【分析】根据一元一次方程的定义进行分析判断即可.【详解】A 选项中的方程24x y -=中有两个未知数,所以不是一元一次方程;B 选项中的方程4xy =中有两个未知数,所以不是一元一次方程;C 选项中的方程314y -=是一元一次方程,所以可以选C ;D 选项中的式子144x -不是方程,所以不能选D.故选C.【点睛】熟知“一元一次方程的定义:含有一个未知数,且含未知数的项的次数都是1的整式方程叫做一元一次方程”是解答本题的关键.2.C【分析】根据不等式的性质逐项分析.【详解】A在不等式的两边同时减去1,不等号的方向不变11x y->-,故A错误;B在不等式的两边同时乘以3,不等号的方向不变33x y>,故B错误;C在不等式的两边同时乘以-1,不等号的方向改变,故C正确;D在不等式的两边同时乘以12,不等号的方向不变22x y>,故D错误.【点睛】本题主要考查不等式的性质,(1)在不等式的两边同时加上或减去同一个数,不等号的方向不变;(2)在不等式的两边同时乘以或除以(不为零的数)同一个正数,不等号的方向不变;(3)在不等式的两边同时乘以或除以(不为零的数)同一个负数,不等号的方向改变.3.D【解析】【分析】根据方程组中每一个方程中未知数x的系数可知,两方程相减即可消去x,据此即可得.【详解】325 353x yx y-=⎧⎨+=-⎩①②,①-②,得:-7y=8,故选D.【点睛】本题考查了二元一次方程组的解法——加减法,根据方程组的特点灵活选用加减法或代入法进行求解是关键.4.C【解析】【分析】先在数轴上表示出不等式组的解集,然后再根据选项选出即可.【详解】不等式组1≤x<2的解集在数轴上可表示为:,故选C.【点睛】本题考查了在数轴上表示不等式的解集,能把不等式组的解集要数轴上表示出来是解此题的关键.5.A 【分析】先求出不等式的解集,再根据不等式组的解集得出答案即可.【详解】26x x x m -+<-⎧⎨>⎩①②解不等式①,得:x 4>∵不等式组26x x x m-+<-⎧⎨>⎩的解集是x 4>∴m 4≤故选择:A.【点睛】本题考查了解一元一次不等式组,能根据不等式的解集和不等式组的解集得出关于m 的不等式是解此题的关键.6.C 【分析】把x=2代入x+y=3求出y ,再将x ,y 代入2x+y 即可求解.【详解】根据{x 2y ==,把x=2代入x+y=3.解得y=1.把x=2,y=1代入二元一次方程组中2x+y=5故被遮盖的两个数分别为5和1.故选C.【点睛】主要考查学生对二元一次方程组知识点的掌握.将已知解代入其中x+y=3求出y 值为解题关键.7.D【分析】直接利用不等式的基本性质分别判断得出答案.【详解】A 、若m >n ,则mc >nc ,只有c 为正数时成立,故此选项错误;B 、若m >n ,则mc²>nc²,只有c 不等于0时成立,故此选项错误;C 、若m >b ,b <c ,则m >c ,不一定成立,故此选项错误;D 、若m +c²>n +c²,则m >n ,故此选项正确.故选:D .【点睛】此题主要考查了命题与定理,正确把握不等式的基本性质是解题关键.8.C 【详解】可把不等式组化为211112x x -≤⎧⎪⎨-<⎪⎩,即21x -<≤,整数为:-1,0,1,故答案选C.考点:不等式组的整数解.9.B 【详解】标价为:x (1+50%),八折出售的价格为:(1+50%)x×80%,则可列方程为:(1+50%)x×80%=x+250,故选B .10.B 【分析】设这人跑了x 分钟,则走了(18-x )分钟,根据速度×时间=路程结合要在18分钟内到达,即可得出关于x 的一元一次不等式,解之即可得出x 的取值范围,取其中的最小值即可得出结论.【详解】解:设这人跑了x分钟,则走了(18-x)分钟,根据题意得:210x+90(18-x)≥2100,解得:x≥4,答:这人完成这段路程,至少要跑4分钟.故选:B.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.11.3-2x.【分析】题意得将原式表示成y=ax+b的形式.【详解】∵2x+y=3,∴y=3-2x,故答案为:y=3-2x.【点睛】此题考查了解二元一次方程,解题的关键是将x看做已知数,y看做未知数. 12.358x+>【解析】【分析】先表示出x的3倍,再表示出与5的和,最后根据大于8即可得不等式.【详解】x的3倍为3x,x的3倍与5的和为3x+5,所以x的3倍与5的和大于8为:3x+5>8,故答案为3x+5>8.【点睛】本题考查由实际问题抽象出一元一次不等式,根据关键语句,弄清运算的先后顺序和不等关系,从而得出不等式是关键.13.﹣2,﹣1【分析】根据不等式的性质求出不等式的解集,找出不等式的整数解即可.【详解】解:1﹣2x<6,移项得:﹣2x<6﹣1,合并同类项得:﹣2x<5,不等式的两边都除以﹣2得:x>﹣5 2,∴不等式的负整数解是﹣2,﹣1,故答案为﹣2,﹣1.【点睛】本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的性质求出不等式的解集是解此题的关键.14.2【分析】由二元一次方程解的定义结合已知条件易得2a+b=0,再将6a+3b+2变形为3(2a+b)+2,并将2a+b=0整体代入进行计算即可.【详解】∵x ay b=⎧⎨=⎩是方程20x y+=的一个解,∴2a+b=0,∴6a+3b+2=3(2a+b)+2=0+2=2.故答案为:2.【点睛】本题考查了二元一次方程的解和求代数式的值,“由已知条件求出2a+b=0,把6a+3b+2变形为3(2a+b)+2”是解答本题的关键.15.675cm2【分析】假设小长方形的长、宽分别为a、b,通过图形中大长方形的边长关系,可列出二元一次方程组,求得a、b的值,进而求得面积.【详解】设小长方形的长、宽分别为acm、bcm.由题意可列方程组:a+b=602a=a+3b⎧⎨⎩,解得:a=45b=15⎧⎨⎩,每块小长方形地砖的面积:45×15=675(cm 2),故填:675cm 2.【点睛】本题考查二元一次方程组在几何问题中的应用,结合图形找到两组等量关系是关键.16.(1)x=7;(2)x=12.【详解】【分析】按:去分母,去括号,移项,合并同类项,系数化为1等步骤解方程.【详解】解:(1)去括号,得2x+6=5x-15移项,得2x-5x=-6-15合并同类项,得-3x=-21系数化为1,得x=7(2)去分母,得5(2x-1)=3(4-3x)–15x 去括号,得10x –5=12-9x-15x 移项,合并同类项,得34x=17,系数化为1,得x=12【点睛】本题考核知识点:解一元一次方程.解题关键点:理解解方程的一般步骤.17.2{3x y ==-.【分析】解此方程组利用加减消元法求出解即可.【详解】解:27{320x y x y -=+=①②①×2+②得:7x=14,即x=2,把x=2代入①得:y=-3,则方程组的解为2{3x y ==-.【点睛】本题考查解二元一次方程组.18.1x ≥-,数轴见解析【分析】按照去分母,去括号,移项,合并同类项,系数化为1的步骤解不等式即可,然后按照大于向右画,小于向左画,有等号是实心圆点,没有等号是空心圆点即可在数轴上表示出解集.【详解】去分母得,23(2)x x -≤+,去括号得,263x x -≤+,移项得,362x x --≤-,合并同类项得,44x -≤,系数化为1得,1x ≥-,数轴如图:【点睛】本题主要考查解一元一次不等式,掌握不等式的解法及用数轴表示不等式解集的方法是解题的关键.19.1、2、3【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).最后求出整数解即可.【详解】解:解不等式①得,x≥1,解不等式②得,x <4,∴不等式组的解集是1≤x <4.∴不等式组的所有整数解是1、2、3.【点睛】解一元一次不等式组,一元一次不等式组的整数解.20.(1)21m n =⎧⎨=⎩(2)y<-3【解析】分析:(1)把x 与y 的两对值代入方程计算求出m 与n 的值即可;(2)由方程求出x 的表达式,解不等式即可.详解:(1)把23x y =-⎧⎨=-⎩和41x y =⎧⎨=⎩代入方程得:295435m n m n -+=⎧⎨-=⎩,解得:21m n =⎧⎨=⎩;(2)当21m n =⎧⎨=⎩时,原方程变为:2x -3y =5,解得:x =532y +.∵x <-2,∴532y+<-2,解得:y <-3.点睛:本题考查了二元一次方程组的解,以及解一元一次不等式,熟练掌握运算法则是解答本题的关键.21.1 2.2a -<<【分析】先解方程组,再由题意列不等式组可得答案.【详解】解:331x y a x y a +=+⎧⎨-=-⎩①②①+②得:242,x a =+21,x a ∴=+把21x a =+代入①得:2,y a =-+21,2x a y a =+⎧∴⎨=-+⎩0,0x y ⎧⎨⎩>>21020a a +⎧∴⎨-+⎩>> ③④解③得:1,2a ->解④得:2,a <∴不等式组的解是1 2.2a -<<a ∴的取值范围是12.2a -<<.【点睛】本题考查的是二元一次方程组与一元一次不等式组联系,掌握其解法是解题关键.22.(1)甲、乙合作20天才能把该工程完成;(2)完成此项工程需付给甲、乙两队共120000元.【详解】【分析】(1)设甲、乙合作x 天才能把该工程完成,由题意一项工程甲单独做要40天完成,乙单独做需要50天完成,可以得出甲每天做整个工程的140,乙每天做整个工程的150,根据文字表述得到题目中的相等关系是:甲完成的部分+两人共同完成的部分=1,根据等量关系列出方程,然后求解即可;(2)根据甲、乙两队工作的天数以及每个队每天的施工费用,每天的施工费用×施工天数即可求得.【详解】()1设甲、乙合作x 天才能把该工程完成,根据题意得:1114x 1404050⎛⎫⨯++= ⎪⎝⎭,解得:x 20=.答:甲、乙合作20天才能把该工程完成;()2甲队的费用为()250020460000(⨯+=元),乙队的费用为30002060000(⨯=元),6000060000120000(+=元).答:完成此项工程需付给甲、乙两队共120000元.【点睛】本题考查了一元一次方程的应用,弄清题意,找到等量关系是解题的关键.23.(1)A 型台灯购进100盏,B 型台灯购进60盏;(2)有两种购货方案,方案一:A 型台灯购进66盏,B 型台灯购进94盏;方案二:A 型台灯购进67盏,B 型台灯购进93盏.其中获利最大的是方案一.【分析】(1)根据题意列二元一次方程组求解;(2)根据题意列出一元一次方程组求解.【详解】(1)设分别购进A 型、B 型台灯x 盏、y 盏,根据题意,得160,5101100.x y x y +=⎧⎨+=⎩解得:100,60.x y =⎧⎨=⎩答:A 型台灯购进100盏,B 型台灯购进60盏.(2)设购进a 盏A 型台灯,则购进(160)a -盏B 型台灯,根据题意,得1535(160)4300,510(160)1260.a a a a +-<⎧⎨+->⎩解之,得6568a <<.∵a 为非负整数,∴a 取66,67.∴160a -相应取94,93.∵当a=66时,5×66+10×94=1270(元),当a=67时,5×67+10×93=1265(元),∴方案一获利最大,答:有两种购货方案,方案一:A 型台灯购进66盏,B 型台灯购进94盏;方案二:A 型台灯购进67盏,B 型台灯购进93盏.其中获利最大的是方案一.【点睛】本题考查二元一次方程组与一元一次不等式的综合运用,在正确理解题意的基础上列出适合的二元一次方程组与一元一次不等式求解是解题关键.24.(1)a=2,b=﹣3;(2)75x y =-⎧⎨=⎩.【分析】(1)甲把字母a 看错了,而方程②中没有a ,故可以将甲的答案代入②中求出b ;乙把字母b 看错了,而方程①中没有b ,故可将乙的答案代入①中求出a ;(2)将所求得的a 、b 的值代入原方程组后,解方程组求解.【详解】(1)根据题意得:271231b a +=⎧⎨-=⎩,解得:a =2,b =﹣3,(2)方程组为231341x y x y +=⎧⎨--=⎩,解得75x y =-⎧⎨=⎩.【点睛】本题考查了二元一次方程组的解,解决本题的关键是明确方程组的解即为能使方程左右两边相等的未知数的值.。

2020年华东师大七年级下半期质量检测数学试题含答案

2020年华东师大七年级下半期质量检测数学试题含答案

2015-16学年(下)半期质量检测七年级数 学一、选择题(每小题3分,共3分)1.在方程23=-y x ,021=-+x x ,2121=x ,0322=--x x 中一元一次方程的个数为( ) A .1个 B .2个 C .3个 D .4个2.解方程3112-=-x x 时,去分母正确的是( ) A .2233-=-x x B .2263-=-x x C .1263-=-x x D .1233-=-x x3.方程x x -=-22的解是( )A .1=xB .1-=xC .2=xD .0=x4、若a 、b 是有理数,则下列说法正确的是( )A 、若22b a >,则b a >B 、若b a >,则22b a >C 、若ba >,则22b a > D 、若b a ≠,则22b a ≠5、若-72a 2b 3与101a x+1b x+y是同类项,则x 、y 的值为( )A {{{{x 1x=2x=1x=2B C D y 3y=2y=2y=3=- = 6、如果方程组x+y=8y+z=6z+x=4⎧⎪⎨⎪⎩的解使代数式kx +2y -3z 的值为8,则k =( )。

A 13B 13- C 3 D -3 7.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为( )。

A .80元B .85元C .90元D .95元8、若不等式组⎩⎨⎧<≥bx a x 无解,则有( )A 、a b >B 、a b <C 、a b =D 、b ≤a9.有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中的一支是另一支的一半,停电时间为( )小时A.2 B .512 C.3 D. 25 10、已知甲、乙两人的年收入之比为3:2,年支出之比为7:4,年终时两人各余400元,若设甲的年收入为x 元,年支出为y 元,则可列方程组为 ( ) A x y=400x=y+400x y=400x y=400 B C D 27342437x+y=400x y=400x y=400x y=40034273724⎧⎧⎧⎧⎪⎪⎪⎪⎨⎨⎨⎨⎪⎪⎪⎪⎩⎩⎩⎩------二、填空题(每小题3分,共18分)11、比a 的3倍大5的数是9,列出方程式是__________________。

华师大版七年级数学下册期中试卷及答案(通用)

华师大版七年级数学下册期中试卷及答案(通用)

华师大版七年级数学下册期中试卷及答案(通用)2020年春季初一年级半期数学质量检测试卷一、选择题(每题3分,共30分)1.下列四个式子中,是方程的是()。

A。

3+2=5B。

x=1C。

2x-3<0D。

a^2+2ab+b^22.在下列方程组中,不是二元一次方程组的是()。

A。

{3x-y=6.2x+y=4}B。

{2x-y=6.3x+y=4.4x+2y=12}C。

{x+y=3.y+z=4.3x+2y=5}D。

{y+z=4.6x+5y=7.3x+2y=5}3.在下列方程的变形中,错误的是()。

A。

2x+3=7,由2x=7-3得x=2B。

2x=-3,由2=-3x得x=-2/3C。

x/2=2,由x=4得x=8D。

x/2=2,由2x=4得x=24.下列不等式一定成立的是()。

A。

5a>4aB。

x+2<x+3C。

-a>-2aD。

(5x-11)/(a)>25.对于方程(5x-11)/(3)+2=-2,去分母后得到的方程是()。

A。

-4x=3,x=-3/4B。

5x-1-6=3(1+2x),x=-1/7C。

2(5x-1)-6=3(1+2x),x=5/7D。

2(5x-1)-12=3(1+2x),x=-1/26.某班学生参加运土劳动,一部分学生抬土,另一部分学生挑土。

已知全班共用箩筐59个,扁担36根,求抬土、挑土的学生各多少人?如果设抬土的学生x人,挑土的学生y人,则可得方程组()。

A。

{2(x+y)=59.2x+y=36}B。

{x+2y=59.x+y=36}C。

{2x+y=59.x+2y=36}D。

{2x+y=36.x+2y=59}7.不等式-3x+6>0的正整数解有()。

A。

1个B。

2个C。

3个D。

无数多个8.若a>b,且c为有理数,则下列各式正确的是()。

A。

ac>bcB。

ac<bcC。

ac^2<bc^2D。

ac^2>=bc^29.某班学生分组,若每组7人,则有2人分不到组里;若每组8人,则最后一组差4人,若设计划分x组,则可列方程为()。

华师大版七年级下册数学期中考试试题含答案

华师大版七年级下册数学期中考试试题含答案

华师大版七年级下册数学期中考试试卷一、单选题1.下列四个式子中,是方程的是()A .2x =B .1a +C .23x -D .3 25+=2.下列各数中,是方程215x +=-的解的是()A .0B .2C .3-D .2-3.设,,x y c 是有理数,则下列判断错误的是()A .若x y =,则22x c y c +=+B .若x y =,则a cx a cy -=-C .若x y =,则=x yc cD .若23x y=,则32x y =4.若1x =-是关于x 的一元一次方程20ax +=的解,则a 的值是()A .-2B .-1C .1D .25.若代数式235x -和233x -的值相同,则x 的值是()A .9B .﹣32C .32D .836.若方程6323x x -=-的解与关于x 的方程6226k x -=+的解相同,则k 的值为().A .59B .59-C .95D .95-7.为减少雾霾天气对身体的伤害,班主任王老师在某网站为班上的每一位学生购买防雾霾口罩,每个防霾口罩的价格是15元,在结算时卖家说:“如果您再多买一个口罩就可以打九折,价钱会比现在便宜45元”,王老师说:“那好吧,我就再给自己买一个,谢谢.”根据两人的对话,判断王老师的班级学生人数应为()A .38B .39C .40D .418.二元一次方程3x+2y =15的正整数解的对数是()A .1对B .2对C .3对D .4对9.当1a =时,方程()10a x b -+=(其中x 是未知数,b 是已知数)()A .有且只有一个解B .无解C .有无限多个解D .无解或有无限多个解10.已知关于x ,y 的方程组25241x y ax y a +=-⎧⎨-=-⎩给出下列结论:①当1a =时,方程组的解也是21x y a +=+的解;②无论a 取何值x ,y 的值不可能是互为相反数;③x ,y 都为自然数的解有4对;④若28x y +=,则2a =.正确的有几个()A .1B .2C .3D .4二、填空题11.x 的3倍与y 的和等于5,用等式表示为_______.12.若2a -4与a +7互为相反数,则a =________.13.如果关于,x y 的二元一次方程组241x y kx y k -=⎧⎨+=+⎩的解,x y 满足3x y +=,则k 的值是__________.14.若关于x 的不等式20x m ->的负整数解为1,2,3---.则m 的取值范围是_________.15.“格子乘法”作为两个数相乘的一种计算方法最早在15世纪由意大利数学家帕乔利提出,在明代的《算法统宗》一书中被称为“铺地锦”.如图1,计算4751⨯,将乘数47计入上行,乘数51计入右行,然后以乘数47的每位数字乘以乘数51的每位数字,将结果计入相应的格子中,最后按斜行加起来,得2397.如图2,用“格子乘法”表示两个两位数相乘,则a 的值为____________.三、解答题16.解方程(1)3328x x +=-+(2)2151136x x +--=17.解方程组:34282151136x y x x x +=-+⎧⎪+-⎨-=⎪⎩18.不等式:()5332x x +<+,并把解集在数轴上表示出来.19.已知12x y =⎧⎨=⎩是关于,x y 的方程组14ax by bx ay -=-⎧⎨-=-⎩的一个解,求代数式()23a b a --的值.20.列方程解应用题:2021年3月28日10时,随着洛阳地铁1号线首发列车缓缓始离牡丹广场站,标志着洛阳地铁1号线正式开通运营,古都洛阳正式迈入“地铁时代”,成为中西部地区首个开通地铁的非省会城市.已知1号线采用按里程分段计价的票制,其中全程最高票价为5元,学生可享受半价.周日,七年级某班师生共36人从始发站“红山”乘地铁至终点站“杨湾”,感受“地铁速度”,其中学生均购半价票,单程共付车票费用105元.求他们购买全价票与半价票各多少张?21.要比较两个数,a b 的大小,有时可以通过比较-a b 与0的大小来解决:如果0a b ->,则a b >;如果0a b -=,则a b =;如果0a b -<,则a b <.(1)若223x a b =+,231y a b =+-,试比较,x y 的大小.(2)若224A m m =+-,232B m m =--,试比较A 与2B 的大小关系.22.为进一步建设秀美、宜居的生态环境,某村欲购买甲、乙、丙三种树美化村庄,已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,现计划用210000元资金,购买这三种树共1000棵.(1)求乙、丙两种树每棵各多少元?(2)若购买甲种树的棵树是乙种树的2倍,恰好用完计划资金,求这三种树各能购买多少棵?(3)若又增加了10120元的购树款,在购买总棵树不变的前提下,求丙种树最多可以购买多少棵?23.在数学课外小组活动中,老师提出了如下问题:如果一个不等式中含有绝对值,并且绝对值符号中含有未知数,我们把这个不等式叫做绝对值不等式,求绝对值不等式|x|>a(a>0)和|x|<a(a>0)的解集.小明同学的探究过程如下:先从特殊情况入手,求|x|>2和|x|<2的解集.确定|x|>2的解集过程如下:先根据绝对值的几何定义,在数轴上找到到原点的距离大于2的所有点所表示的数,在数轴上确定范围如下:所以,|x|>2的解集是x>2或.再来确定|x|<2的解集:同样根据绝对值的几何定义,在数轴上找到到原点的距离小于2的所有点所表示的数,在数轴上确定范围如下:所以,|x|<2的解集为:.经过大量特殊实例的实验,小明得到绝对值不等式|x|>a(a>0)的解集为,|x|<a(a>0)的解集为.请你根据小明的探究过程及得出的结论,解决下列问题:(1)请将小明的探究过程补充完整;(2)求绝对值不等式2|x+1|-3<5的解集.参考答案1.A【分析】根据方程的定义:含有未知数的等式;判断即可.【详解】x=,属于方程,符合题意;解:A、2a+,不是等式,不属于方程,不符合题意;B、1x-,不是等式,不属于方程,不符合题意;C、23+=,没有未知数,不属于方程,不符合题意;D、3 25故选:A.【点睛】本题考查了方程的定义,解题的关键是熟练运用方程的定义,本题属于基础题型.2.C【分析】方程移项合并,把x系数化为1,求出解,即可做出判断.【详解】解:方程2x+1=−5,移项合并同类项得:2x=−6,解得:x=−3.故选:C.【点睛】此题考查了方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.C【分析】根据等式的性质一一判断即可.【详解】解:A、若x=y,则x+2c=y+2c,故A选项不符合题意;B、若x=y,则a﹣cx=a﹣cy,故B选项不符合题意;C、c=0时,等式不成立,故C选项符合题意;D 、若23x y=,则3x =2y ,故D 选项不符合题意;故选C .【点睛】此题考查等式的性质,解题的关键在于能够熟练掌握等式的性质.4.D 【分析】将1x =-代入方程,即可得出a 的值.【详解】将1x =-代入方程,得20a -+=∴2a =故选:D.【点睛】此题主要考查利用一元一次方程的解求参数的值,熟练掌握,即可解题.5.A 【分析】根据题意列出方程,求出方程的解即可得到x 的值.【详解】根据题意得:235x -=233x-,去分母得到:6x ﹣9=10x ﹣45,移项合并得:﹣4x =﹣36,解得:x =9.故选:A .【点睛】此题考查了解一元一次方程,以及代数式求值,熟练掌握方程的解法是解本题的关键.6.B 【详解】解方程6x-3=2-3x 得x=59,再由两个方程的解相同可得,6-2k=2×59+6,解得k=59-,故选B.7.B【分析】设王老师的班级学生人数x人.则依据“如果您再多买一个口罩就可以打九折,价钱会比现在便宜45元”列方程解答即可.【详解】解:设王老师的班级学生人数x人,根据题意,得:15x-15(x+1)×90%=45,解得:x=39.故选B.【点睛】本题考查了一元一次方程的应用.8.B【分析】将x=1,2,…,分别代入3x+2y=15,求出方程的正整数解的对数是多少即可.【详解】解:当x=1时,方程变形为3+2y=15,解得y=6;当x=3时,方程变形为9+2y=15,解得y=3;∴二元一次方程3x+2y=15的正整数解的对数是2对:16xy=⎧⎨=⎩和33xy=⎧⎨=⎩.故选:B.【点睛】此题主要考查了二元一次方程组的解,要熟练掌握,注意解中x与y必须为正整数.9.D【分析】根据一元一次方程的定义即可判断求解.【详解】解:当a=1时,b≠0时,方程为b=0,与b≠0矛盾,故无解;当a=1时,b=0时,方程为b=0,当x取任意值皆可,故有无数解,故选D.【点睛】此题主要考查一元一次方程的解,解题的关键是熟知方程解得含义.10.D 【分析】①根据消元法解二元一次方程组,然后将解代入方程x +y =2a +1即可求解;②根据消元法解二元一次方程组,用含有字母的式子表示x 、y ,再根据互为相反数的两个数相加为0即可求解;③根据试值法求二元一次方程x +y =3的自然数解即可得结论;④根据整体代入的方法即可求解.【详解】解:25241x y a x y a +=-⎧⎨-=-⎩,方程组上式-下式得366y a=-22y a ∴=-,将22y a =-代人方程组下式得21x a =+,∴方程组的解为2122x a y a=+⎧⎨=-⎩当1a =时30x y =⎧⎨=⎩,3x y +=,213a +=,∴①正确;②212230x y a a +=++-=≠ ,∴②正确;③3x y += 、x ,y 为自然数,03x y =⎧∴⎨=⎩或12x y =⎧⎨=⎩或21x y =⎧⎨=⎩或30x y =⎧⎨=⎩,∴有4对,∴③正确;④()2221228x y a a +=++-=,解得2a =,∴④正确.故选:D 【点睛】本题考查二元一次方程的解,二元一次方程组的解,解二元一次方程组,解题的关键是掌握二元一次方程的解,二元一次方程组的解,解二元一次方程组.11.35x y +=.【分析】先表示出x 的3倍再与y 求和即可写出等式.【详解】解:根据题意,得35x y +=,故答案为35x y +=.【点睛】读懂题意,抓住关键词,弄清运算的先后顺序是列出等式的关键.12.-1【分析】利用相反数的性质列出方程,求出方程的解即可得到a 的值.【详解】解:∵2a -4与a +7互为相反数,∴2a-4+a+7=0,解得:a=-1,故答案为:-1.【点睛】此题考查了解一元一次方程,以及相反数的性质,熟练掌握运算法则是解本题的关键.13.4【分析】把方程组的两个方程相加,再把x +y =3代入即可求解.【详解】解:241x y k x y k -=⎧⎨+=+⎩①②,①+②得:3x +3y =2k +1,即3(x +y )=2k +1,∵x +y =3,∴3×3=2k +1,解得k =4.故答案为:4.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.14.86m -≤<-【分析】首先解不等式求得解集,然后根据不等式只有负整数解为-1,-2,-3,得到关于m 的不等式,求得m 的范围.【详解】解:∵2x -m >0,∴2x >m ,∴x >2m .∵不等式的负整数解只有-1,-2,-3则432m-≤<-,解得:86m -≤<-.故答案为:86m -≤<-.【点睛】此题考查了根据不等式解集的情况求参数的取值范围,根据x 的取值范围正确确定2m的范围是解题的关键.15.3【分析】根据“格子乘法”可得10(2a -2-a )+(-a +6-1)=4a ,解方程可得.【详解】解:根据题意可得10(2a -2-a )+(-a +6-1)=4a 解得a =3故答案为:3.【点睛】根据“格子乘法”分析图示,列出方程是关键.16.(1)x=1;(2)x=-3【分析】(1)通过移项,合并同类项,未知数系数化为1,即可求解;(2)通过去分母,移项,合并同类项,未知数系数化为1,即可求解.【详解】(1)3328x x +=-+,移项得:3283x x +=-,合并同类项得:55=x ,解得:x=1;(2)2151136x x +--=,去分母得:()()221516x x +--=,去括号得:42516x x +-+=,合并,移项得:3x -=,解得:x=-3.【点睛】本题主要考查解一元一次方程,熟练掌握解一元一次方程的基本步骤,是解题的关键.17.3234x y =-⎧⎪⎨=⎪⎩【分析】将原式化简整理为54836x y x +=⎧⎨-+=⎩①②,解方程②得到的结果代入①即可得到方程组的解.【详解】解:34282151136x y x x x +=-+⎧⎪+-⎨-=⎪⎩,原式整理为:54836x y x +=⎧⎨-+=⎩①②,解方程②得:3x =-,将3x =-代入①中得:1548y -+=解得234y =,则方程组的解为3234x y =-⎧⎪⎨=⎪⎩.【点睛】此题考查了解二元一次方程组,以及一元一次方程,利用了消元的思想,消元的方法有两种:代入消元法、加减消元法.18.32x <,见解析【分析】先解一元一次不等式,然后再数轴上表示出不等式的解集即可得到答案.【详解】解:去括号得,5363x x +<+,移项得,5363x x -<-,合并同类项得,23x <,系数化为1得,32x <.在数轴上表示为:【点睛】本题主要考查了解一元一次不等式,并在数轴上表示不等式的解集,解题的关键在于能够熟练掌握相关知识进行求解.19.-6【分析】将12x y =⎧⎨=⎩代入原方程组中得2124a b b a -=-⎧⎨-=-⎩①②,然后解方程求出a 、b ,然后求代数式的值即可.【详解】解:将12x y =⎧⎨=⎩代入原方程组中得2124a b b a -=-⎧⎨-=-⎩①②将①变形为2-1a b =③代入②:-4+2-4b b =,解得2b =,代入③得3a =∴()2222333236a b a --=--=-()【点睛】本题主要考查了解二元一次方程组,代数式求解,解题的关键在于能够熟练掌握解二元一次方程组的方法.20.购买全价票6张,半价票30张.【分析】可设购买全价票x 张,半价票y 张,根据题意列二元一次方程组求解即可.【详解】解:购买全价票x 张,半价票y 张,根据题意得:36551052x y x y +=⎧⎪⎨+=⎪⎩解得:630x y =⎧⎨=⎩答:购买全价票6张,半价票30张.【点睛】本题考查了二元一次方程组的实际应用,设出变量,根据题意列出二元一次方程组是解题的关键.21.(1)x y >;(2)当 0m >时,20A B ->,所以2A B >;当0m =时,2A B =;当 0m <时,2A B<【分析】(1)用x y -,得到的结果与0比较大小即可得到答案;(2)先算出2B ,然后算出2A B -得到的结果与0比较大小即可得到答案.【详解】解:(1)∵223x a b =+,23-1y a b =+∴()222233-11x y a b a b a -=+-+=+∵20a ≥∴2110a +≥>即0x y ->.∴x y >.(2)∵232B m m =--∴22264B m m =--∵224A m m =+-∴()222242647AB m m m m m -=+----=,当0m >时,20A B ->,所以2A B >,当0m =时,20A B -=,所以2A B =,当0m <时,20A B -<,所以2A B <.【点睛】本题主要考查了利用作差法比较大小,解题的关键在于能够根据题意进行计算.22.(1)乙种树每棵200元,丙种树每棵300元(2)甲种树600棵,乙种树300棵,丙种树100棵(3)201棵【详解】解:(1)已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,∴乙种树每棵200元,丙种树每棵32×200=300(元).(2)设购买乙种树x 棵,则购买甲种树2x 棵,丙种树(1000-3x )棵.根据题意:200·2x +200x +300(1000-3x )=210000,解得x =300.∴2x =600,1000-3x =100,答:能购买甲种树600棵,乙种树300棵,丙种树100棵.(3)设购买丙种树y 棵,则甲、乙两种树共(1000-y )棵,根据题意得:200(1000-y )+300y ≤210000+10120,解得:y ≤201.2.∵y 为正整数,∴y 最大为201.答:丙种树最多可以购买201棵.(1)利用已知甲、乙丙三种树的价格之比为2:2:3,甲种树每棵200元,即可求出乙、丙两种树每棵钱数.(2)设购买乙种树x棵,则购买甲种树2x棵,丙种树(1000-3x)棵,利用(1)中所求树木价格以及现计划用210000元资金购买这三种树共1000棵,得出等式方程,求出即可.(3)设购买丙种树y棵,则甲、乙两种树共(1000-y)棵,根据题意列不等式,求出即可23.29.(1)x<-2;图见解析;-2<x<2;x>a或x<-a;-a<x<a;(2)-5<x<3【分析】(1)根据题意即可得;(2)将2|x+1|的数字因数2化为1后,根据以上结论即可得.【详解】(1)①x<-2②③-2<x<2④x>a或x<-a⑤-a<x<a故答案为:x<-2,,-2<x<2,x>a或x<-a,-a<x <a(2)∵2|x+1|-3<5∴2|x+1|<8∴|x+1|<4∴-4<x+1<4∴-5<x<3∴原绝对值不等式的解集是-5<x<3【点睛】本题考查了一元一次不等式的解法、绝对值的性质;熟练掌握一元一次不等式的解法是解决问题的关键.。

华东师大版初中七年级下册半期检测数学试卷

华东师大版初中七年级下册半期检测数学试卷

华东师大版初中七年级下册半期检测数学试卷一.解答题(共18小题)1.(2016春•上海校级月考)已知方程(3m﹣4)x2﹣(5﹣3m)x﹣4m=﹣2m是关于x的一元一次方程,(1)求m和x的值.(2)若n满足关系式|2n+m|=1,求n的值.2.(2016春•太康县月考)数学迷小虎在解方程﹣1去分母时,方程右边的﹣1漏乘了3,因而求得方程的解为x=﹣2,请你帮小虎同学求出a的值,并且正确求出原方程的解.3.(2016春•沈丘县校级月考)下面是马小哈同学做的一道题:解方程:解:①去分母,得4(2x﹣1)=1﹣3(x+2)②去括号,得8x﹣4=1﹣3x﹣6③移项,得8x+3x=1﹣6+4④合并同类项,得11x=﹣1⑤系数化为1,得(1)上面的解题过程中最早出现错误的步骤是(填代号)(2)请在本题右边正确的解方程:.4.(2016春•德惠市校级月考).5.(2016•富顺县校级模拟)解方程(组)、不等式(组):①②③④3x+2y=5y+12x=﹣3⑤.6.(2016•威海一模)解方程组:.7.(2016•吴中区一模)某电器商场销售A、B两种型号计算器,两种计算器的进化价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)8.(2016•丰台区一模)解不等式组并求它的所有的非负整数解.9.(2016•贵港一模)某体育器材店有A、B两种型号的篮球,已知购买3个A型号篮球和2个B型号篮球共需310元,购买2个A型号篮球和5个B型号篮球共需500元.(1)A、B型号篮球的价格各是多少元?(2)某学校在该店一次性购买A、B型号篮球共96个,但总费用不超过5720元,这所学校最多购买了多少个B型号篮球?10.(2016春•昆山市期中)Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:.11.(2016春•昆山市期中)如图,已知△ABC中,AD是高,AE是角平分线.(1)若∠B=20°,∠C=60°,求∠EAD度数;(2)若∠B=α,∠C=β(β>a),则∠EAD=.(用α、β的代数式表示)12.(2016春•邗江区期中)如图,在△ABC中,∠A=40°,∠B=72°,CD是AB边上的高,CE是∠ACB的平分线,DF⊥CE于F,求∠CDF的度数.13.(2016春•盐城校级月考)如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B=42°,∠C=70°,求∠AEC和∠DAE的度数.14.(2016春•建湖县月考)已知:如图,AD是△ABC的高,BE平分∠ABC交AD于E,若∠C=70°,∠BED=68°,求∠BAC的度数.15.(2016春•扬州校级月考)如图,在△ABC中,AD⊥BC于D,AE平分∠BAC.(1)若∠C=70°,∠B=40°,求∠DAE的度数(2)若∠C﹣∠B=30°,则∠DAE=.(3)若∠C﹣∠B=α(∠C>∠B),求∠DAE的度数(用含α的代数式表示).16.(2016春•江苏月考)如图,在△ABC中,∠BAC=50°,∠B=60°,AE⊥BC于点E,CD 平分∠ACB且分别与AB、AE交于点D、F,求∠AFC的度数.17.(2016春•泗阳县校级月考)如图,在△ABC中,AD是高,AE是角平分线,∠B=20°,∠C=60°.(1)求∠CAD、∠AEC和∠EAD的度数.(2)若图形发生了变化,已知的两个角度数改为:当∠B=30°,∠C=60°则∠EAD=°;当∠B=50°,∠C=60°时,则∠EAD=°;当∠B=60°,∠C=60°时,则∠EAD=°;当∠B=70°,∠C=60°时,则∠EAD=°.(3)若∠B和∠C的度数改为用字母α和β来表示,你能找到∠EAD与α和β之间的关系吗?请直接写出你发现的结论.18.(2016春•大丰市校级月考)已知BD、CE是△ABC的两条高,直线BD、CE相交于点H.(1)若∠A=100°,如图,求∠DHE的度数;(2)若△ABC中∠A=50°,直接写出∠DHE的度数是.华东师大版初中七年级下册半期检测数学试卷参考答案与试题解析一.解答题(共18小题)1.(2016春•上海校级月考)已知方程(3m﹣4)x2﹣(5﹣3m)x﹣4m=﹣2m是关于x的一元一次方程,(1)求m和x的值.(2)若n满足关系式|2n+m|=1,求n的值.【解答】解:(1)∵方程(3m﹣4)x2﹣(5﹣3m)x﹣4m=﹣2m是关于x的一元一次方程,∴3m﹣4=0.解得:m=.将m=代入得:﹣x﹣=﹣.解得x=﹣.(2)∵将m=代入得:|2n+|=1.∴2n+=1或2n+=﹣1.∴n=﹣或n=﹣.【点评】本题主要考查的是一元一次方程的定义和解法,依据一元一次方程的定义求得m 的值是解题的关键.2.(2016春•太康县月考)数学迷小虎在解方程﹣1去分母时,方程右边的﹣1漏乘了3,因而求得方程的解为x=﹣2,请你帮小虎同学求出a的值,并且正确求出原方程的解.【解答】解:按小虎的解法,解方程得x=a,又因为小虎解得x=﹣2,所以a=﹣2.把a=﹣2代入原方程得到方程:=﹣1,解得x=﹣4.即正确解方程得到x=﹣4.【点评】本题考查了一元一次方程的解的定义.使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.3.(2016春•沈丘县校级月考)下面是马小哈同学做的一道题:解方程:解:①去分母,得4(2x﹣1)=1﹣3(x+2)②去括号,得8x﹣4=1﹣3x﹣6③移项,得8x+3x=1﹣6+4④合并同类项,得11x=﹣1⑤系数化为1,得(1)上面的解题过程中最早出现错误的步骤是(填代号)①(2)请在本题右边正确的解方程:.【解答】解:(1)①.故答案是①;(2)去分母,得4x﹣2(x﹣1)=8﹣(x+2),去括号,得4x﹣2x+2=8﹣x﹣2,移项,得4x﹣2x+x=8﹣2﹣2,合并同类项,得3x=4,系数化为1,得.【点评】本题考查了一元一次方程的解法,解方程的依据是等式的基本性质,注意移项时要改变符号.4.(2016春•德惠市校级月考).【解答】解:把中分子,分母都乘以5得:5x﹣20,把中的分子、分母都乘以20得:20x﹣60.即原方程可化为:5x﹣20﹣2.5=20x﹣60.移项得:5x﹣20x=﹣60+20+2.5,合并同类项得:﹣15x=﹣37.5,化系数为1得:x=2.5.【点评】本题考查的是一元一次方程的解法,比较简单.5.(2016•富顺县校级模拟)解方程(组)、不等式(组):①②③④3x+2y=5y+12x=﹣3⑤.【解答】解:①去括号得:x﹣(x﹣1)+=(x﹣1),去分母得:6x﹣3(x﹣1)+6=8(x﹣1),去括号得:6x﹣3x+3+6=8x﹣8,移项合并得:5x=17,解得:x=3.4;②方程组整理得:15+x﹣20﹣30x=0.75,移项合并得:29x=﹣5.75,解得:x=﹣;③方程组整理得:,②﹣①得:3y=﹣5,即y=﹣,把y=﹣代入②得:x=,则方程组的解为;④整理得:,①×4﹣②得:3y=﹣9,即y=﹣3,把y=﹣3代入①得:x=1,则方程组的解为;⑤,③﹣①得:y+z=14④,②+④×3得:7y=42,即y=6,把y=6代入④得:z=8,把y=6代入①得:x=4,则方程组的解为.【点评】此题考查了解二元一次方程组方程组,以及解一元一次方程,熟练掌握运算法则是解本题的关键.6.(2016•威海一模)解方程组:.【解答】解:原方程组可化为,①×3+②,得11x=22,即x=2,将x=2代入①,得6﹣y=3,即y=3,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.7.(2016•吴中区一模)某电器商场销售A、B两种型号计算器,两种计算器的进化价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)【解答】解:(1)设A种型号计算器的销售价格是x元,B种型号计算器的销售价格是y 元,由题意得:,解得:,答:A种型号计算器的销售价格是42元,B种型号计算器的销售价格是56元.【点评】此题主要考查了二元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组.8.(2016•丰台区一模)解不等式组并求它的所有的非负整数解.【解答】解:,由①得x>﹣2,…(1分)由②得x≤,…(3分)所以,原不等式组的解集是﹣2<x≤,…(4分)所以,它的非负整数解为0,1,2.…(5分)【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).9.(2016•贵港一模)某体育器材店有A、B两种型号的篮球,已知购买3个A型号篮球和2个B型号篮球共需310元,购买2个A型号篮球和5个B型号篮球共需500元.(1)A、B型号篮球的价格各是多少元?(2)某学校在该店一次性购买A、B型号篮球共96个,但总费用不超过5720元,这所学校最多购买了多少个B型号篮球?【解答】解:(1)设A型号篮球的价格为x元、B型号的篮球的价格为y元,根据题意得,解得:∴一个足球50元、一个篮球80元;(2)设最多买m个B型号篮球m个,则买A型号篮球球(96﹣m)个,根据题意得:80m+50(96﹣m)≤5720,解得:m≤30,∵m为整数,∴m最大取30.∴最多购买了30个B型号篮球.【点评】本题考查了列二元一次方程组解实际问题的运用,列一元一次不等式解实际问题的运用,解答本题时找到建立方程的等量关系和建立不等式的不等关系是解答本题的关键.10.(2016春•昆山市期中)Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=140°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:∠1+∠2=90°+α;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:∠2=90°+∠1﹣α.【解答】解:(1)∵∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∴∠1+∠2=∠C+∠α,∵∠C=90°,∠α=50°,∴∠1+∠2=140°;故答案为:140°;(2)由(1)得出:∠α+∠C=∠1+∠2,∴∠1+∠2=90°+α故答案为:∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由:∵∠2+∠α=∠DME,∠DME+∠C=∠1,∴∠1=∠C+∠2+α=90°+∠2+α.(4)∵∠PFD=∠EFC,∴180°﹣∠PFD=180°﹣∠EFC,∴∠α+180°﹣∠1=∠C+180°﹣∠2,∴∠2=90°+∠1﹣α.故答案为:∠2=90°+∠1﹣α.【点评】本题考查了三角形内角和定理和外角的性质、对顶角相等的性质,熟练利用三角形外角的性质是解题的关键.11.(2016春•昆山市期中)如图,已知△ABC中,AD是高,AE是角平分线.(1)若∠B=20°,∠C=60°,求∠EAD度数;(2)若∠B=α,∠C=β(β>a),则∠EAD=(β﹣α).(用α、β的代数式表示)【解答】解:(1)∵∠B=20°,∠C=60°,∴∠BAC=180°﹣20°﹣60°=100°,∵AE是角平分线,∴∠EAC=50°,∵AD是高,∴∠ADC=90°,∴∠DAC=30°,∴∠EAD=∠EAC﹣∠DAC=50°﹣30°=20°;(2))∵∠B=α,∠C=β,∴∠BAC=180°﹣α﹣β,∵AE是角平分线,∴∠EAC=90°﹣α﹣β,∵AD是高,∴∠ADC=90°,∴∠DAC=90°﹣β,∴∠EAD=∠EAC﹣∠DAC=(90°﹣α﹣β)﹣(90°﹣β)=(β﹣α).【点评】此题考查了三角形内角和定理和三角形的角平分线、高、中线,解题的关键是根据三角形的内角和是180°,分别求出各个角的度数.12.(2016春•邗江区期中)如图,在△ABC中,∠A=40°,∠B=72°,CD是AB边上的高,CE是∠ACB的平分线,DF⊥CE于F,求∠CDF的度数.【解答】解:∵∠A=40°,∠B=72°,∴∠ACB=180°﹣40°﹣72°=68°.∵CE是∠ACB的平分线,∴∠BCE=∠ACB=×68°=34°.∵CD⊥AB即∠CDB=90°,∴∠BCD=180°﹣90°﹣72°=18°,∵DF⊥CE即∠DFC=90°,∴∠CDF=180°﹣90°﹣16°=74°.【点评】本题主要考查了三角形的内角和定理、直角三角形的两锐角互余、角平分线的定义等知识,在三角形中求角度时,通常需利用三角形内角和定理和外角的性质.13.(2016春•盐城校级月考)如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B=42°,∠C=70°,求∠AEC和∠DAE的度数.【解答】解:∵∠B=42°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=68°,∵AE是角平分线,∴∠EAC=∠BAC=34°.∵AD是高,∠C=70°,∴∠DAC=90°﹣∠C=20°,∴∠EAD=∠EAC﹣∠DAC=34°﹣20°=14°,∠AEC=90°﹣14°=76°.【点评】本题考查三角形的内角和定理及角平分线的性质,高线的性质,解答的关键是熟练掌握三角形的内角和定理.14.(2016春•建湖县月考)已知:如图,AD是△ABC的高,BE平分∠ABC交AD于E,若∠C=70°,∠BED=68°,求∠BAC的度数.【解答】解:∵AD是△ABC的高,∠C=70°,∴∠DAC=20°,∵BE平分∠ABC交AD于E,∴∠ABE=∠EBD,∵∠BED=68°,∴∠ABE+∠BAE=68°,∴∠EBD+68°=90°,∴∠EBD=22°,∴∠BAE=46°,【点评】此题主要考查了三角形的外角与三角形内角和定理等知识,题目综合性较强,注意从已知条件得出所有结论是解决问题的关键.15.(2016春•扬州校级月考)如图,在△ABC中,AD⊥BC于D,AE平分∠BAC.(1)若∠C=70°,∠B=40°,求∠DAE的度数(2)若∠C﹣∠B=30°,则∠DAE=15°.(3)若∠C﹣∠B=α(∠C>∠B),求∠DAE的度数(用含α的代数式表示).【解答】解:(1)由已知可得,∠BAC=180°﹣40°﹣70°=70°,∴∠CAD=20°,∴∠DAE=∠CAE﹣∠CAD=35°﹣20°=15°;(2)∵∠B+∠C+∠BAC=180°,∴∠BAC=180°﹣∠B﹣∠C,∵AE平分∠BAC,∴∠BAE=∠BAC=(180°﹣∠B﹣∠C)=90°﹣(∠B+∠C),∵AD⊥BC,∴∠ADE=90°,而∠ADE=∠B+∠BAD,∴∠BAD=90°﹣∠B,∴∠DAE=∠BAE﹣∠BAD=90°﹣(∠B+∠C)﹣(90°﹣∠B)=(∠B﹣∠C),∵∠B﹣∠C=30°,∴∠DAE=×30°=15°,故答案为:15°;(3)∵∠B﹣∠C=α,∴∠DAE=×α=.【点评】本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质解答.16.(2016春•江苏月考)如图,在△ABC中,∠BAC=50°,∠B=60°,AE⊥BC于点E,CD 平分∠ACB且分别与AB、AE交于点D、F,求∠AFC的度数.【解答】解:∵AE⊥BC,∴∠AEB=90°.∵∠B=60°,∴∠BAE=90°﹣60°=30°.∴∠CAE=50°﹣30°=20°∵∠BAC+∠B+∠ACB=180°,∴∠ACB=180°﹣∠BAC﹣∠B=70°.又∵CD平分∠ACB,∴∠ACD=∠ACB=35°.∴∠AFC=180°﹣35°﹣20°=125°.【点评】此类问题解法不唯一,也可以根据三角形外角的性质求∠AFC的度数.17.(2016春•泗阳县校级月考)如图,在△ABC中,AD是高,AE是角平分线,∠B=20°,∠C=60°.(1)求∠CAD、∠AEC和∠EAD的度数.(2)若图形发生了变化,已知的两个角度数改为:当∠B=30°,∠C=60°则∠EAD=15°;当∠B=50°,∠C=60°时,则∠EAD=5°;当∠B=60°,∠C=60°时,则∠EAD=0°;当∠B=70°,∠C=60°时,则∠EAD=5°.(3)若∠B和∠C的度数改为用字母α和β来表示,你能找到∠EAD与α和β之间的关系吗?请直接写出你发现的结论.【解答】解:(1)(1)∵∠B=20°,∠C=60°,∴∠BAC=180°﹣20°﹣60°=100°,∵AE是角平分线,∴∠EAC=50°,∵AD是高,∴∠ADC=90°,∴∠CAD=30°,∴∠EAD=∠EAC﹣∠DAC=50°﹣30°=20°,∴∠AEC=180°﹣∠EAC﹣∠C=180°﹣50°﹣60°=70°;(2)①∵∠B=30°,∠C=60°,∴∠BAC=180°﹣30°﹣60°=90°,∵AE是角平分线,∴∠EAC=45°,∵AD是高,∴∠ADC=90°,∴∠DAC=30°,∴∠EAD=∠EAC﹣∠DAC=45°﹣30°=15°;②∵∠B=50°,∠C=60°,∴∠BAC=180°﹣50°﹣60°=70°,∵AE是角平分线,∴∠EAC=35°,∵AD是高,∴∠ADC=90°,∴∠DAC=30°,∴∠EAD=∠EAC﹣∠DAC=35°﹣30°=5°;③∵∠B=60°,∠C=60°,∴∠BAC=180°﹣60°﹣60°=60°,∵AE是角平分线,∴∠EAC=30°,∵AD是高,∴∠ADC=90°,∴∠DAC=30°,∴∠EAD=∠EAC﹣∠DAC=30°﹣30°=0°;④∵∠B=70°,∠C=60°,∴∠BAC=180°﹣70°﹣60°=50°,∵AE是角平分线,∴∠EAC=25°,∵AD是高,∴∠ADC=90°,∴∠DAC=30°,∴∠EAD=∠DAC﹣∠EAC=30°﹣25°=5°;故答案为:15°,5°,0°,5°;(3)当α<β时,∵∠B=α°,∠C=β°,∴∠BAC=180°﹣α°﹣β°,∵AE是角平分线,∴∠EAC=(90﹣)°,∵AD是高,∴∠ADC=90°,∴∠DAC=90°﹣β°,∴∠EAD=∠EAC﹣∠DAC=[(90﹣)°﹣(90°﹣β°)]=(β﹣α)°;当α>β时,∵∠B=α°,∠C=β°,∴∠BAC=180°﹣α°﹣β°,∵AE是角平分线,∴∠EAC=(90﹣)°,∵AD是高,∴∠ADC=90°,∴∠DAC=90°﹣β°,∴∠EAD=∠DAC﹣∠EAC=[(90°﹣β°)﹣(90﹣)°]=(α﹣β)°.答:当α<β时,∠EAD=(β﹣α)°,当α>β时,∠EAD=(α﹣β)°.【点评】此题考查了三角形内角和定理和三角形的角平分线、高、中线,解题的关键是根据三角形的内角和是180°,分别求出各个角的度数.18.(2016春•大丰市校级月考)已知BD、CE是△ABC的两条高,直线BD、CE相交于点H.(1)若∠A=100°,如图,求∠DHE的度数;(2)若△ABC中∠A=50°,直接写出∠DHE的度数是50°或130°.【解答】解:(1)∵BD、CE是△ABC的两条高,∴∠HDA=∠HEA=90°,∴∠DHE=180°﹣∠A=80°;(2)当∠A=50°时,①△ABC是锐角三角形时,∠DHE=180°﹣50°=130°;②△ABC是钝角三角形时,∠DHE=∠A=50°;故答案为:50°或130°.【点评】本题考查了三角形、多边形的内角和,解答本题的关键是熟练记忆:三角形的内角和为180°,四边形的内角和为360°.。

(word版)华师大版七年级数学下册期中试卷及答案,文档

(word版)华师大版七年级数学下册期中试卷及答案,文档

2021年春季初一年级半期质量检测数学试卷题答名得姓不内级线班〔时间:120分钟总分值:100分〕一、选择题〔每题3分,共30分〕1、以下四个式子中,是方程的是〔〕A、3+2=5B、x1C、2x30D、a22abb22、在以下方程组中,不是二元一次方程组的是〔〕3x y6B、2x y6x y33x2y5 A、y44x2y12C、z4D、5y7 3x y6x3、在以下方程的变形中,错误的选项是〔〕A、由4x3得x3B、由2x0得x04C、由23x得x3D、由1x1得x122424、以下不等式一定成立的是〔〕A、5a4aB、x2x3C、a2aD、42aa5、对于方程5x1212x,去分母后得到的方程是〔〕32A、5x1212xB、5x163(12x)C、2(5x1)63(12x)D、2(5x1)123(12x)封6、某班学生参加运土劳动,一局部学生抬土,另一局部学生挑土。

全班共用箩校筐59个,扁担36根,求抬土、挑土的学生各多少人?如果设抬土的学生x人,挑土的学学生y人,那么可得方程组〔〕密2(x y)59x2y59x2y59D、x2y59A、2B、2C、2xy36xy362x y362x y36227、不等式3x60的正整数解有〔〕A、1个B、2个C、3个D、无数多个8、假设a b,且c 为有理数,那么以下各式正确的选项是〔〕A、acbcB、ac bcC、ac2bc2D、ac2bc29、某班学生分组,假设每组7人,那么有2人分不到组里;假设每组8人,那么最后一组差 4人,假设设方案分x组,那么可列方程为〔〕A、C、7x 2 8x 47x 2 8x 4B、7x28x4D、7x28x410、如果(a1)x a1的解集是x1,那么a的取值范围是〔〕A、a0B、a1C、a1D 、a是任意有理数二、填空题〔每题3分,共18分〕11、假设7x3a y4b与2x3y3ba是同类项,那么a=,b=.12、当x=时,代数式4x5与3x9的值互为相反数x2是二元一次方程组ax by7的解,那么a b=。

华师大版七年级下册数学期中考试试题含答案

华师大版七年级下册数学期中考试试题含答案

华师大版七年级下册数学期中考试试卷一、单选题1.若x =2是关于x 的方程12x +a =-1的解,则a 的值为()A .0B .2C .-2D .-62.根据等式性质,下列结论正确的是()A .如果22a b -=,那么a b =-B .如果22a b -=-,那么a b=-C .如果22a b =-,那么a b=D .如果122a b =,那么a b=3.如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平中不平衡的有()A .0个B .1个C .2个D .3个4.在如图所示的2018年1月的月历表中,任意框出表中竖列上的三个相邻的数,这三个数的和不可能是()A .27B .51C .65D .725.若关于x ,y 的方程组24232x y x y m +=⎧⎨+=-+⎩的解满足32x y ->-,则m 的最小整数解为()A .﹣3B .﹣2C .﹣1D .06.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A .6折B .7折C .8折D .9折7.某校运动员分组训练,若每组7人,则余3人:若每组8人,则缺5人.设运动员人数为x 人,组数为y 组,则可列方程为()A .7385y x y x =+⎧⎨=+⎩B .7385y x y x =+⎧⎨+=⎩C .7385y x y x =-⎧⎨+=⎩D .7385y x y x =-⎧⎨=+⎩8.已知关于x 、y 的二元一次方程组356310x y x ky +=⎧⎨+=⎩给出下列结论:①当5k =时,此方程组无解;②若此方程组的解也是方程61516x y +=的解,则10k =;③无论整数k 取何值,此方程组一定无整数解(x 、y 均为整数),其中正确的是()A .①②③B .①③C .②③D .①②9.我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天;大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x 天相遇,可列方程为()A .9x 7x 1-=B .9x 7x 1++C .11x x 179+=D .11x x 179-=10.关于x 的不等式组x 15x 322x 2x a 3<+⎧-⎪⎪⎨+⎪+⎪⎩只有4个整数解,则a 的取值范围是()A .145a 3-≤≤-B .145a 3-≤<-C .145a 3-<≤-D .145a 3-<<-二、填空题11.方程210x -=的解是_______.12.若关于x 的方程5x ﹣1=2x +a 的解与方程4x +3=7的解相同,则a =_____.13.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x+y >0,则m 的取值范围是____.14.小明在拼图时,发现8个样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm 的小正方形,则每个小长方形的面积为__________2mm.15.一列方程如下排列:1142x x -+=的解是2x =,2162x x -+=的解是3x =,3182x x -+=的解是4x =,……根据观察得到的规律,写出其中解是2020x =的方程_____。

华师大版数学七年级下册期中考试试卷含答案

华师大版数学七年级下册期中考试试卷含答案

华师大版数学七年级下册期中考试试题一、单选题(每小题3分,共36分)1.下列方程中是一元一次方程的是()A.2x=3y B.7x+5=6(x-1)C.x2+12(x-1)=1D.1x-2=x2.当x=2时,ax+3的值是5,当x=-2时,代数式ax-3的值是() A.-5B.-1C.1D.23.解方程371123x x-+-=的步骤中,去分母后的方程为()A.3(3x-7)-2+2x=6B.3x-7-(1+x)=1C.3(3x-7)-2(1-x)=1D.3(3x-7)-2(1+x)=64.某牧场,放养的鸵鸟和奶牛一共70只,已知鸵鸟和奶牛的腿数之和为196条,则鸵鸟的头数比奶牛多()A.20只B.14只C.15只D.13只5.用“加减法”将方程组239241x yx y-=⎧⎨+=-⎩中的x消去后得到的方程是()A.y=8B.7y=10C.-7y=8D.-7y=10 6.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元.捐款情况如下表:捐款(元)134人数67表格中捐款2元和3元的人数不小心被墨水污染已看不清楚.若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组A.27{2366x yx y+=+=B.27{23100x yx y+=+=C.27{3266x yx y+=+=D.27{32100x yx y+=+=7.已知3-x+2y=0,则2x-4y-3的值为()A.-3B.3C.1D.08.某班共有学生49人,一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半,若该班男生人数为x,女生人数为y,则所列方程组正确的是()A .()4921x y y x -=⎧⎨=+⎩B .()4921x y y x +=⎧⎨=+⎩C .()4921x y y x -=⎧⎨=-⎩D .()4921x y y x +=⎧⎨=-⎩9.若a >b ,则下列式子正确的是()A .﹣4a >﹣4bB .12a <12b C .4﹣a >4﹣b D .a ﹣4>b ﹣410.把不等式组10,{10x x +>-≤的解集表示在数轴上,如下图,正确的是()A .B .C .D .11.如果不等式组4x x n >⎧⎨>⎩的解集是4x >,则n 的取值范围是()A .n≥4B .4n =C .n≤4D .4n <12.不等式2(x -2)≤x -2的非负整数解的个数为()A .1个B .2个C .3个D .4个二、填空题13.已知2是关于x 方程32x 2-2a=0的一个解,则2a-1的值是______________.14.已知(a -3)x |a|-2+6=0是关于x 的一元一次方程,则a=____,方程的解为_____.15.若26(2)0x x y -+-=,则x y +=____.16.乙组人数是甲组人数的一半,且甲组人数比乙组多15人.设甲组原有x 人,乙组原有y 人,则可得方程组为________________.17.如果不等式()11a x a +<+的解集为x >1,那么a 必须满足________________.18.不等式1≤3x-7<5的解集是______________,整数解是______________.19.若|m+n|+(m+2)2=0,则m n 的值是___________.20.若不等式x a3x 24x 1>⎧⎨+<-⎩的解集是x >3,则a 的取值范围是_______.三、解答题21.(1)21132x x +--=(2)237342x y x y +=⎧⎨-=⎩(3)()324134x x x x ⎧+<+⎪⎨+≥⎪⎩(4)3282316x z x y z x y z =⎧⎪++=⎨⎪++=⎩22.已知关于x ,y 的方程组mx 7234ny mx ny +=⎧⎨-=⎩的解为12x y =⎧⎨=⎩,求m ,n 的值.23.已知关于x 的方程2x=8与x+2=﹣k 的解相同,求代数式223k k-的值.24.已知方程组51542ax y x by +=⎧⎨-=-⎩①②,由于甲看错了方程①中的a 得到方程组的解为31x y =-⎧⎨=-⎩,乙看错了方程②中的b 得到方程组的解为12x y =⎧⎨=⎩.若按正确的a 、b 计算,求出原方程组的正确的解.25.已知24221x y kx y k +=⎧⎨+=+⎩,且x-y <0,求k 的取值范围26.某工厂男、女工人共70人,男工人调走10%,女工人调入6个,这时,男、女工人数正好相等,问:原来男、女工人各有多少人?27.一个通讯员骑摩托车要在规定的时间内把文件送到目的地.如果他骑摩托车的速度是每小时36千米,结果将早到20分钟,如果他骑摩托车的速度是每小时30千米,就要迟到12分钟.求规定时间是多少?这段路程是多少?28.一筐橘子分给若干个儿童,如果每人分4个,则剩下9个;如果每人分6个,则最后一个儿童分得的橘子少于3个,问共几个儿童,分了多少个橘子?29.火车站有某公司待运的甲种货物1530t,乙种货物1150t,现计划用50节A,B两种型号的车厢将这批货物运至北京.已知每节A型车厢的运费是0.5万元,每节B型车厢运费是0.8万元.甲种货物35t和乙种货物15t可装满一节A型车厢,甲种货物25t和乙种货物35t 可装满一节B型车厢.按此要求安排A,B两种车厢的节数,共有几种方案?请你设计出来,并计算说明哪种方案的运费最小.参考答案1.B 【解析】. 23A x y =,含有两个未知数,故不符合题意;B.()7561x x +=-,是一元一次方程,符合题意; C.()21112x x +-=,最高为2次,不是一元一次方程,故不符合题意;D.12x x-=,不是整式方程,故不符合题意,故选B.2.A 【解析】【分析】把x=2代入ax+3=5中求出a 的值,再将a 与x=-2代入计算即可求出值.【详解】解:把x=2代入ax+3=5中得:2a+3=5,解得:a=1,把x=-2,a=1代入得:原式=-2-3=-5,故选A 【点睛】本题考查了代数式求值,熟练掌握运算法则是解本题的关键.3.D 【解析】分析:根据一元一次方程的解法,两边同乘以6,去分母即可求解.详解:方程两边同乘以6,可得3(3x-7)-2(1+x )=6.故选D.点睛:此题主要考查了一元一次方程的解法—去分母,关键是分母的最小公倍数,注意不要漏乘项.4.B【解析】试题分析:设鸵鸟的只数为x只,则奶牛的只数为(70-x)只,根据题意得:2x+4(70-x)=196解得:x=42则70-x=70-42=28∴42-28=14(只)考点:一元一次方程的应用.5.D【解析】试题分析:根据加减消元法,直接用第二个方程减去第一个方程可得7y=-10或用第一个方程减去第二个方程可得-7y=10.故选D.点睛:此题主要考查了加减消元法解二元一次方程组,解题关键是抓住方程组的特点,根据特点选择合适的方法(代入消元法,加减消元法)解题即可.6.A【解析】等量关系为:捐2元人数+捐3元人数=40-6-7;捐2元钱数+捐3元钱数=100-1×6-4×7.根据题意列组得:27 {2366 x yx y+=+=故选A.7.B【解析】【分析】由已知等式求出x-2y的值,原式变形成为含有(x-2y)的代数式,再代入计算即可求出值.【详解】解:因为3-x+2y=0,即x-2y=3,.原式=2(x-2y )-3=6-3=3.故选:B.【点睛】本题考查了代数式求值,利用了整体代入的思想,熟练掌握运算法则是解本题的关键.8.D 【解析】【分析】根据等量关系:男生数-1=女生数的一半,男生+女生=49,据此即可列出方程组.【详解】由该班一男生请假后,男生人数恰为女生人数的一半,得x-1=12y ,即y=2(x-1);由该班共有学生49人,得x+y=49,列方程组为()4921x y y x +=⎧⎨=-⎩,故选D .【点睛】本题考查了二元一次方程组的应用,弄清题意,找准等量关系列出相应的方程是解题的关键.9.D 【解析】根据不等式的性质分析判断A 、不等式a >b 的两边同时乘以-4,不等号的方向改变,即-4a <-4b .故本选项错误;B 、不等式a >b 的两边同时乘以12,不等号的方向不变,即12a >12b .故本选项错误;C 、不等式a >b 的两边同时乘以-1,不等号的方向改变,即-a <-b ;在不等式-a <-b 的两边同时加4,不等号的方向不变,即4-a <4-b .故本选项错误;D 、不等式a >b 的两边同时减去4,不等号的方向不变,即a-4>b-4.故本选项正确;故选D .10.B【解析】分析:按解一元一次不等式组的一般步骤进行解答,求得不等式组的解集,并将所得解集表示在数轴上,再与各选项对比即可得到所求答案.详解:解不等式x+1>0得:x>-1;解不等式x-1≤0得:x≤1;∴原不等式组的解集为:-1<x≤1,将解集表示在数轴上如下图所示:故选B.点睛:掌握“一元一次不等式组的解法和在数轴上表达不等式解集的方法”是正确解答本题的关键.11.C【解析】【分析】由已知可以确定解集是x>4,则可以得到n取值不大于4,由此即可确定n的取值范围.【详解】解:∵不等式组4xx n>⎧⎨>⎩的解集是x>4,∴n的取值不大于4,即n≤4.故选:C.【点睛】本题只有考查了如何确定不等式组的解集,利用确定解集的方法就可以求出n的取值范围. 12.C【解析】【分析】先求出不等式的解集,然后求其非负整数解.【详解】解不等式2(x-2)≤x-2得x≤2,因而非负整数解是0,1,2共3个.故选C.【点睛】熟练掌握不等式的基本性质,正确求出不等式的解集,是解此题的关键.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.13.5.【解析】【分析】把x=2代入已知方程可以求得2a=6,然后将其整体代入所求的代数式进行解答.【详解】解:∵x=2是关于x的方程32x2-2a=0的一个解,∴32×22-2a=0,即6-2a=0,则2a=6,∴2a-1=6-1=5.故答案为5..【点睛】本题考查了一元二次方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.14.﹣3x=1.【解析】【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【详解】|a|-2=1,且a-3≠0,解得:a=-3,则方程是:-6x+6=0,解得:x=1.故答案是:-3;x=1.【点睛】本题考查的知识点是一元一次方程的一般形式,解题关键是熟记一元一次方程只含有一个未知数,且未知数的指数是1,一次项系数不是0.15.9【解析】【分析】根据非负数之和为0,那么每个非负数都为0,列出方程组,求出x,y;然后代入x+y即可.【详解】解:由题意得:6020xx y-=⎧⎨-=⎩解得:x=6,y=3所以x+y=6+3=9【点睛】本题主要考查了非负数,掌握非负数之和为0、那么每个非负数都为0是解答本题的关键.16.215 x y x y=⎧⎨-=⎩【解析】【分析】根据题中的等量关系有:①乙组人数是甲组人数的一半;②甲组人数比乙组多15人;即可列出方程组。

华东师大版七年级数学下册期中考试卷及答案【完整版】

华东师大版七年级数学下册期中考试卷及答案【完整版】

华东师大版七年级数学下册期中考试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为()A.1100B.99100C.199D.100992.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于( ).A.35° B.70° C.110° D.145°3.按如图所示的运算程序,能使输出y值为1的是()A.11m n==,B.10m n==,C.12m n==,D.21m n==,4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.若数a使关于x的不等式组232x ax a->⎧⎨-<-⎩无解,且使关于x的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC 的度数为( )A .118°B .119°C .120°D .121°7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.计算()233a a ⋅的结果是( ) A .8a B .9a C .11a D .18a二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是_____.3.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.4.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_____cm (杯壁厚度不计).5.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DH =4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解下列不等式(组),并把它们的解集在数轴上表示出来:(1)9221163x x +--≥- (2)()328134x x x x ⎧+>+⎪⎨-≤⎪⎩①②2.(1)若a 2=16,|b |=3,且ab<0,求a +b 的值.(2)已知a 、b 互为相反数且a ≠0,c 、d 互为倒数,m 的绝对值是3,且m 位于原点左侧,求22015(1)()2016m a b cd --++-的值.3.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)若∠EOC =70°,求∠BOD 的度数;(2)若∠EOC :∠EOD =2:3,求∠BOD 的度数.4.已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N∠=∠.5.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?6.某中学为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)求购买一个足球、一个篮球各需多少元?(2)根据学校实际情况,需从体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?参考答案一、选择题(本大题共10小题,每题3分,共30分) 1、B2、C3、D4、C5、B6、C7、C8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、2b-2a2、40°3、(3,7)或(3,-3)4、205、40°6、48三、解答题(本大题共6小题,共72分)1、(1)2x ≥-,画图见解析;(2)14x <≤,画图见解析2、(1)1±;(2)9.3、(1)35°;(2)36°.4、(1)略;(2)略.5、(1)20%;(2)6006、(1)购买一个足球需要50元,购买一个篮球需要80;(2)30个.。

华师大版七年级下册数学期中考试试题带答案

华师大版七年级下册数学期中考试试题带答案

华师大版七年级下册数学期中考试试卷一、选择题:(满分30分,每小题3分)下列各题都有A、B、C、D四个答案供选择,其中只有一个答案是正确的,请把你认为正确的答案前面的字母编号写在相应的题号下.1.(3分)下列方程中,是一元一次方程的是()A.+2=0B.3a+6=4a﹣8C.x2+2x=7D.2x﹣7=3y+12.(3分)方程3x+y=9在正整数范围内的解的个数是()A.1个B.2个C.3个D.有无数个3.(3分)下列方程中,解为x=4的是()A.2x+1=10B.﹣3x﹣8=5C.x+3=2x﹣2D.2(x﹣1)=6 4.(3分)若a<b,则下面错误的变形是()A.6a<6b B.a﹣3<b﹣3C.a+4<b+3D.﹣>﹣5.(3分)下列方程变形正确的是()A.由3﹣x=﹣2得x=3+2B.由3x=﹣5得x=﹣C.由y=0得y=4D.由4+x=6得x=6+46.(3分)不等式﹣3<x≤2的所有整数解的和是()A.0B.6C.﹣3D.37.(3分)方程组的解是()A.B.C.D.8.(3分)甲数的2倍比乙数大3,甲数的3倍比乙数的2倍小1,若设甲数为x,乙数为y,则根据题意可列出的方程组为()A.B.C.D.9.(3分)一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x,十位数字为y,所列方程组正确的是()A.B.C.D.10.(3分)如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…则第8个图形中花盆的个数为()A.56B.64C.72D.90二、填空题:(满分24分,每小题3分)11.(3分)若a>b,则ac2bc2.12.(3分)已知二元一次方程组的解是,则a﹣b的值是.13.(3分)若(x+y﹣3)2+5|x﹣y﹣1|=0,则y x=.14.(3分)若方程组的解也是方程3x+ky=10的一个解,则k=.15.(3分)关于x的方程(2﹣3a)x=1的解为负数,则a的取值范围是.16.(3分)不等式组的解集是.17.(3分)一玩具加工厂2011年用电3千万度,比2010年减少了5%,若设2010年用电x度,则可列方程为.18.(3分)一罐柠檬茶和一瓶1千克橙汁的价钱分别是5元和12元.如果小雪有100元,而她想买6瓶橙汁和若干罐柠檬茶,则她最多可以买罐柠檬茶.三、解答题:(本大题满分66分)19.(20分)解下列方程(组)或不等式(组)(1)2(2x+1)=1﹣5(x﹣2)(2)(3)(4).20.(6分)已知方程mx+ny=10,有两个解分别是和,求m﹣n的值.21.(7分)已知不等式5x﹣2<6x﹣1的最小正整数解是方程的解,试求a 的值.22.(7分)如图,宽为50cm的长方形图案由10个相同的小长方形拼成,求每块长方形的长和宽分别是多少?23.(7分)去年,某学校积极组织捐款支援地震灾区,七年级(1)班55名同学共捐款274元,捐款情况如下表.表中捐款2元和5元的人数不小心被墨水污染看不清楚,请你用所学方程的知识求出捐款2元和5元的人数.24.(9分)阅读下列解方程组的方法,然后回答问题.解方程组解:由①﹣②得2x+2y=2即x+y=1③×16得16x+16y=16④②﹣④得x=﹣1,从而可得y=2∴原方程组的解是.(1)请你仿上面的解法解方程组;(2)请大胆猜测关于x、y的方程组的解是什么?25.(10分)某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15台.三种家电的进价和售价如表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下,如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?价格进价(元/台)售价(元/台)种类电视机20002100冰箱24002500洗衣机16001700参考答案与试题解析一、选择题:(满分30分,每小题3分)下列各题都有A、B、C、D四个答案供选择,其中只有一个答案是正确的,请把你认为正确的答案前面的字母编号写在相应的题号下.1.(3分)(2016春•安岳县期中)下列方程中,是一元一次方程的是()A.+2=0B.3a+6=4a﹣8C.x2+2x=7D.2x﹣7=3y+1【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、分母中含有未知数,不是一元一次方程;B、符合一元一次方程的定义;C、未知数的最高次幂为2,不是一元一次方程;D、含有两个未知数,不是一元一次方程.故选B.【点评】判断一个方程是否为一元一次方程关键看它是否同时具备:(1)只含有一个未知数,且未知数的次数为1;(2)分母里不含有字母;具备这两个条件即为一元一次方程,否则不是.2.(3分)(2016春•沈丘县期末)方程3x+y=9在正整数范围内的解的个数是()A.1个B.2个C.3个D.有无数个【分析】由题意求方程的解且要使x,y都是正整数,将方程移项将x和y互相表示出来,在由题意要求x>0,y>0根据以上两个条件可夹出合适的x值从而代入方程得到相应的y 值.【解答】解:由题意求方程3x+y=9的解且要使x,y都是正整数,∴y=9﹣3x>0,∴x≤2,又∵x≥0且x为正整数,∴x值只能是x=1,2,代入方程得相应的y值为y=6,3.∴方程3x+y=9的解是:,;故选:B.【点评】本题是求不定方程的整数解,主要考查方程的移项,合并同类项,系数化为1等技能,先将方程做适当变形,确定其中一个未知数的取值范围,然后枚举出适合条件的所有整数值,再求出另一个未知数的值.3.(3分)(2016春•安岳县期中)下列方程中,解为x=4的是()A.2x+1=10B.﹣3x﹣8=5C.x+3=2x﹣2D.2(x﹣1)=6【分析】根据一元一次方程的解就是使方程的左右两边相等的未知数的值,把x=4代入各选项进行验证即可得解.【解答】解:A、左边=2×4﹣1=7,右边=10,左边≠右边,故本选项错误;B、左边=﹣3×4﹣8=﹣20,右边=5,左边≠右边,故本选项错误;C、左边=×4+3=5,右边=2×4﹣2=6,左边≠右边,故本选项错误;D、左边=2(4﹣1)=6,右边=6,左边=右边,故本选项正确.故选:D.【点评】本题考查了一元一次方程的解,数据方程解的定义,对各选项准确进行计算是解题的关键.4.(3分)(2016春•沈丘县期末)若a<b,则下面错误的变形是()A.6a<6b B.a﹣3<b﹣3C.a+4<b+3D.﹣>﹣【分析】根据不等式的性质,逐个进行判断,再选出即可.【解答】解:A、∵a<b,∴6a<6b,正确,不符合题意;B、∵a<b,∴a﹣3<b﹣3,正确,不符合题意;C、根据a<b不能判断a+4和b+3的大小,错误,符合题意;D、∵a<b,∴﹣>﹣,正确,不符合题意.故选C.【点评】本题考查了对不等式的基本性质的应用,注意:不等式的两边都乘以或除以同一个负数,不等号的方向要改变.5.(3分)(2016春•安岳县期中)下列方程变形正确的是()A.由3﹣x=﹣2得x=3+2B.由3x=﹣5得x=﹣C.由y=0得y=4D.由4+x=6得x=6+4【分析】根据等式的性质两边都加或都减同一个数或等式,结果不变,可判断A、D,根据等式的两边都乘或除以同一个部位0的数或整式,结果不变,可判断B、C.【解答】解;A、3﹣x=﹣2,x=3+2,故A正确;B、3x=﹣5,x=﹣,故B错误;C、=0,y=0,故C错误;D、4+x=6,x=2,故D错误;故选:A.【点评】本题考查了等式的性质,等式的性质两边都加或都减同一个数或等式,结果不变,根据等式的两边都乘或除以同一个部位0的数或整式,结果不变.6.(3分)(2014春•福清市校级期末)不等式﹣3<x≤2的所有整数解的和是()A.0B.6C.﹣3D.3【分析】首先求出不等式﹣3<x≤2的所有整数解,然后求它们的和.【解答】解:不等式﹣3<x≤2的所有整数解为:﹣2,﹣1,0,1,2,则﹣2﹣1+0+1+2=0,故选A.【点评】本题是一道较为简单的问题,利用数轴就能直观的理解题意,可借助数轴得出不等式﹣3<x≤2的所有整数解.7.(3分)(2016•闸北区二模)方程组的解是()A.B.C.D.【分析】本题解法有多种.可用加减消元法或代入消元法解方程组,解得x、y 的值;也可以将A、B、C、D四个选项的数值代入原方程检验,能使每个方程的左右两边相等的x、y的值即是方程的解.【解答】解:将方程组中4x﹣y=13乘以2,得8x﹣2y=26①,将方程①与方程3x+2y=7相加,得x=3.再将x=3代入4x﹣y=13中,得y=﹣1.故选B.【点评】这类题目的解题关键是掌握方程组解法中的加减消元法.8.(3分)(2016春•安岳县期中)甲数的2倍比乙数大3,甲数的3倍比乙数的2倍小1,若设甲数为x,乙数为y,则根据题意可列出的方程组为()A.B.C.D.【分析】根据甲数的2倍比乙数大3可得2x=y+3,甲数的3倍比乙数的2倍小1可得3x=2y﹣1,联立两个方程即可.【解答】解:设甲数为x,乙数为y,根据题意得:,故选:C.【点评】此题主要考查了二元一次方程组,关键是找出题目中的等量关系,列出方程.9.(3分)(2011•宁夏)一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x,十位数字为y,所列方程组正确的是()A.B.C.D.【分析】设这个两位数的个位数字为x,十位数字为y,则两位数可表示为10y+x,对调后的两位数为10x+y,根据题中的两个数字之和为8及对调后的等量关系可列出方程组,求解即可.【解答】解:设这个两位数的个位数字为x,十位数字为y,根据题意得:.故选B.【点评】本题考查了关于数字问题的二元一次方程组的应用,解题关键是要读懂题意,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.10.(3分)(2015秋•鄂城区期末)如图,是由相同的花盆按一定的规律组成的形如正多边形的图案,其中第1个图形一共有6个花盆,第2个图形一共有12个花盆,第3个图形一共有20个花盆,…则第8个图形中花盆的个数为()A.56B.64C.72D.90【分析】由题意可知,三角形每条边上有3盆花,共计3×3﹣3盆花,正四边形每条边上有4盆花,共计4×4﹣4盆花,正五边形每条边上有5盆花,共计5×5﹣5盆花,…则正n变形每条边上有n盆花,共计n×n﹣n盆花,结合图形的个数解决问题.2﹣3盆花,【解答】解:∵第一个图形:三角形每条边上有3盆花,共计32﹣4盆花,第二个图形:正四边形每条边上有4盆花,共计42﹣5盆花,第三个图形:正五边形每条边上有5盆花,共计5…2﹣(n+2)盆花,第n个图形:正n+2边形每条边上有n盆花,共计(n+2)2﹣(8+2)=90盆.则第8个图形中花盆的个数为(8+2)故选:D.【点评】本题主要考查归纳与总结的能力,关键在于根据题意总结归纳出花盆总数的变化规律.二、填空题:(满分24分,每小题3分)11.(3分)(2016春•安岳县期中)若a>b,则ac2≥bc2.2的符号,进而判断出不等式的方向即可.【分析】先判断出c【解答】解:∵何数的平方一定大于或等于02≥0∴c2>0时,ac2>bc2∴cc2=0时,则ac2=bc22≥bc2.∴若a>b,则ac【点评】不等式两边乘(或除以)同一个正数,不等号的方向不变;还要注意两边同乘以0时的情况.12.(3分)(2016春•安岳县期中)已知二元一次方程组的解是,则a﹣b的值是1.【分析】将x、y的值代入二元一次方程组,得到关于a、b的二元一次方程组,两式相减可得a﹣b.【解答】解:把代入中,得,两式相减,得2a﹣2b=2,即a﹣b=1,故答案为:1.【点评】此题主要考查了二元一次方程组解的定义.以及解二元一次方程组的基本方法.13.(3分)(2016春•安岳县期中)若(x+y﹣3)2+5|x﹣y﹣1|=0,则y x=1.【分析】根据几个非负数的和为零的性质得到,再利用加减消元法解方程x计算即可.组得到,然后把它们代入y2+5|x﹣y﹣1|=0,【解答】解:∵(x+y﹣3)∴,①+②得2x﹣4=0,解得x=2,①﹣②得2y﹣2=0,解得y=1,所以方程组的解为,x=12=1.所以y故答案为1.【点评】本题考查了解二元一次方程组:利用代入法或加减消元法把二元一次方程转化为一元一次方程求解.也考查了几个非负数的和为零的性质.14.(3分)(2010春•江都市期末)若方程组的解也是方程3x+ky=10的一个解,则k=﹣.【分析】由题意求得x,y的值,再代入3x+ky=10中,求得k的值.【解答】解:由题意得组,解得,代入3x+ky=10,得9﹣2k=10,解得k=﹣.故本题答案为:﹣.【点评】本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成元该未知数的二元一次方程组.15.(3分)(2016春•安岳县期中)关于x的方程(2﹣3a)x=1的解为负数,则a的取值范围是a>.【分析】根据题意可得x<0,将x化成关于a的一元一次方程,然后根据x的取值可求出a的取值.【解答】解:∵(2﹣3a)x=1∴x=又∵x<0∴2﹣3a<0∴a>【点评】此题考查的是一元一次方程的解法,将x用a来表示,根据x的取值范围可求出a 的取值.16.(3分)(2016春•安岳县期中)不等式组的解集是﹣2<x≤3.【分析】分别解出两不等式的解集再求其公共解.【解答】解:由(1)得:x>﹣2;由(2)得:x≤3,不等式组的解集是﹣2<x≤3.故填﹣2<x≤3.【点评】求不等式的解集须遵循以下原则:同大取较大,同小取较小.小大大小中间找,大大小小解不了.17.(3分)(2016春•安岳县期中)一玩具加工厂2011年用电3千万度,比2010年减少了5%,若设2010年用电x度,则可列方程为(1﹣5%)x=30000000.【分析】首先理解题意找出题中存在的等量关系:2010年的用电度数(1﹣5%)=2011年的用电度数,根据等量关系列方程即可.【解答】解:设2010年用电x度,根据等量关系列方程得:(1﹣5%)x=30000000.故答案为:(1﹣5%)x=30000000.【点评】此题考查了由实际问题抽象出一元一次方程的知识,解题的关键是理解“比2006年减少了5%”这一句话.18.(3分)(2016春•安岳县期中)一罐柠檬茶和一瓶1千克橙汁的价钱分别是5元和12元.如果小雪有100元,而她想买6瓶橙汁和若干罐柠檬茶,则她最多可以买5罐柠檬茶.【分析】根据买柠檬茶的钱数+买橙汁的钱数≤100据此,可列出不等式,进而求出即可.【解答】解:设她最多可以买x罐柠檬茶,根据题意得,5x+12×6≤100,解这个不等式,得x≤5,又由于买柠檬茶的罐数应为正整数,且最大,所以x=5答:她最多可以买5罐柠檬茶.故答案为:5.【点评】此题主要考查了一元一次不等式的应用,列不等式解决实际问题,可以参照列方程的基本思想,分析如何用代数式表示相关量,寻求已知量和未知量之间的关系,要注意题意中“至少”“不少于”等语句所隐含的不等关系,从实际问题中抽象出数量关系,从列出代数式到不等式,转化为纯数学问题求解.让同学们通过实践,体会不等式和方程同样是刻画现实世界数量关系的重要模型.三、解答题:(本大题满分66分)19.(20分)(2016春•安岳县期中)解下列方程(组)或不等式(组)(1)2(2x+1)=1﹣5(x﹣2)(2)(3)(4).【分析】(1)先去括号、移项、合并同类项、系数化为1,即可求解;(2)根据加减消元法先消去y,求出x,再代入计算即可求解;(3)根据加减消元法先消去z,得到关于x,y的方程组,解方程组求出x,y,再代入计算即可求解;(4)先求出不等式组中每个不等式的解集,再求出两个不等式的解集的公共部分即为所求.【解答】解:(1)2(2x+1)=1﹣5(x﹣2)4x+2=1﹣5x+10,4x+5x=1+10﹣2,9x=9,x=1;(2)①×2+②得5x=10,解得x=2,把x=2代入②得2+2y=﹣2,解得y=﹣2.故方程组的解为;(3),①×2+②得3x﹣y=13④,③﹣①得2x+y=﹣2⑤,则,解得,把代入①得z=﹣10.2.故方程组的解为;(4),解①得x<4,解②得x<﹣6.故不等式组的解集为x<﹣6.【点评】考查了解二元一次方程组,关键是熟练掌握代入法和加减法解二元一次方程组的一般步骤.同时考查了解三元一次方程组,关键是熟练掌握解三元一次方程组的一般步骤.考查了解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.同时考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.20.(6分)(2016春•安岳县期中)已知方程mx+ny=10,有两个解分别是和,求m﹣n的值.【分析】将x与y的两对值代入方程得到关于m与n的方程组,求出方程组的解得到m 与n的值,即可确定出m﹣n的值.【解答】解:将和代入方程mx+ny=10,得,解得:,则m﹣n=10﹣10=0.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.21.(7分)(2016春•安岳县期中)已知不等式5x﹣2<6x﹣1的最小正整数解是方程的解,试求a的值.【分析】首先解不等式确定不等式的最小整数解,然后代入方程,即可得到关于a的方程,求得a的值.【解答】解:∵5x﹣2<6x﹣1,∴x>﹣1,∴不等式5x﹣2<6x﹣1的最小正整数解为x=1,∵x=1是方程的解,∴a=﹣2.【点评】本题考查了不等式的解法和方程的解的定义,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.22.(7分)(2016春•安岳县期中)如图,宽为50cm的长方形图案由10个相同的小长方形拼成,求每块长方形的长和宽分别是多少?【分析】本题可以通过看图找出两个等量关系:长方形的长+宽=50cm,长方形的长×2=长+宽×4,据此可以设未知数列方程组求解.【解答】解:设每块长方形的长是xcm,宽是ycm,根据题意得解得答:长是40cm,宽是10cm.【点评】二元一次方程组中的等量关系一般是通过分析题意得出的,但如果附有参考图,也可以从图中找.23.(7分)(2016春•安岳县期中)去年,某学校积极组织捐款支援地震灾区,七年级(1)班55名同学共捐款274元,捐款情况如下表.表中捐款2元和5元的人数不小心被墨水污染看不清楚,请你用所学方程的知识求出捐款2元和5元的人数.【分析】设捐款2元和5元的学生人数分别为x人、y人,根据总人数是55人,捐款数是274元,列出方程组,求出方程组的解即可.【解答】解:设捐款2元和5元的学生人数分别为x人、y人,依题意得:,,解方程组,得,答:捐款2元的有4人,捐款5元的有38人.【点评】此题考查了二元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组,本题的等量关系是总人数=1元的人数+2元的人数+5元的人数+10元的人数,总钱数=捐1元的总数+捐2元的总数+捐5元的总数+捐10元的总数.24.(9分)(2016春•安岳县期中)阅读下列解方程组的方法,然后回答问题.解方程组解:由①﹣②得2x+2y=2即x+y=1③×16得16x+16y=16④②﹣④得x=﹣1,从而可得y=2∴原方程组的解是.(1)请你仿上面的解法解方程组;(2)请大胆猜测关于x、y的方程组的解是什么?【分析】(1)对于方程组,先用①﹣②可得到x+y=1③,然后③与①或②组成方程组,运用加减消元法很快求出x、y,从而得到方程组的解;(2)和(1)一样,先把两个方程相减得到x+y=1,然后运用加减消元法可求出x、y,从而得到方程组的解.【解答】解:(1),①﹣②得2x+2y=2,即x+y=1③,①﹣③×2011得x=﹣1,把x=﹣1代入③得﹣1+y=1,解得y=2,所以原方程组的解为;(2).【点评】本题考查了解二元一次方程组:利用代入法或加减消元法把二元一次方程转化为一元一次方程求解.也考查了阅读理解能力.25.(10分)(2009•河南)某家电商场计划用32400元购进“家电下乡”指定产品中的电视机、冰箱、洗衣机共15台.三种家电的进价和售价如表所示:(1)在不超出现有资金的前提下,若购进电视机的数量和冰箱的数量相同,洗衣机数量不大于电视机数量的一半,商场有哪几种进货方案?(2)国家规定:农民购买家电后,可根据商场售价的13%领取补贴.在(1)的条件下,如果这15台家电全部销售给农民,国家财政最多需补贴农民多少元?价格进价(元/台)售价(元/台)种类电视机20002100冰箱24002500洗衣机16001700【分析】(1)由题意可知:电视机的数量和冰箱的数量相同,则洗衣机的数量等于总台数减去2倍的电视机或洗衣机的数量,又知洗衣机数量不大于电视机数量的一半,则15﹣2x≤x;根据各个电器的单价以及数量,可列不等式2000x+2400x+1600(15﹣2x)≤32400;根据这两个不等式可以求得x的取值,根据x的取值可以确定有几种方案;(2)分别计算出方案一和方案二的家电销售的总额,分别将总额乘以13%,即可求得补贴农民的钱数.【解答】解:(1)设购进电视机、冰箱各x台,则洗衣机为(15﹣2x)台依题意得:解这个不等式组,得6≤x≤7∵x为正整数,∴x=6或7;方案1:购进电视机和冰箱各6台,洗衣机3台;方案2:购进电视机和冰箱各7台,洗衣机1台;(2)方案1需补贴:(6×2100+6×2500+3×1700)×13%=4251(元);方案2需补贴:(7×2100+7×2500+1×1700)×13%=4407(元);答:国家的财政收入最多需补贴农民4407元.【点评】对于方案设计的问题,首先考虑的是如何根据已知条件列出不等式,在所求得的取值范围中找出符合题意的值,得出可能产生的几种方案.。

华师大版七年级下册数学期中考试试题及答案

华师大版七年级下册数学期中考试试题及答案

华师大版七年级下册数学期中考试试卷一、单选题1.下列方程中,是一元一次方程的是()A .43x +B .0a b +=C .21275x x -=D .370x -=2.下列方程中,解为x =2的方程是()A .2(x+1)=6B .5x ﹣3=1C .223x =D .3x+6=03.下列等式的变形错误的是()A .若a b =,则33a b -=-B .若a b =,则33a b =--C .若ax bx =,则a b=D .若2x =,则22x x =4.若x >y ,则下列不等式成立的是()A .x -1<y -1B .x+5>y+5C .-2x >-2yD .2x <y 25.把方程0.150.710.30.02x x--=分母化为整数,正确的是()A .11570132xx --=B .101570132x x --=C .10157132xx --=D .10 1.57132x x --=6.不等式240x -≥的解集在数轴上表示为()A .B .C .D .7.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A .6折B .7折C .8折D .9折8.如果2150x y x y -+++-=,则x 、y 的值分别是()A .10x y =-⎧⎨=⎩B .14x y =⎧⎨=⎩C .32x y =⎧⎨=⎩D .23x y =⎧⎨=⎩9.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是()A .8374x y y x -=⎧⎨-=⎩B .8374y x y x -=⎧⎨-=-⎩C .8374x y y x -=⎧⎨-=-⎩D .8374y x y x -=⎧⎨-=⎩10.若不等式组213x x a ->⎧⎨≤⎩的整数解共有三个,则a 的取值范围是().A .56a ≤<B .56a <≤C .56a <<D .56a ≤≤二、填空题11.若1x =-是方程32ax x +=的解.则a 的值是_________.12.若关于y 的方程32y k -=与32y y +=的解相同,则k 的值为______.13.已知三元一次方程组345x y y z x z +=⎧⎪+=⎨⎪+=⎩,则x y z ++=________.14.不等式42564x x -≥⎧⎨+>⎩解集是______.15.已知关于x ,y 的方程组4375x y mx y m +=⎧⎨-=-⎩的解满足等式2x +y =8,则m 的值是__.16.已知不等式组2145x x x m ->+⎧⎨>⎩无解,则m 的取值范围是________.三、解答题17.解方程:()()44329x x --=-18.解方程:131142x x +--=-(要求步骤完整)19.解方程组:43524x y x y +=⎧⎨-=⎩.20.解不等式121123y y +--≥,并把解集在数轴上表示出来.21.解不等式组42(1)411223x x x x --<⎧⎪-+⎨≤⎪⎩,并求出它的整数解.22.已知关于x 、y 的方程组33957x y a x y a +=+⎧⎨-=+⎩的解均为非负数,(1)求a 的取值范围;(2)化简:241a a +--23.已知关于x ,y 的方程组2331x y ax by -=⎧⎨+=-⎩和2333211ax by x y +=⎧⎨+=⎩的解相同,求(3a+b )2020的值.24.在抗击新冠肺炎疫情期间,某社区购买酒精和消毒液两种消毒物资,供居民使用.第一次购买酒精和消毒液若干,酒精每瓶10元,消毒液每瓶5元,共花费了350元;第二次又购买了与第一次相同数量的酒精和消毒液,由于酒精和消毒液每瓶价格分别下降了30%和20%,只花费了260元.求每次购买的酒精和消毒液分别是多少瓶?25.请阅读求绝对值不等式3x <和3x >的解集过程.对于绝对值不等式3x <,从图1的数轴上看:大于3-而小于3的绝对值是是小于3的,所以3x <的解集为33x -<<;对于绝对值不等式3x >,从图2的数轴上看:小于3-而大于3的绝对值是是大于3的,所以3x >的解集为3x <-或3x >.已知关于x、y的二元一次方程组245472x y mx y m-=-⎧⎨+=-+⎩的解满足3x y+≤,其中m是负整数,求m的值.26.星光橱具店购进电饭煲和电压锅两种电器进行销售,其进价与售价如表:进价(元/台)售价(元/台)电饭煲200250电压锅160200(1)一季度,橱具店购进这两种电器共30台,用去了5600元,并且全部售完,问橱具店在该买卖中购进电饭煲和电压锅各多少台?(2)为了满足市场需求,二季度橱具店决定用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的56,问橱具店有哪几种进货方案?并说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案橱具店赚钱最多?参考答案1.D【分析】只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.根据一元一次方程的定义逐个判断即可.解:A .不是方程,故本选项不符合题意;B .是二元一次方程,不是一元一次方程,故本选项不符合题意;C .是一元二次方程,不是一元一次方程,故本选项不符合题意;D .是一元一次方程,故本选项符合题意;故选:D .2.A 【分析】把x=2代入各个方程,看左右两边是否相等即可.【详解】A .把x =2代入方程2(x+1)=6得:左边=6,右边=6,左边=右边,所以x =2是方程2(x+1)=6的解,故本选项符合题意;B .把x =2代入方程5x ﹣3=1得:左边=7,右边=1,左边≠右边,所以x =2不是方程5x ﹣3=1的解,故本选项不符合题意;C .把x =2代入方程23x =2得:左边=43,右边=2,左边≠右边,所以x =2不是方程23x =2的解,故本选项不符合题意;D .把x =2代入方程3x+6=0得:左边=12,右边=0,左边≠右边,所以x =2不是方程3x+6=0的解,故本选项不符合题意;故选:A .3.C 【分析】利用等式的性质对每个等式进行变形即可找出答案.【详解】解:A 、利用等式性质1,两边都减去3,得到a-3=b-3,所以A 成立;B 、利用等式性质2,两边都除以-3,得到33a b =--,所以B 成立;C 、因为x 必须不为0,所以C 不成立;D 、利用等式性质2,两边都乘x ,得到x 2=2x ,所以D 成立;故选:C .4.B根据不等式的性质逐个判断即可.【详解】A 、∵x >y ,∴x -1>y -1,故本选项不符合题意;B 、∵x >y ,∴x+5>y+5,故本选项符合题意;C 、∵x >y ,∴-2x ﹤-2y ,故本选项不符合题意;D 、∵x >y ,∴2x >y2,故本选项不符合题意;故选:B .5.B 【分析】根据分数的基本性质,分子分母同时乘使它们化为整数的数即可.【详解】解:0.150.710.30.02x x --=,方程左边第一项,分子分母同时乘10,第二项分子分母同时乘100得,101570132xx --=,故选:B .【点睛】本题考查了方程的化简,解题关键是根据分数的基本性质对每个含分母的式子分别变形.6.C 【分析】先正确求得解集,后准确在数轴表示即可.【详解】∵240x -≥,∴x≥2,数轴表示为,【点睛】本题考查了不等式的解集,解集的数轴表示,熟练掌握不等式的解法和数轴表示法是解题的关键.7.B 【解析】【分析】设可打x 折,根据售价=标价×打折率和利润=售价-进价=进价×利润率列出不等式求解即可.【详解】解:设可打x 折,则有1200x÷10-800≥800×5%,解得:x≥7,即最多打7折.故选:B.【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解.8.C 【解析】【分析】根据非负数的性质得关于x 、y 的二元一次方程组,再解方程组即可求出x 、y 的值.【详解】解:∵2150x y x y -+++-=,∴21050x y x y -+=⎧⎨+-=⎩,解此方程组得:32x y =⎧⎨=⎩.故选:C .此题考查的知识点是解二元一次方程组,关键是根据非负数的性质得关于x 、y 的二元一次方程组.9.A 【解析】【分析】直接根据题意列出二元一次方程组即可.【详解】解:根据题意,得:8374x y y x -=⎧⎨-=⎩,故选:A .【点睛】本题考查二元一次方程组的应用,读懂题意,找到等量关系是解答的关键.10.A 【解析】【分析】首先确定不等式组的解集,利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解不等式2x-1>3,得:x >2,∵不等式组整数解共有三个,∴不等式组的整数解为3、4、5,则56a ≤<,故选A .【点睛】本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a 的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.11.5-【解析】把x 的值代入方程计算即可求出a 的值.【详解】解:把1x =-代入方程得:32a --=,解得:5a =-,故答案为:5-.【点睛】本题考查了一元一次方程的解以及解一元一次方程,方程的解即为能使方程左右两边相等的未知数的值.12.7【解析】【分析】先解32y y +=得到y 的值,把y 的值代入到32y k -=得到关于k 的方程,再解方程即可.【详解】解:解32y y +=得3y =代入到32y k -=得332k ⨯-=,解得7k =.故答案为:7.【点睛】此题考查方程的解,解一元一次方程,理解两个方程的解相同的含义是解题的关键.13.6【解析】【分析】方程组中三个方程左右两边相加,变形即可得到x+y+z 的值.【详解】解:345x y y z x z +=⎧⎪+=⎨⎪+=⎩①②③,①+②+③,得2x+2y+2z =12,∴x+y+z =6,故答案为:6.【点睛】此题考查了解三元一次方程组,本题的技巧为将三个方程相加.14.122x -<≤-【解析】【分析】分别解不等式组中的两个不等式,再取解集的公共部分即可得到答案.【详解】解:42564x x -≥⎧⎨+>⎩①②由①得:21x -≥,1,2x ∴≤-由②得:x >2,-所以不等式组的解集是:122x -<≤-.故答案为:122x -<≤-.【点睛】本题考查的是不等式组的解法,掌握解不等式组的方法与步骤是解题的关键.15.-6【解析】【分析】根据加减消元法,用含m 的式子表示出x 和与y 的值,将其代入2x+y =8即可求得m 的值.【详解】解:4375x y m x y m +=⎧⎨-=-⎩①②①+②,得5x =10m ﹣5,解得x =2m ﹣1,把x =2m ﹣1代入②,得2m ﹣1﹣y =7m ﹣5,解得y=4﹣5m,把x=2m﹣1,y=4﹣5m代入方程2x+y=8,得2(2m﹣1)+4﹣5m=8解得m=﹣6.故答案为:﹣6.【点睛】本题考查了二元一次方程的解、二元一次方程组的解,熟悉二元一次方程的解、二元一次方程组的解是解题的关键.16.m≥-3【解析】【分析】先求出每个不等式的解集,再根据已知得出关于a的不等式,求出不等式的解集即可.【详解】解:2145x xx m->+⎧⎨>⎩①②,∵不等式①的解集是x<−3,不等式②的解集是x>m,又∵不等式组2145x xx m->+⎧⎨>⎩无解,∴m≥−3,故答案为:m≥−3.【点睛】本题考查了解一元一次不等式和解一元一次不等式组的应用,解此题的关键是能根据找不等式的解集和已知得出关于m的不等式组.17.1x=-【解析】【分析】先去括号,再移项,合并同类项,最后未知数系数化为“1”即可解方程.【详解】()()44329x x--=-,去括号得:4412182x x -+=-,移项得:4218124x x -+=--,合并同类项得:22x -=,未知数系数化为“1”得:1x =-.【点睛】本题考查解一元一次方程.掌握解一元一次方程的步骤是解答本题的关键.18.15x =-【解析】【分析】方程去分母,去括号,移项合并,将x 系数化为1,即可求出解.【详解】解:去分母得:()()41231x x -+=--去括号得:4162x x --=-+移项合并得:51x =-解得:15x =-.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.19.21x y =⎧⎨=-⎩【解析】【分析】方程组利用加减消元法求出解即可.【详解】解:43524x y x y +=⎧⎨-=⎩①②,①﹣②×4得:11y =﹣11,即y =﹣1,把y =﹣1代入②得:x =2,则方程组的解为21x y =⎧⎨=-⎩.【点睛】此题主要考查二元一次方程组的求解,解题的关键是熟知加减消元法的运用.20.1y ≤-,数轴表示见解析【解析】【分析】去分母、去括号、移项、合并同类项,然后系数化成1即可求解,再在数轴上表示出解集.【详解】解:121123y y +--≥,去分母得:()()316221y y +-≥-,去括号得:33642y y +-≥-,移项合并得:1y ≤-.数轴表示如下:【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,能求出不等式的解集是解此题的关键,难度适中.21.﹣5≤x <1,整数解为﹣5、﹣4、﹣3、﹣2、﹣1、0【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出其整数解.【详解】解:解不等式4x ﹣2(x ﹣1)<4,得:x <1,解不等式12x -≤123x +,得:5x ≥-,则不等式组的解集为51x -≤<,∴不等式组的整数解为﹣5、﹣4、﹣3、﹣2、﹣1、0.【点睛】本题考查了解一元一次不等式组及不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.22.(1)21a -≤≤-;(2)33a +【解析】【分析】(1)先利用加减消元法求出方程组的解,然后利用方程组的解均为非负数建立一个关于a 的不等式组,解不等式组即可求出a 的取值范围;(2)利用(1)中a 的取值范围,可判断24,1a a +-的正负,然后利用绝对值的性质去掉绝对值符号,然后合并同类项即可.【详解】(1)33957x y a x y a +=+⎧⎨-=+⎩①②①+②得,4816x a =+,解得24x a =+③,将③代回②中得,2457a y a +-=+,解得33y a =--∴方程组的解为2433x a y a =+⎧⎨=--⎩.∵关于x 、y 的方程组33957x y a x y a +=+⎧⎨-=+⎩的解均为非负数,∴240330x a y a =+≥⎧⎨=--≥⎩,解得21a -≤≤-;(2)∵21a -≤≤-,240,10a a ∴+≥-<,∴24124(1)24133a a a a a a a +--=+--=+-+=+.【点睛】本题主要考查解二元一次方程组和一元一次不等式组,绝对值的性质,掌握加减消元法和一元一次不等式的解法,绝对值的性质是解题的关键.23.25ab=-⎧⎨=⎩,1.【解析】【分析】因为两个方程组有相同的解,故只要将两个方程组中不含有a,b的两个方程联立,组成新的方程组,求出x和y的值,再代入含有a,b的两个方程中,解关于a,b的方程组即可得出a,b的值,代入(3a+b)2020计算即可.【详解】解:由题意可得233 3211 x yx y-=⎧⎨+=⎩,解得31 xy=⎧⎨=⎩,将31xy=⎧⎨=⎩代入1233ax byax by+=-⎧⎨+=⎩得31633a ba b+=-⎧⎨+=⎩,解得25ab=-⎧⎨=⎩,∴(3a+b)2020=(﹣6+5)2020=1.【点睛】本题考查了二元一次方程组的解,解答此题的关键是根据两方程组有相同的解得到关于x、y的方程组,求出x、y的值,再将x、y的值代入含a、b的方程组即可求出a、b的值,即可求出代数式的值.24.每次购买酒精20瓶,消毒液30瓶【解析】【分析】设每次购买酒精x瓶,消毒液y瓶,根据总价=单价×数量,结合两次购买所需费用,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】解:设每次购买酒精x瓶,消毒液y瓶,依题意得:()()10535010130%5120%260x y x y +=⎧⎨⨯-+⨯-=⎩,解得:2030x y =⎧⎨=⎩,答:每次购买酒精20瓶,消毒液30瓶.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.25.-4或-3或-2或-1.【解析】【分析】根据题意由3x y +≤得出-3≤x+y≤3,解二元一次方程组,得出x+y=-m-1,得到不等式组-3≤-m-1≤3,求出m 值,结合m 为负整数即可得出结果.【详解】解:∵3x y +≤,∴-3≤x+y≤3,解245 472x y m x y m -=-⎧⎨+=-+⎩①②,①+②得:3x+3y=-3m-3,∴x+y=-m-1,则-3≤-m-1≤3,解得:-4≤m≤2,又m 是负整数,∴m 的值为-4或-3或-2或-1.【点睛】本题考查了解一元一次不等式组和绝对值的意义,能正确去掉绝对值符号是解此题的关键.26.(1)橱具店购进电饭煲20台,电压锅10台;(2)三种方案:①购买电饭煲23台,电压锅27台;②购买电饭煲24台,电压锅26台;③购买电饭煲25台,电压锅25台.(3)购进电饭煲、电压锅各25台厨具店赚钱最多.【解析】【分析】(1)设橱具店购进电饭煲x 台,电压锅y 台,根据图表中的数据列出关于x 、y 的方程组并解答即可,等量关系是:这两种电器共30台;共用去了5600元;(2)设购买电饭煲a 台,则购买电压锅(50-a )台,根据“用不超过9000元的资金采购电饭煲和电压锅共50台,且电饭煲的数量不少于电压锅的56”列不等式组求解即可;(3)结合(2)中的数据进行计算.【详解】(1)设橱具店购进电饭煲x 台,电压锅y 台,依题意得x 302001605600y x y +=⎧⎨+=⎩,解得x=20y=10⎧⎨⎩,答:橱具店购进电饭煲20台,电压锅10台;(2)设购买电饭煲a 台,则购买电压锅(50﹣a )台,依题意得200+16050-a)90005(50)6a a a ≤⎧⎪⎨≥-⎪⎩(,解得22811≤a≤25.又∵a 为正整数,∴a 可取23,24,25.故有三种方案:①购买电饭煲23台,电压锅27台;②购买电饭煲24台,电压锅26台;③购买电饭煲25台,电压锅25台.(3)设橱具店赚钱数额为W 元,当a=23时,W=23×50+27×40=2230;当a=24时,W=24×50+26×40=2240;当a=25时,W=25×50+25×40=2250;综上所述,当a=25时,W 最大,此时购进电饭煲、电压锅各25台.【点睛】本题考查一元一次不等式组和二元一次方程组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.。

华师大版七年级下册数学期中考试试卷及答案

华师大版七年级下册数学期中考试试卷及答案

华师大版七年级下册数学期中考试试题一、单选题1.下列方程,是一元一次方程的是()A .32x x-=B .2x y +=C .2210x x ++=D .11x x+=2.下列四则选项中,不一定成立的是()A .若x=y,则2x=x+yB .若ac=bc,则a=bC .若a=b,则a 2=b 2D .若x=y,则2x=2y3.若关于 x 的方程 23x a +=与 27x a +=的解相同,则 a 的值为()A .23-B .113C .113-D .234.下列方程变形中正确的是()A .由32a =,得32a =B .由233x x -=,得3x =C .由310.9x -=,得1030109x -=D .由232a b=+,得2312a b =+5.小明在解方程21133x x a -+=-去分母时,方程右边的﹣1没有乘3,因而求得的解为x =2,则原方程的解为()A .x =0B .x =﹣1C .x =2D .x =﹣26.关于x ,y 的二元一次方程2x+3y =20的非负整数解的个数为()A .2B .3C .4D .57.已知32x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=-⎩的解,则a b +的值是()A .﹣1B .1C .﹣5D .58.下列方程组中是二元一次方程组的是()A .12xy x y =⎧⎨+=⎩B .52313x y y x -=⎧⎪⎨+=⎪⎩C .20135x z x y +=⎧⎪⎨-=⎪⎩D .5723x x y=⎧⎪⎨+=⎪⎩9.由方程组43x m y m+=-⎧⎨-=⎩可得出x 与y 之间的关系是()A .1x y +=B .1x y +=-C .7x y +=D .7x y +=-10.方程组1232008321244880x y x y +=⎧⎨+=⎩①②,x y +的值为是()A .0B .1C .1-D .211.关于x 的不等式组1x ax ⎧⎨⎩>>的解集为x >1,则a 的取值范围是()A .a≥1B .a >1C .a≤1D .a <112.若不等式组12x x k <≤⎧⎨>⎩无解,则k 的取值范围是()A .2k ≥B .1k <C .k 2≤D .12k ≤<13.若不等式组213x x a ->⎧⎨≤⎩的整数解共有三个,则a 的取值范围是().A .56a ≤<B .56a <≤C .56a <<D .56a ≤≤14.已知xyz≠0,且4520430x y z x y z -+=⎧⎨+-=⎩,则x :y :z 等于()A .3:2:1B .1:2:3C .4:5:3D .3:4:515.小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x 岁,小红今年y 岁”,根据题意可列方程为()A .449x y y x y x-=+⎧⎨-=+⎩B .449x y y x y x-=+⎧⎨-=-⎩C .449x y y x y x-=-⎧⎨-=+⎩D .449x y y x y x-=-⎧⎨-=-⎩16.小明从家里骑自行车到学校,每小时骑15km ,可早到10分钟,每小时骑12km 就会迟到5分钟.问他家到学校的路程是多少km ?设他家到学校的路程是xkm ,则据题意列出的方程是()A .10515601260x x +=-B .10515601260x x -=+C .10515601260x x -=-D .+1051512x x =-17.对于两个不相等的有理数a ,b ,我们规定符号{},max a b 表示a ,b 两数中较大的数,例如{}2,44max =.按照这个规定,那么方程{},21max x x x -=+的解为()A .-1B .13-C .1D .-1或13-18.关于x 的不等式(1)3(1)a x a -<-的解都能使不等式5x a <-成立,则a 的取值范围是()A .2a =B .2a ≤C .12a <≤D .1a <或2a ≥二、填空题19.若关于x 的方程||1(2)21a a x ---=是一元一次方程,则=a ____________.20.关于x 的方程231x k +=的解是非负数,则k 的取值范围是___________.21.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为_____元.22.解方程组278ax by cx y +=⎧⎨-=⎩时,一学生把c 看错得22x y =-⎧⎨=⎩,已知方程组的正确解是32x y =⎧⎨=-⎩,则abc 值为__________.23.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是_______.24.关于x 、y 的二元一次方程组313x y mx y +=+⎧⎨+=⎩的解满足21x y +<,则m 的取值范围是_________.25.不等式组112251x x ⎧-≤⎪⎨⎪+>⎩的最大整数解是__________.26.把一些书分给几名同学,如果每人分3本,那么余8本,如果前面的每名同学分5本,那么最后一人分不到3本,那么这些书共有____本.27.如图,长方形ABCD 中有6个形状、大小相同的小长方形,根据图中所标尺寸,则小长方形的面积为_______.28.已知关于x 、y 的方程组343x y a x y a +=-⎧⎨-=⎩,其中﹣3≤a≤1,给出下列结论:①11x y =⎧⎨=⎩是方程组的解;②当a =﹣2时,x+y =0;③若y≤1,则1≤x≤4;④若S =3x ﹣y+2a ,则S 的最大值为11.其中正确的有_______.三、解答题29.(1)12223x x x -+-=-(2)34105642x y x y -=⎧⎨+=⎩(3)32823154x y y z x y z -=⎧⎪+=⎨⎪+-=-⎩(4)()3241213x x x x ⎧--≥⎪⎨+>-⎪⎩①②(本小题把解集在数轴上表示出来)30.已知不等式5(x -2)+8<6(x -1)+7的最小整数解为方程2x -ax =4的解,求a 的值.31.一项工程,甲队单独完成需60天,乙队单独完成需75天.(1)若甲队单独做24天后两队再合作,求:甲乙两队再合作多少天才能把该工程完成;(2)在(1)的条件下,甲队每天的施工费用为5000元,乙队每天的施工费用为6000元,求完成此项工程需付给甲、乙两队共多少元?32.已知:23x y =⎧⎨=⎩和25x y =-⎧⎨=-⎩都是关于x 、y 的方程y kx b =+的解.(1)求k 、b 的值;(2)若不等式323x m x +>+的最大整数解是k ,求m 的取值范围.33.已知关于x y 、的方程组731x y m x y m +=--⎧⎨-=+⎩的解满足00x y ≤<,.(1)求m 的取值范围;(2)在m 的取值范围内,当m 为何整数时,不等式221mx x m +<+的解为1x >?34.为了加强建设“经济强、环境美、后劲足、群众富”的实力城镇,聚力脱贫攻坚,全面完成脱贫任务,某乡镇特制定一系列帮扶计划.现决定将A 、B 两种类型鱼苗共320箱运到某村养殖,其中A 种鱼苗比B 种鱼苗多80箱.(1)求A 种鱼苗和B 种鱼苗各多少箱?(2)现计划租用甲、乙两种货车共8辆,一次性将这批鱼苗全部运往同一目的地.已知甲种货车最多可装A 种鱼苗40箱和B 种鱼苗10箱,乙种货车最多可装A 种鱼苗和B 种鱼苗各20箱.如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元,则安排甲、乙两种货车有哪几种不同的方案?并说明选择哪种方案可使运输费最少?最少运输费是多少元?参考答案1.A【分析】根据一元一次方程的定义即可得出答案.【详解】A:是一元一次方程,故A正确;B:有两个未知数,所以不是一元一次方程,故B错误;C:方程次数为2次,所以不是一元一次方程,故C错误;D:是分式方程,故D错误;故答案选择A.【点睛】本题考查的是一元一次方程的定义:只有一个未知数并且未知数的次数为1的整式方程. 2.B【分析】根据等式的性质逐项判断即可.【详解】=+,一定成立A.若x y=,两边同加x,等式不变,即2x x y=,两边同除以一个不为0的数,等式不变;因为不知c是否为0,所以a b=不一B.若ac bc定成立C.若a b=,两边同时平方,等式不变,即22a b=,一定成立D.若x y =,两边同乘以一个数(如2),等式不变,即22x y =,一定成立故答案为:B.3.B 【分析】先把a 看做常数,分别根据两个方程解出x 的值,再令两个x 的值相等即可得出答案.【详解】∵23x a +=∴32ax -=又∵27x a +=∴x=7-2a又23x a +=与27x a +=的解相同∴3722aa -=-解得:113a =故答案选择B.【点睛】本题考查的是解一元一次方程,难度适中,根据两个方程的解相同列出等式是解决本题的关键.4.D 【分析】根据等式的基本性质判断各选项即可.【详解】解:A 、由32a =,得23a =,故本选项错误;B 、由233x x -=,得3x =-,故本选项错误;C 、由310.9x -=,得103019x -=,故本选项错误;D 、由232a b=+,得2312a b =+,故本选项正确.故选:D .【点睛】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.5.A 【分析】已知小明在解方程去分母时,方程右边的﹣1这个项没有乘3,则所得的式子是:2x ﹣1=x+a ﹣1,把x =2代入方程即可得到一个关于a 的方程,求得a 的值,然后把a 的值代入原方程,解这个方程即可求得方程的解.【详解】解:根据题意,得:2x ﹣1=x+a ﹣1,把x =2代入这个方程,得:3=2+a ﹣1,解得:a =2,代入原方程,得:212133x x -+=-,去分母,得:2x ﹣1=x+2﹣3,移项、合并同类项,得:x =0,故选A .【点睛】此题考查了一元一次方程的解法以及方程的解的定义.熟练掌握解一元一次方程的方法和步骤是解题的关键.6.C 【解析】【分析】把x 作为已知数表示出y ,即可确定出非负整数解.【详解】方程2320x y +=解得:2023xy -=当1x =时,6y =当4x =时,4y =当7x =时,2y =当10x =时,0y =综上,二元一次方程的非负整数解的个数有4个故选:C.【点睛】本题考查了二元一次方程的特殊解的解法,掌握方程的解法是解题关键.7.A 【解析】【分析】把32x y =⎧⎨=-⎩代入方程组,可得关于a 、b 的方程组,继而根据二元一次方程组的解法即可求出答案.【详解】将32x y =⎧⎨=-⎩代入23ax by bx ay +=⎧⎨+=-⎩,可得:322323a b b a -=⎧⎨-=-⎩,两式相加:1a b +=-,故选A .【点睛】本题考查二元一次方程组的解,解题的关键是熟练运用二元一次方程组的解法.8.D 【解析】【分析】二元一次方程是指含有两个未知数,并且所含未知数的项的次数都是1的方程.两个结合在一起的共含有两个未知数的一次方程叫二元一次方程组.【详解】A 选项中最高次数为2次,则不是;B 选项中第二个方程不是整式方程,则不是;C 选项中含有3个未知数,则不是;故选:D .【点睛】本题主要考查的就是二元一次方程组的定义问题.在解决定义问题的时候特别要注意所有方程都必须是整式方程,否则就不是二元一次方程组.9.B 【解析】【分析】根据题意由方程组消去m 即可得到y 与x 的关系式,进行判断即可.【详解】解:43x m y m +-⎧⎨-⎩=①=②,把②代入①得:x+y-3=-4,则x+y=-1.故选:B .【点睛】本题考查解二元一次方程组,注意掌握利用消元的思想,消元的方法有:代入消元法与加减消元法.10.D 【解析】【分析】先把两个二元一次方程相加,进而即可得到答案.【详解】1232008321244880x y x y +=⎧⎨+=⎩①②,由①+②得:444x+444y=888,∴x y +=2.故选D .【点睛】本题主要考查解二元一次方程,掌握等式的基本性质,是解题的关键.11.C 【解析】【分析】根据不等式组解集的确定法则:大大取大即可得出答案.【详解】解:∵不等式组的解集为x >1,根据大大取大可得:a≤1,故选C .【点睛】本题主要考查的是求不等式组的解集,属于基础题型.理解不等式组的解集与不等式的解之间的关系是解决这个问题的关键.12.A 【解析】【分析】由已知不等式组无解,确定出k 的范围即可.【详解】解:∵不等式组12x x k <≤⎧⎨>⎩无解,∴k 的范围为k≥2,故选:A .【点睛】此题考查了不等式组的解集,熟练掌握确定每个不等式的解集是解本题的关键.13.A 【解析】【分析】首先确定不等式组的解集,利用含a 的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解不等式2x-1>3,得:x >2,∵不等式组整数解共有三个,∴不等式组的整数解为3、4、5,则56a ≤<,故选A .【点睛】本题考查了一元一次不等式组的整数解,正确解出不等式组的解集,确定a 的范围,是解答本题的关键.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.B【解析】【分析】由4520430x y zx y z-+⎧⎨+-⎩=①=②,①×3+②×2,得出x与y的关系式,①×4+②×5,得出x与z的关系式,从而算出xyz的比值即可.【详解】∵4520430x y zx y z-+⎧⎨+-⎩=①=②,∴①×3+②×2,得2x=y,①×4+②×5,得3x=z,∴x:y:z=x:2x:3x=1:2:3,故选B.【点睛】本题考查了三元一次方程组的解法,用含有x的代数式表示y与z是解此题的关键.15.D【解析】【分析】根据题设老师今年x岁,小红今年y岁,根据题意列出方程组解答即可.【详解】解:老师今年x岁,小红今年y岁,可得:449x y yx y x ì-=-ïïíï-=-ïî,故选:D.【点睛】此题考查了二元一次方程组的应用和理解题意能力,关键是知道年龄差是不变的量从而可列方程求解.16.A【解析】【分析】设他家到学校的路程是xkm ,将时间单位转化成小时,然后根据题意列方程即可.【详解】设他家到学校的路程是xkm ,∵10分钟=1060小时,5分钟=560小时,∴10+1560x =12x ﹣560.故选:A .【点睛】此题考查的是一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.17.B【解析】【分析】利用题中的新定义化简已知方程,求解即可.【详解】解:当x x >-时0x >,{},max x x x -=,方程化简得21x x =+,解得1x =-(不符合题意,舍去)当x x <-时0x <,{},-max x x x -=,方程化简得-21x x =+,解得13x =-故选:B【点睛】此题考查了实数的运算,以及解一元一次方程,熟练掌握运算法则是解本题的关键.18.C【解析】【分析】根据关于x 的不等式(a-1)x <3(a-1)的解都能使不等式x <5-a 成立,列出关于a 的不等式,即可解答.【详解】解:∵关于x 的不等式(a-1)x <3(a-1)的解都能使不等式x <5-a 成立,∴a-1>0,即a >1,解不等式(a-1)x <3(a-1),得:x <3,则有:5-a≥3,解得:a≤2,则a 的取值范围是1<a≤2.故选:C .【点睛】本题考查了解一元一次不等式以及解一元一次不等式组,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式,不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数,不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数,不等号的方向改变.19.-2【解析】【分析】只含有一个未知数(元),并且未知数的指数是1(次)的整式方程叫做一元一次方程,它的一般形式是0ax b +=(a ,b 是常数且0a ≠).【详解】由一元一次方程的特点得:11a -=,20a -≠,解得:2a =-.故答案为:2a =-.【点睛】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.20.13k ≤【解析】【分析】解方程用字母k 表示方程的解,由解为非负数,则构造关于k 的不等式问题可解.【详解】解:解方程231x k +=得132kx -=∵方程的解是非负数∴1302k -≥解得13k ≤故答案为13k ≤【点睛】本题综合考查了一元一次方程和不等式,解答关键是解出含有字母系数的一元一次方程,按要求列出不等式.21.180【解析】【分析】根据“售价=进价×(1+利润率)”可以列出相应的方程,解方程即可.【详解】设这种商品每件的进价为x 元,根据题意得:x (1+20%)=270×0.8解得:x=180.故答案为180.【点睛】本题考查了一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程.22.﹣40【解析】【分析】将x =−2、y =2代入第1个方程,将x =3、y =−2代入两个方程可得关于a 、b 、c 的方程组,解之可得答案.【详解】解:由题意得:-2+223223148a b a b c =⎧⎪-=⎨⎪+=⎩,解得:45-2 abc=⎧⎪=⎨⎪=⎩,()=45-2=-40abc⨯⨯,故答案为:﹣40.【点睛】本题主要考查二元一次方程组的解的问题,解题的关键是理解相关概念,其中二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.23.3212 ab⎧=⎪⎪⎨⎪=-⎪⎩【解析】【分析】方法一:利用关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩可得m、n的数值,代入关于a、b的方程组即可求解;方法二:根据方程组的特点可得方程组3()()=5 2()()6a b m a ba b n a b+--⎧⎨++-=⎩的解是12a ba b+=⎧⎨-=⎩,再利用加减消元法即可求出a,b.【详解】解:方法一,∵关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,∴将解12xy=⎧⎨=⎩代入方程组3526x myx ny-=⎧⎨+=⎩,可得m=﹣1,n=2,∴关于a、b的二元一次方程组()()()()3=526a b m a ba b n a b⎧+--⎪⎨++-=⎪⎩,整理为:42546a ba+=⎧⎨=⎩,解得:3212 ab⎧=⎪⎪⎨⎪=-⎪⎩.方法二:∵关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,∴方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是12a b a b +=⎧⎨-=⎩,解12a b a b +=⎧⎨-=⎩,得3212a b ⎧=⎪⎪⎨⎪=-⎪⎩,故答案为:3212a b ⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解、运用在此题体现明显.24.2m <-【解析】【分析】先解关于关于x ,y 的二元一次方程组313x y m x y +=+⎧⎨+=⎩的解集,其解集由a 表示;然后将其代入21x y +<,再来解关于a 的不等式即可.【详解】313x y m x y +=+⎧⎨+=⎩①②由①+②得4x+2y=4+m ,422m x y ++=,∴由21x y +<,得412m +<,解得:2m <-.故答案为2m <-.【点睛】考查解一元一次不等式,解二元一次方程组,熟练掌握二元一次方程组的解法是解题的关键.25.1x =【解析】【分析】先解不等式组,再求整数解的最大值.【详解】112251x x ⎧-≤⎪⎨⎪+>⎩①②解不等式①,得32x ≤解不等式②,得2x >-故不等式组的解集是322x -<≤所以整数解是:-1,0,1最大是1故答案为1x =【点睛】考核知识点:求不等式组的最大整数值.解不等式组是关键.26.26【解析】【分析】设共有x 名学生,根据每人分3本,那么余8本,可得图书共有(3x +8)本,再由每名同学分5本,那么最后一人就分不到3本,可得出不等式,解出即可.【详解】解:设共有x 名学生,则图书共有(3x +8)本,由题意得,0<3x +8−5(x−1)<3,解得:5<x <6.5,∵x 为非负整数,∴x =6.∴书的数量为:3×6+8=26.故答案为26.【点睛】本题考查了列一元一次不等式组解实际问题的运用,一元一次不等式组的解法的运用,解答时根据题意中的不相等关系建立不等式组是关键.27.20cm 2##20平方厘米【解析】【分析】设小长方形的长为xcm ,宽为163x -cm ,观察图形即可列出关于x 的一元一次方程,解之即可得出x 的值,即可求出结论.【详解】设小长方形的长为xcm ,宽为163x -cm ,由题意得:2×163x -+8=x+163x -,解得:x=10,所以163x -=2,∴小长方形的面积为20;故答案是:20cm 2.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.28.①②③④【解析】【分析】解方程组得出x 、y 的表达式,根据a 的取值范围确定x 、y 的取值范围,逐一判断即可.【详解】343x y a x y a +=-⎧⎨-=⎩①②,①⨯3+②得:x+2y=3,把11x y =⎧⎨=⎩代入得1+2=3,即11x y =⎧⎨=⎩是方程组的解,故①正确a=-2时,366x y x y +=⎧⎨-=-⎩,整理的x+y=0,故②正确,若y≤1,32x -≤1,解得:x ≥1,∵x-y=3a ,∴x-32x -=3a ,由﹣3≤a≤1得:53x -≤≤,所以y≤1时,14x ≤≤,故③正确,∵343x y a x y a+=-⎧⎨-=⎩,∴2x=2+4a ,∵S=3x-y+2a=2x+3a+2a=9a+2,﹣3≤a≤1∴S 的最大值为9+2=11,故④正确,故答案为①②③④【点睛】本题考查了二元一次方程组的解,解一元一次不等式组.根据条件,求出x 、y 的表达式及x 、y 的取值范围是解题关键.29.(1)x =1;(2)62x y =⎧⎨=⎩;(3)211x y z =⎧⎪=-⎨⎪=⎩;(4)x≤1,见解析【解析】【分析】(1)首先去分母,然后移项合并同类项即可求解;(2)利用加减消元法进行求解,首先消去y ,然后将x 的值代入方程即可求解;(3)利用加减消元法进行求解,首先消去z ,然后将x 、y 的值代入方程即可求解;(4)首先解两个不等式,然后将不等式的解表示在数轴上即可.【详解】(1)去分母得:6x ﹣3x+3=12﹣2x ﹣4,移项合并得:5x =5,解得:x =1.(2)①×3得:9x ﹣12y =30③②×2得:10x+12y =84④③+④得19x =114,x =6把x =6代入②,解得y =2原方程组的解是62x y =⎧⎨=⎩(3)②+③×3,得3x+17y =﹣11④,④﹣①,得19y =﹣19,解得,y =﹣1,将y =﹣1代入①,得x =2,将y =﹣1代入②,得z =1,故原方程组的解是211x y z =⎧⎪=-⎨⎪=⎩.(4)()3241213x x x x ⎧--≥⎪⎨+>-⎪⎩①②,由①得,x≤1,由②得,x <4,故此不等式组的解集为:x≤1.在数轴上表示为:;【点睛】本题考查了解一元一次方程,二元一次方程组,三元一次方程组和一元一次不等式组,考查较细,消元思想和降次思想是解决多元方程和高次方程的关键.30.4【解析】【分析】先解出不等式5(x-2)+8<6(x-1)+7的解,再求出不等式的最小整数解,然后把不等式的最小整数解代入方程2x-ax=4即可求出答案【详解】解:解不等式得x>-3,所以最小整数解为x =-2.所以2×(-2)-a×(-2)=4,解得a =4.故答案为4.【点睛】本题考查一元一次不等式的解,解不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.31.(1)甲乙再合作20天才能把该工程完成;(2)完成此项工程需付给甲、乙两队共340000元.【解析】【分析】(1)设甲乙再合作x天才能把该工程完成,根据甲队完成的工作量+乙队完成的工作量=总工作量(单位1),即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总施工费用=甲队每天的施工费用×甲队工作的时间+乙队每天的施工费用×乙队工作的时间,即可求出结论.【详解】(1)设甲乙再合作x天才能把该工程完成,依题意,得:246075x x++=1,解得:x=20.答:甲乙再合作20天才能把该工程完成.(2)5000×(24+20)+6000×20=340000(元).答:完成此项工程需付给甲、乙两队共340000元.【点睛】此题考查一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.32.(1)k的值是2,b的值是﹣1;(2)0≤m<1.【解析】【分析】(1)把23xy=⎧⎨=⎩和25xy=-⎧⎨=-⎩代入y kx b=+,得到方程组,解方程组可得答案;(2)首先根据一元一次不等式的解法,可得x<3-m,然后根据不等式3+2x>m+3x的最大整数解是k,可得2<3-m≤3,据此求出m的取值范围即可.【详解】解:(1)∵23x y =⎧⎨=⎩和25x y =-⎧⎨=-⎩都是关于x 、y 的方程y =kx+b 的解,∴2325k b k b +=⎧⎨-+=-⎩①②,①-②得:48,k =2,k ∴=把2k =代入①得:1,b =-所以方程组的解是:21k b =⎧⎨=-⎩.∴k 的值是2,b 的值是﹣1.(2)∵3+2x >m+3x ,∴x <3﹣m ,∵不等式3+2x >m+3x 的最大整数解是k ,2k =,∴2<3﹣m≤3,∴m 的取值范围是:0≤m <1.【点睛】本题主要考查解二元一次方程组和一元一次不等式,解题的关键是掌握解二元一次方程组的能力,并根据不等式的整数解情况列出关于m 的不等式组.33.(1)23m -<≤;(2)m=−1.【解析】【分析】(1)先由二元一次方程组求得x 、y 的表达式,再由00x y ≤<,,解得m 的取值范围,再化简即可;(2)关键是把原不等式整理成(2m+1)x<2m+1,根据1x >两边都乘以2m+1不等号方向改变,得出2m+1<0.【详解】(1)方程组731x y m x y m +=--⎧⎨-=+⎩①②,①+②得2x=2m−6,∴x=m−3;①−②得2y=−4m−8,∴y=−2m−4,∵00x y ≤<,,∴30240m m -≤⎧⎨--<⎩③④,解得:23m -<≤;(2)(2m+1)x<2m+1,∵原不等式的解集是x>1,∴2m+1<0,∴m<12-,又∵23m -<≤∴122m -<<-,∵m 为整数,∴m=−1.【点睛】本题考查了二元一次方程组及一元一次不等式组的解法,有一定的综合性.掌握解二元一次方程组和一元一次不等式组的方法是解题关键.34.(1)A 种鱼苗有200箱,B 种鱼苗有120箱(2)3种方案(方案见解析),方案①运费最少,最少运费是29600元.【解析】【分析】(1)设A 种鱼苗有x 箱,B 种鱼苗有y 箱,利用A 、B 两种类型鱼苗共320箱,A 种鱼苗比B 种鱼苗多80箱,可列两个方程组成方程组,然后解方程组即可;(2)设租用甲种货车x 辆,利用甲乙货车装A 种鱼苗的数量和甲乙货车装B 种鱼苗的数量列不等式组,解不等式求出它的正整数解可得到运输方案,然后比较各方案的运输费即可.【详解】(1)设A 种鱼苗有x 箱,B 种鱼苗有y 箱,根据题意得320{80x y x y +=-=解得200{120x y ==,答∶A 种鱼苗有200箱,B 种鱼苗有120箱;(2)设租用甲种货车x辆,根据题意得()()1020812040208200x xx x⎧+-≥⎪⎨+-≥⎪⎩,解得2≤x≤4,而x为整数,所以x=2、3、4,所以设计方案有3种,分别为∶方案甲车乙车运费①262⨯4000+6⨯3600=29600②353⨯4000+5⨯3600=30000③444⨯4000+4⨯3600=30400所以方案①运费最少,最少运费是29600元.【点睛】此题考查二元一次方程组的实际应用和一元一次不等式组的应用,解题关键在于列出方程组.。

华师大版七年级下册数学期中考试试题及答案

华师大版七年级下册数学期中考试试题及答案

华师大版七年级下册数学期中考试试卷一、单选题1.根据等式的性质,下列变形正确的是()A .如果23x =,那么23x a a=B .如果x y =,那么55x y -=-C .如果162x =,那么3x =D .如果x y =,那么22x y-=-2.将方程2136x x --=去分母得()A .()226x x --=B .226x x --=C .()221x x --=D .221x x --=3.若a <b ,则下列各式中一定成立的是()A .22ac bc <B .a b-<-C .11a b -<-D .33a b >4.若关于x y 、的二元一次方程有公共解372319x y x y y kx =+==-,,--,则k 的值是()A .3-B .163C .2D .4-5.若*是规定的运算符号,设a *b =ab +a +b ,则在3*x =﹣17中,x 的值是()A .﹣5B .5C .﹣6D .66.已知两个不等式的解集在数轴上如右图表示,那么这个解集为()A .x≥-1B .x>1C .-3<x≤-1D .x>-37.不等式组()324321x x x x ⎧-≤-⎨>-⎩的解集在数轴上表示正确的是()A .B .C .D .8.我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?如果设木条长x 尺,绳子长y 尺,那么可列方程组为()A . 4.50.51y x y x =+⎧⎨=-⎩B . 4.521y x y x =+⎧⎨=-⎩C . 4.50.51y x y x =-⎧⎨=+⎩D . 4.521y x y x =-⎧⎨=-⎩9.在大长方形中放入6个形状、大小相同的小长方形,所标尺寸如图所示,则图中大长方形的面积是()A .98B .112C .126D .14010.不等式组43x x <⎧⎨≥⎩的解集在数轴上表示为()A .B .C .D .二、填空题11.如果方程()120mm x -+=是关于x 的一元一次方程,那么m 的值是__________.12.如果关于x 的不等式()20212021a x a +>+的解集为1x <,那么a 的取值范围是________.13.已知a 、b 都是有理数,观察表中的运算,则m =_____.a 、b 的运算a+b a ﹣b (2a+b )3运算的结果﹣410m14.小红网购了一本数学拓展教材《好玩的数学》.两位小伙伴想知道书的价格,小红告诉他们这本书的价格是整数并让他们猜,小曹说:“至少29元”,小强说:“至多21元,小红说:“你们两个人都猜错了。

华师大版七年级下册半期考试数学试题

华师大版七年级下册半期考试数学试题

一、选择题(9个题,共27分)1、(2015•扬州)已知x=2是不等式(x ﹣5)(ax ﹣3a+2)≤0的解,且x=1不是这个不等式的解,则实数a 的取值范围是( ) A .a >1B .a ≤2C .1<a ≤2D .1≤a ≤22、(2015绵阳)若+|2a ﹣b+1|=0,则(b ﹣a )2015=( )A .﹣1B .1C .52015D .﹣520153、(2015春哈尔滨校级月考)如果方程组的解与方程组的解相同,则a 、b 的值是( )A.B.C.D.4、(2016富顺县校级模拟)已知关于x 、y的不等式组,若其中的未知数x 、y 满足x+y >0,则m 的取值范围是( ) A .m >﹣4 B .m >﹣3 C .m <﹣4 D .m <﹣35、(2015•永州)定义[x]为不超过x 的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意实数x ,下列式子中错误的是( )A .[x]=x (x 为整数)B .0≤x ﹣[x]<1C .[x+y]≤[x]+[y]D .[n+x]=n+[x](n 为整数)6、韩日“世界杯”期间,重庆球迷一行56人从旅馆乘出租车到球场为中国队加油,现有A 、B 两个出租车队,A 队比B 队少3辆车,若全部安排乘A 队的车,每辆坐5人,车不够,每辆坐6人,有的车未坐满;若全部安排乘B 队的车,每辆车坐4人,车不够,每辆车坐5人,有的车未坐满,则A 队有出租车( )A.11辆B.10辆C.9辆D.8辆 7、甲乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%。

若设甲乙两种商品原来的单价分别为X 元、Y 元,则下列方程组正确的是( )⎩⎨⎧+=-++=+%)201(100%)401(%)101(100y x y x A 、 ⎩⎨⎧⨯=++-=+%20100%)401(%)101(100y x y x B 、 ⎩⎨⎧+=++-=+%)201(100%)401(%)101(100y x y x c 、 ⎩⎨⎧⨯=-++=+%20100%)401(%)101(100y x y x D 、8、一批树苗按下列方法依次由各班领取:第一班取100棵和余下的101,第二班取200棵和余下的101,第三班取300棵和余下的101,……最后树苗全部被取完,且各班的树苗都相等。

华师大版2019年七年级下册数学半期试题含答案

华师大版2019年七年级下册数学半期试题含答案

七年级下册数学半期试题(满分150分, 时间120分钟)班级__________学号__________ 姓名__________ 得分__________一、选择题(本题共10小题,每题4分,共40分)1.下列方程中是一元一次方程的是( ) A. 012=-x B. 12=x C. 12=+y x D. 213=-x 2. 不等式50x --≤的解集在数轴上表示正确的是( )3、若()62=-x m 是关于x 的一元一次方程,则m 的取值为( ) A 、不等于2的数 B 、任何数 C 、2 D 、1或24、已知长江比黄河长836千米,黄河长度的6倍比长江长度的5倍多1284千米.设长江、黄河的长分别是x 千米,y 千米,则下列方程组中正确的是 ( )A 、836561284x y x y -=⎧⎨-=⎩ B 、836651284y x y x -=⎧⎨-=⎩ C 、836651284x y y x -=⎧⎨-=⎩ D 、836561284y x x y -=⎧⎨-=⎩ 5.已知⎩⎨⎧==21y x 和⎩⎨⎧=-=01y x 是方程1=-by ax 的解,则a 、b 的值为 ( ) A 、1,1-=-=b a B 、1,1=-=b a C 、1,0-==b a D 、0,1=-=b a6、下列不等式中,解集是x >1的不等式是( )A 、3x >-3B 、34>+xC 、2x +3>5D 、-2x +3>57、如果ax >a 的解是x <1,那么a 必须满足 ( )A 、 a <0B 、a >1C 、a >-1D 、a <-18、如果0>>a b ,那么( )A .b a 11->-B .ba 11< C .b a 11-<- D .a b ->- 9、 某商店有两个进价不同的计算器都卖了135元,其中一个盈利25%,另一个亏本25%,在这次买卖中,这家商店( ) A 、不赔不赚 B 、赚了9元 C 、赚了18元 D 、赔了18元10、 已知关于x 的方程2x=8与x+2=-k 的解相同,则代数式2||32kk - 的值是 ( ) A 、-49 B 、94 C 、-94 D 、94±二、填空题(本题共6小题,每题4分,共24分)11、已知2x-3y=6,用含x的代数式表示y =_____________.12、当a=时,代数式12a-与2a-的值相等.13、已知(a-3)x|a|-2+6=0是关于x的一元一次方程,则a=___ _14、已知关于x的方程3k-5x=-9的解是非负数,则k的取值范围是______________.15、若不等式a≤X<2只有3个整数解,则a的取值范围是.16、对非负实数x“四舍五入”到个位的值记为(x).即当n为非负整数时,若n-12≤x<n+12,则(x)=n.如(0.46)=0,(3.67)=4.给出下列关于(x)的结论:①(1.493)=1;②(2x)=2(x);③若(12x-1)=4,则实数x的取值范围是9≤x<11;④当x≥0时,m为非负整数时,有(m+2017x)=m+(2017x);⑤(x+y)=(x)+(y).其中正确的结论有________________.(填序号)三、解答题(共8个小题,共86分)17、(本小题10分)(1)412+x-1=312-x-12110+x(2)、325226 42730 x y zx y zx y z++=⎧⎪--=⎨⎪+-=⎩18、(10分)解不等式组21141xx->-⎧⎨-≥⎩,①,②,并将它的解集在数轴上表示出来,并写出它所有的整数解.19、(10分)已知关于x ,y 的方程组3,26x y x y a -=⎧⎨+=⎩的解满足不等式x +y <3,求实数a 的取值范围.20、(10分)一个星期天,小明和小文同解一个二元一次方程组{ax+by=16bx+ay=1 ① ②小明把方程①抄错,求得的解为{x=1y=3-,小文把方程②抄错,求得的解为{x=3y=2,求原方程组的解。

华师大版七年级下册数学期中考试试卷含答案

华师大版七年级下册数学期中考试试卷含答案

华师大版七年级下册数学期中考试试题一、单选题1.下面给出的5个式子:①3>0;②4x+y<2;③2x=3;④x-1;⑤x-2≥3.其中不等式有()A .2个B .3个C .4个D .5个2.下列解方程过程中,变形正确的是()A .由5x ﹣1=3,得5x =3﹣1B .由x 4+1=310.1x ++12,得x4+1=3101x ++12C .由3﹣12x -=0,得6﹣x+1=0D .由32xx -=1,得2x ﹣3x =13.已知单项式312xy 与43a xy +-是同类项,那么a 的值是()A .-1B .0C .1D .24.利用代入消元法解方程组236532x y x y +=⎧⎨-=⎩①②,下列做法正确的是()A .由①得x =632y+B .由①得y =623x -C .由②得y =235x -+D .由②得y =523x +5.若方程组()43713x y kx k y +=⎧⎨+-=⎩的解x ,y 相等,则k 的值为()A .1B .0C .2D .﹣26.已知a b 、满足方程组2426a b a b -=⎧⎨+=⎩,则3a b +的值为()A .10B .8C .6D .﹣27.在等式y kx b =+中,当2x =时,4y =-;当2x =-时,8y =,则这个等式是()A .32y x =+B .32y x =-+C .32y x =-D .32y x =--8.方程23132x x ---= 中有一个数字被墨水盖住了,查后面的答案,知道这个方程的解是x=-1,那么墨水盖住的数字是()A .17B .2C .1D .09.复兴中学七年级(1)班学生参加植树活动,一部分学生抬土,另一部分学生担土.已知全班共用土筐59个,扁担36个,求抬土、担土的学生各多少人?如果设抬土的学生x 人,担土的学生y 人,则可得方程组()A .2()592362y x x y ⎧+=⎪⎪⎨⎪+=⎪⎩B .2592362xy x y ⎧+=⎪⎪⎨⎪+=⎪⎩C .2592236xy x y ⎧+=⎪⎨⎪+=⎩D .259236x y x y +=⎧⎨+=⎩10.若a:2=b:3=c:7,且a ﹣b+c=12,则2a ﹣3b+c 等于()A .2B .4C .37D .1211.一列“动车组”高速列车和一列普通列车的车身长分别为80米与100米,它们相向行驶在平行的轨道上,若坐在高速列车上的旅客看见普通列车驶过窗口的时间是5秒,则坐在普通列车上的旅客看见高速列车驶过窗口的时间是()A .7.5秒B .6秒C .5秒D .4秒12.关于x 的方程为(x-4)m=x-4且m≠1,则代数式2222(32)6x x x x ---+的值是()A .36B .40C .56D .68二、填空题13.已知3602x +=,则x =_____.14.用不等式表示:“2与x 的和的3倍是负数”为_________________.15.若关于x 、y 的方程x |k|﹣1+(k ﹣2)y =6是二元一次方程,则k =_____.16.若x ay b =⎧⎨=⎩是方程22x y -=的一个解,则631a b -+=_______17.关于x 的方程243x m -=和21x +=有相同的解,那么m =_________.18.如果|x ﹣2y+1|+|x+y ﹣5|=0,那么xy =_____.19.方程组32823154x y y z x y z -=⎧⎪+=⎨⎪+-=-⎩的解为____________.20.我们知道,无限循环小数都可以转化为分数.例如,将.0.3转化为分数时,可设0.3x = ,则10 3.330.3x ==+ ,所以10x=3+x ,解得x=13,即.10.33=.仿此方法,将..0.45化为分数是____.三、解答题21.解方程(组)(1)11x ﹣3=x+2;(2)22(3)6363x x x -+-=-;(3)237342x y x y +=⎧⎨-=⎩;(4)6()7()212()5()1x y x y x y x y --+=⎧⎨--+=-⎩.22.当x 取何值时,代数式3x ﹣5与﹣4x+6的值互为相反数.23.当整数a 为何值时,关于x 的方程221145ax x +--=的解是正整数.24.已知()2120a ab -+-=,求关于x 的方程()()()()()()2016112220152015x x x xab a b a b a b ++++=++++++ 的解.25.李老师让全班同学们解关于x 、y 的方程组217x ay bx y +=⎧⎨-=⎩①②(其中a 和b 代表确定的数),甲、乙两人解错了,甲看错了方程①中的a ,解得14x y =⎧⎨=-⎩,乙看错了②中的b ,解得11x y =-⎧⎨=⎩,请你求出这个方程组的正确解.26.机械厂加工车间有27名工人,平均每人每天加工小齿轮12个或大齿轮10个,2个大齿轮和3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?27.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性订客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?28.仔细阅读下面解方程组的方法,然后解决有关问题:解方程组191817171615x yx y+=⎧⎨+=⎩①②时,如果直接消元,那将会很繁琐,若采用下面的解法,则会简单很多.解:①-②,得:2x+2y=2,即x+y=1③③×16,得:16x+16y=16④②-④,得:x=-1将x=-1代入③得:y=2∴原方程组的解为:12 xy=-⎧⎨=⎩(1)请你采用上述方法解方程组:201620112012 201020052000x yx y+=⎧⎨+=⎩(2)请你采用上述方法解关于x,y的方程组()()()()3232m x m y mn x n y n⎧+++=⎪⎨+++=⎪⎩,其中m n≠.参考答案1.B 【分析】根据不等式的定义解答即可.【详解】解:①3>0是不等式、②4x+y<2是不等式、③2x=3是等式、④x-1是代数式、⑤x-2≥3是不等式,共有3个不等式.故答案为B .【点睛】本题考查了不等式的定义,即用不等号把两个式子连接起来所形成的式子叫不等式.2.C 【分析】各方程变形得到结果,即可作出判断.【详解】解:A 、由5x ﹣1=3,得到5x =3+1,不符合题意;B 、由x 4+1=310.1x ++12,得x 4+1=30101x ++12,不符合题意;C 、由3﹣12x -=0,得6﹣x+1=0,符合题意;D 、由32x x-=1,得2x ﹣3x =6,不符合题意,故选C .3.A 【分析】根据同类项的定义,同类项中所含的字母及对应字母的指数都相同即可解答.【详解】因为312xy 和43a xy +-是同类项所以3=4+a 所以a=-1故本题答案为A .【点睛】本题考查了同类项的定义,掌握相关知识点事解答本题关键.4.B 【解析】【详解】由①得,2x=6-3y ,∴632yx +=;3y=6-2x ,∴623xy -=;由②得,5x=2+3y ,∴2+35yx =;3y=5x-2,∴523x y -=.故选B .5.C 【解析】【分析】根据方程组的解x ,y 的值相等,可求出x 和y ,可得关于k 的方程,再解方程,可得出答案.【详解】解:由()43713x y kx k y +=⎧⎨+-=⎩的解x ,y 相等,得4x+3x =7,解得x =1,x =y =1,由方程的解满足方程,得k+(k ﹣1)=3,解得k =2,故选:C .【点睛】本题考查了二元一次方程(组)的解,得出关于k 的一元一次方程是解题的关键.6.A 【解析】【分析】先解方程组求出a b 、的值,再代入求出3a b +的值;本题还可以用加减消元法直接求出.【详解】解:2426a b a b -=⎧⎨+=⎩①②由①×2+②得,514a =,解得:145a =把145a =代入①得,85b =,当145a =,85b =时,3148=3+55=10a b+⨯另外方法:由①+②得,310a b +=故选:A 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.本题还可以用加减消元法直接求出.7.B 【解析】【分析】分别把当2x =时,4y =-;当2x =-时,8y =代入等式y kx b =+,得到关于k 、b 的二元一次方程组,求出k 、b 的值即可.【详解】解:分别把当2x =时,4y =-;当2x =-时,8y =代入等式y kx b =+,得4282k b k b -=+⎧⎨=-+⎩①②,①+②,得2b=4,解得b=2,把b=2代入①,得-4=2k+2,解得k=-3,把k=-3,b=2代入等式y kx b =+,得32y x =-+.故选:B.【点睛】本题主要考查了二元一次方程组的解法,理解题意,熟练解法是解题的关键.8.C 【解析】【分析】墨水盖住的部分用a 表示,把x=-1代入方程,即可得到一个关于a 的方程,即可求解.【详解】解:墨水盖住的部分用a 表示,把x=-1代入方程得:213132a -----=,解得:a=1.故选:C .【点睛】本题考查了一元一次方程的解的定义,理解定义是关键.9.B 【解析】【分析】根据“班共用土筐59个,扁担36个”可以列出相应的方程组,本题得以解决.【详解】解:由题意可得,2592362xy x y ⎧+=⎪⎪⎨⎪+=⎪⎩,故选B.【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.10.B 【解析】【分析】由a:2=b:3=c:7,可设a=2k ,b=3k ,c=7k ,代入计算求得k ,然后分别求得a,b,c,代入所求代数式计算即可.【详解】解:设a:2=b:3=c:7=k ,则a=2k ,b=3k ,c=7k ,代入方程a−b+c=12得:2k−3k+7k=12,解得:k=2,即a=4,b=6,c=14,则2a−3b+c=2×4−3×6+14=4.故选:B.【点睛】本题考查比例的性质,代数式的求值,牢记相关的知识点并能灵活应用是解题关键.11.D 【解析】【详解】设坐在普通列车上的旅客看见高速列车驶过窗口的时间是x 秒,则100÷5×x=80,解得x=4,故选D .12.D【解析】【分析】先由(x-4)m=x-4且m≠1得到x=4,然后代入化简后的代数式计算即可.【详解】解:∵(x-4)m=x-4,∴(4)(1)0x m --=又∵m≠1,∴40x -=,即x=4,∵2222222(32)626+2+4+644x x x x x x x x x ---+=-=+,当x=4时,原式=244x +=2444⨯+=68故选择:D 【点睛】本题考查了解一元一次方程,代数式的求值,正确对条件式及所求得代数式进行变形化简是解题的关键.13.-4【解析】【分析】方程移项,把x 系数化为1,即可求出解.【详解】解:方程移项得:32x=-6,解得:x=-4,故答案为:x=-4.【点睛】此题考查解一元一次方程,熟练掌握运算法则是解题的关键.14.3(2+x)<0【解析】【分析】2与x 的和的3倍是负数,那么前面所得的结果小于0.【详解】解:2与x 的和为2+x ,2与x 的和的3倍为3(2+x),∵积是负数,∴3(2+x)<0,故答案为:3(2+x)<0.【点睛】此题考查由实际问题抽象出一元一次不等式,解题的关键是理解负数用数学符号表示是“<0”.15.-2【解析】【分析】根据二元一次方程的定义即可求解.【详解】依题意可得|k|﹣1=1,k-2≠0解得k=-2故答案为:-2.【点睛】此题主要考查二元一次方程的定义,解题的关键是熟知二元一次方程的特点.16.7【解析】【分析】把x a y b=⎧⎨=⎩代入方程后,方程两边在乘3后整体代入即可解答.【详解】解:把x a y b =⎧⎨=⎩代入方程,得2a-b=2,方程两边同时乘3得,6a-3b=6,则631a b -+=6+1=7,故答案为:7.【点睛】本题考查了等量代换和整体思想,解题的关键是掌握相关知识点.17.-2【解析】【分析】先由21x +=求得x ,然后将x 代入243x m -=即可求得m 的值.【详解】解:由x+2=1解得x=-1,将x=-1代入243x m -=,得-2-4=3m ,即m=-2故答案为:-2.【点睛】本题考查了同解方程,利用同解方程列出关于m 的方程并求解是解答本题关键.18.6【解析】【分析】根据两个非负数之和为0,则这两个数都为0,建立关于x 、y 的方程组,解方程组求出x 、y 的值,然后代入代数式求值即可.【详解】解:∵2150x y x y -+++-=∴21050x y x y -+=⎧⎨+-=⎩解之:32x y =⎧⎨=⎩∴xy=3×2=6故答案为:6.【点睛】本题考查的是绝对值非负数的性质、解二元一次方程组,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.19.211 xyz=⎧⎪=-⎨⎪=⎩【解析】【分析】根据加减消元法即可求解.【详解】解328 23154 x yy zx y z-=⎧⎪+=⎨⎪+-=-⎩①②③③×3得3x+15y-3z=-12④②+④得3x+17y=-11⑤⑤-①得19y=-19解得y=-1把y=-1代入①得3x+2=8解得x=2把y=-1代入②得-2+3z=1解得z=1故原方程组的解为211 xyz=⎧⎪=-⎨⎪=⎩故答案为:211xyz=⎧⎪=-⎨⎪=⎩.【点睛】此题主要考查三元一次方程组的求解,解题的关键是熟知加减消元法的运用.20.5 11【解析】【分析】设x=..0.45,则x=0.4545…①,根据等式性质得:100x=45.4545…②,再由②−①得方程100x−x =45,解方程即可.【详解】设x =..0.45,则x =0.4545…①,根据等式性质得:100x =45.4545…②,由②−①得:100x−x =45.4545…−0.4545…,即:100x−x =45,99x =45解方程得:x =4599=511.故答案为:511.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,看懂例题的解题方法.21.(1)12x =;(2)103x =;(3)21x y =⎧⎨=⎩;(4)52x y =⎧⎨=-⎩.【解析】【分析】(1)根据解一元一次方程的步骤:移项、合并同类项、系数化1进行求解即可;(2)先去分母,根据解一元一次方程的步骤求解即可;(3)用加减消元法①×3-②×2即可求出y ,把y 的值代入原方程就可求出方程组的解;(4)先去括号化简方程组,再利用加减法解方程组即可.【详解】(1)11x ﹣3=x+2移项得:11x ﹣x =3+2,合并同类项得:10x =5,系数化为1得:x =12.(2)22(3)6363x x x -+-=-去分母,方程的两边同时乘以6得:36(2)184(3)x x x --=-+,去括号得:36218412x x x -+=--,合并同类项得:381412x x -=-,移项得:1550x =,系数化为1得:103x=;(3)237 342 x yx y+=⎧⎨-=⎩①②①×3-②×2得:17y=17,解得:y=1,把y=1代入①得:237x+=,解得:x=2,∴方程组的解为:21xy=⎧⎨=⎩.(4)6()7()21 2()5()1x y x yx y x y--+=⎧⎨--+=-⎩整理得:371 33963 x yx y+=⎧⎨+=-⎩①②②﹣①得:32y=﹣64,y=﹣2,把y=﹣2代入①得:x=5,∴方程组的解为:52xy=⎧⎨=-⎩.【点睛】本题考查了解一元一次方程,二元一次方程组,解题的关键是把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.22.1.【解析】【分析】先根据相反数的性质列出关于x的方程,再根据解一元一次方程的步骤依次计算可得.【详解】解:根据题意,得:3x﹣5+(﹣4x+6)=0,去括号,得:3x﹣5﹣4x+6=0,移项,得:3x ﹣4x =5﹣6,合并同类项,得:﹣x =﹣1,系数化为1,得:x =1.【点睛】本题主要考查了解一元一次方程和相反数的性质,解题的关键是掌握相反数的两数的和为0及解一元一次方程的步骤.23.a =2.【解析】【分析】解关于x 的方程221145ax x +--=可得x =658a -,要使方程的解为正整数,即必须使658a -为正整数,(5a ﹣8)应是6的正约数,分析可得:a =2.【详解】解:关于x 的方程221145ax x +--=,解为x =658a -,要使方程的解为正整数,即必须使658a -为正整数,则(5a ﹣8)应是6的正约数,则5a ﹣8=1,2,3,6,且a 是整数,则a =2.【点睛】本题考查解一元一次方程的整数解问题,先解方程,把方程的解用未知数表示出来,分析其为整数的情况,可得出答案.24.2017x =【解析】【分析】先根据非负数的性质,得到,a b 的值,把,a b 的值代入方程,利用列项相消的方法合并同类项,再解方程即可.【详解】解:()2120a ab -+-= ,,20ab ∴⎨-=⎩解得:1,2a b =⎧⎨=⎩原方程化为:2016,12233420162017x x x x +++∙∙∙+=⨯⨯⨯⨯111111111(12016,223342015201620162017x ∴-+-+-+∙∙∙+-+-=1(12016,2017x ∴-=20162016,2017x ∴=∴2017x =.【点睛】本题考查了两个非负数之和为0的性质,以及列项相消合并同类项,一元一次方程的解法,掌握以上知识是解题的关键.25.21x y =⎧⎨=-⎩【解析】【分析】把甲的解代入方程②求出b 的值,把乙的解代入①求出a 的值,确定出方程组,求出正确的解即可.【详解】解:由题意可知,把14x y =⎧⎨=-⎩代入方程②中,得b+4=7,解得b=3;把11x y =-⎧⎨=⎩代入方程①中,得-2+a=1,解得a=3;把3b ⎨=⎩代入方程组,可得2311372x y x y +=⎧⎨-=⎩,解得:21x y =⎧⎨=-⎩,∴原方程组的解应为21x y =⎧⎨=-⎩.【点睛】此题考查了二元一次方程组的解,解题的关键是掌握方程组的解即为能使方程组中两方程都成立的未知数的值.26.安排12名工人加工大齿轮,安排15名工人加工小齿轮.【解析】【分析】设生产大齿轮的人数为x ,则生产小齿轮的人数为(27﹣x ),再由两个大齿轮与三个小齿轮配成一套列出比例式,求出x 的值即可.【详解】设需安排x 名工人加工大齿轮,安排(27﹣x )名工人加工小齿轮,依题意得:12272103x x ⨯⨯=⨯(﹣)解得x=12,则27-x=15.答:安排12名工人加工大齿轮,安排15名工人加工小齿轮.【点睛】本题考查的知识点是简单的工程问题,解题关键是根据所给条件列出关于x 的关系式,求出未知数的值.27.(1)该店有客房8间,房客63人;(2)诗中“众客”再次一起入住,他们应选择一次性订房18间更合算.【解析】【分析】(1)设该店有客房x 间,房客y 人;根据题意得出方程组,解方程组即可;(2)根据题意计算:若每间客房住4人,则63名客人至少需客房16间,求出所需付费;若一次性定客房18间,求出所需付费,进行比较,即可得出结论.【详解】解:(1)设该店有客房x 间,房客y 人;根据题意得:()7791x y x y +=⎧⎨-=⎩,解得:863x y =⎧⎨=⎩.答:该店有客房8间,房客63人;(2)若每间客房住4人,则63名客人至少需客房16间,需付费20×16=320钱若一次性定客房18间,则需付费20×18×0.8=288钱<320钱;答:诗中“众客”再次一起入住,他们应选择一次性订房18间更合算.“点睛”本题考查了二元一次方程组的应用;根据题意得出方程组是解决问题的关键.28.(1)402404x y =-⎧⎨=⎩;(2)23x y =-⎧⎨=⎩【解析】【分析】(1)先把两式相减得出x+y 的值,再把x+y 的值与2010相乘,再用加减消元法求出x 的值,用代入消元法求出y 的值即可;(2)先把两式相减得出(m-n)x+(m-n)y=m-n 的值,再用加减消元法求出x 的值,用代入消元法求出y 的值即可.【详解】解:(1)201620112012201020052000x y x y +=⎧⎨+=⎩①②,①-②,得:6x+6y=12,即x+y=2③,③×2010,得:2010x+2010y=4020④,④-②,得:y=404,将y=404代入③得:x=-402,∴方程组的解为:402404x y =-⎧⎨=⎩;(2)()()()()3232m x m y m n x n y n ⎧+++=⎪⎨+++=⎪⎩①②,①-②,得:(m-n)x+(m-n)y=m-n,∵m≠n,∴x+y=1③,③×(n+3),得:(n+3)x+(n+3)y=n+3④,④-②,得:y=3,将y=3代入③得:x=-2,∴方程组的解为23xy=-⎧⎨=⎩.【点睛】此题考查解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解题的关键.。

华师大版七年级下册数学期中考试试题含答案

华师大版七年级下册数学期中考试试题含答案

华师大版七年级下册数学期中考试试卷一、单选题1.方程38x +=解为()A .5B .10C .12D .152.利用加减消元法解方程组3416,5614.x y x y +=⎧⎨-=⎩①②下列做法正确的是()A .要消去y ,可以将23①②⨯+⨯B .要消去x ,可以将()35⨯+⨯-①②C .要消去y ,可以将53⨯+⨯①②D .要消去x ,可以将()53⨯-+⨯①②3.不等式3x+2≥5的解集是()A .x≥1B .x≥73C .x≤1D .x≤﹣14.下列过程中,变形正确的是()A .由23x =得23x =B .由11132x x---=得()()21131x x --=-C .由12x -=得21x =-D .由()312x -+=得332x --=5.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是()A .3201036x y x y -=⎧⎨+=⎩B .3201036x y x y +=⎧⎨+=⎩C .3201036y x x y -=⎧⎨+=⎩D .3102036x y x y +=⎧⎨+=⎩6.若x=-3是方程2()6x m -=的解,则m 的值是()A .6B .-6C .12D .-127.不等式x+1≥2x ﹣1的解集在数轴上表示为()A .B .C .D .8.关于y 的方程ay -2=4与2y -5=-1的解相同,则a 的值为()A .2B .3C .4D .2-9.若m >n ,则下列不等式正确的是()A .m ﹣2<n ﹣2B .44m n >C .6m <6nD .﹣8m >﹣8n10.小明早上骑自行车上学,中途因道路施工步行一段路,到学校共用20分钟,他骑自行车的平均速度是200米/分,步行的速度是70米/分,他家离学校的距离是3350米.设他骑自行车和步行的时间分别为x 、y 分钟,则列出的二元一次方程组是()A .1x y {3200x 70y 3350+=+=B .x y 20{70x 200y 3350+=+=C .1x y {370x 200y 3350+=+=D .x y 20{200x 70y 3350+=+=二、填空题11.不等式812x ->的解集是______.12.已知x ,y 满足方程组2524x y x y +=⎧⎨+=⎩,则x ﹣y 的值=__________.13.有一个密码系统,其原理如下面的框图所示:当输出为10时,则输入的x =___________.14.小刚解出了方程组332x y x y -=⎧⎨+=∆⎩的解为4x y =⎧⎨=⎩.因不小心滴上了两滴墨水,刚好盖住了方程组和解中的两个数,则∆、W 分别为___________.15.若不等式211133x ax +-+>的解集是53x <,则a 的值为___________.16.按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为26,请写出符合条件的所有x 的值_____.三、解答题17.(1)32126x x---=(2)0.10.30.020.0110.20.03x x -+-=.18.解方程组:(1)10216x y x y +=⎧⎨+=⎩(2)33814x y x y -=⎧⎨-=⎩19.(1)求不等式126x -<的所有负整数解;(2)解不等式:()()13211223x x --≥,并在数轴上把解集表示出来.20.已知42x y =⎧⎨=⎩与13x y =-⎧⎨=-⎩都满足等式y kx b =+.(1)求k 与b 的值;(2)求当5x =时,y 的值.21.如图,在数轴上,点A 、B 分别表示数1、23x -+.(1)求x 的取值范围;(2)试比较2x -+与23x -+的大小.22.某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元/千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?23.已知关于x 、y 的二元一次方程组3x my 52x ny 6-=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,求关于a 、b 的二元一次方程组3()()52()()6a b m a b a b n a b +--=⎧⎨++-=⎩的解.24.某公司用火车和汽车运输两批物资,具体运输情况如下表所示:所用火车车皮数量(节)所用汽车数量(辆)运输物资总量(吨)第一批25130第二批43218试问每节火车车皮和每辆汽车平均各装物资多少吨?参考答案1.A【分析】直接进行移项解方程即可得到答案.【详解】解:∵38x+=∴83x=-解得5x=故选A.【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握基本知识进行求解. 2.D【分析】利用加减消元法判断即可.【详解】解:利用加减消元法解方程组34165614x yx y+=⎧⎨-=⎩①②,要消元y,可以将①×3+②×2;要消去x,可以将①×(-5)+②×3,故选D.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.3.A【详解】分析:根据一元一次不等式的解法即可求出答案.详解:3x+2≥5,3x≥3,∴x≥1.故选A.点睛:本题考查了一元一次不等式的解法,解题的关键是熟练运用一元一次不等式的解法,本题属于基础题型.4.D【分析】根据等式的性质进行计算并作出正确的选择即可.【详解】A、在等式2x=3的两边同时除以2得到:x=32,故本选项错误;B、在等式x11x132---=的两边同时乘以6得到:2(x-1)-6=3(1-x),故本选项错误;C、在等式x-1=2的两边同时加上1得到x=3,故本选项错误;D、由-3(x+1)=2得到:-3x-3=2,故本选项正确;故选D.【点睛】本题考查了等式的性质.性质1、等式两边加同一个数(或式子)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.5.B【详解】分析:根据等量关系“一本练习本和一支水笔的单价合计为3元”,“20本练习本的总价+10支水笔的总价=36”,列方程组求解即可.详解:设练习本每本为x元,水笔每支为y元,根据单价的等量关系可得方程为x+y=3,根据总价36得到的方程为20x+10y=36,所以可列方程为:3 201036 x yx y+⎧⎨+⎩==,故选B.点睛:此题主要考查了由实际问题抽象出二元一次方程组,得到单价和总价的2个等量关系是解决本题的关键.6.B【分析】把x=-3,代入方程得到一个关于m的方程,即可求解.【详解】解:把x=-3代入方程得:2(-3-m)=6,解得:m=-6.故选:B.【点睛】本题考查了方程的解的定义,理解定义是关键.7.B【分析】先求出不等式的解集,再根据不等式解集的表示方法,可得答案.【详解】移项,得:x﹣2x≥﹣1﹣1,合并同类项,得:﹣x≥﹣2,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:.故选B.【点睛】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8.B【分析】求出第二个方程的解得到y的值,代入第一个方程即可求出a的值.【详解】解:由2y-5=-1,得到y=2,将y=2代入ay-2=4中,得:2a-2=4,解得:a=3.故选B.【点睛】此题考查了同解方程,同解方程即为两方程的解相同.9.B【分析】将原不等式两边分别都减2、都除以4、都乘以6、都乘以﹣8,根据不等式得基本性质逐一判断即可得.【详解】A、将m>n两边都减2得:m﹣2>n﹣2,此选项错误;B、将m>n两边都除以4得:m n44>,此选项正确;C、将m>n两边都乘以6得:6m>6n,此选项错误;D、将m>n两边都乘以﹣8,得:﹣8m<﹣8n,此选项错误,故选B.【点睛】本题考查了不等式的性质,解题的关键是熟练掌握握不等式的基本性质,尤其是性质不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.10.D【详解】解:由他骑自行车和步行的时间分别为x、y分钟,根据关键语句“到学校共用时20分钟”可得方程:x+y=20,根据关键语句“骑自行车的平均速度是200米/分,步行的平均速度是70米/分.他家离学校的距离是3350米”可得方程:200x+70y=3350,两个方程组合可得方程组:x y20{200x70y3350+=+=.故选D.11.10x>【分析】按照去分母、移项、合并同类项的步骤求解即可.【详解】解:原不等式去分母得82x ->,移项得82x >+,合并同类项得10x >.故答案为:10x >.【点睛】题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.12.-1【分析】根据加减消元法,直接可求出x-y 的值.【详解】解:2524x y x y +=⎧⎨+=⎩①②②-①得:x-y=-1.故答案为-1.【点睛】此题主要考查了二元一次方程组的解法的应用,合理选择加减消元法求解即可,比较简单.13.2【分析】根据框图得出方程2x +6=10,解方程.即可【详解】解:由题意得:2x +6=10,解得:x =2,∴当输出为10时,则输入的x =2.故答案为:2.【点睛】本题考查一元一次方程的应用,读懂框图,正确列出方程是解答的关键.14.17,9【分析】把4x =代入33x y -=中求出y ,再把x ,y 代入另外一个不等式计算即可;【详解】将4x =代入33x y -=,∴123y -=,∴9y =,将4x =,9y =代入2x y +=△中,∴8917=+=V ;故答案是:17,9.【点睛】本题主要考查了二元一次方程组的求解,准确计算是解题的关键.15.5【分析】本题不等式211133x ax +-+>的解集是53x <,求得x 的解集,再根据解集即可求得a 的值.【详解】解:211133x ax +-+>,2131x ax ++>-,25x ax ->-,(2)5a x ->-∵不等式211133x ax +-+>的解集是53x <,∴20a -<,∴23a -=-,解得:5a =,故答案为:5.【点睛】此题考查了解一元一次不等式,当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.16.2,8【解析】试题分析:根据输出结果,由运算程序求出所有x 的值即可.解:根据题意得:3x+2=26,解得:x=8;根据题意得:3x+2=8,解得:x=2,则所有正数x 的值为2,8.故答案为2,8.考点:有理数的混合运算.17.(1)174x =;(2)17x =-【分析】(1)先去分母,再解一元一次方程;(2)先把分母化成整数,在解一元一次方程;【详解】(1)32126x x---=,()3326x x --+=,3926x x --+=,417x =,174x =;(2)0.10.30.020.0110.20.03x x -+-=,321123x x -+-=,()()336221x x --=+,39642x x --=+,17x =-;【点睛】本题主要考查了一元一次方程的求解,准确计算是解题的关键.18.(1)64x y =⎧⎨=⎩;(2)21x y =⎧⎨=-⎩.【分析】(1)利用加减消元法,②-①即可求解;(2)利用加减消元法,由①×3-②求解即可.【详解】解:(1)10216x y x y +=⎧⎨+=⎩①②,②-①得:6x =,把6x =代入①得:4y =,方程缉的解为64x y =⎧⎨=⎩(2)33814x y x y -=⎧⎨-=⎩①②,①×3-②得:55y =-,即1y =-,将1y =-,①得:2x =,方程组的解为21x y =⎧⎨=-⎩.【点睛】本题考查了解二元一次方程组,解二元一次方程组要利用消元的思想,消元的方法有:代入消元和加减消元.19.(1)2-、1-;(2)12x ≤,图见解析【分析】(1)先移项,合并同类项,把x 的系数化为1即可;(2)先去分母,再去括号,移项,合并同类项,把x 的系数化为1即可.【详解】解:(1)移项,得261x -<-,合并同类,得25x -<,系数化为1,得52x >-,故其所有负整数解为2-、1-;(2)去分母,得()()212921x x -≥-,去括号,得24189x x -≥-,移项,得41892x x --≥--,含并同类项,得2211x -≥-,系数化为1,得12x ≤,数轴如图:.【点睛】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.20.(1)1k =,2b =-;(2)3y =【分析】(1)将42x y =⎧⎨=⎩和13x y =-⎧⎨=-⎩分别代入y kx b =+,得到关于k 、b 的二元一次方程组,求解即可;(2)由(1)得2y x =-,将5x =代入,即可求得y 得值.【详解】解:(1)将42x y =⎧⎨=⎩和13x y =-⎧⎨=-⎩分别代入y kx b =+,得243k b k b =+⎧⎨-=-+⎩①②解得1k =,2b =-.(2)由(1)和2y x =-.将5x =代入2y x =-,得3y =.【点睛】本题考查了二元一次方程组的解法,以及求代数式的值,是基础知识要熟练掌握.21.(1)1x <;(2)223x x -+-+<【分析】(1)根据数轴上的点表示的数右边的总比左边的大,可得不等式,根据解不等式,可得答案;(2)根据作差法,即2(23)1x x x -+--+=-,根据(1)中x 得取值范围判断差的正负即可.【详解】解:(1)由数轴上的点表示的数右边的总比左边的大,得231x -+>,解得1x <;(2)2(23)1x x x -+--+=-,由1x <,得10x -<,∴2(23)0x x -+--+<∴223x x -+-+<.【点睛】本题考查了一元一次不等式,解题的关键运用作差法比较代数式的大小.22.(1)该店5月份购进甲种水果100千克,购进乙种水果50千克.(2)需要支付这两种水果的货款最少应是1500元.【分析】(1)设该店5月份购进甲种水果x 千克,购进乙种水果y 千克,根据总价=单价×购进数量,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)设购进甲种水果a 千克,需要支付的货款为w 元,则购进乙种水果(120﹣a )千克,根据总价=单价×购进数量,即可得出w 关于a 的函数关系式,由甲种水果不超过乙种水果的3倍,即可得出关于a 的一元一次不等式,解之即可得出a 的取值范围,再利用一次函数的性质即可解决最值问题【详解】(1)设该店5月份购进甲种水果x 千克,购进乙种水果y 千克,根据题意得:818170010201700300x y x y +=⎧⎨+=+⎩,解得:10050x y =⎧⎨=⎩,答:该店5月份购进甲种水果100千克,购进乙种水果50千克;(2)设购进甲种水果a 千克,需要支付的货款为w 元,则购进乙种水果(120﹣a )千克,根据题意得:w=10a+20(120﹣a )=﹣10a+2400,∵甲种水果不超过乙种水果的3倍,∴a≤3(120﹣a ),解得:a≤90,∵k=﹣10<0,∴w随a值的增大而减小,∴当a=90时,w取最小值,最小值﹣10×90+2400=1500,∴月份该店需要支付这两种水果的货款最少应是1500元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用以及一次函数的应用,弄清题意,找准等量关系列出方程组,找出各数量间的关系列出函数解析式是解题的关键.23.3212 ab⎧=⎪⎪⎨⎪=-⎪⎩【分析】对比两个方程组,可得a+b就是第一个方程组中的x,即a+b=1,同理:a﹣b=2,可得方程组解出即可.【详解】∵关于x、y的二元一次方程组3x my52x ny6-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,∴关于a.b的二元一次方程组3()()52()()6a b m a ba b n a b+--=⎧⎨++-=⎩满足12a ba b+=⎧⎨-=⎩,解得:3212 ab⎧=⎪⎪⎨⎪=-⎪⎩.∴关于a.b的二元一次方程组3()()52()()6a b m a ba b n a b+--=⎧⎨++-=⎩的解是3212ab⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查解二元一次方程组,通过对比得出以a、b为未知数的方程组是解题关键. 24.每节火车车皮装物资50吨,每辆汽车装物资6吨.【分析】设每节火车车皮装物资x吨,每辆汽车装物资y吨,根据题意,得25130 43218x yx y+=⎧⎨+=⎩,求解即可;【详解】设每节火车车皮装物资x吨,每辆汽车装物资y吨,根据题意,得25130 43218 x yx y+=⎧⎨+=⎩,∴506xy=⎧⎨=⎩,∴每节火车车皮装物资50吨,每辆汽车装物资6吨.【点睛】本题考查二元一次方程组的应用,能够根据题意列出准确的方程组,并用加减消元法解方程组是关键.。

七年级下册数学华师版试卷

七年级下册数学华师版试卷

选择题:下列哪个数不是有理数?A. 1/2B. -3C. √2(正确答案)D. 0.75下列等式中,正确的是:A. -(-5) = -5B. -| -3 | = 3C. (-2)2 = -4D. 3a - 2a = a(正确答案)下列图形中,不一定是轴对称图形的是:A. 等腰三角形B. 圆形C. 平行四边形(正确答案)D. 正方形下列哪个选项表示的是一元一次方程?A. x2 + 2x = 1B. 2x + y = 5C. 1/x = 2D. 3x - 7 = 0(正确答案)下列哪个数是不等式2x - 5 < 1的解?A. x = 4B. x = 2C. x = 1(正确答案)D. x = -1下列哪个选项描述的是两条直线平行的条件?A. 两直线被第三条直线所截,同位角相等(正确答案)B. 两直线被第三条直线所截,内错角互补C. 两直线被第三条直线所截,同旁内角相等D. 两直线相交于一点下列哪个选项是二元一次方程组的解?{ x + y = 5{ 2x - y = 4A. { x = 1, y = 4 }(正确答案)B. { x = 2, y = 3 }C. { x = 3, y = 2 }D. { x = 4, y = 1 }下列哪个数集包含了所有的正整数?A. 自然数集B. 整数集(正确答案)C. 有理数集D. 实数集下列哪个选项描述的是三角形全等的判定条件之一?A. 两边及一边的对角分别相等B. 两边及夹角分别相等(正确答案)C. 三个角分别相等D. 两条边分别相等且一个角相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南溪一中外国语实验学校
2017-2018学年下期初2017级半期考试
数学试题卷
命题人: 审题人:
考试时间120分钟,共120分
注意:请将答案一律写在答题卡上,在试题卷上答题一律无效。

一、单项选择题(每题3分,共24分)
1.在方程23=-y x ,021=-+x x ,21
21=x ,0322=--x x 中一元一次方程的个数为( )
A .1个
B .2个
C .3个
D .4个 2. 方程53=+y kx 有一组解⎩
⎨⎧==12
y x ,则k 的值是 ( )
A .1
B .-1
C .0
D .2 3.方程x x -=-22的解是( )
A .1=x
B .1-=x
C .2=x
D .0=x
4. 在某超市买5支钢笔和3本日记本需31元,买4支钢笔和2本日记本需24元,则该超市钢笔和日记本的单价分别为 ( )
A .4, 3
B .5, 2
C .5, 3
D .4, 2 5. 若a>b ,则下列不等式中正确的是 ( ) A.22-<-b a B.b a 22< C.2
2b
a ->-
D.55+>+b a 6. 已知01-<<x ,则x x x 1
,2
,三者的大小关系是 ( )
A .x x x 12<
< B .x x x 12<< C .x x x <<12 D .21
x x x
<< 7. 已知代数式313-y x m -与n m n y x +25
是同类项,那么m 和n 的值分别是 ( )
A .⎩⎨⎧-==12n m
B .⎩⎨⎧-=-=12n m
C .⎩⎨⎧==12n m
D .⎩
⎨⎧=-=12n m
8. 为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a ,b ,c ,d 对应密文a+2b ,2b+c ,2c+3d ,4d .例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为( )
A .7,6,1,4 B.6,4,1,7 C.4,6,1,7 D.1,6,4,7 二、填空题(每题3分,共24分)
9.在943=+y x 中,如果62=y ,那么x =____________;
10. 由y x <得到,ay ax >,a 应满足的条件是____________; . 11. 若03512=--=-+=+-z x y z y x ,则;_________=++z y x
12. 如果一个两位数的十位数数字是个位数数字的一半,且十位数字与个位数字之和为9,则这个两位数是_____________;
13. 已知,C B A ,,三地在同一直线上,某人乘船由A 地顺流而下到B 地,然后又逆流而上到C 地,共乘船3h ,已知船在静水中的速度是8km/h ,水流速度是2km/h ,若A 、C 两地距离为2km,则A 、B 两地间的距离是_________km ;
14. 甲、乙两个蓄水池共贮水40吨,如果在原有基础上甲池再进水2吨,乙池再排水6吨,则两池蓄水相等,则甲池原来贮水_________吨,乙池原来贮水_________吨;
15. 如图,正方形是由k 个相同的矩形组成, 上下各有2个水平放置的矩
形,中间竖放若 干个矩形,则k= __________;
16. 已知⎩⎨⎧==b y a
x 是方程02=+y x 的一个解,则.___________
236=++b a 三、解答题(共72分)
17. 解方程(每小题5分,共10分)
(1)x x -=+212 (2)14
2
312-+=-y y
18. 解方程组(每小题5分,共10分)
(1) ⎩⎨⎧=+=-172305y x y x (2)()⎪⎩
⎪⎨⎧+=-=-1
1331
32y x y x
15题图
19. 08)1()1(22=++--x k x k 是关于x 的一元一次方程,求k 的值. (6分) 20. 若
2
a 与392-a 互为相反数,求a 的值. (6分)
21. 观察右面的图形(每个正方形的边长均为1)和相应等式,控究其中的规律:
①211211-=⨯
②322322-=⨯
③433433-=⨯
④544544-=⨯
……
(1)写出第五个等式,并在右边给出的五个正方形上画出与之对应的图示:
(2)猜想并写出与第n 个图形相对应的等式. (8分)
22. 已知方程组⎩⎨⎧-=--=+4652by ax y x 与方程组⎩
⎨⎧-=+=-816
53ay bx y x 的解相同,求a 、b 的值. (10分)
23. 两位同学在解方程组时,甲同学由⎩⎨⎧=-=+872y cx by ax 正确的解出⎩⎨⎧-==23
y x ,乙同学因把c 写
错了而解得⎩
⎨⎧=-=22
y x ,试确定a 、b 、c 的值. (10分)
24. 牛奶加工厂现有鲜奶 9 吨,若在市场上直接销售鲜奶,每吨可获利润500元;制成酸奶销售,每加工1吨鲜奶可获利润1200元;制成奶片销售,每加工1吨鲜奶可获利润2000元.该厂的生产能力是:若制酸奶,每天可加工3吨鲜奶;若制奶片,每天可加工1吨鲜奶;受人员和设备限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕.
为此,该厂设计了两种可行方案:
方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;
方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成。

(1)如用方案一加工和销售,可获得多少利润?
(2)请你帮牛奶加工厂选择一种方案,使这9吨鲜奶既能在4天内全部销售或加工完毕,又能获得你认为最多的利润. (12分)
参考答案 选择题: AACBDDCB 填空题:
9. -1 10. a<0 11. 1012. 36 13. 10或12.5 14. 16,24 15. 816. 2 解答题:
17. (1)解: 13=x
3
1=x
(2)解:()()1223124-+=-y y
126348-+=-y y
25-=y
5
2-=y
18. (1)解:将①变形为: y x 5=③
将③代入②:17253=+⨯y y
1=y
将1=y 代入③,得:5=x
∴此方程组的解:⎩
⎨⎧==15
y x
(2)解::整理得 ⎩⎨⎧=-=-②

43223y x y x
① - ②,得:2-=-y
2y =
将2y =代入②,得:423=-x
2=x ∴此方程组的解为:⎩
⎨⎧==22
y x
19. 解:由题意得:()⎩
⎨⎧=+-=-110
12k k 解得:1=k
∴当1=k 时,此方程是一元一次方程。

20. 解:由题意得:039
22=-+a a
解得:718
=a
∴当718
=a 时,两式子互为相反数.
21. 解:(1)6
5
5655-=⨯ →
(2) 1
1+-
=+∙n n
n n n n 22. 解:由题意得:⎩⎨⎧=--=+1653652y x y x ,解得:⎩
⎨⎧-==22
y x
∵四个方程的解相同
∴⎩⎨⎧-==22y x 满足⎩
⎨⎧-=+-=-84ay bx by ax ,
即:⎩⎨⎧-=+--=+822422b a b a 解得:⎩
⎨⎧-==31b a
23. 解:甲同学计算出正确解为:⎩⎨⎧==2-3
y x ,∴代入,得:⎩⎨⎧=+=-②
①8143223c b a
乙同学计算结果为:⎩⎨⎧=-=22
y x ∴代入,得:③222=+-b a
由①②③求解得:⎪⎩

⎨⎧-===254c b a
24. 解:(1)奶片加工:441=⨯(吨)鲜奶加工:549=-(吨)
∴方案一利润为:10500420005500=⨯+⨯(元)
(2)设加工奶片x 吨
43
91=-+x x 解得:5.1=x
经检验,符合题意.
则方案二的利润为:()120005.11012005.12000=-⨯+⨯(元)
∵1200010500< ,∴选择方案二获利更多。

相关文档
最新文档