《概率论与数理统计》期末考试题及答案

合集下载

概率论与数理统计》期末考试试题及解答

概率论与数理统计》期末考试试题及解答

概率论与数理统计》期末考试试题及解答1.设事件A,B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为0.3.解:由题意可得:P(AB+AB)=0.3,即0.3=P(AB)+P(AB)=P(A)-P(AB)+P(B)-P(AB)=0.5-2P(AB),所以P(AB)=0.1,P(A∪B)=P(AB)=1-P(AB)=0.9.2.设随机变量X服从泊松分布,且P(X≤1)=4P(X=2),则P(X=3)=1/e6.解答:由P(X≤1)=P(X=0)+P(X=1)=e^(-λ)+λe^(-λ)=5λe^(-λ/2)得e^(-λ/2)=0.4,即λ=ln2,所以P(X=2)=e^(-λ)λ^2/2!=1/6,又因为P(X≤1)=4P(X=2),所以P(X=0)+P(X=1)=4P(X=2),即e^(-λ)+λe^(-λ)=4λe^(-λ),解得λ=ln2,故P(X=3)=e^(-λ)λ^3/3!=1/e6.3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y=X在区间(0,4)内的概率密度为f_Y(y)=1/2,0<y<4;其它为0.解答:设Y的分布函数为F_Y(y),X的分布函数为F_X(x),密度为f_X(x),则F_Y(y)=P(Y≤y)=P(X≤y)=F_X(y)-F_X(0)。

因为X~U(0,2),所以F_X(0)=0,F_X(y)=y/2,故F_Y(y)=y/2,所以f_Y(y)=F_Y'(y)=1/2,0<y<4;其它为0.4.设随机变量X,Y相互独立,且均服从参数为λ的指数分布,P(X>1)=e^(-λ),则λ=2,P{min(X,Y)≤1}=1-e^(-λ)。

解答:因为P(X>1)=1-P(X≤1)=e^(-λ),所以λ=ln2.因为X,Y相互独立且均服从参数为λ的指数分布,所以P{min(X,Y)≤1}=1-P{min(X,Y)>1}=1-P(X>1)P(Y>1)=1-e^(-λ)。

(完整word版)《概率论与数理统计》期末考试试题及解答

(完整word版)《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分)1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________。

答案:0.3解:3.0)(=+B A B A P即)(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+=所以1.0)(=AB P9.0)(1)()(=-==AB P AB P B A P 。

2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______.答案:161-e解答:λλλλλ---==+==+==≤e X P e eX P X P X P 2)2(,)1()0()1(2由 )2(4)1(==≤X P X P 知 λλλλλ---=+e e e 22 即 0122=--λλ 解得 1=λ,故161)3(-==e X P3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间)4,0(内的概率密度为=)(y f Y _________。

答案:04,()()0,.Y Y X y f y F y f <<'===⎩其它解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则2()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤≤=-因为~(0,2)X U,所以(0X F =,即()Y X F y F = 故04,()()0,.Y Y Xyf y F y f<<'===⎩其它另解在(0,2)上函数2y x=严格单调,反函数为()h y=所以04,()0,.Y Xyf y f<<==⎩其它4.设随机变量YX,相互独立,且均服从参数为λ的指数分布,2)1(-=>eXP,则=λ_________,}1),{min(≤YXP=_________。

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案

概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。

参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。

参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。

参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。

参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。

参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。

(完整word版)概率论与数理统计期末试卷及答案

(完整word版)概率论与数理统计期末试卷及答案

一、选 择 题 (本大题分5小题, 每小题4分, 共20分) (1)设A 、B 互不相容,且P(A)>0,P(B)>0,则必有( )(A)0)(>A B P (B))()(A P B A P = (C)0)(=B A P (D))()()(B P A P AB P = (2)将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为( )3311()()()()328168A B C D(3)),4,(~2μN X ),5,(~2μN Y }5{},4{21+≥=-≤=μμY P p X P p ,则( ) (A)对任意实数21,p p =μ (B )对任意实数21,p p <μ (C)只对μ的个别值,才有21p p = (D )对任意实数μ,都有21p p >(4)设随机变量X 的密度函数为)(x f ,且),()(x f x f =-)(x F 是X 的分布函数,则对任意 实数a 成立的是( ) (A )⎰-=-adx x f a F 0)(1)( (B )⎰-=-adx x f a F 0)(21)( (C ))()(a F a F =- (D )1)(2)(-=-a F a F(5)已知1250,,,X X X L 为来自总体()2,4X N :的样本,记5011,50i i X X ==∑ 则 50211()4i i X X =-∑服从分布为( ) (A )4(2,)50N (B) 2(,4)50N (C )()250χ (D) ()249χ 二、填 空 题 (本大题5小题, 每小题4分, 共20分)(1) 4.0)(=A P ,3.0)(=B P ,4.0)(=⋃B A P ,则___________)(=B A P(2) 设随机变量X 有密度⎩⎨⎧<<=其它010,4)(3x x x f , 则使)()(a X P a X P <=>的常数a =(3) 设随机变量),2(~2σN X ,若3.0}40{=<<X P ,则=<}0{X P (4)设()221xx f x -+-=, 则EX = , DX =(5)设总体~(,9)X N μ,已知样本容量为25,样本均值x m =;记0.1u a =,0.05u b =;()0.124t c =,()0.125t d =;()0.0524t l =,()0.0525t k =,则μ的置信度为0.9的置信区间为三、解答题 (共60分)1、(10分)某工厂由甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂的25%,35%,40%,各车间产品的次品率分别为5%,4%,2%, 求:(1)全厂产品的次品率(2) 若任取一件产品发现是次品,此次品是甲车间生产的概率是多少?2、(10分)设X 与Y 两个相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=.,0;10,1)(其它x x f X ⎩⎨⎧≤>=-.0,0;0,)(y y e y f y Y求:随机变量Y X Z +=的概率密度函数.3、(10分)设随机变量X 服从参数2λ=的指数分布,证明:21XY e-=-服从()0,1上的均匀分布。

概率论与数理统计期末考试试题(答案)

概率论与数理统计期末考试试题(答案)

概率论与数理统计开/闭卷闭卷A/B 卷 A课程编号 2219002801—2219002811课程名称 概率论与数理统计学分 3基本题6小题,每小题5分,满分30分。

在每小题给出的四个选项中,只有一把所选项前的字母填在题后的括号内)(每道选择题选对满分,选错分)。

事件表达式A B 的意思是 ( ) ) 事件A 与事件B 同时发生 (B ) 事件A 发生但事件B 不发生) 事件B 发生但事件A 不发生 (D) 事件A 与事件B 至少有一件发生D ,根据A B 的定义可知。

假设事件A 与事件B 互为对立,则事件A B ( )) 是不可能事件 (B ) 是可能事件 C) 发生的概率为1 (D) 是必然事件 :选A,这是因为对立事件的积事件是不可能事件。

已知随机变量X ,Y 相互独立,且都服从标准正态分布,则X 2+Y 2服从 ( ) A) 自由度为1的χ2分布 (B ) 自由度为2的χ2分布 ) 自由度为1的F 分布 (D) 自由度为2的F 分布选B ,因为n 个相互独立的服从标准正态分布的随机变量的平方和服从自由度为n 的2分布.已知随机变量X ,Y 相互独立,X ~N (2,4),Y ~N (-2,1), 则( ) X +Y ~P (4) (B ) X +Y ~U (2,4) (C) X +Y ~N (0,5) (D ) +Y ~N (0,3)C ,因为相互独立的正态变量相加仍然服从正态分布,而E (X +Y )=E (X )+E (Y )D (X +Y )=D (X )+D (Y )=4+1=5, 所以有X +Y ~N (0,5)。

样本(X 1,X 2,X 3)取自总体X ,E (X )=μ, D (X )=σ2, 则有( ) A) X 1+X 2+X 3是μ的无偏估计(B )1233X X X ++是μ的无偏估计) 22X 是σ2的无偏估计(D ) 21233X X X ++⎛⎫ ⎪⎝⎭是σ2的无偏估计:选B ,因为样本均值是总体期望的无偏估计,其它三项都不成立。

《概率论与数理统计》期末考试题(附答案)

《概率论与数理统计》期末考试题(附答案)

《概率论与数理统计》期末考试题一. 填空题(每小题2分,共计60分)1、A 、B 是两个随机事件,已知0.1p(AB)0.3,)B (p ,5.0)A (p ===,则=)B -A (p 0.4 、=)B A (p 0.7 、=)B A (p 1/3 ,)(B A P ⋅= 0.3 。

2、一个袋子中有大小相同的红球4只黑球2只,(1)从中不放回地任取2只,则第一、二次取到球颜色不同的概率为: 8/15 。

(2)若有放回地任取2只,则第一、二次取到球颜色不同的概率为: 4/9 。

(3)若第一次取一只球后再追加一只与其颜色相同的球一并放入袋中再取第二只球,则第一、二次取到球颜色不同的概率为: 13/21 .3、设随机变量X 服从参数为6的泊松分布,则{}=≥1X p 1- 6-e4、设随机变量X 服从B (2,0. 6)的二项分布,则{}==2X p 0.36 , Y 服从B (8,0. 6)的二项分布, 且X 与Y 相互独立,则Y X +服从 B (10,0. 6) 分布,=+)(Y X E 6 。

5、设二维随机向量),(Y X 的分布律是有则=a _0.3_,X 的数学期=)(X E ___0.5_______,Y X 与的相关系数=xy ρ___0.1_______。

第 1页共 4 页6、三个可靠性为p>0的电子元件独立工作,(1)若把它们串联成一个系统,则系统的可靠性为:3p ;(2)若把它们并联成一个系统,则系统的可靠性为:3)1(1p --;7、(1)若随机变量X )3,1(~U ,则{}=20〈〈X p 0.5;=)(2X E _13/3, =+)12(X D 3/4 .(2)若随机变量X ~)4 ,1(N 且8413.0)1(=Φ则=<<-}31{X P 0.6826 ,(~,12N Y X Y 则+= 3 , 16 )。

8、随机变量X 、Y 的数学期望E(X)=1,E(Y)=2, 方差D(X)=1,D(Y)=2, 且X 、Y 相互独立,则:=+)2(Y X E 5 ,=+)2(Y X D 17 。

概率论与数理统计期末考试试题库及答案

概率论与数理统计期末考试试题库及答案

概率论与数理统计期末考试试题库及答案概率论与数理统计概率论试题一、填空题1.设 A、B、C是三个随机事件。

试用 A、B、C分别表示事件1)A、B、C 至少有一个发生 2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设 A、B为随机事件, ,,。

则=3.若事件A和事件B相互独立, ,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A______________7. 已知随机变量X的密度为,且,则________________8. 设~,且,则 _________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x2+x+10有实根的概率是11.设,,则12.用()的联合分布函数F(x,y)表示13.用()的联合分布函数F(x,y)表示14.设平面区域D由y x , y 0 和 x 2 所围成,二维随机变量x,y在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x 1 处的值为。

15.已知,则=16.设,且与相互独立,则17.设的概率密度为,则=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为3的泊松分布,记YX1-2X2+3X3,则D(Y)19.设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~ 或 ~ 。

特别是,当同为正态分布时,对于任意的,都精确有~ 或~.21.设是独立同分布的随机变量序列,且,那么依概率收敛于22.设是来自正态总体的样本,令则当时~。

23.设容量n 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值,样本方差24.设X1,X2,…Xn为来自正态总体的一个简单随机样本,则样本均值服从二、选择题1. 设A,B为两随机事件,且,则下列式子正确的是(A)P A+B P A; (B)(C) (D)2. 以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为 (A)“甲种产品滞销,乙种产品畅销”; (B)“甲、乙两种产品均畅销”(C)“甲种产品滞销”;(D)“甲种产品滞销或乙种产品畅销”。

《概率论与数理统计》期末考试试题及解答.doc

《概率论与数理统计》期末考试试题及解答.doc

《概率论与数理统计》期末考试试题及解答一、填空题(每小题3分,共15分)1.设事件A,B仅发生一个的概率为0.3,且P(A)?P(B)?0.5,则A,B至少有一个不发生的概率为__________.答案:0.3解:P(A?B)?0.3即0.3?P(A)?P(B)?P(A)?P(AB)?P(B)?P(AB)?0.5?2P(AB)所以P(AB)?0.1P(?)?P(AB)?1?P(AB)?0.9.2.设随机变量X服从泊松分布,且P(X?1)?4P(X?2),则P(X?3)?______.答案:1?1e6解答:P(X?1)?P(X?0)?P(X?1)?e????e,??P(X?2)??22e??????2?? 由P(X?1)?4P(X?2) 知e??e?2?e2 即2????1?0 解得??1,故P(X?3)?1?1e 623.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y?X在区间(0,4)内的概率密度为fY(y)?_________.答案:0?y?4,fY(y)?FY?(y)?fX? 0,其它.?解答:设Y的分布函数为FY(y),X的分布函数为FX(x),密度为fX(x)则FY(y)?P(Y?y)?P(X?2y)?y?)yX)Xy? ?)y 因为X~U(0,2),所以FX(?0,即FY(y)?FX故10?y?4,fY(y)?FY?(y)?fX? 0,其它.?另解在(0,2)上函数y?x2严格单调,反函数为h(y)?所以0?y?4,fY(y)?fX? ?0,其它.?24.设随机变量X,Y相互独立,且均服从参数为?的指数分布,P(X?1)?e,则??_________,P{min(X,Y)?1}=_________.答案:??2,P{min(X,Y)?1}?1?e-4解答:P(X?1)?1?P(X?1)?e???e?2,故??2P{min(X,Y)?1}?1?P{min(X,Y)?1}?1?P(X?1)P(Y?1)?1?e?4.5.设总体X的概率密度为???(??1)x,0?x?1, f(x)?? ???1. ?其它?0,X1,X2,?,Xn是来自X的样本,则未知参数?的极大似然估计量为_________.答案:???11nlnxi?ni?1?1解答:似然函数为L(x1,?,xn;?)??(??1)xi??(??1)n(x1,?,xn)?i?1nlnL?nln(??1)??n?lnxi?1ni解似然方程得?的极大似然估计为dlnLn???lnxi?0 d???1i?12?? ?11n?lnxini?1?1.二、单项选择题(每小题3分,共15分)1.设A,B,C为三个事件,且A,B相互独立,则以下结论中不正确的是(A)若P(C)?1,则AC与BC也独立.(B)若P(C)?1,则A?C与B也独立.(C)若P(C)?0,则A?C与B也独立.(D)若C?B,则A与C也独立. ()答案:(D).解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A),(B),(C)都是正确的,只能选(D).事实上由图可见A与C不独立.2.设随机变量X~N(0,1),X的分布函数为?(x),则P(|X|?2)的值为(A)2[1??(2)]. (B)2?(2)?1.(C)2??(2). (D)1?2?(2). ()答案:(A)解答:X~N(0,1)所以P(|X|?2)?1?P(|X|?2)?1?P(?2?X?2)(2)??(?2)?1?[2?(2?) ?1??1]?2?[1 ? 应选(A).3.设随机变量X和Y不相关,则下列结论中正确的是(A)X与Y独立. (B)D(X?Y)?DX?DY.(C)D(X?Y)?DX?DY. (D)D(XY)?DXDY. () 3答案:(B)解答:由不相关的等价条件知,?xy?0?cov(x,y)?0 D(X?Y)?DX?DY+2cov (x,y)应选(B).4.设离散型随机变量X和Y的联合概率分布为(X,Y)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3) P111169183??若X,Y独立,则?,?的值为(A)??29,??19. (A)??129,??9.(C)??16,??16 (D)??518,??118.4 )(答案:(A)解答:若X,Y独立则有??P(X?2,Y?2)?P(X?2)P(Y?2) 1121 ?(????)(??)?(??) 393921 ???,??99 故应选(A).5.设总体X的数学期望为?,X1,X2,?,Xn为来自X的样本,则下列结论中正确的是(A)X1是?的无偏估计量. (B)X1是?的极大似然估计量.(C)X1是?的相合(一致)估计量. (D)X1不是?的估计量. ()答案:(A)解答:EX1??,所以X1是?的无偏估计,应选(A).三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.解:设A?‘任取一产品,经检验认为是合格品’B?‘任取一产品确是合格品’则(1)P(A)?P(B)P(A|B)?P()P(A|)?0.9?0.95?0.1?0.02?0.857.(2)P(B|A)?四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设X为途中遇到红灯的次数,求X的分布列、分布函数、数学期望和方差.5 P(AB)0.9?0.95??0.9977. P(A)0.857解:X的概率分布为P(X?k)?C3()()k25k353?kk?0,1,2,3.X即X的分布函数为P02712515412523612538 125x?0,?0,?27?,0?x?1,?125??81,1?x?2, F(x)???125?117 2?x?3,?125,?x?3.?1,?26EX?3??,552318DX?3???.5525五、(10分)设二维随机变量(X,Y)在区域D?{(x,y)|x?0,y?0,x?y?1} 上服从均匀分布. 求(1)(X,Y)关于X的边缘概率密度;(2)Z?X?Y的分布函数与概率密度.(1)(X,Y)的概率密度为?2,(x,y)?Df(x,y)??0,其它.?fX(x)?(2)利用公式fZ(z)? 其中f(x,z?x)????????????2?2x,0?x?1f(x,y)dy??0,其它??f(x,z?x)dx?2,0?x?1,0?z?x?1?x?2,0?x?1,x?z?1.??0,其它??0,其它.当z?0或z?1时fZ(z)?0 0?z?1时fZ(z)?2?z0dx?2x0?2zz6故Z的概率密度为??2z,0?z?1,fZ(z)????0,其它.Z的分布函数为fZ(z)??z??z?0?0,?0,z?0,?z??fZ(y)dy???2ydy,0?z?1??z2,0?z?1, 0??1,z?1.?z?1??1,或利用分布函数法?z?0,?0,?FZ(z)?P(Z?z z1,)?P(X?Y?)z,y0??????2dxd?D1?1,z?1.??0,?2, ??z?1,?z?0,0?z?1, z?1.?2z,?0,0?z?1,其它.fZ(z)?FZ?(z)??六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X和纵坐标Y相互独立,且均服从N(0,2)分布. 求(1)命中环形区域D?{(x,y)|1?x?y?2}的概率;(2)命中点到目标中心距离Z?1)P{X,Y)?D}?222.??f(x,y)dxdyD???2??4D?x2?y28dxdy? 18?r282??2?21e?r28rdrd??(2)EZ?E? ?21e?r28d(?)??e 82??e?e;1?18?12 ?? ??r28 ????1e?04 ???1e8??x2?y28dxdy?18???2???0re?rdrd??r28r2dr7??rer2?8????0??0e?r28dr??????r28dr?.七、(11分)设某机器生产的零件长度(单位:cm)X~N(?,?2),今抽取容量为16的样本,测得样本均值?10,样本方差s2?0.16. (1)求?的置信度为0.95的置信区间;(2)检验假设H0:?2?0.1(显著性水平为0.05).(附注)t0.05(16)?1.746,t0.05(15)?1.753,t0.025(15)?2.132,解:(1)?的置信度为1??下的置信区间为(?t?/2(n?222?0.05(16)?26.296,?0.05(15)?24.996,?0.025(15)?27.488. ?t?/2(n??10,s?0.4,n?16,??0.05,t0.025(15)?2.132所以?的置信度为0.95的置信区间为(9.7868,10.2132)2 (2)H0:?2?0.1的拒绝域为?2???(n?1).15S22?15?1.6?24,?0.05 ??(15)?24.996 0.12 因为?2?24?24.996??0.05(15),所以接受H0.2《概率论与数理统计》期末考试试题(A)专业、班级:姓名:学号:一、单项选择题(每题3分共18分)891011121314151617《概率论与数理统计》课程期末考试试题(B)专业、班级:姓名:学号:181920212223242526272829共8页30。

《概率论与数理统计》期末考试试题及答案-(最新版-已修订)

《概率论与数理统计》期末考试试题及答案-(最新版-已修订)

《概率论与数理统计》期末考试试题(A )专业、班级: 姓名: 学号: 题 号一二三四五六七八九十十一十二总成绩得 分一、单项选择题(每题3分 共18分)1.D 2.A 3.B 4.A 5.A 6.B(1).0)(,0)(;;0)(0)();(( ).,0)(=>===A B P A P (D)B A (C)B P A P (B)B A (A)AB P B A 则同时出现是不可能事件与或互不相容互斥与则以下说法正确的是适合、若事件(2)设随机变量X 其概率分布为 X -1 0 1 2P 0.2 0.3 0.1 0.4则( )。

=≤}5.1{X P (A)0.6 (B) 1 (C) 0 (D)21(3)设事件与同时发生必导致事件发生,则下列结论正确的是()1A 2A A (A ) (B ))()(21A A P A P =1)()()(21-+≥A P A P A P (C ) (D ))()(21A A P A P =1)()()(21-+≤A P A P A P (4)).54,0);46,0();3,0();5,0(~,72,),1,2(~),1,3(~(D)N (C)N (B)N (A)Z Y X Z Y X N Y N X 则令相互独与且设随机变量+-=-(N 立).((5)设为正态总体的一个简单随机样本,其中n X X X ,,2,1 ),(2σμN μσ,2=未知,则( )是一个统计量。

(A) (B)212σ+∑=ni iX 21)(μ-∑=ni i X (C) (D)μ-X σμ-X (6)设样本来自总体未知。

统计假设n X X X ,,,21 22),,(~σσμN X 为 则所用统计量为( )。

:已知)(:01000μμμμμ≠=H H (A) (B) nX U σμ0-=nSX T 0μ-=(C) (D)222)1(σχS n -=∑=-=ni iX1222)(1μσχ二、填空题(每空3分 共15分)1. 2. , 3. 4. )(B P ⎩⎨⎧≤>=-00)(x x xe x f x23-e1-)9(t (1)如果,则 .)()(,0)(,0)(A P B A P B P A P =>>=)(A B P (2)设随机变量的分布函数为X ⎩⎨⎧>+-≤=-.0,)1(1,0,0)(x e x x x F x则的密度函数,.X =)(x f =>)2(X P (3).ˆ,________,ˆ3ˆ2ˆˆ,ˆ,ˆ,ˆ321321是的无偏估计量也时当的无偏估计量是总体分布中参数设θθθθθθθθθθ=+-=a a (4)设总体和相互独立,且都服从,是来自总体的X Y )1,0(N 921,,X X X X 样本,是来自总体的样本,则统计量 921,,Y Y Y Y 292191Y Y X X U ++++= 服从分布(要求给出自由度)。

概率论与数理统计的期末考试试卷答案详解

概率论与数理统计的期末考试试卷答案详解

《概率论与数理统计》试卷A一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则A B =U ()A 、AB B 、A BC 、A BD 、A B U 2、设A ,B ,C 表示三个事件,则A B C 表示()A 、A ,B ,C 中有一个发生 B 、A ,B ,C 中恰有两个发生C 、A ,B ,C 中不多于一个发生D 、A ,B ,C 都不发生3、A 、B 为两事件,若()0.8P A B =U ,()0.2P A =,()0.4P B =,则()成立A 、()0.32P AB = B 、()0.2P A B =C 、()0.4P B A -=D 、()0.48P B A = 4、设A ,B 为任二事件,则()A 、()()()P AB P A P B -=- B 、()()()P A B P A P B =+UC 、()()()P AB P A P B =D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是()A 、A 与B 独立 B 、A 与B 独立C 、()()()P AB P A P B =D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为其分布函数为()F x ,则(3)F =()A 、0B 、0.3C 、0.8D 、17、设离散型随机变量X 的密度函数为4,[0,1]()0,cx x f x ⎧∈=⎨⎩其它 ,则常数c =()A 、15 B 、14C 、4D 、58、设X ~)1,0(N,密度函数22()x x ϕ-=,则()x ϕ的最大值是()A 、0B 、1 CD、9、设随机变量X 可取无穷多个值0,1,2,…,其概率分布为33(;3),0,1,2,!k p k e k k -==L ,则下式成立的是()A 、3EX DX ==B 、13EX DX == C 、13,3EX DX == D 、1,93EX DX ==10、设X 服从二项分布B(n,p),则有()A 、(21)2E X np -=B 、(21)4(1)1D X np p +=-+C 、(21)41E X np +=+D 、(21)4(1)D X np p -=-11、独立随机变量,X Y ,若X ~N(1,4),Y ~N(3,16),下式中不成立的是()A 、()4E X Y +=B 、()3E XY =C 、()12D X Y -= D 、()216E Y += 12、设随机变量X 的分布列为:则常数c=()A 、0B 、1C 、14D 、14-13、设X ~)1,0(N ,又常数c 满足{}{}P X c P X c ≥=<,则c 等于()A 、1B 、0C 、12 D 、-1 14、已知1,3EX DX =-=,则()232E X ⎡⎤-⎣⎦=()A 、9B 、6C 、30D 、36 15、当X 服从( )分布时,EX DX =。

概率论与数理统计期末试卷及答案

概率论与数理统计期末试卷及答案

一、选 择 题 (本大题分5小题, 每小题4分, 共20分) (1)设A 、B 互不相容,且P(A)>0,P(B)>0,则必有( )(A)0)(>A B P (B))()(A P B A P = (C)0)(=B A P (D))()()(B P A P AB P = (2)将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为( )3311()()()()328168A B C D(3)),4,(~2μN X ),5,(~2μN Y }5{},4{21+≥=-≤=μμY P p X P p ,则( ) (A)对任意实数21,p p =μ (B )对任意实数21,p p <μ (C)只对μ的个别值,才有21p p = (D )对任意实数μ,都有21p p >(4)设随机变量X 的密度函数为)(x f ,且),()(x f x f =-)(x F 是X 的分布函数,则对任意 实数a 成立的是( ) (A )⎰-=-adx x f a F 0)(1)( (B )⎰-=-adx x f a F 0)(21)( (C ))()(a F a F =- (D )1)(2)(-=-a F a F(5)已知1250,,,X X X L 为来自总体()2,4X N :的样本,记5011,50i i X X ==∑ 则 50211()4i i X X =-∑服从分布为( ) (A )4(2,)50N (B) 2(,4)50N (C )()250χ (D) ()249χ 二、填 空 题 (本大题5小题, 每小题4分, 共20分)(1) 4.0)(=A P ,3.0)(=B P ,4.0)(=⋃B A P ,则___________)(=B A P(2) 设随机变量X 有密度⎩⎨⎧<<=其它010,4)(3x x x f , 则使)()(a X P a X P <=>的常数a =(3) 设随机变量),2(~2σN X ,若3.0}40{=<<X P ,则=<}0{X P (4)设()221xx f x -+-=, 则EX = , DX =(5)设总体~(,9)X N μ,已知样本容量为25,样本均值x m =;记0.1u a =,0.05u b =;()0.124t c =,()0.125t d =;()0.0524t l =,()0.0525t k =,则μ的置信度为0.9的置信区间为三、解答题 (共60分)1、(10分)某工厂由甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂的25%,35%,40%,各车间产品的次品率分别为5%,4%,2%, 求:(1)全厂产品的次品率(2) 若任取一件产品发现是次品,此次品是甲车间生产的概率是多少?2、(10分)设X 与Y 两个相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=.,0;10,1)(其它x x f X ⎩⎨⎧≤>=-.0,0;0,)(y y e y f y Y求:随机变量Y X Z +=的概率密度函数.3、(10分)设随机变量X 服从参数2λ=的指数分布,证明:21XY e-=-服从()0,1上的均匀分布。

概率论与数理统计期末考试试卷答案

概率论与数理统计期末考试试卷答案

概率论与数理统计期末考试试卷答案一、选择题(每题5分,共25分)1. 下列事件中,不可能事件是()A. 抛掷一枚硬币,正面朝上B. 抛掷一枚硬币,正面和反面同时朝上C. 抛掷一枚骰子,出现7点D. 抛掷一枚骰子,出现1点答案:C2. 设A、B为两个事件,若P(A-B)=0,则下列选项正确的是()A. P(A) = P(B)B. P(A) ≤ P(B)C. P(A) ≥ P(B)D. P(A) = 0答案:B3. 设随机变量X服从二项分布B(n, p),则下列结论正确的是()A. 当n增加时,X的期望值增加B. 当p增加时,X的期望值增加C. 当n增加时,X的方差增加D. 当p增加时,X的方差减少答案:B4. 设X~N(μ, σ^2),下列选项中错误的是()A. X的期望值E(X) = μB. X的方差D(X) = σ^2C. X的概率密度函数关于X = μ对称D. 当σ增大时,X的概率密度函数的峰值减小答案:D5. 在假设检验中,显著性水平α表示()A. 原假设为真的情况下,接受原假设的概率B. 原假设为假的情况下,接受原假设的概率C. 原假设为真的情况下,拒绝原假设的概率D. 原假设为假的情况下,拒绝原假设的概率答案:C二、填空题(每题5分,共25分)6. 设A、B为两个事件,P(A) = 0.5,P(B) = 0.6,P(A∩B) = 0.3,则P(A-B) = _______。

答案:0.27. 设随机变量X服从泊松分布,已知P(X=1) = 0.2,P(X=2) = 0.3,则λ = _______。

答案:1.58. 设随机变量X~N(μ, σ^2),若P(X<10) = 0.2,P(X<15) = 0.8,则μ = _______。

答案:12.59. 在假设检验中,若原假设H0为μ=10,备择假设H1为μ≠10,显著性水平α=0.05,则接受原假设的临界值是_______。

答案:9.5或10.510. 设X、Y为两个随机变量,若X与Y相互独立,则下列选项正确的是()A. E(XY) = E(X)E(Y)B. D(X+Y) = D(X) + D(Y)C. D(XY) = D(X)D(Y)D. 上述选项都正确答案:D三、解答题(每题25分,共100分)11. 设某班有50名学生,其中有20名男生,30名女生。

概率论和数理统计期末考试题及答案

概率论和数理统计期末考试题及答案

概率论与数理统计期末复习题一一、填空题(每空2分,共20分)1、设X 为连续型随机变量,则P{X=1}=( 0 ).2、袋中有50个球,其编号从01到50,从中任取一球,其编号中有数字4的概率为(14/50 或7/25 ).3、若随机变量X 的分布律为P{X=k}=C(2/3)k,k=1,2,3,4,则C=( 81/130 ). 4、设X 服从N (1,4)分布,Y 服从P(1)分布,且X 与Y 独立,则 E (XY+1-Y )=( 1 ) ,D (2Y-X+1)=( 17 ).5、已知随机变量X ~N(μ,σ2),(X-5)/4服从N(0,1),则μ=( 5 );σ=( 4 ). 6且X 与Y 相互独立。

则A=( 0.35 ),B=( 0.35 ).7、设X 1,X 2,…,X n 是取自均匀分布U[0,θ]的一个样本,其中θ>0,n x x x ,...,,21是一组观察值,则θ的极大似然估计量为( X (n) ).二、计算题(每题12分,共48分)1、钥匙掉了,落在宿舍中的概率为40%,这种情况下找到的概率为0.9; 落在教室里的概率为35%,这种情况下找到的概率为0.3; 落在路上的概率为25%,这种情况下找到的概率为0.1,求(1)找到钥匙的概率;(2)若钥匙已经找到,则该钥匙落在教室里的概率.解:(1)以A 1,A 2,A 3分别记钥匙落在宿舍中、落在教室里、落在路上,以B 记找到钥匙.则 P(A 1)=0.4,P(A 2)=0.35,P(A 3)=0.25, P(B| A 1)=0.9 ,P(B| A 2)=0.3,P(B| A 3)=0.1 所以,49.01.025.03.035.09.04.0)|()()(31=⨯+⨯+⨯==∑=ii iA B P A P B P(2)21.049.0/)3.035.0()|(2=⨯=B A P 2、已知随机变量X 的概率密度为其中λ>0为已知参数.(1)求常数A; (2)求P{-1<X <1/λ)}; (3)F(1).⎪⎩⎪⎨⎧<≥=-000)(2x x e A x f x λλ解:(1)由归一性:λλλλλλ/1,|)(102==-===∞+--+∞+∞∞-⎰⎰A A e A dx e A dx x f x x 所以(2)⎰=-==<<--λλλλ/1036.0/11}/11{e dx e X P x(3)⎰---==11)1(λλλe dx eF x3、设随机变量X 的分布律为且X X Y 22+=,求(1)()E X ; (2)()E Y ; (3))(X D . 解:(1)14.023.012.001.01)(=⨯+⨯+⨯+⨯-=X E (2)24.043.012.001.01)(2=⨯+⨯+⨯+⨯=X E422)(2)()2()(22=+=+=+=X E X E X X E Y E(3)112)]([)()(22=-=-=X E X E X D4、若X ~N(μ,σ2),求μ, σ2的矩估计.解:(1)E(X)=μ 令μ=-X 所以μ的矩估计为-Λ=X μ(2)D(X)=E(X 2)-[E(X)]2又E(X 2)=∑=n i i X n 121D(X)= ∑=n i i X n 121--X =212)(1σ=-∑=-n i i X X n所以σ2的矩估计为∑=-Λ-=ni i X X n 122)(1σ三、解答题(12分)设某次考试的考生的成绩X 服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为在这次考试中全体考生的平均成绩为70分? 解:提出假设检验问题:H 0: μ=70, H 1 :μ≠70,nS X t /70-=-~t(n-1),其中n=36,-x =66.5,s=15,α=0.05,t α/2(n-1)=t 0.025(35)=2.03 (6)03.24.136/15|705.66|||<=-=t所以,接受H 0,在显著性水平0.05下,可认为在这次考试中全体考生的平均成绩为70分四、综合题(每小题4分,共20分) 设二维随机变量),(Y X 的联合密度函数为:32,01,01(,)0,x ce y x y f x y ⎧≤≤≤≤=⎨⎩其它试求: )1( 常数C ;)2(()X f x , )(y f Y ;)3( X 与Y 是否相互独立?)4( )(X E ,)(Y E ,)(XY E ; )5( )(X D ,)(Y D . 附:Φ(1.96)=0.975; Φ(1)=0.84; Φ(2)=0.9772t 0.05(9)= 1.8331 ; t 0.025(9)=2.262 ; 8595.1)8(05.0=t , 306.2)8(025.0=t t 0.05(36)= 1.6883 ; t 0.025(36)=2.0281 ; 0.05(35) 1.6896t =, 0.025(35) 2.0301t = 解:(1))1(9|31|3113103103101010102323-=⋅⋅=⋅==⎰⎰⎰⎰e c y e c dy y dx e c dxdy y ce x x x 所以,c=9/(e 3-1)(2)0)(1319)(,103323103=-=-=≤≤⎰x f x e e dy y e e x f x X xx X 为其它情况时,当当所以,333,01()10,xX e x f x e ⎧≤≤⎪=-⎨⎪⎩其它同理, 23,01()0,Y y y f y ⎧≤≤=⎨⎩其它(3)因为: 32333,01,01()()(,)10,x X Y e y x y f x f y f x y e ⎧⋅≤≤≤≤⎪==-⎨⎪⎩其它所以,X 与Y 相互独立. (4)113333013130303331111(|)1213(1)x xx x EX x e dx xde e e y e e dx e e e =⋅=--=⋅--+=-⎰⎰⎰124100333|44EY y y dx y =⋅==⎰ 3321()4(1)e E XY EX EY e +=⋅=- (5) 22()DX EX EX =-11223231303300133130303331|21112(|)13529(1)x x xx x EX x e dy x e e xdx e e e xe e dx e e e ⎡⎤=⋅=⋅-⋅⎢⎥⎣⎦--⎡⎤=--⎢⎥-⎣⎦-=-⎰⎰⎰ ∴3323326332521(21)9(1)9(1)1119(1)e DX e e e e e e -=-+---+=-22()DY EY EY =- 12225010333|55EY y y dy y =⋅==⎰ ∴ 2333()5480DY =-=概率论与数理统计期末复习题二一、计算题(每题10分,共70分)1、设P (A )=1/3,P (B )=1/4,P (A ∪B )=1/2.求P (AB )、P (A-B ).解:P (AB )= P (A )+P (B )- P (A ∪B )=1/12P (A-B )= P (A )-P (AB )=1/42、设有甲乙两袋,甲袋中装有3只白球、2只红球,乙袋中装有2只白球、3只红球.今从甲袋中任取一球放入乙袋,再从乙袋中任取两球,问两球都为白球的概率是多少?解:用A 表示“从甲袋中任取一球为红球”, B 表示“从乙袋中任取两球都为白球”。

概率论与数理统计期末复习20题及解答

概率论与数理统计期末复习20题及解答

概率论与数理统计期末复习20题及解答【第一章】 随机事件与概率1、甲袋中有4个白球3个黑球,乙袋中有2个白球3个黑球,先从甲袋中任取一球放入乙袋, 再从乙袋中任取一球返还甲袋. 求经此换球过程后甲袋中黑球数增加的概率.2、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求此人拨号不超过两次而接通所需电话的概率.3、已知将1,0两字符之一输入信道时输出的也是字符0或1,且输出结果为原字符的概率为)10(<<αα. 假设该信道传输各字符时是独立工作的. 现以等概率从“101”,“010”这两个字符串中任取一个输入信道.求输出结果恰为“000”的概率.4、试卷中的一道选择题有4个答案可供选择,其中只有1个答案是正确的.某考生如果会做这道题,则一定能选出正确答案;若该考生不会做这道题,则不妨随机选取一个答案.设该考生会做这道题的概率为85.0.(1)求该考生选出此题正确答案的概率;(2)已知该考生做对了此题,求该考生确实会做这道题的概率.【第二章】 随机变量及其分布5、设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.(1)求系数A 及B ;(2)求X 落在区间)1,1(-内的概率;(3)求X 的概率密度.6、设随机变量X 的概率密度为⎩⎨⎧≤≤=其它,0,10,)(x ax x f ,求:(1)常数a ;(2))5.15.0(<<X P ;(3)X 的分布函数)(x F .7、设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<+=.,0;1,1),1(),(其它y x xy A y x f 求:(1)系数A ;(2)X 的边缘概率密度)(x f X ;(3)概率)(2X Y P ≤.8、设二维随机变量),(Y X 的概率密度为⎩⎨⎧<<<<=.,0;20,10,1),(其它x y x y x f求:(1)),(Y X 的边缘概率密度)(x f X ,)(y f Y ;(2)概率)1,21(≤≤Y X P ;(3)判断X ,Y 是否相互独立.9、设X 和Y 是两个相互独立的随机变量,]2.0,0[~U X ,Y 的概率密度函数为⎩⎨⎧≤>=-.0,0,0,5)(5y y e y f y Y(1)求X 和Y 的联合概率密度),(y x f ;(2)求概率)(X Y P ≤.【第三章】数字特征10、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-≤≤+-=,,0,21,)2(,10,)()(其它x x a x b x b a x f ,已知21)(=X E ,求:(1)b a ,的值;(2))32(+X E .11、设随机变量X 的概率密度为⎩⎨⎧≤>=-.0,0,0,)(2x x Ae x f x 求:(1)常数A ;(2))(X E 和)(X D .12、设),(Y X 的联合概率分布如下:XY1104/14/12/10(1)求Y X ,的数学期望)(X E ,)(Y E ,方差)(X D ,)(Y D .(2)求Y X ,的协方差),cov(Y X 与相关系数),(Y X R .【第四章】正态分布13、假设某大学学生在一次概率论与数理统计统考中的考试成绩X (百分制)近似服从正态分布,已知满分为100分平均成绩为75分,95分以上的人数占考生总数的2.3%.(1)试估计本次考试的不及格率(低于60分为不及格);(2)试估计本次考试成绩在65分至85分之间的考生人数占考生总数的比例. [已知9332.0)5.1(,8413.0)1(≈≈ΦΦ,9772.0)2(=Φ]14、两台机床分别加工生产轴与轴衬.设随机变量X (单位:mm )表示轴的直径,随机变量Y (单位:mm )表示轴衬的内径,已知)3.0,50(~2N X ,)4.0,52(~2N Y ,显然X 与Y 是独立的.如果轴 衬的内径与轴的直径之差在3~1mm 之间,则轴与轴衬可以配套使用.求任取一轴与一轴衬可以配套使用的概率.[已知9772.0)2(≈Φ]【第五章】 数理统计基本知识15、设总体)1,0(~N X ,521,,,X X X 是来自该总体的简单随机样本,求常数0>k 使)3(~)2(25242321t XX X X X k T +++=.16、设总体)5 ,40(~2N X ,从该总体中抽取容量为64的样本,求概率)1|40(|<-X P .【第六章】参数估计17、设总体X 的概率密度为⎩⎨⎧≥=--,,0,2,);()2(其它x e x f x λλλ其中参数0>λ.设n X X X ,,,21 是取自该总体的一组简单随机样本,n x x x ,,,21 为样本观测值.(1)求参数λ的矩估计量.(2)求参数λ的最大似然估计量.18、设总体X 的概率密度为⎪⎩⎪⎨⎧≤>=-,0,0;0,e 1);(2x x x xf x λλλ 其中参数0>λ.设n X X X ,,,21 是取自该总体的一组简单随机样本, n x x x ,,,21 为样本观测值.(1)求参数λ的最大似然估计量.(2)你得到的估计量是不是参数λ的无偏估计,请说明理由.【第七章】假设检验19、矩形的宽与长之比为618.0(黄金分割)时将给人们视觉上的和谐美感. 某工艺品厂生产矩形裱画专用框架. 根据该厂制定的技术标准,一批合格产品的宽与长之比必须服从均值为618.00=μ的正态分布. 现从该厂某日生产的一批产品中随机抽取25个样品,测得其宽与长之比的平均值为,646.0=x 样本标准差为093.0=s . 试问在显著性水平05.0=α水平上能否认为这批产品是合格品?20、已知某种口服药存在使服用者收缩压(高压)增高的副作用. 临床统计表明,在服用此药的人群中收缩压的增高值服从均值为220=μ(单位:mmHg ,毫米汞柱)的正态分布. 现在研制了一种新的替代药品,并对一批志愿者进行了临床试验. 现从该批志愿者中随机抽取16人测量收缩压增高值,计算得到样本均值)mmHg (5.19=x ,样本标准差)mmHg (2.5=s . 试问这组临床试验的样本数据能否支持“新的替代药品比原药品副作用小”这一结论 (取显著性水平05.0=α).解答部分【第一章】 随机事件与概率1、甲袋中有4个白球3个黑球,乙袋中有2个白球3个黑球,先从甲袋中任取一球放入乙袋, 再从乙袋中任取一球返还甲袋. 求经此换球过程后甲袋中黑球数增加的概率.【解】设A 表示“从甲袋移往乙袋的是白球”,B 表示“从乙袋返还甲袋的是黑球”,C 表示“经此换球过程后甲袋中黑球数增加”,则AB C =, 又2163)(,74)(===A B P A P ,于是由概率乘法定理得所求概率为 )()(AB P C P =)()(A B P A P ==722174=⋅.2、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求此人拨号不超过两次而接通所需电话的概率.【解】 设i A 表示“此人第i 次拨号能拨通所需电话” )2,1(=i ,A 表示“此人拨号不超过两次而接通所需电话”,则211A A A A +=,由概率加法定理与乘法定理得所求概率为)()()()(211211A A P A P A A A P A P +=+=)()()(1211A A P A P A P +=2.091109101=⋅+=.3、已知将1,0两字符之一输入信道时输出的也是字符0或1,且输出结果为原字符的概率为)10(<<αα. 假设该信道传输各字符时是独立工作的. 现以等概率从“101”,“010”这两个字符串中任取一个输入信道.求输出结果恰为“000”的概率.【解】设:1A 输入的是“101”,:2A 输入的是“010”,:B 输出的是“000”,则2/1)(1=A P ,2/1)(2=A P ,αα21)1()(-=A B P ,)1()(22αα-=A B P ,从而由全概率公式得)()()()()(2211A B P A P A B P A P B P +=)1(21)1(2122αααα-+-=)1(21αα-=.4、试卷中的一道选择题有4个答案可供选择,其中只有1个答案是正确的.某考生如果会做这道题,则一定能选出正确答案;若该考生不会做这道题,则不妨随机选取一个答案.设该考生会做这道题的概率为85.0.(1)求该考生选出此题正确答案的概率;(2)已知该考生做对了此题,求该考生确实会做这道题的概率.【解】设A 表示“该考生会解这道题”,B 表示“该考生选出正确答案”,则85.0)(=A P ,2.0)(=A P ,1)(=A B P ,25.0)(=A B P .(1)由全概率公式得)()()()()(A B P A P A B P A P B P +=25.02.0185.0⨯+⨯=9.0=.(2)由贝叶斯公式得944.018179.0185.0)()()()(≈=⨯==B P A B P A P B A P .【第二章】 随机变量及其分布5、设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.(1)求系数A 及B ;(2)求X 落在区间)1,1(-内的概率;(3)求X 的概率密度.【解】(1)由分布函数的性质可知0)2()(lim )(=-⋅+==-∞-∞→πB A x F F x ,12)(lim )(=⋅+==+∞+∞→πB A x F F x ,由此解得 π1,21==B A . (2)X 的分布函数为)(arctan 121)(+∞<<-∞+=x x x F π, 于是所求概率为21))1arctan(121()1arctan 121()1()1()11(=-+-+=--=<<-ππF F X P .(3)X 的概率密度为)1(1)()(2x x F x f +='=π.6、设随机变量X 的概率密度为⎩⎨⎧≤≤=其它,0,10,)(x ax x f ,求:(1)常数a ;(2))5.15.0(<<X P ;(3)X 的分布函数)(x F .【解】(1)由概率密度的性质可知⎰∞+∞-dx x f )(121===⎰aaxdx , 由此得2=a .(2) )5.15.0(<<X P 75.000212/122/3112/1=+=+=⎰⎰x dx xdx .(3)当0<x 时,有00)(==⎰∞-xdx x F ;当10<≤x 时,有20020)(x xdx dx x F x=+=⎰⎰∞-;当1≥x 时,有1020)(1100=++=⎰⎰⎰∞-xdx xdx dx x F .所以,X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(2x x x x x F7、设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<+=.,0;1,1),1(),(其它y x xy A y x f 求:(1)系数A ;(2)X 的边缘概率密度)(x f X ;(3)概率)(2X Y P ≤.【解】(1)由联合概率密度的性质可知=⎰⎰+∞∞-+∞∞-dxdy y x f ),(14)1(1111==+⎰⎰--A dy xy A dx ,由此得41=A . (2)当11<<-x 时,有=)(x f X =⎰+∞∞-dy y x f ),(214111=+⎰-dy xy ; 当1-≤x 或1≥x 时,显然有0)(=x f X .所以X 的边缘概率密度⎩⎨⎧<<-=.,0;11,2/1)(其它x x f X(3))(2X Y P ≤⎰⎰≤=2),(x y dxdy y x f dy xy dx x ⎰⎰--+=211141dx x x x )1221(412511+-+=⎰-32=.8、设二维随机变量),(Y X 的概率密度为⎩⎨⎧<<<<=.,0;20,10,1),(其它x y x y x f求:(1)),(Y X 的边缘概率密度)(x f X ,)(y f Y ;(2)概率)1,21(≤≤Y X P ;(3)判断X ,Y 是否相互独立.【解】(1)当10<<x 时,有x dy dy y x f x f xX 2),()(20⎰⎰===+∞∞-;当0≤x 或1≥x 时,显然有0)(=x f X .于是X 的边缘概率密度为⎩⎨⎧<<=.,0;10,2)(其它x x x f X 当20<<y 时,有⎰⎰-===+∞∞-1221),()(y Y ydx dx y x f y f ; 当0≤y 或2≥y 时,显然有0)(=y f Y .于是Y 的边缘概率密度为⎪⎩⎪⎨⎧<<-=.,0;20,21)(其它y y y f Y(2)⎰⎰⎰⎰===≤≤∞-∞2/12/102/11-41),()}1,21{(y dx dy dx y x f dy Y X P .(3)容易验证)()(),(y f x f y x f Y X ≠,故X 与Y 不独立.9、设X 和Y 是两个相互独立的随机变量,]2.0,0[~U X ,Y 的概率密度函数为⎩⎨⎧≤>=-.0,0,0,5)(5y y e y f y Y(2)求X 和Y 的联合概率密度),(y x f ;(2)求概率)(X Y P ≤.【解】(1)由题意知,X 的概率密度函数为⎩⎨⎧<<=.,0;2.00,5)(其它x x f X因为X 和Y 相互独立,故X 和Y 的联合概率密度⎩⎨⎧><<==-.,0;0,2.00,25)()(),(5其它y x e y f x f y x f y Y X(2)12.005052.00)1(525),()(---≤=-===≤⎰⎰⎰⎰⎰e dx e dy e dx dxdy y x f X Y P x x y xy .【第三章】数字特征10、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-≤≤+-=,,0,21,)2(,10,)()(其它x x a x b x b a x f ,已知21)(=X E ,求:(1)b a ,的值;(2))32(+X E . 【解】(1)由概率密度的性质可知=⎰∞+∞-dx x f )(12)2(])[(2110=+=-++-⎰⎰ba dx x a dxb x b a ; 又dx x xf X E ⎰∞+∞-=)()(.216)2(])[(2110=+=-++-=⎰⎰b a dx x x a xdx b x b a联立方程组⎪⎩⎪⎨⎧=+=+,216,12b a b a 解得41=a ,23=b . (2) 由数学期望的性质,有432123)(2)32(=+⋅=+=+X E X E . 11、设随机变量X 的概率密度为⎩⎨⎧≤>=-.0,0,0,)(2x x Ae x f x求:(1)常数A ;(2))(X E 和)(X D .【解】(1)由概率密度的性质可知=⎰∞+∞-dx x f )(122==⎰∞+-Adx Ae x , 由此得2=A .(2)由数学期望公式得⎰⎰∞++∞-=-=⋅=0022212)(dt te dx ex X E t tx x21)2(Γ21==. 由于⎰∞+-⋅=02222)(dx ex X E xdt e t t tx ⎰+∞-==0224121!241)3(Γ41=⋅==,故利用方差计算公式得41)21(21)]([)()(222=-=-=X E X E X D .12、设),(Y X 的联合概率分布如下:XY1104/14/12/10(1)求Y X ,的数学期望)(X E ,)(Y E ,方差)(X D ,)(Y D .(2)求Y X ,的协方差),cov(Y X 与相 关系数),(Y X R .【解】 由),(Y X 的联合概率分布知Y X ,服从"10"-分布:4/1)0(==X P ,4/3)1(==X P , 2/1)0(==Y P ,2/1)1(==Y P ,由"10"-分布的期望与方差公式得16/3)4/11(4/3)(,4/3)(=-⨯==X D X E , 4/1)2/11(2/1)(,2/1)(=-⨯==Y D Y E ,由),(Y X 的联合概率分布知2/14/1114/1010104/100)(=⨯⨯+⨯⨯+⨯⨯+⨯⨯=XY E ,从而8/12/14/32/1)()()(),cov(=⨯-=-=Y E X E XY E Y X ,=),(Y X R 334/116/38/1)()(),cov(==Y D X D Y X .【第四章】正态分布13、假设某大学学生在一次概率论与数理统计统考中的考试成绩X (百分制)近似服从正态分布,已知满分为100分平均成绩为75分,95分以上的人数占考生总数的2.3%.(1)试估计本次考试的不及格率(低于60分为不及格);(2)试估计本次考试成绩在65分至85分之间的考生人数占考生总数的比例. [已知9332.0)5.1(,8413.0)1(≈≈ΦΦ,9772.0)2(=Φ]【解】 由题意,可设X 近似服从正态分布),75(2σN .已知%3.2)95(=≥X P ,即%3.2)20(1)7595(1)95(1)95(=-=--=<-=≥σΦσΦX P X P ,由此得977.0)20(=σΦ,于是220≈σ,10≈σ,从而近似有)10,75(~2N X .(1)0668.09332.01)5.1(1)5.1()107560()60(=-≈-=-=-=<ΦΦΦX P , 由此可知,本次考试的不及格率约为%68.6.(2))107565()107585()8565(---=≤≤ΦΦX P 6826.018413.021)1(2)1()1(=-⨯≈-=--=ΦΦΦ,由此可知,成绩在65分至85分之间的考生人数约占考生总数的%26.68.14、两台机床分别加工生产轴与轴衬.设随机变量X (单位:mm )表示轴的直径,随机变量Y (单位:mm )表示轴衬的内径,已知)3.0,50(~2N X ,)4.0,52(~2N Y ,显然X 与Y 是独立的.如果轴 衬的内径与轴的直径之差在3~1mm 之间,则轴与轴衬可以配套使用.求任取一轴与一轴衬可以配套使用的概率.[已知9772.0)2(≈Φ]【解】 设X Y Z -=,由X 与Y 的独立性及独立正态变量的线性组合的性质可知,)4.03.0,5052(~22+--=N X Y Z , 即)5.0,2(~2N Z .于是所求概率为)2()2()5.021()5.023()31(--=---=≤≤ΦΦΦΦZ P .9544.019772.021)2(2=-⨯≈-=Φ【第五章】 数理统计基本知识15、设总体)1,0(~N X ,521,,,X X X 是来自该总体的简单随机样本,求常数0>k 使)3(~)2(25242321t X X X X X k T +++=.【解】 由)1,0(~N X 知)5,0(~221N X X +,于是)1,0(~5221N X X +,又由2χ分布的定义知)3(~2252423χX X X ++,所以)3(~2533/)(5/)2(2524232125242321t X X X X X X X X X X T +++⋅=+++=,比较可得53=k .16、设总体)5 ,40(~2N X ,从该总体中抽取容量为64的样本,求概率)1|40(|<-X P . 【解】 由题设40=μ,5=σ,64=n ,于是)1,0(~8540N X nX u -=-=σμ从而)58|8/540(|)1|40(|<-=<-X P X P .8904.019452.021)6.1(2)58|(|=-⨯≈-=<=Φu P【第六章】参数估计17、设总体X 的概率密度为⎩⎨⎧≥=--,,0,2,);()2(其它x e x f x λλλ其中参数0>λ.设n X X X ,,,21 是取自该总体的一组简单随机样本,n x x x ,,,21 为样本观测值.(1)求参数λ的矩估计量.(2)求参数λ的最大似然估计量. 【解】(1)21)2(),()(02)2(2+=+===-+∞=---+∞+∞∞-⎰⎰⎰λλλλλλdt e t dx ex dx x xf X E t tx x ,令)(X E X =,即21+=λX ,解得参数λ的矩估计量为21-=∧X λ. (2)样本似然函数为∑====--=--=∏∏ni i i n x nni x n i i eex f L 1)2(1)2(1),()(λλλλλλ,上式两边取对数得∑--==ni i n X n L 1)2(ln )(ln λλλ,上式两边对λ求导并令导数为零得=λλd L d )(ln 0)2(1=∑--=n i i n x nλ, 解得2121-=∑-==x nx nni i λ,从而参数λ的最大似然估计量为 21-=∧X λ. 18、设总体X 的概率密度为⎪⎩⎪⎨⎧≤>=-,0,0;0,e 1);(2x x x xf x λλλ 其中参数0>λ.设n X X X ,,,21 是取自该总体的一组简单随机样本, n x x x ,,,21 为样本观测值. (1)求参数λ的最大似然估计量.(2)你得到的估计量是不是参数λ的无偏估计,请说明理由. 【解】(1)样本似然函数为,e1e1),()(1121211∏∏∏=-=-=∑⋅====n i x inni x i n i i ni iixx x f L λλλλλλ上式两边取对数得∑∑==-+-=ni i ni i x x n L 111ln ln 2)(ln λλλ, 求导数得∑=+-=ni i x n L d d 1212)(ln λλλλ, 令0)(ln =λλL d d解得2211x x n n i i==∑=λ,于是参数λ的极大似然估计量为 221ˆ1X X n n i i ==∑=λ. (2)dx x X E x λλ/202e 1)(-+∞⎰=dx x x λλ/20e )(-+∞⎰=dx t t t x -∞+=⎰=e 02λλλΓλ2)3(==, λλλ=⋅====221)(21)(21)2()ˆ(X E X E X E E , 于是221ˆ1X X n ni i ==∑=λ是λ的无偏估计.【第七章】假设检验19、矩形的宽与长之比为618.0(黄金分割)时将给人们视觉上的和谐美感. 某工艺品厂生产矩形裱画专用框架. 根据该厂制定的技术标准,一批合格产品的宽与长之比必须服从均值为618.00=μ的正态分布. 现从该厂某日生产的一批产品中随机抽取25个样品,测得其宽与长之比的平均值为,646.0=x 样本标准差为093.0=s . 试问在显著性水平05.0=α水平上能否认为这批产品是合格品?【解】由题意,待检验的假设为0H : 618.00==μμ; 1H : 618.0≠μ.因为σ未知,所以检验统计量为)24(~)618.0(525/618.0/0t S X S X n S X t -=-=-=μ, 关于0H 的拒绝域为 06.2)24()1(||025.02/==->t n t t α. 现在646.0=x ,093.0=s ,所以统计量t 的观测值为505.1093.0)618.0646.0(5=-=t . 因为)24(06.2505.1||025.0t t =<=,即t 的观测值不在拒绝域内,从而接受..原假设,即可以认为这批产品是合格品.20、已知某种口服药存在使服用者收缩压(高压)增高的副作用. 临床统计表明,在服用此药的人群中收缩压的增高值服从均值为220=μ(单位:mmHg ,毫米汞柱)的正态分布. 现在研制了一种新的替代药品,并对一批志愿者进行了临床试验. 现从该批志愿者中随机抽取16人测量收缩压增高值,计算得到样本均值)mmHg (5.19=x ,样本标准差)mmHg (2.5=s . 试问这组临床试验的样本数据能否支持“新的替代药品比原药品副作用小”这一结论 (取显著性水平05.0=α).【解】由题意,待检验的假设为0H : 220==μμ; 1H : 22<μ.因为σ未知,所以取统计量)15(~)22(4/0t S X nS X t -=-=μ, 且关于0H 的拒绝域为 753.1)15()1(05.0-=-=--<t n t t α. 现在5.19=x ,2.5=s ,所以统计量t 的观测值为923.12.5)225.19(4-≈-=t . 因为)15(753.1923.105.0t t -=-<-≈,即t 的观测值在拒绝域内,从而拒绝..原假设,即认为这次试验支持“新的替代药品比原药品副作用小”这一结论.。

《概率论与数理统计》期末复习试卷4套+答案

《概率论与数理统计》期末复习试卷4套+答案
四、计算题
1、(10分)甲箱中有 个红球, 个黑球,乙箱中有 个黑球, 个红球,先从甲箱中随机地取出一球放入乙箱。混合后,再从乙箱取出一球,
(1)求从乙箱中取出的球是红球的概率;
(2)若已知从乙箱取出的是红球,求从甲箱中取出的是黑球的概率;
2、(8分)设二维随机变量的联合概率密度为:
求关于 的边缘概率密度,并判断 是否相互独立?
7、(8分)设有一种含有特殊润滑油的容器,随机抽取9个容器,测其容器容量的样本均值为10.06升,样本标准差为0.246升,在 水平下,试检验这种容器的平均容量是否为10升?假设容量的分布为正态分布。
( , )
第二套
一、 判断题(2分 5)
1、设 , 是两事件,则 。()
2、若 是离散型随机变量,则随机变量 的取值个数一定为无限个。()
2、(8分)设二维随机变量(X,Y)的联合概率密度为:
求边缘概率密度 ,并判断 与 是否相互独立?
3、(8分)设随机变量 的分布函数为:
求:(1) 的值;
(2) 落在 及 内的概率;
4、(8分)设随机变量 在 服从均匀分布,求 的概率密度;
5、(10分)设 及 为 分布中 的样本的样本均值和样本方差,求 ( )
第一套
一、 判断题(2分 5)
1、设 , 是两事件,则 。()
2、若随机变量 的取值个数为无限个,则 一定是连续型随机变量。()
3、 与 独立,则 。()
4、若 与 不独立,则 。()
5、若 服从二维正态分布, 与 不相关与 与 相互独立等价。()
二、选择题(3分 5)
1、对于任意两个事件 和 ()
5、袋中有5个球(3个新,2个旧),每次取一个,无放回地抽取两次,则第二次取到新球的概率是( )

概率论与数理统计期末考试试题及解答

概率论与数理统计期末考试试题及解答

概率论与数理统计期末考试试题及解答概率论与数理统计》期末试题一、填空题(每小题3分,共15分)1.设事件A,B仅发生一个的概率为0.3,且P(A)+P(B)=0.5,则A,B至少有一个不发生的概率为0.9.解:由题意可得P(AB+AB)=0.3,即0.3=P(AB)+P(AB)=P(A)-P(AB)+P(B)-P(AB)=0.5-2P(AB),所以P(AB)=0.1,P(A∪B)=P(AB)=1-P(AB)=0.9.2.设随机变量X服从泊松分布,且P(X≤1)=4P(X=2),则P(X=3)=1-e^(-6)。

解:由P(X≤1)=P(X=0)+P(X=1)=e^(-λ)+λe^(-λ),P(X=2)=λ^2e^(-λ)/2,且P(X≤1)=4P(X=2),可得λ=1,因此P(X=3)=λ^3e^(-λ)/3!=1-e^(-6)。

3.设随机变量X在区间(0,2)上服从均匀分布,则随机变量Y=X在区间(0,4)内的概率密度为f_Y(y)=1/2,0<y<2;f_Y(y)=1,2<y<4;其它为0.解:设Y的分布函数为F_Y(y),X的分布函数为F_X(x),密度为f_X(x),则F_Y(y)=P(Y≤y)=P(X≤y)=P(-y≤X≤y)=F_X(y)-F_X(-y)。

因为X~U(0,2),所以F_X(-y)=0,即F_Y(y)=F_X(y)。

又因为f_Y(y)=F_Y'(y)=f_X(y),所以f_Y(y)=1/2,0<y<2;f_Y(y)=1,2<y<4;其它为0.另解:在(0,2)上函数y=x严格单调,反函数为h(y)=y,所以f_Y(y)=f_X(y)/h'(y)=f_X(y)/2y=1/2,0<y<2;f_Y(y)=f_X(y)/h'(y)=f_X(y)/2y=1,2<y<4;其它为0.4.设随机变量X,Y相互独立,且均服从参数为λ的指数分布,P(X>1)=e^(-2),则λ=2,P{min(X,Y)≤1}=1-e^(-2)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西南石油大学《概率论与数理统计》期末考试题及答案
一、填空题(每空3分,共45分)
1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。

P( A ∪B) = 。

2、设事件A 与B 独立,A 与B 都不发生的概率为
1
9
,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ;
3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ;
4、已知随机变量X 的密度函数为:,0
()1/4,
020,2
x Ae x x x x ϕ⎧<⎪
=≤<⎨⎪≥⎩
, 则常数A= , 分布函数F (x )= , 概率{0.51}P X -<<= ; 5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独立,则Z=max(X,Y)的分布律: ; 6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独立,则D(2X-3Y)= , 1、 (12分)设连续型随机变量X 的密度函数为:
1,
02()2
0,
x x x ϕ⎧≤≤⎪=⎨⎪⎩其它
求:1){|21|2}P X -<;2)2
Y X =的密度函数
()Y y ϕ;3)(21)E X -;
2、(12分)设随机变量(X,Y)的密度函数为
1) 1/4,
||,02,(,)0,
y x x x y ϕ<<<⎧=⎨
⎩其他
求边缘密度函数(),()X Y x y ϕϕ;
2) 问X 与Y 是否独立?是否相关?计算Z = X + Y 的密度函数()Z z ϕ
二、应用题(20分)
1、(10分)设某人从外地赶来参加紧急会议,他乘火车、轮船、汽车或飞机来的概率分别是3/10,1/5,1/10和2/5。

如果他乘飞机来,不会迟到;而乘火车、轮船或汽车来,迟到的概率分别是1/4,1/3,1/2。

现此人迟到,试推断他乘哪一种交通工具的可能性最大?
答 案
三、填空题(每空3分,共45分)
1、0.8286 , 0.988 ;
2、 2/3 ;
3、14212661112C C ⨯,6126
6!
12
C ;4、 1/2, F (x )= 1,
021,0224
1,
2x
e x x
x x ⎧≤⎪⎪
⎪+<≤⎨⎪>⎪⎪⎩
, {0.51}P X -<<= 0.53142e --;5、p = 1/3 , Z=max(X,Y)
的分布律: Z 0 1 2 P 8/27 16/27 3/27; 6、D(2X-3Y)= 43.92 , 四、计算题(35分)
1、解 1) 9{|21|2}{0.5 1.5}16
P X P X -<=-<<=
2)
(0()0,01,0440,
X X Y y y y y ϕϕϕ+>=≤⎩
⎧≤≤⎪=⎨⎪⎩其它
3)45
(21)212133
E X EX -=-=⨯
-= 2、解:1)1
,02,02()(,)420,0,
x X x
x
dy x x x x y dy ϕϕ+∞
--∞⎧⎧<<<<⎪⎪===⎨⎨⎪⎪⎩

⎰⎰其它
其它
2||11
,
||2
(2||),
||24
()(,)40,
0,
y Y dx y y y y x y dx ϕϕ+∞
-∞⎧⎧<-<⎪⎪===⎨⎨⎪
⎪⎩⎩⎰⎰其它其它 2)显然,(,)()()X Y x y x y ϕϕϕ≠,所以X 与Y 不独立。

又因为EY=0,EXY=0,所以,COV(X,Y)=0,因此X 与Y 不相关。

3)
22()(,)1
1,04,044280,0,Z z z x z x dx
z dx z z ϕϕ+∞
-∞
=-⎧⎧<<-<<⎪⎪==⎨⎨⎪⎪⎩

⎰⎰其它
其它
1、解:设事件A1,A2,A3,A4分别表示交通工具“火车、轮船、汽车和飞机”,其概率分别等于3/10,1/5,1/10和2/5,事件B 表示“迟到”,
已知概率{|},1,2,3,4i P B A i =分别等于1/4,1/3,1/2,0 则4
1
{)()(|)i i i P B P A P B A ==
=
∑23
120
111()(|)9(|)()23P A P B A P A B P B =
=,222()(|)8
(|)()23P A P B A P A B P B ==
333()(|)6(|)()23P A P B A P A B P B =
=,444()(|)
(|)0()
P A P B A P A B P B =
= 由概率判断他乘火车的可能性最大。

如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档