变频器在电厂工业水泵上的节能应用

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变频器在电厂工业水泵上的节能应用

简述水泵变频调速节能原理,对某电厂工业水泵采用变频调速节能改造的措施和取得的节能效益进行分析,揭示了水泵采用变频调速装置进行节能改造具有很大的实践空间。

标签:泵类负载工业水泵变频调速节能

0引言

在热电厂中,机组必须配备的水泵主要有锅炉给水泵、循环水泵和凝结水泵,其次还有射水泵、低压加热器疏水泵、热网水泵、冷却水泵、灰浆泵、轴封水泵、除盐水泵、清水泵、过滤器反洗泵、生活水泵、工业水泵、消防水泵和补给水泵等。这些水泵数量多,总装机容量大:50MW火电机组的主要配套水泵的总装机容量为6430KW,占机组容量的12.86%;100MW机组为10480kW/,占10.48%;200MW机组为15450KW,占7.73%。100MW机组主要配套水泵的总耗电量约占全部厂用电量的70%左右。由此可见,水泵确实是火力发电厂中耗电量最大的一类辅机。因此,提高水泵的运行效率,降低水泵的电耗对降低厂用电率具有举足轻重的意义。国外火电厂的风机和水泵已纷纷增设调速装置,而目前我国火电厂中除少量采用汽动给水泵,液力耦合器及雙速电机外,其他风机和水泵基本上都采用定速驱动。这种定速驱动的泵,由于采用出口阀,风机则采用入口风门调节流量,都存在严重的节流损耗。尤其在机组变负荷运行时,由于风机和水泵的运行偏离高效点,使运行效率大大降低,结果是白白地浪费掉大量的电能,已经到了非改不可的地步。

1泵类负载的流量调节方法及原理

泵类负载通常以输送的液体流量为控制参数,为此目前常采用阀门控制和转速控制两种方式。

1.1阀门控制这种方法是借助改变出口阀门的开度大小来调节流基的,其实质是通过改变管道中流体阻力的大小来改变流量的。因为泵的转速不变,其扬程特性曲线H-Q保持不变,如图1所示

当阀门全开时,管阻特性曲线R1-Q与扬程特性曲线H-Q相交于点A,流量为Qa,泵出口压头为Ha。若关小阀门,管阻特性曲线变为R2-Q,它与扬程特性曲线H-Q的交点移到点B,此时流量为Qb,泵出口压头升高到Hb。则压头的升高量为△Hb=Hb-Ha。于是产生了阴线部分所示的能量损失:△Pb=AHb×Qb。

1.2转速控制借助改变泵的转速来调节流量,这是一种先进的控制方法。转速控制的实质是通过改变所输送液体的能量来改变流量。因为只是转速变化,阀门的开度不变,如图2所示,管阻特性曲线R1-Q也就维持不变。额定转速时的扬程特性曲线Ha-Q与管阻特性曲线相交于点A,流量为Qa,出口扬程为Ha。

当转速降低时,扬程特性曲线变为Hc-Q,它与管阻特性曲线R1-Q的交点将下移到C,流量变为Qc。此时,假设将流量Qc控制为阀门控制方式下的流量Qb,则泵的出口压头将降低到Hc。因此,与阀门控制方式相比压头降低了:△Hc=Hb-Hc。据此可节约能量为:△Pc=AHc×Qb。与阀门控制方式相比,其节约的能量为:P=△Pc-APb=fAHc-△Hb)×Qb。

将这两种方法相比较可见,在流量相同的情况下,转速控制避免了阀门控制

下因压头的升高和管阻增大所带来的能量损失。在流量减小时,转速控制使压头反而大幅度降低,所以它只需要一个比阀门控制小得多的,得以充分利用的功率。而且随着转速的降低,泵的高效率区段将向左方移动。这说明,转速控制方式在低速小流量时,仍可使泵机高效率运行。

2国内某热电厂工业水泵运行状况及变频改造措施

国内某热电厂有3台工业水泵,3台水泵并列在工业水母管上,生产过程中为全厂提供生产工艺制水水源、全厂辅机轴承冷却水、发电机组空冷器、冷油器用水、锅炉淋渣水、全厂生活用水等等。随着用水成本的逐步上升,该厂将全厂辅机轴承冷却水、锅炉淋渣水、甚至是发电机组空冷器、冷油器用水(在室外气温较低时)都改成了由机组循环冷却水来代替,全厂的用水量大大降低,在机组负荷较低时开一台工业水泵也会造成工业水母

管超压,该厂化学分场的运行人员不得不采取水泵出口阀节流的方式运行,但由于工业水泵离运行人员工作场所很远,工业水母管压力变化较频繁时,运行

人员就会就近开启化学车间的工业水泄压阀来调整工业水母管压力,这样的调整方式不仅使运行人员劳动强度大,而且浪费了大量的水资源和电能。

在随后的技改工程中,采用变频器配合压力变送器实现恒压供水的改造方案彻底解决了工业水压力调整的问题,具体改造方案如图3

原水泵电机功率185KW,采用自耦变压器降压启动来降低电机启动电流。工业水母管压力用出口阀、或化学车间的工业水泄压阀来调整。改造后为潜水泵电动机配备了变频装置,合理设置电机启动时间和电机加减速时间就可有效的实现电机的软启动,降低启动电流。在工业水母管上装设压力变送器,将工业水母管的压力转化为4-20mA的信号送入变频器,变频器将这个信号与设置的压力给定值比较后自动调整变频器的输出转速,从而实现恒压供水的自动闭环控制。

改造后最明显的是运行人员的劳动强度大大降低,再也不用频繁调整水泵出口阀和泄压阀了,而且变频泵和工频泵并联运行也非常平稳。再一个现象是水泵运行电流比前一日下降了几十安培。为了详细核算水泵变频改造后的节电效益和节水效益,该厂化学车间的运行人员做了半年的统计工作,用这半年的统计数据与前一年改造前的运行数据比较后发现该水泵变频改造后平均运行电流下降了约50安培,一年大约可以节电40万千瓦时,节电率可达28%,创造节能收益10万元,除此之外每年还可节约20万吨水,这两项收益使得改造投入的10万元不到

一年就可收回,节能效益非常可观。

3总结

通过工业水泵变频改造的实践验证了水泵采用变频调速装置节能改造的潜力,而且还可降低运行人员的劳动强度,减少机械磨损,延长设备使用寿命,因此采用变频装置对风机、水泵进行节能改造在各行各业中都会有很大的实践空间。

相关文档
最新文档