流体力学第三章

合集下载

第三章流体力学

第三章流体力学

第三章:流体的流动一、学习要求1、理解理想流体、稳定流动、流线、流管、速度梯度、粘滞系数等基本概念。

2、掌握流体连续性方程和伯努利方程的意义和应用。

3、掌握泊肃叶公式的内涵和适用条件。

4、理解雷诺数及斯托克司定律在医学中的应用。

5、了解层流和湍流的概念及判断标准。

6、了解心脏做功、体内的血流速度及血压分布。

二、推荐学习方法1.体会物理模型的创建方法,重点体会在不同场合选择不同物理模型的依据和理由。

例如,理想流体(绝对不可压缩,完全没有粘滞性的流体),这一概念建立的依据是液体和气体的流动时,很多时候体积变化和摩擦耗能都很少,可以忽略不计,用理想模型使分析简洁,带来的误差又很小。

在应用此模型的时候,一定要注意实际现象中存在的体积变化和摩擦是否可以忽略。

如液体在粗管内流动,比如开口很大的容器底部开一小孔,求小孔处流速,由于水的可压缩性小,体积变化可忽略,容器大,流动时速度梯度小,内摩擦力可忽略,可应用伯努利方程;但如果在开孔处联结一较长细管,水在细管中流动时,粘滞性不可忽略,则要考虑伯肃叶定律;即使管道较粗,如管道较长,比如远距离输油、输水管道,求流量时也要考虑粘滞性。

2.严格遵循各物理规律的应用条件。

连续性原理是同一流管的不同截面处流速的关系,不可比较不同的流管;柏努利方程要在同一流线上使用,比较流体中两点的流速并应用柏努利方程时,一定要用一条流线将二者联系起来;在应用伯肃叶定理时一定要强调水平圆管中的层流。

三、解题指导2-1 有人认为从连续性方程来看管子愈粗流速愈小,而从泊肃叶定律来看管子愈粗流速愈大,两者似有矛盾,你认为如何?为什么?提示:两者所针对的对象是否一样?答:不矛盾,连续性原理指的是同一流管不同截面处的流速关系,截面大处流速小,而泊肃叶定律指出管子愈粗流速愈大是针对不同的流管。

两者没有可比性。

思考:连续性原理和泊肃叶定律的适用条件分别是什么?2-2为什么一个装有烟囱的火炉,烟囱越高通风的效果越好?(即烟从烟囱中排出的速度越大)提示:高空和低空空气的流动状态有无区别?答:由于高处空气的流动速度快,根据柏努利定律,烟囱顶端的气压低,底端气压高,从而推动空气挟带烟尘向烟囱顶部运动,促进通风。

流体力学-第三章

流体力学-第三章
空间各点只要有一个运动要素随时间变化,流体运动称为非恒 定流。
二 均匀流和非均匀流 渐变流和急变 流
按各点运动要素(主要是速度)是否随位置变化,可将流体 运动分为均匀流和非均匀流。在给定的某一时刻,各点速度 都不随位置而变化的流体运动称均匀流。均匀流各点都没有 迁移加速度,表示为平行流动,流体作匀速直线运动。反之, 则称为非均匀流。
按限制总流的边界情况,可将流体运动分为有压流、无压流和射 流。
边界全为固体的流体运动称为有压流或有压管流。 边界部分为固体、部分为气体,具有自由表面的液体运动称为 无压流或明渠流。 流体经由孔口或管嘴喷射到某一空间,由于运动的流体脱离了 原来限制他的固体边界,在充满流体的空间继续流动的这种流 体运动称为射流。
四 三维流(三元流)、二维流(二元流)、一维流(一元流)
按决定流体的运动要素所需空间坐标的维数或空间坐标变量的 个数,可将流体运动分为三维流、二维流、一维流。
若流体的运动要素是空间三个坐标和时间t的函数,这种流体运 动称为三维流或三元流。
若流体的运动要素是空间两个坐标和时间t的函数,这种流体运 动称为二维流或二元流。
拉格朗日法来研究流体运动,就归结为求出函数x(a, b, c, t), y (a, b, c, t), z (a, b, c, t)。(1)由于流体运动的复杂,要想求 出这些函数是非常繁复的,常导致数学上的困难。(2)在大多 数实际工程问题中,不需要知道流体质点运动的轨迹及其沿轨迹 速度等的变化。(3)测量流体运动要素,要跟着流体质点移动 测试,测出不同瞬时的数值,这种测量方法较难,不易做到。
3 脉线
脉线又称染色线,在某一段时间内先后流过同一空间点的所 有流体质点,在既定瞬时均位于这条线上。
在恒定流时,流线和流线上流体质点的迹线以及脉线都相互 重合。

第三章 流体力学

第三章 流体力学
1、理想流体:
完全不可压缩的无粘滞流体称为理想流体。
液体不易被压缩,而气体的可压缩性大。但当气体可自由流 动时,微小的压强差即可使气体快速流动,从而使气体各部 分的密度差可以忽略不计。
流体内各部分间实际存在着内摩擦力,它阻碍着流体各部分 间的相对运动,称为粘滞性。但对于很“稀”的流体,可近 似看作是无粘滞的。
4l
dQ=vdS
流量
R
Q R4 ( P1 P2 )
8l
泊肃叶定律推导(略)
流速分布: r
r
v P1 P2 ( R2 r 2 )
4l
各流层流速沿径向呈抛 物线分布
v 管轴中心处,流速最大
vmax

P1 P2
4l
R2
管壁处,流速最小 vmin 0
v
平均速度 v P1 P2 R2
由伯努利方程:
p0

gh

p0

1 2
v2
由上式求得:
v 2 gh
p0
A h
B p0 v
习例题题5-1:1 直径为0.10m,高为0.20m的圆筒形容器底部有1cm2的小 孔。水流入容器内的流量为1.4×10-4m3/s 。求:容器内水面能
上升多高?
D
由伯努利方程: v 2 gh
h 当水面升至最高时: QV v S S 2 ghm
若1 < 2 , 小球(气泡)上浮

1 2
V

v
2 1

gh2V


gh1V
即:
p1

1 2

v
2 1

gh1

流体力学课件 第3章流体运动的基本原理

流体力学课件  第3章流体运动的基本原理

u u (x, y,z, t )
17
二、流场描述
1、迹线:某一质点在某一时段内的运动轨迹曲线。
例: 烟火、火箭、流星、子弹等轨迹线。。。。。
(1)拉格朗日法迹线方程
x x(a,b,c,t) y y(a,b,c,t)
z z(a,b,c,t)
消去参数t并给定(a,b,c)即得相应质点的迹线方 程。
说明:
*(a,b,c)=const, t为变数,可得某个指定质点在任意时刻
所处的位臵,上式即迹线方程; *(a,b,c)为变数,对应时刻 t可以得出某一瞬间不同质点 在空间的分布情况。
3、拉格朗日法的速度与加速度方程
( 1) 流速方 程
x ux ; t y uy ; t z uz t 均为(a,b,c,t)的函数。
第三章 流体运动的基本原理
静止只是流体的一种特殊的存在形态,运动 或流动是流体更为普遍的存在形态,也更能反映 流体的本质特征。 本章主要讨论流体的运动特征(速度、加速 度等)和流体运动的描述方法,流体连续性方程、 动量守恒及能量守恒方程是研究流体运动的基础。
1
第一节、流体运动的描述方法
一、拉格朗日法(lj)
18
(2)欧拉法迹线方程 若质点P在时间dt内从A点运
Z
A
B
动到B点,则质点移动速度为:
u dr dt
O
Y
得迹线方程:
dx dy dz dt ux uy uz
2、流线
表示某一瞬时流体各点流动 趋势的曲线,其上任一点的切线 方向与该点流速方向重合。即同 一时刻不同质点的速度方向线。
根据行列式的性质,有:
22
流线微分方程
dx dy dz u x u y uz

流体力学_第三章_伯努利方程及动量方程

流体力学_第三章_伯努利方程及动量方程
4根线具有能量 意义: 总水头线 测压管水头线 水流轴线 基准面线
23
第三节 恒定总流的伯努利方程
例 用直径d=100mm的水管从水箱引水,水管水面与
管道出口断面中心高差H=4m,水位保持恒定,水头 损失hw=3m水柱,试求水管流量,并作出水头线 解:以0-0为基准面,列1-1、2-2断面的伯努利方程
第三节 恒定总流的伯努利方程
渐变流及其性质
渐变流
(u )u 0
渐变流的过流断面近于平 面,面上各点的速度方向 近于平行。 渐变流过流断面上的动压 强与静压强的分布规律相 同,即:
p z c g
1
第三节 恒定总流的伯努利方程
大小的变化 流速的变化 方向的变化
出现直线惯性力 压强沿流向变化
微小圆柱体的力平衡
p1dA ldA cos p2 dA l cos Z1 Z 2 p1 (Z1 Z 2 ) p2
Z1 p1 Z2 p2


4
第三节 恒定总流的伯努利方程
Z1 p1

Z2
p2

均匀流过流断面上压强 分布服从水静力学规 律
40
2
,
2
第三节 恒定总流的伯努利方程
( a )( z2 z1 ) ( a )( z2 z1 ) ( a )
单位体积气体所受有效浮力
v1 2 gh d1 1 d 2
4
4
2 1
2 1
30
第三节 恒定总流的伯努利方程
Q v1

4
d
2 1

4
d
2 1
2 gh d1 d 1 2

流体力学第三章(相似原理与量纲分析)

流体力学第三章(相似原理与量纲分析)
2 1 2 2
它们所反映的是没有量纲(单位)的数,称为无量纲数
l Sr 斯特劳哈尔数 tu
欧拉数
雷诺数
Vl

Re
p Eu 2 V
V2 Fr 弗劳德数 gl
25
2w 2w 2w w w w w p u v w 2 2 2 g t y z z z x x y
2伯努利方程5简单情况下的ns方程的准确解3第一节流体力学的模型实验和相似概念第二节相似判据第三节无量纲方程第四节特征无量纲数第五节量纲分析和定理主要内容第三章相似原理与量纲分析4实验数据的简化处理设计实验的基本要求理论流体力学第一二章实验流体力学普通实验数值实验5第一节流体力学的模型实验和相似概念流体力学实验
13
通常可以采用两种方法来确定动力相似判据: (一)方程分析法:描述流体的运动方程应该是一致的。 从而得到必须满足的关系式,即相似判据;
(二)量纲分析方法:以量纲分析为基础的一种方法。
14
方程分析法
动力相似判据
前提条件:假定原型流场和模型流场是满足几何相似、 时间相似和运动相似的,考虑不可压缩粘性流体的简单 情况。 首先,给出有关相似常数的定义:
此时,两个流场称之为是流场 相似或运动相似的。流场相似 也就是在两流场对应点的速度 的大小、方向成常数比例。
Q P
9
动力相似
动力相似:要求在两流场相应点上各动力学变量 成同一常数比例。 例如原型流场和模型流场在运动过程中受到的 质量力、粘性力等动力学变量成正比。
10
几何相似 时间相似 有比较清晰的关系表达式 运动相似 (可直接观测) 判断什么条件下两流场才满足动力相似??
u = U u’

流体力学

流体力学

表明流速不变或流速的改变可以忽略时,理
想流体稳定流动过程中流体压强能与重力势
能之间的转换关系,即高处的压强较小,低处 的压强较大. 两点的压强差为
p1 p2 g (h2 h1 )
空吸原理
SB SA SC
S AvA SB vB
S A SB
vB vA
1 1 2 2 P vA P vB A B 2 2
vB 2 gh

管涌

铜壶滴漏 “寸金难买寸光阴”是再熟 悉不过的诗句了,其中揭示 了计量时间的方法.我国古 代用铜壶滴漏计时,使水从 高度不等的几个容器里依次 滴下来,最后滴到最低的有 浮标的容器里,根据浮标上 铜壶滴漏 的刻度也就是根据最低容器 说明其计时原理. 里的水位来读取时间.
(三) 压强与流速的关系 在许多问题中,所研究的流体是在水平或接近 水平条件下流动.此时,有 h1=h2或 h1≈h2,伯 努利方程可直接写成 1 2 1 2 p1 v1 p 2 v 2 2 2 1 2 p v 常量 2 平行流动的流体,流速小的地方压强大,流速 大的地方压强小(例).
(2)求虹吸管内B、C 两处的压强. 解:水面为参考面,则 有A、B点的高度为零,
C 点的高度为2.50 m, D点的高度为-4.50m.
(1)取虹吸管为细流管,对于A、D 两点,根据伯 努利方程有 1 2 1 2 ghA v A p A ghD vD pD 2 2 由连续性方程有
1 2 1 2 p A v A pB v B 2 2
1 2 PB P0 vB 2
根据连续性方程可知,均匀虹吸管内,水的速率
处处相等,vB=vD.
1 2 PB P0 vB 5.7 10 4 Pa 2 结果表明,在稳定流动的情况下,流速大处压强

流体力学第3章(第二版)知识点总结经典例题讲解

流体力学第3章(第二版)知识点总结经典例题讲解

dx u u( t ) dt
流体质点加速度:
dy v v(t ) dt
dz w w( t ) dt
d2x d2y d 2z ax 2 , y 2 , z 2 a a dt dt dt
x(t ) a t y( t ) b t z(t ) 0
y
迹线方程:
流线的性质
(1)流线彼此不能相交(除了源和汇)
交点
v1 v2
s1
(2)流线是一条光滑的曲线, 不可能出现折点(除了激波问题)
(3)定常流动时流线形状不变, 非定常流动时流线形状发生变化
s2
v1 v 折点 2
s
[例1] 由速度分布求质点轨迹
已知: 求: 解: 已知用欧拉法表示的流场速度分布规律为
(2)
由于在欧拉法中速度只和当地坐标以及时间有关,所以必须消 去初始座标,观察(1)式和(2)式可得:
u( x , y , z , t ) y v ( x , y , z , t ) x w( x, y, z, t ) 0
讨论:本例说明虽然给出的是流体质点在不同时刻经历的空间位置,即 运动轨迹,即可由此求出空间各点速度分布式(欧拉法),即各 空间点上速度分量随时间的变化规律。 此例中空间流场分布与时间无关,属于定常流场.
[例3] 由速度分布求加速度
已知: 已知用欧拉法表示的流场速度分布规律为 求各空间位置上流体质点的加速度 解: 对某时刻 t 位于坐标点上(x, y)的质点
dx xt dt dy v yt dt u
u xt v yt
(a )
求解一阶常微分方程(a)可得
x( t ) ae y( t ) be

流体力学 传递过程原理第三章

流体力学   传递过程原理第三章
2 2 2 ux ux ux ux ux ux ux 1 p ux uy uz X ( 2 2 2 ) x y z x x y z
ux
u y x
uy
u y y
uz
u y z

u y
Y
1 p
三、平均流速与流动压降
压降:
Δp f p Δp 3μub 2 L x L y0
范宁摩擦因子(推导过程?):
τs 12 μ 12 f 2 ρub / 2 y0 ρub Re
(2 y0 ) ρub Re = μ
第三章 动量传递变化方程的解
3.1 两平壁间的稳态层流
3.2 圆管与套管环隙间的稳态层流
1 p 2 2 ux ( y y0 ) 2 μ x
抛物线形
当 y 0 时速度最大 1 p 2 umax y0 2 μ x
y 2 ux umax [1 ( ) ] y0
三、平均流速与流动压降
在流动方向上,取单位宽度的流通截面 A 2 y0 1, 则通过该截面的体积流率为 y0
二、套管环隙中的轴向稳态层流
套管环隙中层流的变化方程与圆管相同,即
1 d duz r r dr dr 1 dpd 常数 μ dz
B.C. 为 (I)
r r1 , uz 0
du z , 0 dr
(II) r r2 , uz 0
(III) r rmax , u z umax
一、圆管中的轴向稳态层流
二、套管环隙中的轴向稳态层流
三、旋转黏度计的测量原理
一、圆管中的轴向稳态层流
流体在圆管中的流动问题许多工程科学中遇到。 设:不可压缩流体在 水平圆管中作稳态层流 流动,所考察的部位远 离管道进、出口,流动 为沿轴向的一维流动。 r

工程流体力学第三章部分习题答案

工程流体力学第三章部分习题答案

概念题
伯努利方程的适用条件
伯努利方程适用于不可压缩、无粘性、无热传导的理想流体在重力场作稳定流动时,流体的动能、势能和内能相互转化的守 恒定律。
概念题
流体阻力的类型
流体阻力包括摩擦阻力和形状阻力。摩擦阻力是由于流体内 部摩擦而产生的阻力,形状阻力是由于流体流经物体时,因 流体速度变化而产生的阻力。
工程流体力学第三章部 分习题答案
contents
目录
• 习题一:基础概念理解 • 习题二:流体运动分析 • 习题三:流体压力和阻力 • 习题四:流体的无损检测技术
习题一:基础概念理
01

概念题
理解概念 题目:解释流线、迹线、流管、流束、流量等基本概念。
概念题
流线
表示某一瞬时流场中流体质点的 运动轨迹线,流线上各点的方向 与流速方向一致。
概念题
流体阻力的影响因素
流体阻力的影响因素包括流体的性质、 流速、物体的形状和大小、流道表面 的粗糙度等。
计算题
流体静压力的计算
根据流体静压力的定义,流体静压力的大小可以用流体深 度和当地的重力加速度计算得出。如果已知流体的密度和 重力加速度,也可以用流体质量和重力加速度计算得出。
计算题
伯努利方程的应用
计算题
题目
计算流体通过某一管道的流量。
答案
根据流量公式,流体通过某一管道的流量Q可以表示为Q = A × v,其中A为管 道截面积,v为流体在管道中的平均流速。如果已知管道截面积A和流速v,可以 直接计算出流量Q。
03
习题三:流体压力和
阻力
概念题
流体静压力的概念
流体静压力是指流体在静止状态下,由于重力作用在单位面积上的力,其大小与深度有关,深度越大 ,压力越大。

流体力学 第三章 流体动力学

流体力学 第三章 流体动力学

vx vx vx dv x vx vx vy vz 解: (1)a x t x y z dt
(4 y 6 x) (4 y 6 x)t (6t ) (6 y 9 x)t (4t )
将t=2,x=2,y=4代入得
ax 4m / s 2
同理 ay 6m / s 2 m / s2 a 4i 6 j
满足连续性方程,此流动可能出现
例:已知不可压缩流场ux=2x2+y,uy=2y2+z,且在z=0处
uz=0,求uz。 解:由
得 积分
u x u y u z 0 x y z u z 4 x 4 y z
uz 4( x y) z c
得 c=0
由z=0,uz=0
a.流体质点的加速度
dv a dt
dv x vx vx dx vx dy vx dz ax dt t x dt y dt z dt
同理
vx vx vx vx vx vy vz t x y z
ay
v y t
vx
是均匀流
3.流线与迹线 (1)流线——某瞬时在流场中所作的一条空间曲线,曲
线上各点速度矢量与曲线相切
v1
v2
性质:一般情况下不相交、不折转 流线微分方程:
流线上任一点的切线方向 (dr ) 与该点速度矢量 (v ) 一致
dr v dx dy dz 0 vx vy vz
dy (a, b, c, t ) vy dt
dvy (a, b, c, t ) dt
dz (a, b, c, t ) vz dt
dv z (a, b, c, t ) az dt

流体力学——流体动力学

流体力学——流体动力学
pB=47.04kN
pB
b
2
a
3.6 10 0 3.6 a 0.24
a=6.16m
v2 2g
2
3.15 如图, 水从敞口水池沿一截面有变化的管路排出, 若质量流量 qm=15kg/s, d1=100mm, d2=75mm,不计损失,试求所需的水头 H 以及第二管段中央 M 点的相对压强。 (参考分数: 12 分)

pm=3.94kPa
3.16 如图,由水池通过等直径虹吸管输水,A 点为虹吸管进口处,HA=0;B 点为虹吸管中 与水池液面齐高的部位,HB=6m;C 点为虹吸管中的最高点,HC=7m;D 点为虹吸管的出 口处,HD=4m。若不计流动中的能量损失,求虹吸管的断面平均流速和 A、B、C 各断面上 的绝对压强。 (参考分数:12 分)
Δh
uA A
d
2 uA p p A 2g
解:由能量方程
2 uA p p A ,得到 2g
由毕托管原理
p pA

12.6h
解得
u A 3.85m / s , v 0.84u A 3.24m / s , Q vA 0.102m 3 / s
3.10 如图,用抽水量 Q=24m3/h 的离心水泵由水池抽水,水泵的安装高程 hs=6m,吸水管 的直径为 d=100mm,如水流通过进口底阀、吸水管路、90º弯头至泵叶轮进口的总水头损 失为 hw=0.4mH2O,求该泵叶轮进口处的真空度 pv。 (参考分数:12 分)
B
C
解:取 1-1 断面在 C 处,2-2 断面在 B 处,自由液面为 0-0 断面,选基准面在 C 处。列 0、1 断面的能量方程,有
3.6 0 0 0 0

流体力学 第三章

流体力学 第三章
无数微元流束的总和称为总流。自然界和工程中所遇到 的管流或渠流都是总流。根据总流的边界情况,可以把总流 流动分为三类:
(1)有压流动 总流的全部边界受固体边界的约束, 即流体充满流道,如压力水管中的流动。
(2)无压流动 总流边界的一部分受固体边界约束,另 一部分与气体接触,形成自由液面,如明渠中的流动。
图 3-1 流体的出流
一、定常流动和非定常流动
这种运动流体中任一点的流体质点的流动参数(压强和 速度等)均不随时间变化,而只随空间点位置不同而变化的 流动,称为定常流动。
现将阀门A关小,则流入水箱的水量小于从阀门B流出的 水量,水箱中的水位就逐渐下降,于是水箱和管道任一点流 体质点的压强和速度都逐渐减小,水流的形状也逐渐向下弯 曲。
(2)如果流体是定常的,则流出的流体质量必然等于流 入的流体质量。
二、微元流束和总流的连续性方程 在工程上和自然界中,流体流动多数都是在某些周界
所限定的空间内沿某一方向流动,即一维流动的问题。 所谓一维流动是指流动参数仅在一个方向上有显著的
变化,而在其它两个方向上的变化非常微小,可忽略不计。 例如在管道中流动的流体就符合这个条件。在流场中取一 微元流束如图所示。
图 3-6 流场中的微元流束
假定流体的运动是连续、定 常的,则微元流管的形状不随时 间改变。根据流管的特性,流体 质点不能穿过流管表面,因此在 单位时间内通过微元流管的任一 过流断面的流体质量都应相等, 即
ρ1v1dA1=ρ2v2dA2=常数 dA1 、dA2—分别为1、2两个过 图 3-6 流场中的微元流束 流断面的面积,m2;
§ 3-1描述流体运动的两种方法
连续介质模型的引入,使我们可以把流体看作为由无 数个流体质点所组成的连续介质,并且无间隙地充满它所 占据的空间。

4流体力学第三章流动阻力与能量损失

4流体力学第三章流动阻力与能量损失

二、能量损失的计算公式—长期工程经验总结
液体:沿程水头损失(达西公式):
L v hf d 2g
均流速
2
(3-1)
λ—沿程阻力系数;L—管道长度;d—管道直径;v—平
v2 局部水头损失: hj 2g
气体:沿程压强损失: 局部压强损失: 核心问题: 和 的计算。
(3-2)
L v pf d 2
第一节 流动阻力与能量损失的两种 形式
一、流动阻力和能量损失的分类 根据流动的边界条件,能量损失分:沿程能量损失 和局部能量损失 ㈠沿程阻力及沿程能量损失 ◆沿程阻力—当束缚流体流动的固体边壁沿程不变, 流动为均匀流时,流层与流层之间或质点之间只存 在沿程不变的切应力,称为沿程阻力。 ◆沿程能量损失—沿程阻力作功引起的能量损失称 之这沿程能量损失。特点:沿管路长度均匀分布, 即沿程水头损失hf ∝ l。
层流区 不稳定区
紊流区
二、沿程水头损失与流态的关系
层流区:
紊流区:
hf v
hf v
1.75: 2.0
不稳定区:关系不稳定。
三、流动型态的判断标准
●雷诺数: 雷诺等人进一步实验表明:流态不仅和流速v有关, 还和管径d、流体的动力粘度μ和密度ρ有关。 以上四个参数组合成一个无因次数,叫雷诺数,用 Re表示。
㈡时均化
紊流运动要素围绕它上下波动的平均值称为时均值。 时均速度的定义:
u x AT u x Adt
0
T
1 T u x u x dt T 0
瞬时速度
(3-20)
' x
ux ux u
二、紊流阻力
由两部分组成: ①流体各层因时均流速不同而存在相对运动,故 流层间产生因粘滞性所引起的摩擦阻力。 粘性切应力τ1按牛顿内摩擦定律计算。 ②由于脉动现象,流层间质点的动量交换形成的 紊流附加切应力τ2。 其大小由普朗特的混合长度理论计算。见式 (3-21)。 Re较小时,τ1为主要; Re足够大时,τ2为主要。

《流体力学》第三章一元流体动力学基础

《流体力学》第三章一元流体动力学基础

02
能源领域
风力发电机的设计和优化需要考虑风力湍流对风能转换效率的影响;核
能和火力发电厂的冷却塔设计也需要考虑湍流流动的传热和传质特性。
03
环境工程领域
大气污染物的扩散和传输、城市空气质量等环境问题与湍流流动密切相
关,需要利用湍流模型和方法进行模拟和分析。
06
一元流体动力学的实验研 究方法
实验设备与测量技术
一元流体动力学
研究一元流体运动规律和特性的学科。
研究内容
包括流体运动的基本方程、流体的物理性质、流动状态和流动特 性等。
02
一元流体动力学基本概念
流体静力学基础
静止流体
流体处于静止状态,没有相对运动,只有由于重力引起的势能变 化。
平衡状态
流体内部各部分之间没有相对运动,且作用于流体的外力平衡。
流体静压力
总结词
求解无旋流动的方法主要包括拉普拉斯方程和泊松方程。
详细描述
拉普拉斯方程是描述无旋流动的偏微分方程,它可以通过求 解偏微分方程得到流场的速度分布。泊松方程是另一种求解 无旋流动的方法,它通过求解泊松方程得到流场的速度分布 。
无旋流动的应用实例
总结词
无旋流动在许多工程领域中都有应用,如航 空航天、气象学、环境工程等。
能量方程
• 总结词:能量方程是一元流体动力学的基本方程之一,用于描述流体能量的传递和转化规律。
• 详细描述:能量方程基于热力学第一定律,表示流体能量的变化率等于流入流体的净热流量和外力对流体所做的功。在直角坐标系下,能量方程可以表示为:$\frac{\partial}{\partial t}(\rho E) + \frac{\partial}{\partial x_j}(\rho u_j E + p u_j) = \frac{\partial}{\partial x_j}(k \frac{\partial T}{\partial x_j}) + \frac{\partial}{\partial xj}(\tau{ij} u_i)$,其中$E$为流体 的总能,$T$为温度,$k$为热导率。

第三章流体力学--流体力学基本方程

第三章流体力学--流体力学基本方程

§3-1 描述流体运动的方法
a V u V v V w V t x y z
§3-1 描述流体运动的方法
a V u V v V w V t x y z
加速度的投影值:
ax
u t
u
u x
v
u y
w
u z
v v v v ay t u x v y w z
az
w t
u
w x
v
w y
dx dy dz x 2y 5z
dx1d(2y)d(5z) x 2 2y 5z
dx x
1 2
d(2 y) 2y
dx x
d(5 z) 5 z
由上述两式分别积分,并整理得:
§3-1 描述流体运动的方法
x
y c1

xc2z5c2 0
即流线为曲面 x y c1 和平面 xc2z5c20的交线。
§3-1 描述流体运动的方法

§3-1 描述流体运动的方法
§3-1 描述流体运动的方法
例1:已知:u = x + t,v = -y + t, w = 0
求:t = 0 时,经过点A(-1,-1)的流线方程。 解: t = 0时,u=x,v=-y, w= 0 ;代入流线微分方程:
dx dy x y
因此:
d dt
d
dM dt
t
d
A
vndA
对于任一物理量φ(如动量):
d dt
d
t
d
vndA
A
φ——单位体积的某物理量。
§3-2 连续性方程
d dt
d
t
d
vndA
A
即:系统的任一物理量的总变化率等于控制体内该物理量的 时间变化率和该物理量通过控制体表面的净流出率之和。

流体力学讲义 第三章 流体动力学基础

流体力学讲义 第三章 流体动力学基础

第三章流体动力学基础本章是流体动力学的基础。

主要阐述了流体运动的两种描述方法,运动流体的基本类别与基本概念,用欧拉法解决运动流体的连续性微分方程、欧拉运动微分方程及N-S方程。

此外,还阐述了无旋流与有旋流的判别,引出了流函数与势函数的概念,并且说明利用流网与势流叠加原理可解决流体的诸多复杂问题。

第一节流体流动的基本概念1.流线(1)流线的定义流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。

图3-1为流线谱中显示的流线形状。

(2)流线的作法:在流场中任取一点(如图3-2),绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …,若各点无限接近,其极限就是某时刻的流线。

流线是欧拉法分析流动的重要概念。

图3-1 图3-2(3)流线的性质(图3-3)a.同一时刻的不同流线,不能相交。

图3-3因为根据流线定义,在交点的液体质点的流速向量应同时与这两条流线相切,即一个质点不可能同时有两个速度向量。

b.流线不能是折线,而是一条光滑的曲线。

因为流体是连续介质,各运动要素是空间的连续函数。

c.流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。

因为对不可压缩流体,元流的流速与其过水断面面积成反比。

(4)流线的方程(图3-4)根据流线的定义,可以求得流线的微分方程:图3-4设d s为流线上A处的一微元弧长:u为流体质点在A点的流速:因为流速向量与流线相切,即没有垂直于流线的流速分量,u和d s重合。

所以即展开后得到:——流线方程(3-1)(或用它们余弦相等推得)2.迹线(1)迹线的定义迹线(path line)某一质点在某一时段内的运动轨迹线。

图3-5中烟火的轨迹为迹线。

(2)迹线的微分方程(3-2)式中,u x,u y,u z均为时空t,x,y,z的函数,且t是自变量。

3工程流体力学 第三章流体运动学基础

3工程流体力学 第三章流体运动学基础
总流: 由无数元流构成的大的流束,包括整
个流动区域上的所有质点的流动。
§3-3 迹线、流线和染色线,流管(续16)
三、湿周、水力半径
1.湿周x 在总流过流断面上,液体与固体相接触的线
称为湿周。用符号x 表示。
2.水力半径R
总流过流断面的面积A与湿周的比值称为水Βιβλιοθήκη 力半径。R A x
注意:水力半径与几何半径是完全不同的两个概念。
这是两个微分方程,其中 t 是参数。 可求解得到两族曲面,它们的交线就是 流线族。
§3-3 迹线、流线和染色线,流管(续10)
例3-1 已知直角坐标系中的速度场 u=x+t; v= -y+t;w=0,
试求t = 0 时过 M(-1,-1) 点的流线。
解:由流线的微分方程:
dx d y dz u vw
§3-3 迹线、流线和染色线,流管(续5)
因为u不随t变,所以同一点的流线 始终保持不变。即流线与迹线重合。
某点流速的方向是
流线在该点的切线方向 A
B
流速的大小由流 线的疏密程度反映
uA=uB ?
§3-3 迹线、流线和染色线,流管(续6)
迹线与流线方程 采用拉格朗日方法描述流动时,质
点的运动轨迹方程:
试求t = 0 时过 M(-1,-1) 点的迹线。
解:由迹线的微分方程:
dx d y dz dt u vw
u=x+t;v=-y+t;w=0
dx xt dt
d y y t
dt
求解
x C1 et t 1
t = 0 时过 M(-1,-1):C1 = C2 = 0 y C2 et t 1 x= -t-1 y= t-1 消去t,得迹线方程: x+y = -2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y
1 2
(x2
y2) x
1 2
x(x2
y2)
ay
v t
u
v x
v
v y
0
xy(x)
1 2
(x2
y 2 ) ( y)
1 2
y( y2
x2)
欧拉法与拉格朗日法比较
★ 拉格朗日法可以描述流场中各个质点的运动轨迹和轨 迹上运动参量的变化,但是流体具有易流动性,对每一个 质点的跟踪十分困难。
★ 欧拉法给出不同时刻流场中各个空间点的流动参量的 分布,通过连续函数的理论对流场进行分析和计算;不 注重各个质点的运动轨迹。
欧拉法
欧拉法:在固定的座标系中,研究空间某个点的流动参数 (速度、压力、密度),并给出这些参数与空间点和时间 的分布:
速度:u=u (x, y, z, t), v=v (x, y, z, t), w=w (x, y, z, t)
压力:p=p (x, y, z, t) 密度:ρ=ρ(x, y, z, t)
由于流体是连续介质,所以描述流体运动的各物理量(如速度、 加速度等)均应是空间点的坐标和时间的连续函数。根据着眼点的 不同,流体力学中研究流体的运动有两种不同的方法,一种是拉 格朗日(Lagrange)方法,另一种是欧拉(Euler)方法。
拉格朗日法:
拉格朗日方法又称随体法,是从分析流场中个别流体质点 着手来研究整个流体运动的。
第三章 理想流体动力学基本方程
理想流体: 不计粘性切应力的运动流体
一元流动: 流动参数主要跟一个座标方向 有关的流动
本章讨论理想流体的基本方程及 在一元流动中的基本应用
流体运动学
流体动力学是研究流体在运动中其流动参量之间 的相互关系,以及引起运动的原因和流体对周围固体 物体的影响。
流动参量:压力 密度 表面张力 速度 应力 作用力 粘度 力矩 动量 能量
ay
v t
u
v x
v
v y
w
v z
az
w t
u
w x
v
w y
w w z
• 定常流与非定常流
概念:
定常流动: 0 t
非定常流动
一元流动
二元流动(平面流动) 三元流动(空间流动)
• 例题
V
xyi
1
(x2
y
2
)
j
2
即u xy, v 1 (x2 y2 )
2
ax
u t
u
u x
v
u y
xy
流体运动学
研究方法:从理想流体出发,推导其基本理论, 再根据实际流体的条件对其应用加以修正。
流场:流体占据的全部空间范围。经过管道或明 渠的流场叫“管道流场”或“径流流场”;绕过物体 的流场叫“绕流流场”
§3-1 描述流体运动的两种方法
连续介质模型的引入,使我们可以把流体看作为由无数个流 体质点所组成的连续介质,并且无间隙地充满它所占据的空间。 我们把流体质点运动的全部空间称为流场。
• 速度分布
设某个质点,t 时刻位于(x, y, z),
速度为:
V0 (x, y, z,t)
t+Δt 时刻位于(x+Δx, y+Δy, z+Δz, t+Δt),
速度为: V1(x x, y y, z z,t t)
V0和V1的关系为
V
V
V
V
V1 V0 t t x x y y z z
加速度(质点导数)
a lim V1 V0
( to ) t

V1
V0
V t t
V x x
V y y
V z z
注意到 因此
lim x u, lim y v, lim z w
t0 t
t0 t
t0 t
a
dV
V
u
V
v
V
w
V
V
(V
)V
dt t x y z t
右边第一项为当地加速度,又称当地导数、时变加速度或局部 加速度,后三项为迁移加速度,又称迁移导数、对流加速度。
欧拉法与拉格朗日法比较
由上述可知,采用欧拉法描述流体的流动,常常比采用拉格 朗日法优越,其原因有三。 利用欧拉法得到的是场,便于采用场论这一数学工具来研究。 采用欧拉法,加速度是一阶导数,而拉格朗日法,加速度是 二阶导数,所得的运动微分方程分别是一阶偏微分方程和二 阶偏微分方程,在数学上一阶偏微分方程比二阶偏微分方程 求解容易。 在工程实际中,并不关心每一质点的来龙去脉。 基于上述三点原因,欧拉法在流体力学研究中广泛被采用。 当然拉格朗日法在研究爆炸现象以及计算流体力学的某些问 题中还是方便的。
当地加速度是由于某一空间点上的流体质点的速度随 时间的变化而产生的
迁移加速度是某一瞬时流体质点的速度随空间点的变 化而产生的。
当地加速度和迁移加速度之和称为总加速度。
两个加速度的物理意义:
如图3-1所示,不可压缩流体流过一个中间有收缩形的变截 面管道,截面2比截面1小,则截面2的速度就要比截面1的 速度大。所以当流体质点从1点流到2点时,由于截面的收 缩引起速度的增加,从而产生了迁移加速度,如果在某一段 时间内流进管道的流体输入量有变化(增加或减少),则管 道中每一点上流体质点的速度将相应发生变化(增大或减 少),从而产生了当地加速度。
t
v y(a, b, c,t) , t
w z(a, b, c,t) t
加速度:
ax
2x(a,b, c,t) t 2
,
ay
2 y(a,b, c,t) t 2
,
az
2z(a,b, c,t) t 2
欧拉法
欧拉法,又称局部法,是从分析流场中每一个固定空 间点上的流体质点的运动着手,来研究整个流体的运 动,即研究流体质点在通过某一空间点时流动参数随 时间的变化规律。所以流体质点的流动是空间点坐标 (x,y,z)和时间t的函数,
流场有无数个质点,设其中某一质点t=0时的位置为(a,b,c),称为拉
格朗日变数,它不是空间坐标的函数,而是流体质点标号。将座标原点 建在该质点,则对于任意的流体质点在t时刻:
轨迹:x=x (a, b, c, t), y=y (a, b, c, t), z=z (a, b, c, t)
速度:u x(a,b, c,t) ,
图 3-1 中间有收缩形的变截面管道内的流动
注意:流体质点和空间点是两个截然不同的概念,
空间点指固定在流场中的一些点 流体质点不断流过空间点 空间点上的速度指流体质点正好流过此空间点时的速度。
加速度的投影值:aFra bibliotekxi ay
j
az
k
u u u u ax t u x v y w z
这种研究方法,最基本以研究个别流体质点的运动为基础; 研究每个流体质点的运动情况,并给出其运动轨迹。
在理论力学中应用:
设某质点的轨迹为:x=x(t), y=y(t), z=z(t)
速度: u x , v y , w z
t
t
t
加速度:
ax
2 t
x
2
,
ay
2 y t 2
,
az
2z t 2
拉格朗日法
相关文档
最新文档