二叉树遍历流程图

合集下载

汇编二叉树的遍历

汇编二叉树的遍历

一、软件背景介绍树的遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。

访问结点所做的操作依赖于具体的应用问题。

遍历是二叉树上最重要的运算之一,是二叉树上进行其它运算的基础。

从二叉树的递归定义可知,一棵非空的二叉树由根结点及左、右子树这三个基本部分组成。

因此,在任一给定结点上,可以按某种次序执行三个操作:⑴访问结点本身(N),⑵遍历该结点的左子树(L),⑶遍历该结点的右子树(R)。

所以二叉树的遍历也包括三种:先序遍历,中序遍历,和后序遍历。

图1:程序显示结果二、核心算法思想二叉树的存储:在内存中为数组binary分配一个大小为63(0,0,0)的存储空间,所有数组元素初始化为0,用来存放二叉树。

每三个连续的数组地址存放一个节点:第一个地址存放节点的值;第二个地址存放有无左孩子的信息,如果有则将其置为1,否则为0;第三个地址存放有无右孩子的信息,如果有则将其置为1,否则为0。

将binary的首址偏移赋给si,cx初始化为0用来计数,用回车代表输入的为空,即没有输入。

按先根存储的方式来存二叉树,首先输入一个字符,若为回车则退出程序,否则cx+3且调用函数root。

然后该结点若有左孩子,调用leftchild函数,置该结点标志即第二个地址中的0为1,该结点进栈,再存储左孩子结点,递归调用左右,若没有左孩子,看有没有右孩子,若有,则调用rightchild置该结点标志位即上第三个地址中的0为1,然后该结点进栈,再存储右孩子结点,递归调用左右,整个用cx计数,数组binary中每多一个节点,cx加3。

此存储方式正好符合先序遍历思想。

遍历二叉树的执行踪迹:三种递归遍历算法的搜索路线相同,具体线路为:从根结点出发,逆时针沿着二叉树外缘移动,对每个结点均途径三次,最后回到根结点。

二叉树的遍历有常用的三种方法,分别是:先根次序、中根次序、后根次序。

为了验证这几种遍历算法的区别,本次的实验将会实现所有的算法。

二叉树遍历(前序、中序、后序、层次、广度优先、深度优先遍历)

二叉树遍历(前序、中序、后序、层次、广度优先、深度优先遍历)

⼆叉树遍历(前序、中序、后序、层次、⼴度优先、深度优先遍历)⽬录转载:⼆叉树概念⼆叉树是⼀种⾮常重要的数据结构,⾮常多其他数据结构都是基于⼆叉树的基础演变⽽来的。

对于⼆叉树,有深度遍历和⼴度遍历,深度遍历有前序、中序以及后序三种遍历⽅法,⼴度遍历即我们寻常所说的层次遍历。

由于树的定义本⾝就是递归定义,因此採⽤递归的⽅法去实现树的三种遍历不仅easy理解并且代码⾮常简洁,⽽对于⼴度遍历来说,须要其他数据结构的⽀撑。

⽐⽅堆了。

所以。

对于⼀段代码来说,可读性有时候要⽐代码本⾝的效率要重要的多。

四种基本的遍历思想前序遍历:根结点 ---> 左⼦树 ---> 右⼦树中序遍历:左⼦树---> 根结点 ---> 右⼦树后序遍历:左⼦树 ---> 右⼦树 ---> 根结点层次遍历:仅仅需按层次遍历就可以⽐如。

求以下⼆叉树的各种遍历前序遍历:1 2 4 5 7 8 3 6中序遍历:4 2 7 5 8 1 3 6后序遍历:4 7 8 5 2 6 3 1层次遍历:1 2 3 4 5 6 7 8⼀、前序遍历1)依据上⽂提到的遍历思路:根结点 ---> 左⼦树 ---> 右⼦树,⾮常easy写出递归版本号:public void preOrderTraverse1(TreeNode root) {if (root != null) {System.out.print(root.val+" ");preOrderTraverse1(root.left);preOrderTraverse1(root.right);}}2)如今讨论⾮递归的版本号:依据前序遍历的顺序,优先訪问根结点。

然后在訪问左⼦树和右⼦树。

所以。

对于随意结点node。

第⼀部分即直接訪问之,之后在推断左⼦树是否为空,不为空时即反复上⾯的步骤,直到其为空。

若为空。

则须要訪问右⼦树。

注意。

在訪问过左孩⼦之后。

二叉树的遍历(课件)

二叉树的遍历(课件)

7
二叉树的遍历——递归算法
中序遍历算法 LDR(node *root) {if(root !=NULL) {LDR(root->lchild);
printf(“%d”,root->data); LDR(root->rchild); } return(0);}
后序遍历算法 LRD (node *root) {if(root !=NULL) {LRD(root->lchild); LRD(root->rchild); printf(“%d”,root->data); } return(0);}
二叉树的遍历
单位:xx师范学院科技学院 作者:xx
1
二叉树的遍历——定义
定义——
指如何按某条搜索路径巡访二叉树 中每个结点,使得每个结点均被访 问一次,而且仅被访问一次。
2
二叉树的遍历——规则
二叉树由根、左子树、右子树构成,定义为D、 L、R ❖ D、 L、R的组合定义了六种可能的遍历方案:
LDR, LRD, DLR, DRL, RDL, RLD ❖ 若限定先左后右,则有三种实现方案:
B
E
中序序列:
C
F
B D C AE H G K F
D
G
后序序列:
H K DCBHKGFEA
10
谢谢观看!
11
DLR 先序遍历
LDR 中序遍历
LRD 后序遍历
3
二叉树的遍历——先序遍历
A
D
L
R
B D
C
A
D LR
D LR
B
先序遍历序列:A B D C
C D LR
D
4
二叉树的遍历——中序遍历

《二叉树的遍历》PPT课件.ppt

《二叉树的遍历》PPT课件.ppt
最后访问根结点。
a
b
c
前序遍历:abdefgc
d
f
中序遍历: debgfac
ห้องสมุดไป่ตู้
后序遍历: edgfbca
eg
练习!!!!!!!!
练习!!!!!!!!
A
B
C
前序序列: ABDGCEFH 中序序列: DGBAECHF 后序序列: GDBEHFCA
D G
E
F
H
图 5-15
下面我们再给出一种遍历二叉树的方法
二叉树的遍历
二叉树遍历的定义
所谓二叉树的遍历,是指按一定的顺序对二叉 树中的每个结点均访问一次,且仅访问一次。
按照根结点访问位置的不同,通常把二叉树的 遍历分为六种:
TLR(根左右), TRL(根右左) LTR(左根右), RTL(右根左) LRT(左右根), RLT(右左根)
其中,TRL、RTL和RLT三种顺序在左右子树之间均 是先右子树后左子树,这与人们先左后右的习惯不 同,因此,往往不予采用。余下的三种顺序TLR、 LTR和LRT根据根访问的位置不同分别被称为前序遍 历、中序遍历和后序遍历。
(1)二叉树的前序遍历 首先访问根结点; 然后按照前序遍历的顺序访问根结点的左子树; 再按照前序遍历的顺序访问根结点的右子树。
(2)二叉树的中序遍历 首先按照中序遍历的顺序访问根结点的左子树;
然后访问根结点; 最后按照中序遍历的顺序访问根结点的右子树。
(3)二叉树的后序遍历 首先按照后序遍历的顺序访问根结点的左子树; 然后按照后序遍历的顺序访问根结点的右子树;
(1)对一棵二叉树中序遍历时,若我们将二叉树严
格地按左子树的所有结点位于根结点的左侧,右子树的所
有结点位于根右侧的形式绘制,就可以对每个结点做一条

二叉树遍历(前中后序遍历,三种方式)

二叉树遍历(前中后序遍历,三种方式)

⼆叉树遍历(前中后序遍历,三种⽅式)⽬录刷题中碰到⼆叉树的遍历,就查找了⼆叉树遍历的⼏种思路,在此做个总结。

对应的LeetCode题⽬如下:,,,接下来以前序遍历来说明三种解法的思想,后⾯中序和后续直接给出代码。

⾸先定义⼆叉树的数据结构如下://Definition for a binary tree node.struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}};前序遍历,顺序是“根-左-右”。

使⽤递归实现:递归的思想很简单就是我们每次访问根节点后就递归访问其左节点,左节点访问结束后再递归的访问右节点。

代码如下:class Solution {public:vector<int> preorderTraversal(TreeNode* root) {if(root == NULL) return {};vector<int> res;helper(root,res);return res;}void helper(TreeNode *root, vector<int> &res){res.push_back(root->val);if(root->left) helper(root->left, res);if(root->right) helper(root->right, res);}};使⽤辅助栈迭代实现:算法为:先把根节点push到辅助栈中,然后循环检测栈是否为空,若不空,则取出栈顶元素,保存值到vector中,之后由于需要想访问左⼦节点,所以我们在将根节点的⼦节点⼊栈时要先经右节点⼊栈,再将左节点⼊栈,这样出栈时就会先判断左⼦节点。

代码如下:class Solution {public:vector<int> preorderTraversal(TreeNode* root) {if(root == NULL) return {};vector<int> res;stack<TreeNode*> st;st.push(root);while(!st.empty()){//将根节点出栈放⼊结果集中TreeNode *t = st.top();st.pop();res.push_back(t->val);//先⼊栈右节点,后左节点if(t->right) st.push(t->right);if(t->left) st.push(t->left);}return res;}};Morris Traversal⽅法具体的详细解释可以参考如下链接:这种解法可以实现O(N)的时间复杂度和O(1)的空间复杂度。

数据结构_二叉树的遍历_课程设计

数据结构_二叉树的遍历_课程设计

8
if(bt!=NULL)/*二叉树 bt 非空*/ { inorder(bt->lchild);/*中序遍历 bt 的左子树*/ printf("%c",bt->data);/*访问结点 bt*/ inorder(bt->rchild);/*中序遍历 bt 的右子树*/ } } void postorder(bitree *bt)/*后序序遍历二叉树*/ { if(bt!=NULL) { postorder(bt->lchild); postorder(bt->rchild); printf("%c",bt->data); } }
3.2.2 二叉树的中序递归遍历算法
void inorder(bitree *bt)/*中序序遍历二叉树*/ { if(bt!=NULL)/*二叉树 bt 非空*/ { inorder(bt->lchild);/*中序遍历 bt 的左子树*/ printf("%c",bt->data);/*访问结点 bt*/ inorder(bt->rchild);/*中序遍历 bt 的右子树*/ } }
图 1 “菜单”界面
图2
创建二叉树
5
图 3 二叉树的先序遍历
图4
二叉树的中序输出
6
图 5 二叉树的后序输出
五:实验总结 虽然做的过程中出现很多错误。但是最后还是一一纠正了,并在其中发现了自 身的不足,补学补差。最后终于完成了。
六:源程序附录
#include<stdio.h> #include<stdlib.h> typedef char datatype; typedef struct node { datatype data;/*数据元素*/ struct node *lchild,*rchild;/*指向左,右孩子*/ }bitree; bitree *root;/*二叉树结点类型定义*/ bitree *creatbitree(bitree *root)/*创建二叉树*/ { char ch;

NOIP初赛复习4二叉树的遍历和性质

NOIP初赛复习4二叉树的遍历和性质

二叉树的遍历(图1)(图2)二叉树的遍历运算(递归定义)(1)先序遍历:根,左子树,右子树根在先例如图1:271653894;图2:ABCKDEHFJG(2)中序遍历:左子树,根,右子树根在中例如图1:175632849;图2:BKCAHEDHFG(3)后序遍历:左子树,右子树,根根在后例如图1:153674982;图2:KCBHEJGFDA题型一:已知其中一些遍历结果,求其他遍历结果题型二:统计n个不同的点可以构造多少棵不同的二叉树?Catalan数=C(n,2*n)/(n+1)题型三:中缀表达式向前缀和后缀表达式的转化每日练习注:题1已知先序和中序,二叉树是唯一的。

题2已知后序和中序,二叉树是唯一的。

题3已知先序和后序,二叉树不是唯一的。

1、已知先序:1243576,中序:2417536,请画出整棵二叉树。

2、已知后序:4526731,中序:4257631,请画出整棵二叉树。

3、已知先序:123456,后序:325641,请画所有二叉树的情况。

4、如果只知道先序abc,画出所有可能二叉树形状,并且计算多少种?5、如果只知道中序abc,画出所有可能二叉树形状,并且计算多少种?6、如果只知道后序abc,画出所有可能二叉树形状,并且计算多少种?往年真题1.一颗二叉树的前序遍历序列是ABCDEFG,后序遍历序列是CBFEGDA,则根结点的左子树的结点个数可能是()。

A.0B.2C.4D.62.表达式a*(b+c)-d的后缀表达式是:A)abcd*+-B)abc+*d-C)abc*+d-D)-+*abcd3.二叉树T,已知其先序遍历是1243576(数字为节点编号,以下同),后序遍历是4275631,则该二叉树的中根遍历是()A.4217536B.2417536C.4217563D.24157364.二叉树T,已知其先根遍历是1243576(数字为结点编号,以下同),中根遍历是2415736,则该二叉树的后根遍历是()A.4257631B.4275631C.7425631D.42765315.已知7个节点的二叉树的先根遍历是1245637(数字为结点的编号,以下同),后根遍历是4652731,则该二叉树的可能的中根遍历是()A.4265173B.4256137C.4231567D.42561736.已知7个节点的二叉树的先根遍历是1245637(数字为节点的编号,以下同),中根遍历是4265173,则该二叉树的后根遍历是()A.4652731B.4652137C.4231547D.46531 727.已知6个结点的二叉树的先根遍历是123456(数字为结点的编号,以下同),后根遍历是325641,则该二叉树的可能的中根遍历是()A.321465B.321546C.231546D.231465二叉树的性质性质1:二叉树第i层上的结点数目最多为。

二叉树遍历讲课教案ppt课件

二叉树遍历讲课教案ppt课件
I; 中序遍历序列:D,C,B,E,H,A,G, I,F,试画出二叉树,并写出该二叉树的前序 遍历序列和中序遍历序列。
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
6.5 线索二叉树
§ 何谓线索二叉树? § 线索链表的遍历算法 § 如何建立线索链表?
一、问题的提出
顺着某一条搜索路径巡访二叉树 中的结点,使得每个结点均被访问一 次,而且仅被访问一次。
“访问”的含义可以很是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
if (T) {
visit(T->data);
// 访问结点
Preorder(T->lchild, visit); // 遍历左子树
Preorder(T->rchild, visit);// 遍历右子树 }
}
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
二、先左后右的遍历算法
先(根)序的遍历算法 中(根)序的遍历算法 后(根)序的遍历算法
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
先(根)序的遍历算法:
若二叉树为空树,则空操作;否则, (1)访问根结点; (2)先序遍历左子树; (3)先序遍历右子树。

二叉树的遍历PPT-课件

二叉树的遍历PPT-课件

4 、二叉树的创建算法
利用二叉树前序遍历的结果可以非常方便地生成给定的
二叉树,具体做法是:将第一个输入的结点作为二叉树的 根结点,后继输入的结点序列是二叉树左子树前序遍历的 结果,由它们生成二叉树的左子树;再接下来输入的结点 序列为二叉树右子树前序遍历的结果,应该由它们生成二 叉树的右子树;而由二叉树左子树前序遍历的结果生成二 叉树的左子树和由二叉树右子树前序遍历的结果生成二叉 树的右子树的过程均与由整棵二叉树的前序遍历结果生成 该二叉树的过程完全相同,只是所处理的对象范围不同, 于是完全可以使用递归方式加以实现。
void createbintree(bintree *t) { char ch; if ((ch=getchar())==' ') *t=NULL; else { *t=(bintnode *)malloc(sizeof(bintnode)); /*生成二叉树的根结点*/ (*t)->data=ch; createbintree(&(*t)->lchild); /*递归实现左子树的建立*/ createbintree(&(*t)->rchild); /*递归实现右子树的建立*/ }
if (s.top>-1) { t=s.data[s.top]; s.tag[s.top]=1; t=t->rchild; }
else t=NULL; }
}
7.5 二叉树其它运算的实现
由于二叉树本身的定义是递归的,因此关于二叉树的许多 问题或运算采用递归方式实现非常地简单和自然。 1、二叉树的查找locate(t,x)
(1)对一棵二叉树中序遍历时,若我们将二叉树严
格地按左子树的所有结点位于根结点的左侧,右子树的所

二叉树的遍历课件

二叉树的遍历课件
二叉树的遍历
教学目标
通过本案例的学习,能够认识和了 解二叉树的遍历,进而掌握通过其中 两种遍历顺序推出第三种遍历顺序的 分析方法,并且能够举一反三。
遍历的概念
所谓遍历是指沿着某条搜索路线, 依次对二叉树中每个结点均做一次且仅 做一次访问。
遍历分为:前序遍历、中序遍历、 后序遍历。
2011年3月全国计算机等级考试笔试填空题第2题
一棵二叉树的中序遍历结果为 DBEAFC,前序遍历结果为ABDECF, 则后序遍历结果为 【 】 。
前序遍历:若二叉树非空,则先访问根节点,再 遍历左子树,最后遍历右子树。
前序遍历顺序:
A
B
C
DE
F
中序遍历:若二叉树非空,则先遍历左子树,再 访问根节点,最后遍历右子树。
中序遍历顺序:
A
B
C
DE
F
后序遍历:若二叉树非空,则先遍历左子树,再 遍历右子树,最后访问根节点。
后序遍历顺序:
A
B
C
DE
F
中序遍历: D B E A F C 前序遍历: A B D E C F
后序遍历
A
B
C
D EF
二叉树
总结:
我们这节课主要采用“案例驱动式”教 学方法讲解了二叉树的遍历,以案例方式讲 解通过其中两种遍历顺序推断出第三种遍历 顺序的分析方法。主要培养大家灵活运用知 识的能力和举一反三的分析能力。
拓展:
已知ቤተ መጻሕፍቲ ባይዱ叉树的 后序遍历:D A B E C 中序遍历:D E B A C
请问前序遍历结果为?

二叉树的四种遍历算法

二叉树的四种遍历算法

⼆叉树的四种遍历算法⼆叉树作为⼀种重要的数据结构,它的很多算法的思想在很多地⽅都⽤到了,⽐如STL算法模板,⾥⾯的优先队列、集合等等都⽤到了⼆叉树⾥⾯的思想,先从⼆叉树的遍历开始:看⼆叉树长什么样⼦:我们可以看到这颗⼆叉树⼀共有七个节点0号节点是根节点1号节点和2号节点是0号节点的⼦节点,1号节点为0号节点的左⼦节点,2号节点为0号节点的右⼦节点同时1号节点和2号节点⼜是3号节点、四号节点和五号节点、6号节点的双亲节点五号节点和6号节点没有⼦节点(⼦树),那么他们被称为‘叶⼦节点’这就是⼀些基本的概念⼆叉树的遍历⼆叉树常⽤的遍历⽅式有:前序遍历、中序遍历、后序遍历、层序遍历四种遍历⽅式,不同的遍历算法,其思想略有不同,我们来看⼀下这四种遍历⽅法主要的算法思想:1、先序遍历⼆叉树顺序:根节点 –> 左⼦树 –> 右⼦树,即先访问根节点,然后是左⼦树,最后是右⼦树。

上图中⼆叉树的前序遍历结果为:0 -> 1 -> 3 -> 4 -> 2 -> 5 -> 62、中序遍历⼆叉树顺序:左⼦树 –> 根节点 –> 右⼦树,即先访问左⼦树,然后是根节点,最后是右⼦树。

上图中⼆叉树的中序遍历结果为:3 -> 1 -> 4 -> 0 -> 5 -> 2 -> 63、后续遍历⼆叉树顺序:左⼦树 –> 右⼦树 –> 根节点,即先访问左⼦树,然后是右⼦树,最后是根节点。

上图中⼆叉树的后序遍历结果为:3 -> 4 -> 1 -> 5 -> 6 -> 2 -> 04、层序遍历⼆叉树顺序:从最顶层的节点开始,从左往右依次遍历,之后转到第⼆层,继续从左往右遍历,持续循环,直到所有节点都遍历完成上图中⼆叉树的层序遍历结果为:0 -> 1 -> 2 -> 3 -> 4 -> 5 -> 6下⾯是四种算法的伪代码:前序遍历:preOrderParse(int n) {if(tree[n] == NULL)return ; // 如果这个节点不存在,那么结束cout << tree[n].w ; // 输出当前节点内容preOrderParse(tree[n].leftChild); // 递归输出左⼦树preOrderParse(tree[n].rightChild); // 递归输出右⼦树}中序遍历inOrderParse(int n) {if(tree[n] == NULL)return ; // 如果这个节点不存在,那么结束inOrderParse(tree[n].leftChild); // 递归输出左⼦树cout << tree[n].w ; // 输出当前节点内容inOrderParse(tree[n].rightChild); // 递归输出右⼦树}pastOrderParse(int n) {if(tree[n] == NULL)return ; // 如果这个节点不存在,那么结束pastOrderParse(tree[n].leftChild); // 递归输出左⼦树pastOrderParse(tree[n].rightChild); // 递归输出右⼦树cout << tree[n].w ; // 输出当前节点内容}可以看到前三种遍历都是直接通过递归来完成,⽤递归遍历⼆叉树简答⽅便⽽且好理解,接下来层序遍历就需要动点脑筋了,我们如何将⼆叉树⼀层⼀层的遍历输出?其实在这⾥我们要借助⼀种数据结构来完成:队列。

二叉树的遍历算法

二叉树的遍历算法

二叉树的前序、后序的递归、非递归遍历算法学生姓名:贺天立指导老师:湛新霞摘要本课程设计主要解决树的前序、后序的递归、非递归遍历算法,层次序的非递归遍历算法的实现。

在课程设计中,系统开发平台为Windows 2000,程序设计设计语言采用Visual C++,程序运行平台为Windows 98/2000/XP。

用除递归算法前序,后续,中序遍历树外还通过非递归的算法遍历树。

程序通过调试运行,初步实现了设计目标,并且经过适当完善后,将可以应用在商业中解决实际问题。

关键词程序设计;C++;树的遍历;非递归遍历1 引言本课程设计主要解决树的前序、后序的递归、非递归遍历算法,层次序的非递归遍历算法的实现。

1.1课程设计的任务构造一棵树并输入数据,编写三个函数,非别是树的前序递归遍历算法、树的后序递归遍历算法、树的非递归中序遍历算法(这里的非递归以中序为例)。

在主程序中调用这三个函数进行树的遍历,观察用不同的遍历方法输出的数据的顺序和验证递归与非递归输出的数据是否一样。

1.2课程设计的性质由要求分析知,本设计主要要求解决树的前序、后序的递归、非递归遍历算法,层次序的非递归遍历算法的实现。

所以设计一个良好的前序、后序的递归、非递归遍历算法非常重要。

1.3课程设计的目的在程序设计中,可以用两种方法解决问题:一是传统的结构化程序设计方法,二是更先进的面向对象程序设计方法[1]。

利用《数据结构》课程的相关知识完成一个具有一定难度的综合设计题目,利用C语言进行程序设计。

巩固和加深对线性表、栈、队列、字符串、树、图、查找、排序等理论知识的理解;掌握现实复杂问题的分析建模和解决方法(包括问题描述、系统分析、设计建模、代码实现、结果分析等);提高利用计算机分析解决综合性实际问题的基本能力。

树的遍历分为前序、中序和后序,可以用递归算法实现树的三种遍历。

除了递归外还可以构造栈,利用出栈和入栈来实现树的前序遍历、中序遍历和后序遍历。

数据结构课程设计-二叉树的基本操作

数据结构课程设计-二叉树的基本操作

二叉树的基本操作摘要:本次课程设计通过对二叉树的一系列操作主要练习了二叉树的建立、四种遍历方式:先序遍历、中序遍历、后序遍历和层序遍历以及节点数和深度的统计等算法。

增加了对二叉树这一数据结构的理解,掌握了使用c语言对二叉树进行一些基本的操作。

关键字:递归、二叉树、层序遍历、子树交换一、程序简介本程序名为“二叉树基本操作的实现”,其主要为练习二叉树的基本操作而开发,其中包含了建立、遍历、统计叶子结点和深度等一系列操作。

其中定义二叉链表来表示二叉树,用一个字符类型的数据来表示每一个节点中存储的数据。

由于没有进行图形界面的设计,用户可以通过程序中的遍历二叉树一功能来查看操作的二叉树。

二、功能模块2.1功能模块图2.2功能模块详解2.2.1建立二叉树输入要建立的二叉树的扩展二叉树的先序遍历序列,来建立二叉树,建立成功会给出提示。

2.2.2遍历二叉树执行操作之后会有四个选项可供选择:先序遍历、中序遍历、后序遍历、层序遍历。

输入对应的序号即可调动相关函数输出相应的遍历序列。

2.2.3统计叶子节点树执行之后输出叶子结点的个数。

2.2.4求二叉树深度执行之后输出二叉树的深度。

2.2.5子树交换交换成功则会给出提示,用户可通过遍历二叉树来观察子树交换之后的二叉树。

三、数据结构和算法设计3.1二叉链表的设计1.typedef struct BiNode {2.char data;3.struct BiNode* lchild; //左孩子4.struct BiNode* rchild; //右孩子5.}BiTree;用一个字符型保存节点数据,分别定义两个struct BiNode类型的指针来指向左孩子和右孩子。

在BiTree.h中实现相关的功能。

3.2队列的实现1.typedef struct {2. ElemType* data;3.int head;//队头指针4.int tail;//队尾指针5.} SqQueue;队列主要用于二叉树遍历过程中的层序遍历,从根节点开始分别将左右孩子放入队列,然后从对头开始输出。

数据结构+二叉树及遍历课件

数据结构+二叉树及遍历课件
最 的 点被称 根(root)。 root
A
B
C
D
E F GH I J
K
L
M
node
Ver. 1.0
4
课程13
数据结构和算法
定义树结构(续)
中的每一个 点在其 下可能有子 。
root A
B
C
D
E F GH I J
K
L
M
node
Ver. 1.0
5
课程13
数据结构和算法
树结构术语 我 来 构常用的一些 。 叶子 点:指没有子 点的 点。
C 点的度 1
D节点的度为2
D
A节点的度为3
B节点的度为4
J
K
L
M
Ver. 1.0
8
课程13
数据结构和算法
树结构术语(续)
兄弟:它指同一个 点的子 点。
A
B、C和D 点互 兄弟
点。
B
C
D
E、F、G和H互为兄弟节点。
E F GH I J
K
L
M
Ver. 1.0
9
课程13
数据结构和算法
树结构术语(续)
使用 接列表来 一个二叉 。 接表示中的每个 点都具有以下信息:
数据 左子 点的引用 右子 点的引用
如果一个 点不含有左子 点或右子 点,或一个子 点都没 有,相 的左(右)子 点字段就指向NULL。
Ver. 1.0
Data
Node
18
课程13
数据结构和算法
表示一个二叉树(续)
内部 点:它指根 点与叶子 点之 的中 点 。
点的 :它指一个 点与根 点之 的距离(按 点数 目 算)。根 点永 位于0 。

完全二叉树操作演示

完全二叉树操作演示

安徽省巢湖学院计算机与信息工程学院课程设计报告课程名称《数据结构》课题名称完全二叉树操作演示专业班级计算机科学与技术专升本1班学号********、********、********姓名李鹏王帅李泳波联系方式指导教师严小燕完成日期: 2014年12月27 日目录1 数据结构课程设计任务书 (1)1.1题目 (1)1.2目的 (1)1.3要求 (1)2 总体设计 (1)2.1功能模块设计 (1)2.2所有功能模块流程图 (1)3 详细设计 (2)3.1程序中所采用的数据结构及存储结构的说明 (2)3.2算法设计思想 (3)3.3主要的功能函数 (3)4 调试与测试 (3)4.1调试方法与步骤 (4)4.2测试结果分析与讨论 (4)4.3测试过程中遇到的主要问题及采取的解决措施 (5)5 时间复杂度分析 (6)6 程序清单 (6)7 总结 (12)参考文献 (13)1 数据结构课程设计任务书1.1题目完全二叉树操作演示1.2目的(1)掌握二叉树的概念和性质。

(2)掌握完全二叉树存储结构。

(3)掌握完全二叉树的基本操作。

1.3 要求(1)创建完全二叉树(用字母表示节点)(用顺序方式存储)。

(2)求二叉树的深度和叶子结点数。

(3)实现二叉树的前序、中序、后序和层次遍历。

(4)查找给定结点的双亲、祖先和左右孩子节点。

2 总体设计2.1 功能模块设计根据课程设计题目的功能要求,各个功能模块的组成框图如图1:图 1 功能组成框图2.2 所有功能模块流程图设计好功能模块后,各个模块的关系如下图2:图 2 流程图3 详细设计3.1程序中所采用的数据结构及存储结构的说明(1)整个程序采用结构体与顺序表相结合的编程方法一共完成了7个功能。

在你输入错误时有报错消息,这样使整个程序运行起来更加完整。

程序中有若干个子函数被主函数调用执行。

结构体定义如下:#define MAX 100 //定义100个节点typedef struct{char dat; //节点信息}node;typedef struct Tree //节点组成树{int length;node *r; //指向根节点}Tree;3.2 算法设计思想完全二叉树具有以下几个性质,由此可设计出相应算法。

二叉树的遍历

二叉树的遍历

T->rchild= CreatBiTree(); /*构造右子树*/ 扩展先序遍历序列
}
2021/2/21
return (T) ;}
A B Φ D Φ Φ C Φ 17Φ
T
T
T
ch=B
ch=Φ
Λ
T
T= Λ, Creat(T)
ch=A T
A
B creat(T L)
ΛB 返回
creat(T L)
creat(T R)
A
p=p->RChild;
}
2021/2/21
}
top
A
B
C
D
top
B
top
A
A
top
D
A
top
A
top
C
13
top
中序遍历二叉树的非递归算法:
A
void InOrder(BiTree T)
{ InitStack(&S); 相当于top=-1;
p=T;
B
C
while(p!=NULL | | !IsEmpty(S)) 相当于top==-1;
}
后序遍历二叉树的递归算法:
void PostOrder (BiTree T)
{ if(T!=NULL)
{ PostOrder (T->lchild);
PostOrder (T->rchild);
printf(T->data); }
2021/2/21
15
}
先序遍历二叉树的递归算法: void PreOder (BiTree T) { if(T! =NULL){ printf (T->data); PreOrder (T->lchild); PreOrder (T->rchild); } }
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档