树和二叉树的遍历
汇编二叉树的遍历
一、软件背景介绍树的遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。
访问结点所做的操作依赖于具体的应用问题。
遍历是二叉树上最重要的运算之一,是二叉树上进行其它运算的基础。
从二叉树的递归定义可知,一棵非空的二叉树由根结点及左、右子树这三个基本部分组成。
因此,在任一给定结点上,可以按某种次序执行三个操作:⑴访问结点本身(N),⑵遍历该结点的左子树(L),⑶遍历该结点的右子树(R)。
所以二叉树的遍历也包括三种:先序遍历,中序遍历,和后序遍历。
图1:程序显示结果二、核心算法思想二叉树的存储:在内存中为数组binary分配一个大小为63(0,0,0)的存储空间,所有数组元素初始化为0,用来存放二叉树。
每三个连续的数组地址存放一个节点:第一个地址存放节点的值;第二个地址存放有无左孩子的信息,如果有则将其置为1,否则为0;第三个地址存放有无右孩子的信息,如果有则将其置为1,否则为0。
将binary的首址偏移赋给si,cx初始化为0用来计数,用回车代表输入的为空,即没有输入。
按先根存储的方式来存二叉树,首先输入一个字符,若为回车则退出程序,否则cx+3且调用函数root。
然后该结点若有左孩子,调用leftchild函数,置该结点标志即第二个地址中的0为1,该结点进栈,再存储左孩子结点,递归调用左右,若没有左孩子,看有没有右孩子,若有,则调用rightchild置该结点标志位即上第三个地址中的0为1,然后该结点进栈,再存储右孩子结点,递归调用左右,整个用cx计数,数组binary中每多一个节点,cx加3。
此存储方式正好符合先序遍历思想。
遍历二叉树的执行踪迹:三种递归遍历算法的搜索路线相同,具体线路为:从根结点出发,逆时针沿着二叉树外缘移动,对每个结点均途径三次,最后回到根结点。
二叉树的遍历有常用的三种方法,分别是:先根次序、中根次序、后根次序。
为了验证这几种遍历算法的区别,本次的实验将会实现所有的算法。
二叉树的性质及其遍历
12.3.1 顺序存储结构 12.3.2 链式存储
•二叉树的性质及其遍历
12.1 二叉树的基本性质
定理 1:满二叉树第i层上恰好有2i-1个结点 (i≥1).
证:使用归纳法。i=1时,结论显然成立。设i=k时结 论成立,则考虑i=k+1的情形。由于(k+1)层上结点 是k层上结点的儿子,而且满二叉树每个非叶子结 点恰好有两个儿子,故(k+1)层上结点个数为k层上 结点个数的2倍,即2·2k-1 = 2k = 2(k+1)-1. 这表明, i=k+1时结论也成立。由归纳法原理,结论对任意 的k都成立,证毕。
x的相对地址x的编号x的父亲/儿子的编 号(性质7) x的父亲/儿子的相对地址。
•二叉树的性质及其遍历
至于结点的相对地址与编号之间的换算,有下列关系: 结点相对地址 = (结点编号 – 1)×每个结点所
占单元数目
a
b
f
cegh d
1 2 34 56 7 8 a b f ce g h d …
图 12-2 顺序二叉树的顺序存储
•二叉树的性质及其遍历
12.1.7 定理7 若对一棵有n个结点的顺序二叉树的结点按层序 编号,则对任一结点i(1≤i≤n),有(1)若i=1, 则结点i是根, 无父亲;若i〉1,则其父亲是结点i/2。(2)若2i>n,则结点i 无左儿子(从而也无右儿子,为叶子);否则i的左儿子是结 点2i。(3)若2i+1>n,则结点i无右儿子;否则右儿子是结点 2i+1。
12.3.1顺序存储结构
(一) 顺序二叉树的顺序存储结构
这种存储结构是按结点的层序编号的次序,将 结点存储在一片连续存储区域内。由定理 7知, 对顺序二叉树,若已知结点的层序编号,则可推 算出它的父亲和儿子的编号,所以,在这种存储 结构中,很容易根据结点的相对地址计算出它的 父亲和儿子的相对地址,方法是:
二叉树的遍历及常用算法
⼆叉树的遍历及常⽤算法⼆叉树的遍历及常⽤算法遍历的定义:按照某种次序访问⼆叉树上的所有结点,且每个节点仅被访问⼀次;遍历的重要性:当我们需要对⼀颗⼆叉树进⾏,插⼊,删除,查找等操作时,通常都需要先遍历⼆叉树,所有说:遍历是⼆叉树的基本操作;遍历思路:⼆叉树的数据结构是递归定义(每个节点都可能包含相同结构的⼦节点),所以遍历也可以使⽤递归,即结点不为空则继续递归调⽤每个节点都有三个域,数据与,左孩⼦指针和右孩⼦之指针,每次遍历只需要读取数据,递归左⼦树,递归右⼦树,这三个操作三种遍历次序:根据访问三个域的不同顺序,可以有多种不同的遍历次序,⽽通常对于⼦树的访问都按照从左往右的顺序;设:L为遍历左⼦树,D为访问根结点,R为遍历右⼦树,且L必须位于R的前⾯可以得出以下三种不同的遍历次序:先序遍历操作次序为DLR,⾸先访问根结点,其次遍历根的左⼦树,最后遍历根右⼦树,对每棵⼦树同样按这三步(先根、后左、再右)进⾏中序遍历操作次序为LDR,⾸先遍历根的左⼦树,其次访问根结点,最后遍历根右⼦树,对每棵⼦树同样按这三步(先左、后根、再右)进⾏后序遍历操作次序为LRD,⾸先遍历根的左⼦树,其次遍历根的右⼦树,最后访问根结点,对每棵⼦树同样按这三步(先左、后右、最后根)进⾏层次遍历层次遍历即按照从上到下从左到右的顺序依次遍历所有节点,实现层次遍历通常需要借助⼀个队列,将接下来要遍历的结点依次加⼊队列中;遍历的应⽤“遍历”是⼆叉树各种操作的基础,可以在遍历过程中对结点进⾏各种操作,如:对于⼀棵已知⼆叉树求⼆叉树中结点的个数求⼆叉树中叶⼦结点的个数;求⼆叉树中度为1的结点个数求⼆叉树中度为2的结点个数5求⼆叉树中⾮终端结点个数交换结点左右孩⼦判定结点所在层次等等...C语⾔实现:#include <stdio.h>//⼆叉链表数据结构定义typedef struct TNode {char data;struct TNode *lchild;struct TNode *rchild;} *BinTree, BinNode;//初始化//传⼊⼀个指针令指针指向NULLvoid initiate(BinTree *tree) {*tree = NULL;}//创建树void create(BinTree *BT) {printf("输⼊当前结点值: (0则创建空节点)\n");char data;scanf(" %c", &data);//连续输⼊整形和字符时.字符变量会接受到换⾏,所以加空格if (data == 48) {*BT = NULL;return;} else {//创建根结点//注意开辟的空间⼤⼩是结构体的⼤⼩⽽不是结构体指针⼤⼩,写错了不会⽴马产⽣问题,但是后续在其中存储数据时极有可能出现内存访问异常(飙泪....) *BT = malloc(sizeof(struct TNode));//数据域赋值(*BT)->data = data;printf("输⼊节点 %c 的左孩⼦ \n", data);create(&((*BT)->lchild));//递归创建左⼦树printf("输⼊节点 %c 的右孩⼦ \n", data);create(&((*BT)->rchild));//递归创建右⼦树}}//求双亲结点(⽗结点)BinNode *Parent(BinTree tree, char x) {if (tree == NULL)return NULL;else if ((tree->lchild != NULL && tree->lchild->data == x) || (tree->rchild != NULL && tree->rchild->data == x))return tree;else{BinNode *node1 = Parent(tree->lchild, x);BinNode *node2 = Parent(tree->rchild, x);return node1 != NULL ? node1 : node2;}}//先序遍历void PreOrder(BinTree tree) {if (tree) {//输出数据printf("%c ", tree->data);//不为空则按顺序继续递归判断该节点的两个⼦节点PreOrder(tree->lchild);PreOrder(tree->rchild);}}//中序void InOrder(BinTree tree) {if (tree) {InOrder(tree->lchild);printf("%c ", tree->data);InOrder(tree->rchild);}}//后序void PostOrder(BinTree tree) {if (tree) {PostOrder(tree->lchild);PostOrder(tree->rchild);printf("%c ", tree->data);}}//销毁结点递归free所有节点void DestroyTree(BinTree *tree) {if (*tree != NULL) {printf("free %c \n", (*tree)->data);if ((*tree)->lchild) {DestroyTree(&((*tree)->lchild));}if ((*tree)->rchild) {DestroyTree(&((*tree)->rchild));}free(*tree);*tree = NULL;}}// 查找元素为X的结点使⽤的是层次遍历BinNode *FindNode(BinTree tree, char x) {if (tree == NULL) {return NULL;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];if (current->data == x) {return current;}front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}return NULL;}//层次遍历// 查找元素为X的结点使⽤的是层次遍历void LevelOrder(BinTree tree) {if (tree == NULL) {return;}//队列BinNode *nodes[1000] = {};//队列头尾位置int front = 0, real = 0;//将根节点插⼊到队列尾nodes[real] = tree;real += 1;//若队列不为空则继续while (front != real) {//取出队列头结点输出数据BinNode *current = nodes[front];printf("%2c", current->data);front++;//若当前节点还有⼦(左/右)节点则将结点加⼊队列if (current->lchild != NULL) {nodes[real] = current->lchild;real++;}if (current->rchild != NULL) {nodes[real] = current->rchild;real++;}}}//查找x的左孩⼦BinNode *Lchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->lchild;}return NULL;}//查找x的右孩⼦BinNode *Rchild(BinTree tree, char x) {BinTree node = FindNode(tree, x);if (node != NULL) {return node->rchild;}return NULL;}//求叶⼦结点数量int leafCount(BinTree *tree) {if (*tree == NULL)return 0;//若左右⼦树都为空则该节点为叶⼦,且后续不⽤接续递归了else if (!(*tree)->lchild && !(*tree)->rchild)return 1;else//若当前结点存在⼦树,则递归左右⼦树, 结果相加return leafCount(&((*tree)->lchild)) + leafCount(&((*tree)->rchild));}//求⾮叶⼦结点数量int NotLeafCount(BinTree *tree) {if (*tree == NULL)return 0;//若该结点左右⼦树均为空,则是叶⼦,且不⽤继续递归else if (!(*tree)->lchild && !(*tree)->rchild)return 0;else//若当前结点存在左右⼦树,则是⾮叶⼦结点(数量+1),在递归获取左右⼦树中的⾮叶⼦结点,结果相加 return NotLeafCount(&((*tree)->lchild)) + NotLeafCount(&((*tree)->rchild)) + 1;}//求树的⾼度(深度)int DepthCount(BinTree *tree) {if (*tree == NULL)return 0;else{//当前节点不为空则深度+1 在加上⼦树的⾼度,int lc = DepthCount(&((*tree)->lchild)) + 1;int rc = DepthCount(&((*tree)->rchild)) + 1;return lc > rc?lc:rc;// 取两⼦树深度的最⼤值 }}//删除左⼦树void RemoveLeft(BinNode *node){if (!node)return;if (node->lchild)DestroyTree(&(node->lchild));node->lchild = NULL;}//删除右⼦树void RemoveRight(BinNode *node){if (!node)return;if (node->rchild)DestroyTree(&(node->rchild));node->rchild = NULL;}int main() {BinTree tree;create(&tree);BinNode *node = Parent(tree, 'G');printf("G的⽗结点为%c\n",node->data);BinNode *node2 = Lchild(tree, 'D');printf("D的左孩⼦结点为%c\n",node2->data);BinNode *node3 = Rchild(tree, 'D');printf("D的右孩⼦结点为%c\n",node3->data);printf("先序遍历为:");PreOrder(tree);printf("\n");printf("中序遍历为:");InOrder(tree);printf("\n");printf("后序遍历为:");PostOrder(tree);printf("\n");printf("层次遍历为:");LevelOrder(tree);printf("\n");int a = leafCount(&tree);printf("叶⼦结点数为%d\n",a);int b = NotLeafCount(&tree);printf("⾮叶⼦结点数为%d\n",b);int c = DepthCount(&tree);printf("深度为%d\n",c);//查找F节点BinNode *node4 = FindNode(tree,'C');RemoveLeft(node4);printf("删除C的左孩⼦后遍历:");LevelOrder(tree);printf("\n");RemoveRight(node4);printf("删除C的右孩⼦后遍历:");LevelOrder(tree);printf("\n");//销毁树printf("销毁树 \n");DestroyTree(&tree);printf("销毁后后遍历:");LevelOrder(tree);printf("\n");printf("Hello, World!\n");return 0;}测试:测试数据为下列⼆叉树:运⾏程序复制粘贴下列内容:ABDGHECKFIJ特别感谢:iammomo。
二叉树,树,森林遍历之间的对应关系
二叉树,树,森林遍历之间的对应关系一、引言在计算机科学中,数据结构是非常重要的知识点之一。
而树这一数据结构,作为基础的数据结构之一,在软件开发中有着广泛的应用。
本文将重点探讨二叉树、树和森林遍历之间的对应关系,帮助读者更加全面地理解这些概念。
二、二叉树1. 二叉树的定义二叉树是一种特殊的树结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树可以为空,也可以是一棵空树。
2. 二叉树的遍历在二叉树中,有三种常见的遍历方式,分别是前序遍历、中序遍历和后序遍历。
在前序遍历中,节点的访问顺序是根节点、左子树、右子树;在中序遍历中,节点的访问顺序是左子树、根节点、右子树;在后序遍历中,节点的访问顺序是左子树、右子树、根节点。
3. 二叉树的应用二叉树在计算机科学领域有着广泛的应用,例如用于构建文件系统、在数据库中存储有序数据、实现算法中的搜索和排序等。
掌握二叉树的遍历方式对于理解这些应用场景非常重要。
三、树1. 树的定义树是一种抽象数据类型,由n(n>0)个节点组成一个具有层次关系的集合。
树的特点是每个节点都有零个或多个子节点,而这些子节点又构成了一颗子树。
树中最顶层的节点称为根节点。
2. 树的遍历树的遍历方式有先根遍历、后根遍历和层次遍历。
在先根遍历中,节点的访问顺序是根节点、子树1、子树2...;在后根遍历中,节点的访问顺序是子树1、子树2...,根节点;在层次遍历中,节点的访问顺序是从上到下、从左到右依次访问每个节点。
3. 树的应用树广泛用于分层数据的表示和操作,例如在计算机网络中的路由算法、在操作系统中的文件系统、在程序设计中的树形结构等。
树的遍历方式对于处理这些应用来说至关重要。
四、森林1. 森林的定义森林是n(n>=0)棵互不相交的树的集合。
每棵树都是一颗独立的树,不存在交集。
2. 森林的遍历森林的遍历方式是树的遍历方式的超集,对森林进行遍历就是对每棵树进行遍历的集合。
3. 森林的应用森林在实际编程中经常用于解决多个独立树结构的问题,例如在数据库中对多个表进行操作、在图像处理中对多个图形进行处理等。
说明树与二叉树的主要区别
说明树与二叉树的主要区别摘要:一、引言二、树与二叉树的定义及基本概念1.树的定义及特点2.二叉树的定义及特点三、树与二叉树的主要区别1.节点数量的限定2.节点连接方式的差异3.遍历方式的差异四、实例分析1.满二叉树与满树的对比2.完全二叉树与完全树的对比五、总结与展望正文:一、引言在计算机科学中,树和二叉树是广泛应用于数据结构和组织的重要概念。
尽管它们在某些方面具有相似之处,但它们之间仍存在显著差异。
本文将详细介绍树与二叉树的主要区别,以帮助读者更好地理解这两种数据结构。
二、树与二叉树的定义及基本概念1.树的定义及特点树(Tree)是一种非线性的数据结构,它由若干个节点组成,这些节点通过边连接在一起。
树中最顶层的节点称为根节点,最底层的节点称为叶节点,中间层节点称为内部节点。
树具有以下特点:(1)只有一个根节点。
(2)每个节点最多有若干个子节点,最少有一个子节点(除了根节点)。
(3)节点之间的连接顺序呈层次结构。
2.二叉树的定义及特点二叉树(Binary Tree)是一种特殊的树结构,其中每个节点最多有两个子节点,通常称为左子节点和右子节点。
根据这个定义,二叉树可以进一步细分为满二叉树、完全二叉树和不完全二叉树等。
二叉树具有以下特点:(1)每个节点最多有两个子节点。
(2)节点之间的连接呈二叉树结构。
三、树与二叉树的主要区别1.节点数量的限定树中每个节点可以有任意数量的子节点,而二叉树中每个节点最多有两个子节点。
这是树与二叉树最明显的区别。
2.节点连接方式的差异树中节点之间的连接顺序呈层次结构,呈放射状分布。
而二叉树中节点之间的连接呈二叉树结构,呈线性分布。
3.遍历方式的差异树的遍历方式有前序遍历、中序遍历和后序遍历等。
二叉树的遍历方式有前序遍历、中序遍历和后序遍历等。
不过,二叉树的遍历方式通常与树的遍历方式有所不同。
四、实例分析1.满二叉树与满树的对比满二叉树是一种特殊的二叉树,其每个节点都有两个子节点,且所有叶子节点都在同一层。
二叉树遍历(前序、中序、后序、层次、广度优先、深度优先遍历)
⼆叉树遍历(前序、中序、后序、层次、⼴度优先、深度优先遍历)⽬录转载:⼆叉树概念⼆叉树是⼀种⾮常重要的数据结构,⾮常多其他数据结构都是基于⼆叉树的基础演变⽽来的。
对于⼆叉树,有深度遍历和⼴度遍历,深度遍历有前序、中序以及后序三种遍历⽅法,⼴度遍历即我们寻常所说的层次遍历。
由于树的定义本⾝就是递归定义,因此採⽤递归的⽅法去实现树的三种遍历不仅easy理解并且代码⾮常简洁,⽽对于⼴度遍历来说,须要其他数据结构的⽀撑。
⽐⽅堆了。
所以。
对于⼀段代码来说,可读性有时候要⽐代码本⾝的效率要重要的多。
四种基本的遍历思想前序遍历:根结点 ---> 左⼦树 ---> 右⼦树中序遍历:左⼦树---> 根结点 ---> 右⼦树后序遍历:左⼦树 ---> 右⼦树 ---> 根结点层次遍历:仅仅需按层次遍历就可以⽐如。
求以下⼆叉树的各种遍历前序遍历:1 2 4 5 7 8 3 6中序遍历:4 2 7 5 8 1 3 6后序遍历:4 7 8 5 2 6 3 1层次遍历:1 2 3 4 5 6 7 8⼀、前序遍历1)依据上⽂提到的遍历思路:根结点 ---> 左⼦树 ---> 右⼦树,⾮常easy写出递归版本号:public void preOrderTraverse1(TreeNode root) {if (root != null) {System.out.print(root.val+" ");preOrderTraverse1(root.left);preOrderTraverse1(root.right);}}2)如今讨论⾮递归的版本号:依据前序遍历的顺序,优先訪问根结点。
然后在訪问左⼦树和右⼦树。
所以。
对于随意结点node。
第⼀部分即直接訪问之,之后在推断左⼦树是否为空,不为空时即反复上⾯的步骤,直到其为空。
若为空。
则须要訪问右⼦树。
注意。
在訪问过左孩⼦之后。
数据结构入门-树的遍历以及二叉树的创建
数据结构⼊门-树的遍历以及⼆叉树的创建树定义:1. 有且只有⼀个称为根的节点2. 有若⼲个互不相交的⼦树,这些⼦树本⾝也是⼀个树通俗的讲:1. 树是有结点和边组成,2. 每个结点只有⼀个⽗结点,但可以有多个⼦节点3. 但有⼀个节点例外,该节点没有⽗结点,称为根节点⼀、专业术语结点、⽗结点、⼦结点、根结点深度:从根节点到最底层结点的层数称为深度,根节点第⼀层叶⼦结点:没有⼦结点的结点⾮终端节点:实际上是⾮叶⼦结点度:⼦结点的个数成为度⼆、树的分类⼀般树:任意⼀个结点的⼦结点的个数都不受限制⼆叉树:任意⼀个结点的⼦结点个数最多是两个,且⼦结点的位置不可更改⼆叉数分类:1. ⼀般⼆叉数2. 满⼆叉树:在不增加树层数的前提下,⽆法再多添加⼀个结点的⼆叉树3. 完全⼆叉树:如果只是删除了满⼆叉树最底层最右边的连续若⼲个结点,这样形成的⼆叉树就是完全⼆叉树森林:n个互不相交的树的集合三、树的存储⼆叉树存储连续存储(完全⼆叉树)优点:查找某个结点的⽗结点和⼦结点(也包括判断有没有⼦结点)速度很快缺点:耗⽤内存空间过⼤链式存储⼀般树存储1. 双亲表⽰法:求⽗结点⽅便2. 孩⼦表⽰法:求⼦结点⽅便3. 双亲孩⼦表⽰法:求⽗结点和⼦结点都很⽅便4. ⼆叉树表⽰法:把⼀个⼀般树转化成⼀个⼆叉树来存储,具体转换⽅法:设法保证任意⼀个结点的左指针域指向它的第⼀个孩⼦,右指针域指向它的兄弟,只要能满⾜此条件,就可以把⼀个⼀般树转化为⼆叉树⼀个普通树转换成的⼆叉树⼀定没有右⼦树森林的存储先把森林转化为⼆叉树,再存储⼆叉树四、树的遍历先序遍历:根左右先访问根结点,再先序访问左⼦树,再先序访问右⼦树中序遍历:左根右中序遍历左⼦树,再访问根结点,再中序遍历右⼦树后续遍历:左右根后续遍历左⼦树,后续遍历右⼦树,再访问根节点五、已知两种遍历求原始⼆叉树给定了⼆叉树的任何⼀种遍历序列,都⽆法唯⼀确定相应的⼆叉树,但是如果知道了⼆叉树的中序遍历序列和任意的另⼀种遍历序列,就可以唯⼀地确定⼆叉树已知先序和中序求后序先序:ABCDEFGH中序:BDCEAFHG求后序:这个⾃⼰画个图体会⼀下就可以了,⾮常简单,这⾥简单记录⼀下1. ⾸先根据先序确定根,上⾯的A就是根2. 中序确定左右,A左边就是左树(BDCE),A右边就是右树(FHG)3. 再根据先序,A左下⾯就是B,然后根据中序,B左边没有,右边是DCE4. 再根据先序,B右下是C,根据中序,c左下边是D,右下边是E,所以整个左树就确定了5. 右树,根据先序,A右下是F,然后根据中序,F的左下没有,右下是HG,6. 根据先序,F右下为G,然后根据中序,H在G的左边,所以G的左下边是H再来⼀个例⼦,和上⾯的思路是⼀样的,这⾥就不详细的写了先序:ABDGHCEFI中序:GDHBAECIF已知中序和后序求先序中序:BDCEAFHG后序:DECBHGFA这个和上⾯的思路是⼀样的,只不过是反过来找,后序找根,中序找左右树简单应⽤树是数据库中数据组织⼀种重要形式操作系统⼦⽗进程的关系本⾝就是⼀棵树⾯向对象语⾔中类的继承关系哈夫曼树六、⼆叉树的创建#include <stdio.h>#include <stdlib.h>typedef struct Node{char data;struct Node * lchild;struct Node * rchild;}BTNode;/*⼆叉树建⽴*/void BuildBT(BTNode ** tree){char ch;scanf("%c" , &ch); // 输⼊数据if(ch == '#') // 如果这个节点的数据是#说明这个结点为空*tree = NULL;else{*tree = (BTNode*)malloc(sizeof(BTNode));//申请⼀个结点的内存 (*tree)->data = ch; // 将数据写⼊到结点⾥⾯BuildBT(&(*tree)->lchild); // 递归建⽴左⼦树BuildBT(&(*tree)->rchild); // 递归建⽴右⼦树}}/*⼆叉树销毁*/void DestroyBT(BTNode *tree) // 传⼊根结点{if(tree != NULL){DestroyBT(tree->lchild);DestroyBT(tree->rchild);free(tree); // 释放内存空间}}/*⼆叉树的先序遍历*/void Preorder(BTNode * node){if(node == NULL)return;else{printf("%c ",node->data );Preorder(node->lchild);Preorder(node->rchild);}}/*⼆叉树的中序遍历*/void Inorder(BTNode * node){if(node == NULL)return;else{Inorder(node->lchild);printf("%c ",node->data );Inorder(node->rchild);}}/*⼆叉树的后序遍历*/void Postorder(BTNode * node){if(node == NULL)return;else{Postorder(node->lchild);Postorder(node->rchild);printf("%c ",node->data );}}/*⼆叉树的⾼度树的⾼度 = max(左⼦树⾼度,右⼦树⾼度) +1*/int getHeight(BTNode *node){int Height = 0;if (node == NULL)return 0;else{int L_height = getHeight(node->lchild);int R_height = getHeight(node->rchild);Height = L_height >= R_height ? L_height +1 : R_height +1; }return Height;}int main(int argc, char const *argv[]){BTNode * BTree; // 定义⼀个⼆叉树printf("请输⼊⼀颗⼆叉树先序序列以#表⽰空结点:");BuildBT(&BTree);printf("先序序列:");Preorder(BTree);printf("\n中序序列:");Inorder(BTree);printf("\n后序序列:");Postorder(BTree);printf("\n树的⾼度为:%d" , getHeight(BTree));return 0;}// ABC##DE##F##G##。
树和二叉树的实验报告
树和二叉树的实验报告树和二叉树的实验报告一、引言树和二叉树是计算机科学中常用的数据结构,它们在各种算法和应用中都有广泛的应用。
本实验旨在通过实际操作和观察,深入了解树和二叉树的特性和操作。
二、树的构建与遍历1. 树的概念和特性树是一种非线性的数据结构,由节点和边组成。
每个节点可以有零个或多个子节点,其中一个节点没有父节点的称为根节点。
树的特点包括层次结构、唯一根节点和无环等。
2. 树的构建在本实验中,我们使用Python语言构建了一棵树。
通过定义节点类和树类,我们可以方便地创建树的实例,并添加节点和连接节点之间的边。
3. 树的遍历树的遍历是指按照一定顺序访问树中的所有节点。
常见的遍历方式有前序遍历、中序遍历和后序遍历。
我们在实验中实现了这三种遍历方式,并观察了它们的输出结果。
三、二叉树的实现与应用1. 二叉树的概念和特性二叉树是一种特殊的树,每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树的特点包括唯一根节点、每个节点最多有两个子节点和子节点的顺序等。
2. 二叉树的实现我们使用Python语言实现了二叉树的数据结构。
通过定义节点类和二叉树类,我们可以创建二叉树的实例,并实现插入节点、删除节点和查找节点等操作。
3. 二叉树的应用二叉树在实际应用中有很多用途。
例如,二叉搜索树可以用于实现快速查找和排序算法。
AVL树和红黑树等平衡二叉树可以用于高效地插入和删除操作。
我们在实验中实现了这些应用,并通过实际操作验证了它们的效果。
四、实验结果与讨论通过实验,我们成功构建了树和二叉树的数据结构,并实现了它们的基本操作。
通过观察和分析实验结果,我们发现树和二叉树在各种算法和应用中的重要性和灵活性。
树和二叉树的特性使得它们适用于解决各种问题,例如搜索、排序、图算法等。
同时,我们也发现了一些问题和挑战,例如树的平衡性和节点的插入和删除操作等。
这些问题需要进一步的研究和优化。
五、总结本实验通过实际操作和观察,深入了解了树和二叉树的特性和操作。
二叉树转换为树的规则
二叉树转换为树的规则摘要:一、二叉树与树的定义1.二叉树的定义2.树的定义二、二叉树转换为树的规则1.树的根节点2.树的层次结构3.树的节点关系三、转换方法与步骤1.遍历二叉树2.构建树结构3.确定节点关系四、转换过程中的注意事项1.避免重复遍历2.确保节点唯一性3.考虑节点顺序正文:二叉树与树是计算机科学中常用的数据结构,它们在数据存储与处理方面具有重要作用。
二叉树是一种特殊的树结构,每个节点最多只有两个子节点,分别称为左子节点和右子节点。
在实际应用中,有时需要将二叉树转换为树结构。
本文将详细介绍二叉树转换为树的规则及方法。
首先,我们需要了解二叉树与树的定义。
二叉树是一种特殊的树结构,它的每个节点最多有两个子节点,分别称为左子节点和右子节点。
树是一种非线性的数据结构,由若干个节点组成,这些节点通过边相互连接,具有唯一的根节点。
二叉树转换为树的规则主要包括以下几点:1.树的根节点:二叉树的根节点将成为树的根节点。
2.树的层次结构:二叉树的层次结构将转换为树的层次结构。
具体来说,二叉树的同一层节点将转换为树的同一行节点。
3.树的节点关系:二叉树中相邻的兄弟节点在树中将成为兄弟节点或子节点。
对于二叉树的每个节点,它的左子节点将成为树的子节点,右子节点将成为兄弟节点。
需要注意的是,在转换过程中要确保节点关系的正确性。
接下来,我们介绍二叉树转换为树的步骤:1.遍历二叉树:首先需要遍历二叉树,获取每个节点的信息,如节点值、左右子节点等。
2.构建树结构:根据遍历得到的节点信息,构建树的层次结构。
树的根节点即为二叉树的根节点,树的层次结构应与二叉树的层次结构保持一致。
3.确定节点关系:根据二叉树中节点之间的关系,确定树中节点之间的关系。
具体来说,二叉树的左子节点将成为树的子节点,右子节点将成为兄弟节点。
在二叉树转换为树的过程中,需要注意以下几点:1.避免重复遍历:在遍历二叉树时,应尽量避免重复遍历同一节点,以提高转换效率。
二叉树的遍历PPT-课件
4 、二叉树的创建算法
利用二叉树前序遍历的结果可以非常方便地生成给定的
二叉树,具体做法是:将第一个输入的结点作为二叉树的 根结点,后继输入的结点序列是二叉树左子树前序遍历的 结果,由它们生成二叉树的左子树;再接下来输入的结点 序列为二叉树右子树前序遍历的结果,应该由它们生成二 叉树的右子树;而由二叉树左子树前序遍历的结果生成二 叉树的左子树和由二叉树右子树前序遍历的结果生成二叉 树的右子树的过程均与由整棵二叉树的前序遍历结果生成 该二叉树的过程完全相同,只是所处理的对象范围不同, 于是完全可以使用递归方式加以实现。
void createbintree(bintree *t) { char ch; if ((ch=getchar())==' ') *t=NULL; else { *t=(bintnode *)malloc(sizeof(bintnode)); /*生成二叉树的根结点*/ (*t)->data=ch; createbintree(&(*t)->lchild); /*递归实现左子树的建立*/ createbintree(&(*t)->rchild); /*递归实现右子树的建立*/ }
if (s.top>-1) { t=s.data[s.top]; s.tag[s.top]=1; t=t->rchild; }
else t=NULL; }
}
7.5 二叉树其它运算的实现
由于二叉树本身的定义是递归的,因此关于二叉树的许多 问题或运算采用递归方式实现非常地简单和自然。 1、二叉树的查找locate(t,x)
(1)对一棵二叉树中序遍历时,若我们将二叉树严
格地按左子树的所有结点位于根结点的左侧,右子树的所
数据结构树和二叉树知识点总结
数据结构树和二叉树知识点总结
1.树的概念:树是一种非线性的数据结构,由节点和边构成,每个节点只能有一个父节点,但可以有多个子节点。
2. 二叉树的概念:二叉树是一种特殊的树结构,每个节点最多只有两个子节点,一个是左子节点,一个是右子节点。
3. 二叉树的遍历:二叉树的遍历分为前序遍历、中序遍历和后序遍历三种方式。
前序遍历是先访问根节点,再访问左子树,最后访问右子树;中序遍历是先访问左子树,再访问根节点,最后访问右子树;后序遍历是先访问左子树,再访问右子树,最后访问根节点。
4. 二叉搜索树:二叉搜索树是一种特殊的二叉树,它满足左子树中所有节点的值均小于根节点的值,右子树中所有节点的值均大于根节点的值。
因此,二叉搜索树的中序遍历是一个有序序列。
5. 平衡二叉树:平衡二叉树是一种特殊的二叉搜索树,它的左子树和右子树的高度差不超过1。
平衡二叉树的插入和删除操作可以保证树的平衡性,从而提高树的查询效率。
6. 堆:堆是一种特殊的树结构,它分为最大堆和最小堆两种。
最大堆的每个节点的值都大于等于其子节点的值,最小堆的每个节点的值都小于等于其子节点的值。
堆常用于排序和优先队列。
7. Trie树:Trie树是一种特殊的树结构,它用于字符串的匹配和检索。
Trie树的每个节点代表一个字符串的前缀,从根节点到叶子节点的路径组成一个完整的字符串。
以上是数据结构树和二叉树的一些基本知识点总结,对于深入学
习数据结构和算法有很大的帮助。
二叉树的5种遍历方式
二叉树的5种遍历方式一、前序遍历前序遍历是指在二叉树中,先访问根节点,然后按照先左后右的顺序遍历左右子树。
具体步骤如下:1. 访问根节点;2. 递归遍历左子树;3. 递归遍历右子树。
前序遍历的应用场景非常广泛。
例如,在二叉搜索树中,前序遍历可以用来实现树的查找操作;在表达式树中,前序遍历可以用来将表达式转换为前缀表达式。
二、中序遍历中序遍历是指在二叉树中,先按照中序遍历左子树,然后访问根节点,最后按照中序遍历右子树的顺序遍历整个二叉树。
具体步骤如下:1. 递归遍历左子树;2. 访问根节点;3. 递归遍历右子树。
中序遍历的一个重要应用是对二叉搜索树进行排序,因为中序遍历可以按照升序输出二叉搜索树中的节点值。
三、后序遍历后序遍历是指在二叉树中,先按照后序遍历左子树,然后按照后序遍历右子树,最后访问根节点的顺序遍历整个二叉树。
具体步骤如下:1. 递归遍历左子树;2. 递归遍历右子树;3. 访问根节点。
后序遍历的一个常见应用是计算表达式树的值,因为后序遍历可以按照逆波兰表达式的顺序遍历表达式树。
四、层序遍历层序遍历是指按照从上到下、从左到右的顺序逐层遍历二叉树的节点。
具体步骤如下:1. 将根节点入队;2. 循环执行以下步骤,直到队列为空:a. 出队一个节点,访问该节点;b. 将该节点的左子节点入队(如果存在);c. 将该节点的右子节点入队(如果存在)。
层序遍历可以用来按层打印二叉树的节点值,也可以用来判断二叉树的深度。
五、深度优先遍历深度优先遍历是指在二叉树中,先访问根节点,然后按照深度优先的顺序遍历左右子树。
具体步骤如下:1. 访问根节点;2. 递归遍历左子树;3. 递归遍历右子树。
深度优先遍历的一个常见应用是判断二叉树是否对称。
通过比较左子树和右子树的节点值,可以判断二叉树是否对称。
深度优先遍历还可以用来解决一些搜索问题,例如在二叉树中查找路径等。
在实际应用中,根据具体的问题场景和需求,选择合适的遍历方式非常重要。
二叉树的遍历 说课
《二叉树的遍历》说课稿09级计科系(1)班高怡 20091081140尊敬的各位老师:大家好!我说课的内容是数据结构(C语言版)第六章《树和二叉树》中二叉树的遍历的内容。
我将要从教材、教学目标、教学重难点、教学方法、教学准备、教学过程等六个方面进行详细阐述。
我对本课进行了如下设计:一、教材分析二叉树的遍历是二叉树中重要内容,《二叉树的遍历》是数据结构(C语言版)教材第六章第三节的内容,在此之前,学生已学习了二叉树的定义和性质,这为过渡到本节的学习起着铺垫作用。
在二叉树的一些应用中,为了在树中查找具有某种特性的结点,或者对树中全部结点逐一进行某种处理,就提出了二叉树的遍历,这样能够对二叉树的结点进行更快更好的处理。
二、学情分析作为职业中学的学生,比起高中初中的学生来说更加不爱学习,但是他们又有一定的不同,因为他们学的是专业技术,并且能够及时的开展实践,所以从这一方面说,他们又占有一定的优势。
对于所学的知识他们能够更好的学以致用,这对他们掌握知识是有一定帮助的。
三、教学目标1、知识目标:理解并掌握二叉树的三种遍历方法,并且能够准确的对二叉树进行三种遍历,能够根据给出的先序和后序正确还原一颗二叉树。
2、能力目标:培养学生自主学习,举一反三的能力。
3、情感目标:提高学生的分析问题和解决问题的能力。
四、教学重难点重点:1、学习理解二叉树的先序遍历。
2、通过对二叉树先序遍历的学习自己学会二叉树的中序和后序遍历。
3、根据给出的二叉树前序和中序遍历成功还原一颗二叉树。
难点:先序遍历、中序遍历、后序遍历的定义的理解和运用。
五、教法分析主要采用讲授法,教练法,讨论法,范例教学法。
采用例子引导,边讲边练,小组讨论的方法教学。
六、学法分析学生跟着老师,逐步理解,并自己学会分析,学会运用。
在课堂上边学边练,当堂掌握所学知识。
七、教学准备黑板,粉笔。
八、教学步骤分析本节课,我设置了3个教学环节,一是:导入新课;二是:探索新知,解决问题;三是:学以致用,当堂巩固。
第六章-树和二叉树
之
树 和 二 叉 树 13
1 2 3 A B C
4 5 6 7 0 D E F
8 0
9 10 0 G
¾ 二叉树顺序存储的算法描述
数 据 结 构
¾ 初始化二叉树
之
树 和 二 叉 树 14
#define Max_Size 100 typedef int TElemType; typedef TElemType SqBT[Max_Size+1]; void InitBT(SqBT bt){//设置空树 int i; for(i=1;i<=Max_Size;i++) bt[i]=0; }
数 据 结 构
之
树 和 二 叉 树 19
¾ 后序遍历顺序二叉树算法 void PostBT(SqBT bt,int i){ if(i>Max_Size||!bt[i]) return; PostBT(bt,2*i); PostBT(bt,2*i+1); printf("%3d ",bt[i]); }
数 据 结 构
之
树 和 二 叉 树 4
5. 孩子结点、双亲结点、兄弟结点、堂兄弟 结点、祖先结点、子孙结点…… 6. 结点的层次从根开始,根为第一层,根的 孩子为第二层;若某结点在第L层,则其 子树的根就在第L+1层。 7. 树的深度或高度:树中结点的最大层次。 8. 有序树:如果将树中结点的各子树看成是 从左至右有次序的;反之,则是无序树。 9. 森林:是m棵互不相交的树的集合。
数 据 结 构
之
树 和 二 叉 树 25
¾ 打印一维数组 void printSq(SqBT bt){ int i; printf("\nSeqArray:"); for(i=1;i<=Max_Size;i++) printf("%3d ",bt[i]); }
树和森林转换为二叉树的方法
树和森林转换为二叉树的方法树和森林是在计算机科学中常见的数据结构,用于表示具有层级关系的信息。
而二叉树是一种特殊的树形结构,每个节点最多只能有两个子节点。
在一些情况下,我们可能需要将树和森林转换为二叉树,以便于进行一些操作或分析。
本文将介绍两种将树和森林转换为二叉树的常见方法:二叉树的遍历和线索二叉树。
1.二叉树的遍历:二叉树的遍历是一种常见且简单的树到二叉树转换方法。
树的遍历有三种基本方式:前序遍历、中序遍历和后序遍历。
我们可以通过对树的任意一种遍历方式进行调整,来将树转换为二叉树。
1.1.前序遍历:前序遍历是指首先访问根节点,然后按照左子树、右子树的顺序遍历。
在转换为二叉树时,我们可以将子节点作为二叉树的左子节点,兄弟节点作为同级节点的右子节点。
1.2.中序遍历:中序遍历是指首先按照左子树、根节点、右子树的顺序遍历。
在转换为二叉树时,我们可以将树的左子树作为二叉树的左子节点,根节点作为二叉树的根节点,然后将树的右子树作为二叉树的右子节点。
1.3.后序遍历:后序遍历是指首先按照左子树、右子树、根节点的顺序遍历。
在转换为二叉树时,我们可以将根节点作为二叉树的根节点,兄弟节点作为同级节点的右子节点,然后将子节点作为二叉树的左子节点。
2.线索二叉树:线索二叉树是一种特殊的二叉树,每个节点除了包含左、右子节点的指针之外,还包含指向前驱节点和后继节点的指针。
在树和森林转换为二叉树时,我们可以使用线索二叉树的概念来构建二叉树。
2.1.前序线索二叉树:在前序线索二叉树中,节点的left指针指向节点的前驱节点(通过前序遍历),节点的right指针指向节点的后继节点(同样通过前序遍历)。
对于没有前驱或后继节点的节点,可以用空指针表示。
2.2.中序线索二叉树:在中序线索二叉树中,节点的left指针指向节点的前驱节点(通过中序遍历),节点的right指针指向节点的后继节点(同样通过中序遍历)。
对于没有前驱或后继节点的节点,可以用空指针表示。
2023年高考信息技术专题13 树与二叉树 知识点梳理(选修)(浙教版2019)
第十三章树与二叉树一、线性结构和非线性结构线性结构的所有元素都是线性排列的,结构中必然存在唯一的“起点”和“终点”元素。
且除首尾元素外,都有且只有一个“前驱”和“后继”节点。
例:链表、队列、栈非线性结构则完全相反,结构中可能存在多个“起点”和“终点”元素。
所有节点都可能存在0个或多个“前驱”和“后继”节点。
例:树、图二、树形结构树可以描述为由n(n>=0)个节点和n-1条边构成的一个有限集合,以及在该集合上定义的一种节点关系。
树形结构是一种特殊的非线性结构,其特点是:只有一个没有“前驱”,只有“后继”的根节点。
有多个只有“前驱”没有“后继”的叶子节点,其余节点均只有一个“前驱”和多个“后继”。
树的示例1.描述树形结构的词1.1节点名称(Node):根节点:树中唯一没有前驱的节点,也称开始节点(A)叶子节点:树中没有后继的节点,也称终端节点(G,H,C,D,K,L,M,J,F)分支节点:除叶子节点之外的所有节点(A,B,E,I)内部节点:除根节点之外的分支节点(B,E,I)1.2节点关系:父子关系:节点间的前驱后继关系又称父子关系。
例:B是G的父节点;G是B的子节点兄弟关系:同一父节点下的所有节点关系称兄弟关系。
例:G和H是兄弟节点1.3度(Degree):节点的度:一个节点拥有的子树(后继节点)的个数称之为该节点的度。
树的度:一棵树中最大的度称之为树的度。
例:图中A点的度为5,是该树中度最大的点,故该树的度为5。
1.4层/深(Level):节点的层:节点的层数从根节点开始计算,根节点的层数为1。
每经过一条边,层数加1。
树的高度/深度(Depth):树中节点最大层数称为树的高度或深度。
例:图中K点的深度为4,是该树中深度最大的点,故该树深度为4。
三、二叉树二叉树是树形结构的一种特殊情况,二叉树的度<=2。
1.完全二叉树和满二叉树满二叉树:所有节点度为2或0;所有叶子节点在同一层完全二叉树:最多只有最深两层节点的度小于2;最深一层的叶子节点依次排列在最左边。
第六章树与二叉树教案 二叉树的类型定义 存储结构 遍历 哈夫曼树与哈夫曼编码
即 k-1 ≤ log2 n < k
因为 k 只能是整数,因此, k =log2n + 1
问题:
一棵含有n个结点的二叉树,可能达 到的最大深度和最小深度各是多少?
1
答:最大n,
2
最小[log2n] + 1
第六章 树和二叉树教案
二叉树的类型定义 存储结构 遍历 哈夫曼树与哈夫曼编码
树是常用的数据结构
•家族 •各种组织结构 •操作系统中的文件管理 •编译原理中的源程序语法结构 •信息系统管理 •。。。。
2
6.1 树的类型定义 6.2 二叉树的类型定义
6.2.3 二叉树的存储结构 6.3 二叉树的遍历
二叉树上每个结点至多有两棵子树, 则第 i 层的结点数 = 2i-2 2 = 2i-1 。
性质 2 :
深度为 k 的二叉树上至多含 2k-1 个 结点(k≥1)。
证明:
基于上一条性质,深度为 k 的二叉
树上的结点数至多为
20+21+ +2k-1 = 2k-1 。
(等比数列求和)
k
k
(第i层的最大结点数) 2i1 2k
i 1
i 1
性质 3 :
对任何一棵二叉树,若它含有n0 个叶 子结点(0度节点)、n2 个度为 2 的结 点,则必存在关系式:n0 = n2+1。
证明:
设 二叉树上结点总数 n = n0 + n1 + n2 又 二叉树上分支总数 b = n1+2n2
而 b = n-1 = n0 + n1 + n2 - 1 由此, n0 = n2 + 1 。
二叉树的创建与遍历的实验总结
二叉树的创建与遍历的实验总结引言二叉树是一种重要的数据结构,在计算机科学中有着广泛的应用。
了解二叉树的创建和遍历方法对于数据结构的学习和算法的理解至关重要。
本文将对二叉树的创建和遍历进行实验,并总结相应的经验和思考。
二叉树的定义在开始实验之前,我们首先需要了解二叉树的定义和基本概念。
二叉树是一种每个节点最多拥有两个子节点的树形结构。
每个节点包含一个值和指向其左右子节点的指针。
根据节点的位置,可以将二叉树分为左子树和右子树。
创建二叉树二叉树的创建可以采用多种方法,包括手动创建和通过编程实现。
在实验中,我们主要关注通过编程方式实现二叉树的创建。
1. 递归方法递归是一种常用的创建二叉树的方法。
通过递归,我们可以从根节点开始,逐层创建左子树和右子树。
具体步骤如下:1.创建一个空节点作为根节点。
2.递归地创建左子树。
3.递归地创建右子树。
递归方法的代码实现如下所示:class TreeNode:def __init__(self, value):self.value = valueself.left = Noneself.right = Nonedef create_binary_tree(values):if not values:return None# 使用队列辅助创建二叉树queue = []root = TreeNode(values[0])queue.append(root)for i in range(1, len(values)):node = TreeNode(values[i])# 当前节点的左子节点为空,则将新节点作为左子节点if not queue[0].left:queue[0].left = node# 当前节点的右子节点为空,则将新节点作为右子节点elif not queue[0].right:queue[0].right = node# 当前节点的左右子节点已经齐全,可以从队列中删除该节点queue.pop(0)# 将新节点添加到队列中,下一次循环时可以使用该节点queue.append(node)return root2. 非递归方法除了递归方法,我们还可以使用非递归方法创建二叉树。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
}
返回 左是空返回
TB
T D 右是空返回
主程序
TA printf(A);
printf(B); pre(T L);
printf(D); pre(T L);
T 返回
Pre( T )
pre(T L); pre(T R);
pre(T R); TC
pre(T R);
T 返回
printf(C);
T
pre(T L);
递归算法 前序周游 中序周游 后序周游
void preorder(BiTree bt)
A
{ if(bt!=NULL)
{ printf("%d\t",bt->data); 左是空返回 B
C
preorder(bt->lchild);
左是空返回
preorder(bt->rchild); }
右是空返回 T
中序周游:
A
B
C
D
L
D
R
A
LD R
L DR
B
C
L DR
D
中序周游序列:B D A C
后序周游:
A
B
C
D
L
R
D
LR D
A L RD
B
C
L RD
D
后序周游序列: D B C A
-
+
a
*
/ ef
b
-
cd
先序周游: - + a * b - c d / e f 中序周游: a + b * c - d - e / f 后序周游: a b c d - * + e f / 层次周游: - + / a * e f b - c d
第n层的结点
A
B
C
D
EFG
H
I
J K LM
NO
先序周游:ABEF I GCDHJ KLNOM 后序周游:EI FGB CJKN OLMHD A 层次周游:ABCDE FGHI J KLMNO
G (14)
i 访问:C B E G D F A
A
B
CD
E F i P->A
p=NULL
(13) G
访问:C B E G D F
A B p=NULL
CD
EF
i
G
(15)
访问:C B E G D F A
树的周游
❖先序(根)周游: 先访问树的根结点,然后依次先根周游根的每棵子树 ❖后序(根)周游: 先依次后根周游每棵子树,然后访问根结点 ❖后序(根)周游: 先依次后根周游每棵子树,然后访问根结点 ❖按层次周游: 先访问第一层上的结点,然后依次周游第二层,……
访问:C B E (9)
G 访问:C B E G (10) p
A
A
B
Bp
CD EF
i P->D P->A
CD EF
i P->A
G P=NULL
访问:C B E G (10)
(11) G
访问:C B E G D
A
B
p CD
i EF
P->F P->A
(12) G 访问:C B E G D
p A
B
CD
EF
5.3 二叉树的周游
二叉树的周游
按照一定的顺序对二叉树的每一个结 点都访问一次(仅访问一次),得到一个 由该二叉树的所有结点组成的序列,这一 过程称为二叉树的周游.
常用二叉树的周游方法
二叉树的周游
先序周游 中序周游 后序周游 按层次周游
根
左
右
子
子
树
树
❖先序周游 先访问根结点,然后分别先序周游左子树、右 子树
i P->B
EF
P->A
(5) G 访问:C
ABCD p=NULLE Fi P->B P->A
(5) G 访问:C
p
A
B
CD E F i P->A
(5) G 访问:C B
A
Bp
CD EF
i P->D P->A
(6) G 访问:C B
A
B
CD EF
p
i P->E P->D P->A
(7)
G 访问:C B
返回
pre(T R);
T
先序序列:A B D C
返回
非递归算法(中序周游) p
A
B
CD E F i P->A
G
(1)
p
A
B
CD EF
G
i P->B P->A (2)
A
p
B
CD
EF
G
i P->C P->B P->A
(3)
A
B
CD
i
p=NULL E F
G
(4)
P->C P->B P->A
A
B p
CD
❖中序周游 先中序周游左子树,然后访问根结点,最后中 序周游右子树
❖后序周游 先后序周游左、右子树,然后访问根结点
❖按层次周游 从上到下、从左到右访问各结点
D
L
R
LDR、LRD、DLR RDL、RLD、DRL
先序周游:
A
B D
D
L
R
A
D LR C
D LR
B
C
D LR
先序周游序列:A B D C D
A
B
CD EF
i P->E P->D P->A
P=NULL
(7)
G
访问:C B
A
B
CD
i P->D
EF p
P->A
G 访问:C B E (8)
A
B
CD
i P->G P->D
EF
P->A
G p
访问:C B E (8)
A
A
B CD
EF
i P->G P->D P->A
B
CD
i P->D
EF
P->A
G P=NULL