数列的概念单元测试题 百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、数列的概念选择题
1.若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有1n n a a +=成立,则称数列
{}n a 为周期数列,周期为T .
已知数列{}n a 满足()111,1
0,{1
,01n n n n n
a a a m m a a a +->=>=<≤ ,则下列结论错误的是( ) A .若34a =,则m 可以取3个不同的数; B
.若m =
,则数列{}n a 是周期为3的数列;
C .存在m Q ∈,且2m ≥,数列{}n a 是周期数列;
D .对任意T N *∈且2T ≥,存在1m >,使得{}n a 是周期为T 的数列. 2.
3
…
…
,则 ) A .第8项
B .第9项
C .第10项
D .第11项
3.已知数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=-,则2019a =( ) A .1
B .3
C .2
D .3-
4.在数列{}n a 中,11a =,20192019a =,且*n N ∈都有122n n n a a a ++≥+,则下列结论正确的是( )
A .存在正整数0N ,当0n N >时,都有n a n ≤.
B .存在正整数0N ,当0n N >时,都有n a n ≥.
C .对常数M ,一定存在正整数0N ,当0n N >时,都有n a M ≤.
D .对常数M ,一定存在正整数0N ,当0n N >时,都有n a M ≥. 5.已知数列{}n a 满足11a =
),2n N n *=
∈≥,且()2cos
3
n n n a b n N π
*=∈,则数列{}n b 的前18项和为( ) A .120
B .174
C .204-
D .
373
2
6.在数列{}n a 中,11a =,11n n a a n +=++,设数列1n a ⎧⎫
⎨
⎬⎩⎭
的前n 项和为n S ,若n S m <对一切正整数n 恒成立,则实数m 的取值范围为( ) A .()3,+∞ B .[
)3,+∞
C .()2,+∞
D .[)2,+∞
7.设{}n a 是等差数列,且公差不为零,其前n 项和为n S .则“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件
D .既不充分也不必要条件
8.数列{}n a 中,11a =,12n n a a n +=+,则n a =( ) A .2n n 1-+
B .21n +
C .2(1)1n -+
D .2n
9.设()f x 是定义在R 上恒不为零的函数,且对任意的实数x 、y R ∈,都有
()()()f x f y f x y ⋅=+,若112
a =
,()()
*
n a f n n N =∈,则数列{}n a 的前n 项和n S 应满足( )
A .
1324n S ≤< B .314n S ≤< C .102
n S <≤
D .
1
12
n S ≤< 10.数列1,3,5,7,9,--的一个通项公式为( )
A .21n a n =-
B .()1(21)n
n a n =--
C .()
1
1(21)n n a n +=--
D .()
1
1(21)n n a n +=-+
11.下列命题中错误的是( ) A .()(
)21f n n n N
+
=-∈是数列的一个通项公式
B .数列通项公式是一个函数关系式
C .任何一个数列中的项都可以用通项公式来表示
D .数列中有无穷多项的数列叫作无穷数列 12.数列{}n a 满足12a =,111
1
n n n a a a ++-=+,则2019a =( ) A .3-
B .12-
C .
13
D .2
13.已知数列{}n a 满足11a =,12
2
n n a a n n
+=++,则10a =( ) A .
259
B .
145 C .
3111
D .
176
14.数列1111
,,,
57911
--,…的通项公式可能是n a =( ) A .1(1)32n n --+
B .(1)32
n n -+
C .1(1)23
n n --+
D .(1)23
n
n -+
15.正整数的排列规则如图所示,其中排在第i 行第j 列的数记为,i j a ,例如4,39a =,则
645a ,等于( )
123
456
78910
A .2019
B .2020
C .2021
D .2022
16.历史上数列的发展,折射出很多有价值的数学思想方法,对时代的进步起了重要的作用,比如意大利数学家列昂纳多·斐波那契以兔子繁殖为例,引入“兔子数列”:即1,1,2,3,5,8,13,21,34,55,89,144,233……即F (1)=F (2)=1,F (n )=F (n -1)+F (n -2),(
)*
3n n N
≥∈,,此数列在现代物理及化学等领域有着广泛的应用,
若此数列被4整除后的余数构成一个新数列{}n b ,则b 2020=( ) A .3 B .2
C .1
D .0
17.数列1
2,16,112,120
,…的一个通项公式是( ) A .()1
1n a n n =-
B .()1
221n a n n =
-
C .111
n a n n =
-+ D .11n a n
=-
18.已知数列{}n a 满足1N a *
∈,1,2+3,n
n n n n a a a a a +⎧⎪=⎨⎪⎩为偶数为奇数
,若{}n a 为周期数列,则1a 的
可能取到的数值有( ) A .4个
B .5个
C .6个
D .无数个
19.数列{}:1,1,2,3,5,8,13,21,34,...,n F 成为斐波那契数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,该数列从第三项开始,每项等于其前两相邻两项之和,记该数{}n F 的前n 项和为n S ,则下列结论正确的是( )
A .201920212S F =+
B .201920211S F =-
C .201920202S F =+
D .201920201S F =-
20.数列2345
1,,,,,3579
的一个通项公式n a 是( ) A .
21n
n + B .
23
n
n + C .
23
n
n - D .
21
n
n - 二、多选题
21.意大利人斐波那契于1202年从兔子繁殖问题中发现了这样的一列数:
1,1,2,3,5,8,13,….即从第三项开始,每一项都是它前两项的和.后人为了纪念他,就把这列