树和二叉树

合集下载

第7章-树和二叉树第2讲-二叉树的概念

第7章-树和二叉树第2讲-二叉树的概念
(root),其余结点可分为m (m≥0)个互不相交的有限子集 T1、T2、…、Tm,而每个子集本身又是一棵树,称为根结点 root的子树。 树中所有结点构成一种层次关系!
第一层
树的特 点?
第二层 第三层 第四层
复习:二、树的基本术语
1.结点A、D的度?树的度? 2;3;3; 2.根结点?分支结点?叶子结点? A;BCDE;GHIJF;
在二叉链中,空指针的个数?
b A
B∧
C
∧D
∧E∧
∧F∧
∧G∧
n个结点 2n个指针域 分支数为n-1 非空指针域有n-1个 空指针域个数 = 2n-(n-1) = n+1
n=7 空指针域个数=8
39/10
40/10
二叉树
当n=3,结果为ห้องสมุดไป่ตู้。
第n个Catalan数
41/23
有n个结点并且高度为n的不同形态的二叉树个数是多少? 该二叉树:有n层,每层一个结点,该结点可以
43/23
结点个数为n,树形可以唯一确定 叶子结点个数为n0,树形不能唯一确定 n为奇数时,n1=0; n为偶数时,n1=1。 n0=n2+1 高度h= log2(n+1),是n个结点高度最小的二叉树
44/23
含有60个叶子结点的二叉树的最小高度是多少?
在该二叉树中,n0=60,n2=n0-1=59,n=n0+n1+n2=119+n1。 当n1=0且为完全二叉树时高度最小。 此时高度h=log2(n+1)= log2120=7。
作为双亲结点的左孩子,也可以作为右孩子 这样的二叉树的个数=1×2×…×2=2n-1。
例如,当n=3时有22=4个这样的二叉树。

二叉树,树,森林遍历之间的对应关系

二叉树,树,森林遍历之间的对应关系

二叉树,树,森林遍历之间的对应关系一、引言在计算机科学中,数据结构是非常重要的知识点之一。

而树这一数据结构,作为基础的数据结构之一,在软件开发中有着广泛的应用。

本文将重点探讨二叉树、树和森林遍历之间的对应关系,帮助读者更加全面地理解这些概念。

二、二叉树1. 二叉树的定义二叉树是一种特殊的树结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。

二叉树可以为空,也可以是一棵空树。

2. 二叉树的遍历在二叉树中,有三种常见的遍历方式,分别是前序遍历、中序遍历和后序遍历。

在前序遍历中,节点的访问顺序是根节点、左子树、右子树;在中序遍历中,节点的访问顺序是左子树、根节点、右子树;在后序遍历中,节点的访问顺序是左子树、右子树、根节点。

3. 二叉树的应用二叉树在计算机科学领域有着广泛的应用,例如用于构建文件系统、在数据库中存储有序数据、实现算法中的搜索和排序等。

掌握二叉树的遍历方式对于理解这些应用场景非常重要。

三、树1. 树的定义树是一种抽象数据类型,由n(n>0)个节点组成一个具有层次关系的集合。

树的特点是每个节点都有零个或多个子节点,而这些子节点又构成了一颗子树。

树中最顶层的节点称为根节点。

2. 树的遍历树的遍历方式有先根遍历、后根遍历和层次遍历。

在先根遍历中,节点的访问顺序是根节点、子树1、子树2...;在后根遍历中,节点的访问顺序是子树1、子树2...,根节点;在层次遍历中,节点的访问顺序是从上到下、从左到右依次访问每个节点。

3. 树的应用树广泛用于分层数据的表示和操作,例如在计算机网络中的路由算法、在操作系统中的文件系统、在程序设计中的树形结构等。

树的遍历方式对于处理这些应用来说至关重要。

四、森林1. 森林的定义森林是n(n>=0)棵互不相交的树的集合。

每棵树都是一颗独立的树,不存在交集。

2. 森林的遍历森林的遍历方式是树的遍历方式的超集,对森林进行遍历就是对每棵树进行遍历的集合。

3. 森林的应用森林在实际编程中经常用于解决多个独立树结构的问题,例如在数据库中对多个表进行操作、在图像处理中对多个图形进行处理等。

说明树与二叉树的主要区别

说明树与二叉树的主要区别

说明树与二叉树的主要区别摘要:一、引言二、树与二叉树的定义及基本概念1.树的定义及特点2.二叉树的定义及特点三、树与二叉树的主要区别1.节点数量的限定2.节点连接方式的差异3.遍历方式的差异四、实例分析1.满二叉树与满树的对比2.完全二叉树与完全树的对比五、总结与展望正文:一、引言在计算机科学中,树和二叉树是广泛应用于数据结构和组织的重要概念。

尽管它们在某些方面具有相似之处,但它们之间仍存在显著差异。

本文将详细介绍树与二叉树的主要区别,以帮助读者更好地理解这两种数据结构。

二、树与二叉树的定义及基本概念1.树的定义及特点树(Tree)是一种非线性的数据结构,它由若干个节点组成,这些节点通过边连接在一起。

树中最顶层的节点称为根节点,最底层的节点称为叶节点,中间层节点称为内部节点。

树具有以下特点:(1)只有一个根节点。

(2)每个节点最多有若干个子节点,最少有一个子节点(除了根节点)。

(3)节点之间的连接顺序呈层次结构。

2.二叉树的定义及特点二叉树(Binary Tree)是一种特殊的树结构,其中每个节点最多有两个子节点,通常称为左子节点和右子节点。

根据这个定义,二叉树可以进一步细分为满二叉树、完全二叉树和不完全二叉树等。

二叉树具有以下特点:(1)每个节点最多有两个子节点。

(2)节点之间的连接呈二叉树结构。

三、树与二叉树的主要区别1.节点数量的限定树中每个节点可以有任意数量的子节点,而二叉树中每个节点最多有两个子节点。

这是树与二叉树最明显的区别。

2.节点连接方式的差异树中节点之间的连接顺序呈层次结构,呈放射状分布。

而二叉树中节点之间的连接呈二叉树结构,呈线性分布。

3.遍历方式的差异树的遍历方式有前序遍历、中序遍历和后序遍历等。

二叉树的遍历方式有前序遍历、中序遍历和后序遍历等。

不过,二叉树的遍历方式通常与树的遍历方式有所不同。

四、实例分析1.满二叉树与满树的对比满二叉树是一种特殊的二叉树,其每个节点都有两个子节点,且所有叶子节点都在同一层。

树与二叉树h

树与二叉树h
TElemType data ; int Lchild,Rchild; } SBNode; typedef struct{
SBNode nodes[MAXSIZE]; } SBTree;
举例
结点 左子
右子
1
26 34
1
2
6
2
3
4
3
0
4
4
0
0
4
4
0
0
特点:
6
0
0
找子方便,找父 结点不便.
三、二叉链表存储结构
第一层 第二层
( A ( B ( E (K,L),F),C(G),D( H (M),I,J )))
第四层 第三层
二、基本术语
结点:包括一个数据元素及若干个指向其它子树 的分支;例如,A,B,C,D等。
叶结点:无后件结点为叶结点;如K,L,M。 根结点:无前件的结点为根;例如,A结点。
子结点:某结点后件为该结点的子结点;例如,
方法描述: 从根结点a开始访问, 接着访问左子结点b, 最后访问右子结点c。
即:

A 访问根结点 B 先序遍历左子树 C 先序遍历右子树
a
左子 右子
bc
二、中序法(InOrder)
方法描述:
从左子结点b开始访问,
接着访问根结点a,
最后访问右子结点c。
即:

A 中序遍历左子树 B 访问根结点 C 中序遍历右子树
计算机学院
自动化学院
各种社会组织机构;
在计算机领域中,用树表示源
程序的语法结构;
2101 2102
2103
在OS中,文件系统、目录等组
织结构也是用树来表示的。

第6章树和二叉树

第6章树和二叉树
2.孩子表示法 孩子表示法 在结点中设置指向每个孩子的指针域, 在结点中设置指向每个孩子的指针域,利用指针 指向该结点的所有孩子结点。 指向该结点的所有孩子结点。 大多采用按树的度设置结点的指针域的个数。 大多采用按树的度设置结点的指针域的个数。
9
6.1.4 树的存储结构
3.孩子兄弟表示法 孩子兄弟表示法 在结点中设置两个指针域, 在结点中设置两个指针域,一个指针域指向该结 点的第一个孩子,另一个指针域指向其右兄弟。 点的第一个孩子,另一个指针域指向其右兄弟。
2
6.1.1树的定义 树的定义
结点的度:结点所拥有子树的个数称为结点的度。 结点的度:结点所拥有子树的个数称为结点的度。 子树 称为结点的度 树的度:树中所有结点的度的最大值称为树的度。 最大值称为树的度 树的度:树中所有结点的度的最大值称为树的度。 叶结点:度为零的结点称为叶结点。也称终端结点 终端结点或 叶结点:度为零的结点称为叶结点。也称终端结点或叶 子 分支结点:度不为零的结点称为分支结点。也称非终端 分支结点:度不为零的结点称为分支结点。也称非终端 结点。除根结点以外,分支结点也称为内部结点。 结点。除根结点以外,分支结点也称为内部结点。 孩子结点和双亲结点: 孩子结点和双亲结点:树中一个结点的子树的根结点称 为孩子结点。该结点就称为孩子结点的双亲结点。 为孩子结点。该结点就称为孩子结点的双亲结点。 兄弟结点:具有同一双亲的孩子结点互为兄弟结点。 兄弟结点:具有同一双亲的孩子结点互为兄弟结点。 结点的祖先:从根到该结点所经分支上的所有结点, 结点的祖先:从根到该结点所经分支上的所有结点,称 为结点的祖先。 为结点的祖先。
17
6.2.2 二叉树的性质
性质4 具有n( 性质 具有 (n>0)个结点的完全二叉树的深度 )个结点的完全二叉树的深度h= log 2 n + 1 证明: 证明: 根据完全二叉树的定义可知深度为h-1层及以上的结点构成 根据完全二叉树的定义可知深度为 层及以上的结点构成 满二叉树,因此由性质2得深度为 得深度为h的完全二叉树满足 满二叉树,因此由性质 得深度为 的完全二叉树满足 n>2h-1-1和n≤2h-1 和 整理后得到 2h-1≤n<2h 不等式两边取对数, 不等式两边取对数,得 h-1≤log2n<h 由于h为正整数 为正整数, 由于 为正整数,因此 h= log 2 n + 1

树和二叉树的实验报告

树和二叉树的实验报告

《数据结构》实验报告题目: 树和二叉树一、用二叉树来表示代数表达式(一)需求分析输入一个正确的代数表达式, 包括数字和用字母表示的数, 运算符号+ - * / ^ =及括号。

系统根据输入的表达式建立二叉树, 按照先括号里面的后括号外面的, 先乘后除的原则, 每个节点里放一个数字或一个字母或一个操作符, 括号不放在节点里。

分别先序遍历, 中序遍历, 后序遍历此二叉树, 并输出表达式的前缀式, 中缀式和后缀式。

(二)系统设计1.本程序中用到的所有抽象数据类型的定义;typedef struct BiNode //二叉树的存储类型{char s[20];struct BiNode *lchild,*rchild;}BiTNode,*BiTree;2.主程序的流程以及各程序模块之间的层次调用关系, 函数的调用关系图:3. 列出各个功能模块的主要功能及输入输出参数void push(char cc)初始条件: 输入表达式中的某个符号操作结果: 将输入的字符存入buf数组中去BiTree Create_RTree()初始条件: 给出二叉树的定义表达式操作结果:构造二叉树的右子树, 即存储表达式等号右侧的字符组BiTree Create_RootTree()初始条件: 给出二叉树的定义表达式操作结果:构造存储输入表达式的二叉树, 其中左子树存储‘X’, 根节点存储‘:=’void PreOrderTraverse(BiTree T)初始条件: 二叉树T存在操作结果:先序遍历T, 对每个节点调用函数Visit一次且仅一次void InOrderTraverse(BiTree T)初始条件: 二叉树T存在操作结果:中序遍历T, 对每个节点调用函数Visit一次且仅一次void PostOrderTraverse(BiTree T)初始条件: 二叉树T存在操作结果:后序遍历T, 对每个节点调用函数Visit一次且仅一次int main()主函数, 调用各方法, 操作成功后返回0(三)调试分析调试过程中还是出现了一些拼写错误, 经检查后都能及时修正。

树和二叉树的计算公式

树和二叉树的计算公式

树和二叉树的计算公式
树和二叉树是计算机科学中重要的数据结构,它们可以用于各种算法和数据处理应用。

在计算树和二叉树的性质和操作时,需要使用一些计算公式。

一、树的计算公式
1. 节点总数公式:假设一棵树有n个节点,那么它的节点总数
为n=1+r1+r2+...+rk,其中r1、r2、...、rk分别表示每个节点的
子节点数。

2. 叶子节点数公式:一棵树的叶子节点数等于每个非叶节点子
节点数之和加1,即l=r1+r2+...+rk+1。

3. 深度公式:一棵树的深度为从根节点到最深叶子节点的路径
长度,可以用递归的方式计算:d(T)=max{d(T1),d(T2),...,d(Tk)}+1,其中T1、T2、...、Tk是根节点的子树,d(Ti)表示第i个子树的深度。

二、二叉树的计算公式
1. 节点总数公式:假设一棵二叉树有n个节点,那么它的节点
总数为n=2^h-1,其中h为树的高度。

2. 叶子节点数公式:一棵二叉树的叶子节点数等于度数为2的
节点数加1,即l=n/2+1。

3. 深度公式:一棵二叉树的深度为从根节点到最深叶子节点的
路径长度,可以用递归的方式计算:d(T)=max{d(T1),d(T2)}+1,其
中T1、T2是根节点的左右子树,d(Ti)表示第i个子树的深度。

以上是树和二叉树的一些常用计算公式,可以用于分析和设计算法,帮助开发人员更好地理解和应用这些数据结构。

树与二叉树的关系

树与二叉树的关系
右的次序顺序编号,即把树看作为有序树。
将一棵树转换为二叉树的方法: ⑴ 树中所有相邻兄弟之间加一条连线。 ⑵ 对树中的每个结点,只保留其与第一个 孩子结点之间的连线,删去其与其它孩子结 点之间的连线。 ⑶ 以树的根结点为轴心,将整棵树顺时针 旋转一定的角度,使之结构层次分明。
树转换为二叉树示意图
A
A
B
E
CF G
DH
I
A
B
E
CF G
DH
I
J
J
A
BC D EG FH I J
用递归的方法描述其转换
若B是一棵二叉树,T是B的根结点,L是B的 左子树,R为B的右子树,设B对应的森林F(B) 中含有的n棵树为T1,T2, …,Tn,则有: (1)B为空,则:F(B)为空的森林(n=0)。
(2)B非空,则:

森林
二叉树
先根遍历 先序遍历 先序遍历
后根遍历 中序遍历 中序遍历
3、森林的后序遍历*
若森林非空,则遍历方法为:
(1)后序遍历森林中第一棵树的根结点的子 树森林。 (2)后序遍历除去第一棵树之后剩余的树构 成的森林。 (3)访问第一棵树的根结点。
6.5 哈夫曼树及其应用
6.5.1 哈夫曼树
哈夫曼树最典型、最广泛的应用是在 编码技术上,利用哈夫曼树,可以得到 平均长度最短的编码。这在通讯领域是 极其有价值的。
权值 双亲序号 左孩子序号 右孩子序号
静态三叉链表结构定义
#define N 20 #define M 2*N-1 typedef struct { int weight ;
int parent,Lchild,Rchild ; }HTNode, HuffmanTree[M+1];

数据结构树和二叉树知识点总结

数据结构树和二叉树知识点总结

数据结构树和二叉树知识点总结
1.树的概念:树是一种非线性的数据结构,由节点和边构成,每个节点只能有一个父节点,但可以有多个子节点。

2. 二叉树的概念:二叉树是一种特殊的树结构,每个节点最多只有两个子节点,一个是左子节点,一个是右子节点。

3. 二叉树的遍历:二叉树的遍历分为前序遍历、中序遍历和后序遍历三种方式。

前序遍历是先访问根节点,再访问左子树,最后访问右子树;中序遍历是先访问左子树,再访问根节点,最后访问右子树;后序遍历是先访问左子树,再访问右子树,最后访问根节点。

4. 二叉搜索树:二叉搜索树是一种特殊的二叉树,它满足左子树中所有节点的值均小于根节点的值,右子树中所有节点的值均大于根节点的值。

因此,二叉搜索树的中序遍历是一个有序序列。

5. 平衡二叉树:平衡二叉树是一种特殊的二叉搜索树,它的左子树和右子树的高度差不超过1。

平衡二叉树的插入和删除操作可以保证树的平衡性,从而提高树的查询效率。

6. 堆:堆是一种特殊的树结构,它分为最大堆和最小堆两种。

最大堆的每个节点的值都大于等于其子节点的值,最小堆的每个节点的值都小于等于其子节点的值。

堆常用于排序和优先队列。

7. Trie树:Trie树是一种特殊的树结构,它用于字符串的匹配和检索。

Trie树的每个节点代表一个字符串的前缀,从根节点到叶子节点的路径组成一个完整的字符串。

以上是数据结构树和二叉树的一些基本知识点总结,对于深入学
习数据结构和算法有很大的帮助。

树与二叉树哈夫曼树教案

树与二叉树哈夫曼树教案

树与二叉树哈夫曼树教案一、教学目标1. 了解树(Tree)和二叉树(Binary Tree)的概念;2.掌握树和二叉树的基本结构和操作;3. 理解哈夫曼树(Huffman Tree)的概念和应用;4.能够通过给定的数据构建哈夫曼树,并进行编码和解码操作。

二、教学内容1.树与二叉树1.1树的定义和基本术语1.2树的表示和操作1.3二叉树的定义和遍历方式1.4二叉树的应用示例2.哈夫曼树2.1哈夫曼树的定义和应用2.2构建哈夫曼树的算法2.3哈夫曼编码和解码的实现三、教学步骤与方法1.导入新知识通过提问与学生讨论,引导学生了解树与二叉树的概念,及其在现实生活中的应用场景。

2.介绍树与二叉树2.1形式化定义树的相关概念,如根节点、子节点、叶子节点等。

2.2介绍二叉树的相关概念,如二叉树的性质、三种遍历方式等。

3.树与二叉树的应用示例通过实际例子演示树与二叉树的应用,如目录结构、表达式求值等。

4.引入哈夫曼树4.1介绍哈夫曼树的概念和应用场景,如数据压缩。

4.2讲解构建哈夫曼树的算法,包括选择最小权值节点等。

4.3演示哈夫曼编码和解码的实现,让学生理解哈夫曼编码的原理和过程。

5.练习与巩固在课堂上进行与树、二叉树和哈夫曼树相关的练习,巩固学生对所学内容的理解。

6.小结与作业布置对本节课所学内容进行小结,并布置相关作业,让学生进行巩固和深化学习。

四、教学资源1. PowerPoint或电子白板2.示例代码和编程环境,用于演示和实践3.相关课堂练习题目和解答五、教学评估1.课堂练习表现评估,包括对树、二叉树和哈夫曼树的理解和应用能力;2.作业和实践项目的结果评估,包括构建哈夫曼树和实现哈夫曼编码的准确性和效率。

六、教学扩展1.拓展相关概念和应用,如平衡二叉树、B树等;2.引导学生进行更深层次的研究和实践,如自定义数据结构、更复杂的压缩算法等。

第六章-树和二叉树

第六章-树和二叉树


树 和 二 叉 树 13
1 2 3 A B C
4 5 6 7 0 D E F
8 0
9 10 0 G
¾ 二叉树顺序存储的算法描述
数 据 结 构
¾ 初始化二叉树

树 和 二 叉 树 14
#define Max_Size 100 typedef int TElemType; typedef TElemType SqBT[Max_Size+1]; void InitBT(SqBT bt){//设置空树 int i; for(i=1;i<=Max_Size;i++) bt[i]=0; }
数 据 结 构

树 和 二 叉 树 19
¾ 后序遍历顺序二叉树算法 void PostBT(SqBT bt,int i){ if(i>Max_Size||!bt[i]) return; PostBT(bt,2*i); PostBT(bt,2*i+1); printf("%3d ",bt[i]); }
数 据 结 构

树 和 二 叉 树 4
5. 孩子结点、双亲结点、兄弟结点、堂兄弟 结点、祖先结点、子孙结点…… 6. 结点的层次从根开始,根为第一层,根的 孩子为第二层;若某结点在第L层,则其 子树的根就在第L+1层。 7. 树的深度或高度:树中结点的最大层次。 8. 有序树:如果将树中结点的各子树看成是 从左至右有次序的;反之,则是无序树。 9. 森林:是m棵互不相交的树的集合。
数 据 结 构

树 和 二 叉 树 25
¾ 打印一维数组 void printSq(SqBT bt){ int i; printf("\nSeqArray:"); for(i=1;i<=Max_Size;i++) printf("%3d ",bt[i]); }

二叉树和树的转换算法

二叉树和树的转换算法

二叉树和树的转换算法二叉树和树之间的转换算法涉及将一个数据结构转换为另一个数据结构的过程。

在这里,我们将讨论将树转换为二叉树和将二叉树转换为树的算法。

首先,让我们来讨论将树转换为二叉树的算法。

树是一种非线性数据结构,它包含一个根节点以及零个或多个子树,每个子树也是一棵树。

而二叉树是一种特殊的树,每个节点最多有两个子节点。

因此,将树转换为二叉树的算法需要考虑如何安排节点的子节点,以便符合二叉树的定义。

一种常见的将树转换为二叉树的算法是使用前序遍历。

具体步骤如下:1. 从树的根节点开始,将其作为二叉树的根节点。

2. 对于树的每个子树,将其第一个子节点作为二叉树的左子节点,将其余的子节点作为左子节点的右子节点。

3. 递归地对每个子树执行上述步骤,直到整棵树都被转换为二叉树。

接下来,让我们来讨论将二叉树转换为树的算法。

二叉树是一种特殊的树,每个节点最多有两个子节点。

而树是一种非线性数据结构,每个节点可以有任意数量的子节点。

因此,将二叉树转换为树的算法需要考虑如何将二叉树的节点重新组织成树的节点。

一种常见的将二叉树转换为树的算法是使用后序遍历。

具体步骤如下:1. 从二叉树的根节点开始,将其作为树的根节点。

2. 对于二叉树的每个节点,如果该节点有右子节点,将其右子节点作为树节点的子节点。

3. 递归地对每个节点执行上述步骤,直到整棵二叉树都被转换为树。

需要注意的是,在进行树和二叉树的转换时,可能会涉及到节点的重新连接和指针的调整,需要仔细处理节点之间的关系,确保转换后的数据结构仍然保持原始树或二叉树的结构特点。

总之,树和二叉树之间的转换算法涉及到对节点的重新组织和连接,需要根据具体的数据结构特点来设计相应的算法。

希望这些信息能够帮助你理解树和二叉树之间的转换过程。

2023年高考信息技术专题13 树与二叉树 知识点梳理(选修)(浙教版2019)

2023年高考信息技术专题13 树与二叉树 知识点梳理(选修)(浙教版2019)

第十三章树与二叉树一、线性结构和非线性结构线性结构的所有元素都是线性排列的,结构中必然存在唯一的“起点”和“终点”元素。

且除首尾元素外,都有且只有一个“前驱”和“后继”节点。

例:链表、队列、栈非线性结构则完全相反,结构中可能存在多个“起点”和“终点”元素。

所有节点都可能存在0个或多个“前驱”和“后继”节点。

例:树、图二、树形结构树可以描述为由n(n>=0)个节点和n-1条边构成的一个有限集合,以及在该集合上定义的一种节点关系。

树形结构是一种特殊的非线性结构,其特点是:只有一个没有“前驱”,只有“后继”的根节点。

有多个只有“前驱”没有“后继”的叶子节点,其余节点均只有一个“前驱”和多个“后继”。

树的示例1.描述树形结构的词1.1节点名称(Node):根节点:树中唯一没有前驱的节点,也称开始节点(A)叶子节点:树中没有后继的节点,也称终端节点(G,H,C,D,K,L,M,J,F)分支节点:除叶子节点之外的所有节点(A,B,E,I)内部节点:除根节点之外的分支节点(B,E,I)1.2节点关系:父子关系:节点间的前驱后继关系又称父子关系。

例:B是G的父节点;G是B的子节点兄弟关系:同一父节点下的所有节点关系称兄弟关系。

例:G和H是兄弟节点1.3度(Degree):节点的度:一个节点拥有的子树(后继节点)的个数称之为该节点的度。

树的度:一棵树中最大的度称之为树的度。

例:图中A点的度为5,是该树中度最大的点,故该树的度为5。

1.4层/深(Level):节点的层:节点的层数从根节点开始计算,根节点的层数为1。

每经过一条边,层数加1。

树的高度/深度(Depth):树中节点最大层数称为树的高度或深度。

例:图中K点的深度为4,是该树中深度最大的点,故该树深度为4。

三、二叉树二叉树是树形结构的一种特殊情况,二叉树的度<=2。

1.完全二叉树和满二叉树满二叉树:所有节点度为2或0;所有叶子节点在同一层完全二叉树:最多只有最深两层节点的度小于2;最深一层的叶子节点依次排列在最左边。

第5章 树和二叉树

第5章 树和二叉树
A
B A
C
D
E
F
G
H
I
J
K
L
T1
T2
M
2015年10月20日
T3
树的其它表示方式
A D K L F C G E B H M J I
A
A B E K L F C G
B C D
嵌套集合
E
D H M
F
G
H
I
J
I J
K
L
M
凹入表示
(A(B(E(K,L),F),C(G),D(H(M),I,J)))
广义表
2015年10月20日
北京林业大学信息学院
2015年10月20日
二叉树的链式存储
PARENT
lchild
data
rchild
DATA
lchild
data
parent rchild
LCHILD
RCHILD
北京林业大学信息学院
2015年10月20日
二叉链表
A A ^ B D lchild data rchild
B
C
E
G
F
二叉树的五种不同形态
2015年10月20日
练习
具有3个结点的二叉树可能有几种不同形态?普通树呢? 5种/2种
2015年10月20日
二叉树的抽象数据类型定义
ADT BinaryTree{ 数据对象D: D是具有相同特性的数据元素的集合。 数据关系R: 若D=Φ,则R= Φ ; 若D≠Φ,则R= {H};存在二元关系: ① root 唯一 //关于根的说明 ② Dj∩Dk= Φ //关于子树不相交的说明 ③ …… //关于数据元素的说明 ④ …… //关于左子树和右子树的说明 //至少有20个 基本操作 P: }ADT BinaryTree

第六章 树与二叉树

第六章 树与二叉树
44
森林的遍历
(4) 广度优先遍历(层次序 遍历) :
数据结构
若森林F为空,返回; 否则 依次遍历各棵树的根 结点; 依次遍历各棵树根结 点的所有子女; 依次遍历这些子女结 森林的二叉树表示 点的子女结点。
45
二叉树的计数 由二叉树的前序序列和中序序列可唯 一地确定一棵二叉树。例, 前序序列 { ABHFDECKG } 和中序序列 { HBDFAEKCG }, 构造二叉树过程如 下:
三个结点构成的不同的二叉树
8
用二 叉 树 表达实际问题
例2 双人比赛的所有可能的结局
开始

开局连赢两局 或五局三胜


甲 甲 乙

乙 甲 乙 甲 甲 乙

乙 甲



乙甲


乙 甲 乙
二叉树的性质
数据结构
性质1 若二叉树的层次从1开始, 则在二叉树的 第 i 层最多有 2i -1个结点。(i 1) [证明用数学归纳法] 性质2 高度为k的二叉树最多有 2k-1个结点。 (k 0) [证明用求等比级数前k项和的公式]
前序遍历二叉树算法的框架是 若二叉树为空,则空操作; 否则 – 访问根结点 (V); – 前序遍历左子树 (L); – 前序遍历右子树 (R)。
遍历结果 -+a*b-cd/ef
27
数据结构
后序遍历 (Postorder Traversal)
后序遍历二叉树算法的框架是 若二叉树为空,则空操作; 否则 – 后序遍历左子树 (L); – 后序遍历右子树 (R); – 访问根结点 (V)。
数据结构
36
左子女-右兄弟表示法 第一种解决方案

树和二叉树的定义

树和二叉树的定义
通过不同的遍历算法,可以访问和查找二叉树中的节点,如前序遍历、中序遍历和后序 遍历。
树的结构与特点
1
有根树
树的结构由根节点和子节点组成,根节点是整个树的起点。
2
无环图
树是一种无环的图,这意味着树中不存在回路或循环路径。
3
分级结构
Байду номын сангаас
树的层次结构使得数据可以按照分级关系进行组织和访问。
二叉树的结构与特点
查找和排序
二叉树的结构使得在其中进行查找和排序操 作更加高效,而树适用于组织和管理分级数 据。
树和二叉树的应用领域
1 数据库管理
树和二叉树广泛应用于数据库管理系统中,用于索引和组织数据。
2 编译器设计
编译器中常用的语法树和抽象语法树是树的变种,用于解析和分析程序代码。
3 网络路由
在网络路由算法中,树和二叉树被用于在网络中选择最佳的路径。
树和二叉树的定义
树和二叉树是在计算机科学中常见的数据结构。它们是由节点组成的有层次 结构,用于存储和组织数据。
树的定义
树的层次结构
树是一种非线性数据结 构,由根节点和多个子 节点组成。每个子节点 都可以再次拥有自己的 子树。
节点和边
树的节点表示数据元素, 而边代表节点之间的关 系。每个节点可以有多 个子节点,但只能有一 个父节点。
完全二叉树
二叉搜索树
完全二叉树是一种特殊的二 叉树结构,除了最后一层外, 其他层的节点都是满的。
二叉搜索树是一种有序的二 叉树,左子节点的值小于父 节点,右子节点的值大于父 节点。
平衡二叉树
平衡二叉树是一种高度平衡 的二叉树,保持左右子树的 高度差在一个可接受的范围 内。
树与二叉树的关系

软件技术--树与二叉树

软件技术--树与二叉树
(2)若*p结点只有左子树PL或者只有右子树PR, 此时只要令PL或PR直接成为其双亲结点*f的左子 树即可。显然,作此修改也不会破坏二叉排序树 的特性。
(3 ) 若*p结点的左子树和右子树均不为空。
五、哈夫曼树的应用
1、什么是哈夫曼树
假设有n个权值{w1,w2,…,wn},试构造一棵有n 个叶子结点的二叉树,每个叶子结点带权wi,则其中带 权路径长度WPL最小的二叉树称作最优二叉树或哈夫 曼树。
2、 树的基本术语
结点的度:一个结点拥有的子树数称为该结点的度。 叶子结点:度为0的结点称为叶子(Leaf)或终端结点。 非终端结点:度不为0的结点称为非终端结点或分支结点。除根结 点之外,分支结点也称为内部结点。
树的度:树内各结点的度的最大值称为树的度。 树中结点之间的关系:在描述结点之间的关系时,通常用家族关 系来形象的称呼结点之间的联系。结点的子树的根称为该结点的孩 子(Child),相应的,该结点称为孩子的双亲(Parents)或父结点。 同一个双亲的孩子之间称为兄弟(Sibling)。 结点的层次(Level):一棵树从根开始定义起,根为第一层,根的 孩子为第二层,…,依此类推。若某结点在第i层,则其子树的根就 在第i+1层。其双亲在同一层的结点互为堂兄弟。
(4) 性质4: 具有n个结点的完全二叉树的深度为log2n+1。
3、几种特殊的二叉树
• 满二叉树:深度为K,且存在2K-1个结点的二叉树。 • 完全二叉树:至多只有最下面两层上的结点度数可以小于
2,并且最下层结点都集中在该层最左边的位置。 • 平衡二叉树:或是一棵空树,或是具有下列性质的二叉树:
每次插入一个结点的递归算法
struct node {anytype data; struct node *lchild; struct node *rchild; } *root; void insnode(t,d) struct node *t; anytype d;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
张乃孝 算法与数据结构——C语言 描述 7
树结构的特点:
(1)树的根的结点没前驱结点,除了根结点之外 的所有结点都有且只有一个前驱结点; (2)树的结点可以有零个或多个后继结点。
树结构描述的是层次关系。
张乃孝 算法与数据结构——C语言 描述
8
5.1.2
基本术语
(a) 树t
图5.2 树t和树t '
(b) 树t '
9
张乃孝 算法与数据结构——C语言 描述
父结点,子结点,边
若结点y是结点x的一棵子树的根,则x称作y的父结 点(或父母);y称作x的子结点(或子女);有序 对<x,y>称作从x到y的边。
例如树t中,C是E的父结点,E是C的子结点,<C,E>是从C 到E的边(它对应着图中的有向线段CE)。
兄弟结点 具有同一父母的结点彼此称作兄弟。
树t中B,C,D互为兄弟,F,G互为兄弟,等等。注意,E和F 并不是兄弟。
张乃孝 算法与数据结构——C语言 描述 10
祖先,子孙
若结点y在以结点x为根的一个子树(或树)中,且 y≠x,则称x是y的祖先,y是x的子孙。
例如树t中,A是其它各结点的祖先;C是E,H,I,J的祖先。
树的递归定义:
树(Tree):是包括n(n>=0)个结点的有限集T。当T 非空时,满足: (1)有且仅有一个特别标出的称为根的 结点; (2)除根结点外,其余结点可分为m(m>=0) 个互不相交非空的有限集T1, T2, …, Tm, 其中 每一个集合本身又是一棵树,称为根的子树 (Subtree)。 空树:不包括任何结点的树。
张乃孝 算法与数据结构——C语言 描述 15
5.1.4
树的基本运算
• 创建一棵空树 Tree createTree( Node p, Tree t1, Tree t2, …, Tree ti ) i=1, 2, 3, … • 判断某棵树是否为空 int isNull ( Tree t ) • 求树中的根结点,若为空树,则返回一特殊值 Node root ( Tree t )
张乃孝 算法与数据结构——C语言 描述 4
树的表示方法:
A B C
D
I
E
J
F
G
H
(a)树形表示
(c ) 凹入表
5
张乃孝 算法与数据结构——C语言 描述
A(b) 文氏图B源自D I E J F G C H
(A(B(D)(E(I)(J))(C(G)(H))) (d) 嵌套括号表示法
张乃孝 算法与数据结构——C语言 描述 6
• 求某个指定结点的父结点,当指定结点为根时,返回一特 殊值
Node parent ( Node p )
张乃孝 算法与数据结构——C语言 描述 16
张乃孝 算法与数据结构——C语言 描述
13
无序树、有序树
对子树的次序不加区别的树叫作无序树。对子树之 间的次序加以区别的树叫作有序树。
例如在图5.2中,按无序树的概念t和t'是同一棵树,按有序 树的概念则是不同的树,本章讨论的树一般是有序树。
结点的次序 在有序树中可以从左到右地规定结点的次序。按从 左到右的顺序,我们可以把一个结点的最左边的子 结点简称为最左子结点,或直接称为长子,而把长 子右边的结点称为次子。
A有子女B,C; B和 C分别有子女D,E,F和G,H;E有 子女I , J。 T=(N,R) ,其中 N={A, B, C, D, E, F, G, H, I, J} R={ A, B, A, C, B, D , B, E, B, F, C, G, C, H, E, I, E, J }
路径,路径长度
如果x是y的一个祖先,又有x=x0,x1,…,xn=y, 满足xi(i=0,1,…,n-1)为xi+1的父结点,则 称x0,x1,…,xn为从x到y的一条路径。n称为这 条路径的长度。路径中相邻的两个结点可以表示成 一条边。
例如树t中A,C,E,I,J是从A到J的一条路径,其长度为4。
第五章 树和二叉树
5.1 5.2 5.3 5.4 5.5 树与树林 树和树林的存储表示 二叉树 二叉树的存储表示 哈夫曼算法及其应用
张乃孝 算法与数据结构——C语言 描述
1
线性结构和非线性结构。
树形结构是以分支关系定义的层次结构, 在现实世界中广泛存在,在计算机领域中也 有广泛应用。
本章重点讨论二叉树的存储结构及其各 种操作,并研究树和森林与二叉树之间的转 换关系。
12
结点的度数、树的度数
结点的子女个数叫作结点的度数。树中度数最大的 结点的度数叫作树的度数。
例如t中A,C,E,J的度数分别为3,1,2,0;t的度数为3
树叶、分支结点
度数为0的结点称作树叶或终端结点;度数大于0的 结点称作分支结点或非终端结点。
例如树t中B,F,G,H,J都是树叶,其余结点都是分支结 点。
例如在t中结点B是结点A的长子,结点C是结点A的次子,是 结点B的兄弟。
张乃孝 算法与数据结构——C语言 描述 14
5.1.3
集合。
树林
树林:是m(m>=0)棵互不相交的树所组成的
就逻辑结构而言,任何一棵树是一个二元组
Tree=(root,F) , 其中root称为树的根结点,F是m
(m0)棵子树构成的树林,F=(T1, T2,…,Tm), 其 中Ti=(ri,Fi)称作根root的第i棵子树;当m0时,在 树根和其子树林之间存在下列关系: RF={<root, ri> | i=1,2,…,m, m>0}
张乃孝 算法与数据结构——C语言 描述 11
结点的层数 规定根的层数为0,其余结点的层数等于其父母结 点的层数加1。
例如t中,0层的结点是A,1层的结点有B,C,D,4层的结 点是J。
树的深度或高度
树中结点的最大层数称为树的深度或树的高度。
例如树t中,树的深度为4。
张乃孝 算法与数据结构——C语言 描述
张乃孝 算法与数据结构——C语言 描述
2
5.1
树与树林
5.1.1 树的定义 5.1.2 基本术语 5.1.3 树林 5.1.4 树的基本运算
5.1.5 树的周游
5.1.6 树林的周游
张乃孝 算法与数据结构——C语言 描述 3
5.1.1
树的定义
树(Tree)的例子:一个家族。
相关文档
最新文档