数据挖掘课件.
合集下载
数据挖掘基础 数据挖掘概念ppt课件
数据挖掘的数据源包括数据库、数据仓库、Web或其他数据存储库。
层次聚类树树状图
A
B
C
D
E
1.1 数据挖掘概述
1.1.2 数据挖掘常用算法概述
第一章 数据挖掘概念
在面对海量数据时,需要使用一定的算法,才能从中挖掘出有用的信息,下面介绍数 据挖掘中常用的算法。
1. 分类算法 (1) 决策树算法 决策树算法是一种典型的分类算法,首先利用已知分类的数据构造决策树,然后利用 测试数据集对决策树进行剪枝,每个决策树的叶子都是一种分类,最后利用形成的 决策树对数据进行分类。决策树的典型算法有ID3,C4.5,CART等。
1.1 数据挖掘概述
1.1.3 数据挖掘常用工具概述
第一章 数据挖掘概念
2. Clementine(SPSS) 软件 Clementine是SPSS所发行的一种资料探勘工具,集成了分类、聚类和关联规则
等算法,Clementine提供了可视化工具,方便用户操作。其通过一系列节点来执行 挖掘过程,这一过程被称作一个数据流,数据流上面的节点代表了要执行的操作。 Clementine的资料可视化能力包含散布图、平面图及Web分析。
1.1 数据挖掘概述
第一章 数据挖掘概念
1.1.3 数据挖掘常用工具概述
1. Weka软件
Weka(Waikato Environment for Knowledge Analysis)的全名是怀卡托智能 分析环境,是一款免费与非商业化的数据挖掘软件,基于Java环境下开源的机器学 习与数据挖掘软件。Weka的源代码可在其官方网站下载。它集成了大量数据挖掘算 法,包括数据预处理、分类、聚类、关联分析等。用户既可以使用可视化界面进行 操作,也可以使用Weka提供的接口,实现自己的数据挖掘算法。图形用户界面包括 Weka Knowledge Flow Environment和Weka Explorer。用户也可以使用Java语 言调用Weka提供的类库实现数据挖掘算法,这些类库存在于weka.jar中。
层次聚类树树状图
A
B
C
D
E
1.1 数据挖掘概述
1.1.2 数据挖掘常用算法概述
第一章 数据挖掘概念
在面对海量数据时,需要使用一定的算法,才能从中挖掘出有用的信息,下面介绍数 据挖掘中常用的算法。
1. 分类算法 (1) 决策树算法 决策树算法是一种典型的分类算法,首先利用已知分类的数据构造决策树,然后利用 测试数据集对决策树进行剪枝,每个决策树的叶子都是一种分类,最后利用形成的 决策树对数据进行分类。决策树的典型算法有ID3,C4.5,CART等。
1.1 数据挖掘概述
1.1.3 数据挖掘常用工具概述
第一章 数据挖掘概念
2. Clementine(SPSS) 软件 Clementine是SPSS所发行的一种资料探勘工具,集成了分类、聚类和关联规则
等算法,Clementine提供了可视化工具,方便用户操作。其通过一系列节点来执行 挖掘过程,这一过程被称作一个数据流,数据流上面的节点代表了要执行的操作。 Clementine的资料可视化能力包含散布图、平面图及Web分析。
1.1 数据挖掘概述
第一章 数据挖掘概念
1.1.3 数据挖掘常用工具概述
1. Weka软件
Weka(Waikato Environment for Knowledge Analysis)的全名是怀卡托智能 分析环境,是一款免费与非商业化的数据挖掘软件,基于Java环境下开源的机器学 习与数据挖掘软件。Weka的源代码可在其官方网站下载。它集成了大量数据挖掘算 法,包括数据预处理、分类、聚类、关联分析等。用户既可以使用可视化界面进行 操作,也可以使用Weka提供的接口,实现自己的数据挖掘算法。图形用户界面包括 Weka Knowledge Flow Environment和Weka Explorer。用户也可以使用Java语 言调用Weka提供的类库实现数据挖掘算法,这些类库存在于weka.jar中。
数据挖掘入门ppt课件
15.05.2021
数据库
数据仓库
精选编辑ppt
知识库
14
三、数据挖掘方法
3.1 可以分别按挖掘任务、挖掘对象和挖掘方法来分 类。
1. 按挖掘任务分类:包括分类或预测知识模型发 现,数据总结,数据聚类,关联规则发现,时 序模式发现,依赖关系或依赖模型发现,异常 和趋势发现等。
2. 按挖掘对象分类:包括关系数据库,面向对象 数据库,空间数据库,时态数据库,文本数据 库,多媒体数据库,异构数据库,数据仓库, 演绎数据库和Web数据库等。
8. 模式解释:对在数据挖掘步骤中发现的模式 (知识)进行解释。通过机器评估剔除冗余或 无关模式,若模式不满足,再返回到前面某些 处理步骤中反复提取。
9. 知识评价:将发现的知识以用户能了解的方式 呈现给用户。其中也包括对知识一致性的检查, 以确信本次发现的知识不会与以前发现的知识 相抵触。
15.05.2021
2.1 KDD定义 人们给KDD下过很多定义,内涵也各不
相同,目前公认的定义是由Fayyad等人提出 的。
所谓基于数据库的知识发现(KDD)是指 从大量数据中提取有效的、新颖的、潜在 有用的、最终可被理解的模式的非平凡过 程。
15.05.2021
精选编辑ppt
5
2.2 KDD过程
KDD是一个人机交互处理过程。该过程 需要经历多个步骤,并且很多决策需要由 用户提供。从宏观上看,KDD过程主要经 由三个部分组成,即数据整理、数据挖掘 和结果的解释评估。
15.05.2021
精选编辑ppt
6
知识发现(KDD)的过程
解释/评估
数据挖掘
预处理 及变换
变换后的数据
数据清理筛选 目标数据
《数据挖掘技术》课件
拆分时间序列成趋势、周期和随机成分,了解时间序列的特征。
2
时间序列预测
通过历史数据建模和预测,预测未来时间点的趋势和模式。
3
金融市场预测
应用时间序列挖掘来预测股票价格、汇率等金融指标。
大数据时代下的挖掘技术发展趋势
人工智能
深度学习、自然语言处理等在数 据挖掘中的应用。
云计算
通过弹性计算和分布式存储实现 大规模数据挖掘。
医疗诊断
利用医疗数据挖掘技术来辅助医生进行疾病诊断。
社交网络分析
挖掘社交网络中的关系和用户行为模式。
数据清洗、数据集成、数据转换和数据规约。
特征选择
评估特征的重要性,剔除冗余和无关特征,提高模型准确性。
数据质量
解决数据缺失、异常数据和噪声数据,保证数据的准确性和完整性。
聚类算法与分类算法
聚类算法
基于距离或相似性将数据划分为 不同的群集,发现数据的内在结 构。
分类算法
通过训练数据构建决策树,对新 的未知数据进行分类或预测。
物联网
连接设备和传感器的数据挖掘和 分析。
数据可视化技术与数据分析
可视化工具
使用图表、地图和仪表盘等可视化工具
数据分析
2
来展现数据。
通过统计分析和交互式探索来发现数据
的隐藏关系。
3
故事呈现
通过数据可视化技术将数据转化为有意 义的故事。
数据挖掘案例分析和应用实践
市场营销
通过分析客户购买数据来制定营销策略。
支持向量机
通过在特征空间中创建超平面将 不同类别的数据分隔开。
关联规则挖掘及其应用
1 频繁项集
发现同时出现频率较高的 商品或事物组合。
医学科研数据挖掘概述ppt课件
6. 偏差分析(deviation)
在偏差中包括很多有用的知识,数据库中的数据 存在很多异常情况,发现数据库中数据存在的异常情 况是非常重要的。偏差检验的基本方法就是寻找观察 结果与参照之间的差别。
六、挖掘方法
1. 关联分析法 2. 决策树 3. 人工神经网络 4. 遗传算法 5. 聚类分析 6. 序列模式分析
1. 关联分析(association analysis)
关联规则挖掘是由rakesh apwal等人首先提出。 两个或两个以上变量的取值之间存在某种规律性, 就称为关联。数据关联是数据库中存在的一类重 要的、可被发现的知识。关联分为简单关联、时 序关联和因果关联。关联分析的目的是找出数据 库中隐藏的关联网。一般用支持度和可信度两个 阀值来度量关联规则的相关性,还不断引入兴趣 度、相关性等参数,使得所挖掘的规则更符合需 求。
数据的转换:将数据转换成一个分析模型。这个 分析模型是针对挖掘算法建立的。建立一个真正 适合挖掘算法的分析模型是数据挖掘成功的关键。
数据挖掘:对所得到的经过转换的数据进行挖掘。 结果分析:解释并评估结果。其使用的分析方法
一般应作数据挖掘操作而定。 知识的同化:将分析所得到的知识集成到业务信
息系统的组织结构中去。
5. 聚集分析(Cluster analysis ,CA)
聚集是把整个数据库分成不同的群组。它的 目的是要群与群之间差别很明显, 而同一个群之 间的数据尽量相似。此外聚类分析可以作为其他 算法( 如特征和分类等) 的预处理步骤, 之后这些 算法再在生成的簇上进行处理。与分类不同, 在 开始聚集之前不知道要把数据分成几组, 也不知 道怎么分( 依照哪几个变量) 。因此在聚集之后要 有一个对业务很熟悉的人来解释这样分群的意义 。很多情况下一次聚集得到的分群对某个业务来 说可能并不好, 这时就需要删除或增加变量以影 响分群的方式, 经过几次反复之后才能最终得到 一个理想的结果。聚类方法主要有两类: 统计方 法和神经网络方法。
在偏差中包括很多有用的知识,数据库中的数据 存在很多异常情况,发现数据库中数据存在的异常情 况是非常重要的。偏差检验的基本方法就是寻找观察 结果与参照之间的差别。
六、挖掘方法
1. 关联分析法 2. 决策树 3. 人工神经网络 4. 遗传算法 5. 聚类分析 6. 序列模式分析
1. 关联分析(association analysis)
关联规则挖掘是由rakesh apwal等人首先提出。 两个或两个以上变量的取值之间存在某种规律性, 就称为关联。数据关联是数据库中存在的一类重 要的、可被发现的知识。关联分为简单关联、时 序关联和因果关联。关联分析的目的是找出数据 库中隐藏的关联网。一般用支持度和可信度两个 阀值来度量关联规则的相关性,还不断引入兴趣 度、相关性等参数,使得所挖掘的规则更符合需 求。
数据的转换:将数据转换成一个分析模型。这个 分析模型是针对挖掘算法建立的。建立一个真正 适合挖掘算法的分析模型是数据挖掘成功的关键。
数据挖掘:对所得到的经过转换的数据进行挖掘。 结果分析:解释并评估结果。其使用的分析方法
一般应作数据挖掘操作而定。 知识的同化:将分析所得到的知识集成到业务信
息系统的组织结构中去。
5. 聚集分析(Cluster analysis ,CA)
聚集是把整个数据库分成不同的群组。它的 目的是要群与群之间差别很明显, 而同一个群之 间的数据尽量相似。此外聚类分析可以作为其他 算法( 如特征和分类等) 的预处理步骤, 之后这些 算法再在生成的簇上进行处理。与分类不同, 在 开始聚集之前不知道要把数据分成几组, 也不知 道怎么分( 依照哪几个变量) 。因此在聚集之后要 有一个对业务很熟悉的人来解释这样分群的意义 。很多情况下一次聚集得到的分群对某个业务来 说可能并不好, 这时就需要删除或增加变量以影 响分群的方式, 经过几次反复之后才能最终得到 一个理想的结果。聚类方法主要有两类: 统计方 法和神经网络方法。
数据挖掘精品PPT课件
ห้องสมุดไป่ตู้
(2)聚类分析 物以类聚,人以群分,聚类分析技术试图找出数据 集中的数据的共性和差异,并将具有共性对象聚合 在相应的簇中。聚类分析已广泛应用与客户细分、 定向营销、信息检索等领域。 聚类与分类是容易混淆的两个概念。聚类是一种无 指导的观察式学习,没有预先定义的类。 (3)关联分析 关联分析是发现特征之间的相互依赖关系,通常是 在给定的数据集中发现频繁出现的模式知识(又称 关联规则)。关联规则广泛用于市场营销、事务分 析等领域。
数据挖掘概念首次出现在1989年举行的第十一届 国际联合人工智能学术会议上,其思想主要来自 于机器学习、模式识别、统计和数据库系统。国 内对数据挖掘的研究起步较晚,1993年国家自然 科学基金首次支持该领域的研究。此后,国家、 各省自然科学基金委,国家社科基金,“863”、 “973”项目,国家、各省的科技计划,每年都 有相关项目支持。众多研究机构和大学都成立专 门的项目组。从事数据挖掘研究与应用的人员越 来越多。现今,数据挖掘的基本理论问题逐步得 到了解决,现在更多的是数据挖掘的应用。
7.2.2 基于规则的分类器 基于规则的分类器是使用一组“if...then...” 规则来对记录进行分类的技术。为了建立基于规则 的分类器,需要提取一组规则来识别数据集的属性 和类标号之间的关键联系。提取分类规则的方法有 两大类,直接方法和间接方法。直接方法是直接从 数据中提取分类规则,间接方法是从其他分类模型 中提取分类规则。
7.2 分类 分类任务就是确定对象属于哪个预定义的目标类。 分类问题是一个普遍存在的问题,有许多不同的 应用。例如,根据电子邮件的标题和内容检查出 垃圾邮件,对一大堆照片区分出哪些是猫哪些是 狗。分类任务就是通过学习得到一个目标函数, 把每个属性集x映射到一个预先定义的类标号y。 目标函数也称分类模型。
(2)聚类分析 物以类聚,人以群分,聚类分析技术试图找出数据 集中的数据的共性和差异,并将具有共性对象聚合 在相应的簇中。聚类分析已广泛应用与客户细分、 定向营销、信息检索等领域。 聚类与分类是容易混淆的两个概念。聚类是一种无 指导的观察式学习,没有预先定义的类。 (3)关联分析 关联分析是发现特征之间的相互依赖关系,通常是 在给定的数据集中发现频繁出现的模式知识(又称 关联规则)。关联规则广泛用于市场营销、事务分 析等领域。
数据挖掘概念首次出现在1989年举行的第十一届 国际联合人工智能学术会议上,其思想主要来自 于机器学习、模式识别、统计和数据库系统。国 内对数据挖掘的研究起步较晚,1993年国家自然 科学基金首次支持该领域的研究。此后,国家、 各省自然科学基金委,国家社科基金,“863”、 “973”项目,国家、各省的科技计划,每年都 有相关项目支持。众多研究机构和大学都成立专 门的项目组。从事数据挖掘研究与应用的人员越 来越多。现今,数据挖掘的基本理论问题逐步得 到了解决,现在更多的是数据挖掘的应用。
7.2.2 基于规则的分类器 基于规则的分类器是使用一组“if...then...” 规则来对记录进行分类的技术。为了建立基于规则 的分类器,需要提取一组规则来识别数据集的属性 和类标号之间的关键联系。提取分类规则的方法有 两大类,直接方法和间接方法。直接方法是直接从 数据中提取分类规则,间接方法是从其他分类模型 中提取分类规则。
7.2 分类 分类任务就是确定对象属于哪个预定义的目标类。 分类问题是一个普遍存在的问题,有许多不同的 应用。例如,根据电子邮件的标题和内容检查出 垃圾邮件,对一大堆照片区分出哪些是猫哪些是 狗。分类任务就是通过学习得到一个目标函数, 把每个属性集x映射到一个预先定义的类标号y。 目标函数也称分类模型。
数据挖掘ppt课件
情感分析:情感词典构建、情感倾向判断等
情感词典构建
收集和整理表达情感的词汇,构 建情感词典,为情感分析提供基 础数据。
情感倾向判断
利用情感词典和文本表示模型, 判断文本的情感倾向,如积极、 消极或中立。
深度学习方法
如循环神经网络(RNN)、长短 期记忆网络(LSTM)等,用于捕 捉文本中的时序信息和情感上下 文。
通过准确率、灵敏度、特异度等指 标评估模型性能,将模型应用于实 际医疗场景中,提高医生诊断效率 和准确性。
疾病预测与辅助诊断模型构建
利用机器学习、深度学习等技术构 建疾病预测和辅助诊断模型,如决 策树、神经网络、卷积神经网络等 。
谢谢您的聆听
THANKS
模型评估与优化
通过准确率、召回率、F1值等 指标评估模型性能,采用交叉 验证、网格搜索等方法优化模
型参数。
金融欺诈检测模型构建与优化
金融欺诈类型及特点
信用卡欺诈、贷款欺诈、洗钱等。
数据来源与处理
交易数据、用户行为数据、第三方数据等,进行数据清洗、特征工程 等处理。
欺诈检测模型构建
利用有监督学习、无监督学习等技术构建欺诈检测模型,如支持向量 机、随机森林、聚类等。
数据挖掘ppt课件
CONTENTS
• 数据挖掘概述 • 数据预处理技术 • 关联规则挖掘方法 • 分类与预测方法 • 聚类分析方法 • 时间序列分析方法 • 文本挖掘技术 • 数据挖掘在实际问题中应用案
01
数据挖掘概述
定义与发展历程
定义
数据挖掘是从大量数据中提取出 有用信息和知识的过程。
发展历程
应用
FP-Growth算法适用于大型数据集和复杂关联规则的挖掘,如电商网站的推荐 系统、网络安全领域的入侵检测等。
《数据挖掘经典案例》课件
数据挖掘在多个应用领域起到关键的作用,提升工作效率和精准性。
2 趋势
数据挖掘技术不断发展,未来将进一步发挥其威力。
3 注意事项
应用数据挖掘技术时需要注意隐私保护和数据安全问题。
结束语
谢谢大家观看本次课程,希望能为大家带来有价值的信息,欢迎大家与我交 流和讨论。 联系方式:xxxxxx
电商推荐系统
数据预处理
分类算法
数据清洗和处理,去除无用信息。
根据用户购物行为,构建用户画 像。
推荐算法
基于用户画像进行产品推荐。
客户流失预警系统
数据预处理
清洗数据集,构建用户流失模型。
分类算法
利用数据挖掘技术,识别用户流失风险。
反馈机制
开展促销活动,提高客户留存率。
新闻推荐系统
数据预处理
根据用户浏览行为过滤无用信 息。
《数据挖掘经典案例》 PPT课件
本次课程将介绍数据挖掘的基本原理,讲述数据挖掘在实际应用中的价值及 其潜在问题。
数据挖掘基本原理
1
数据预处理
清洗、集成、转换和规约,是数据挖掘的前置ቤተ መጻሕፍቲ ባይዱ务。
2
数据挖掘模型
分类、聚类、关联规则为三大数据挖掘模型。
3
应用案例
数据挖掘已经广泛应用于推荐系统、客户流失预警等领域。
聚类算法
将新闻内容进行聚类,形成相 关主题。
矩阵分解算法
通过用户行为和新闻内容之间 的相似度,对新闻内容进行权 重排名。
案例分析
电商推荐系统
用户流量提高20%,推荐订单占 比达到40%。
客户流失预警系统
成功挽回2/3客户,并提高留存 率20%。
新闻推荐系统
用户满意度和粘性均得到提升。
2 趋势
数据挖掘技术不断发展,未来将进一步发挥其威力。
3 注意事项
应用数据挖掘技术时需要注意隐私保护和数据安全问题。
结束语
谢谢大家观看本次课程,希望能为大家带来有价值的信息,欢迎大家与我交 流和讨论。 联系方式:xxxxxx
电商推荐系统
数据预处理
分类算法
数据清洗和处理,去除无用信息。
根据用户购物行为,构建用户画 像。
推荐算法
基于用户画像进行产品推荐。
客户流失预警系统
数据预处理
清洗数据集,构建用户流失模型。
分类算法
利用数据挖掘技术,识别用户流失风险。
反馈机制
开展促销活动,提高客户留存率。
新闻推荐系统
数据预处理
根据用户浏览行为过滤无用信 息。
《数据挖掘经典案例》 PPT课件
本次课程将介绍数据挖掘的基本原理,讲述数据挖掘在实际应用中的价值及 其潜在问题。
数据挖掘基本原理
1
数据预处理
清洗、集成、转换和规约,是数据挖掘的前置ቤተ መጻሕፍቲ ባይዱ务。
2
数据挖掘模型
分类、聚类、关联规则为三大数据挖掘模型。
3
应用案例
数据挖掘已经广泛应用于推荐系统、客户流失预警等领域。
聚类算法
将新闻内容进行聚类,形成相 关主题。
矩阵分解算法
通过用户行为和新闻内容之间 的相似度,对新闻内容进行权 重排名。
案例分析
电商推荐系统
用户流量提高20%,推荐订单占 比达到40%。
客户流失预警系统
成功挽回2/3客户,并提高留存 率20%。
新闻推荐系统
用户满意度和粘性均得到提升。
数据挖掘课件
07
数据挖掘实践案例
电商用户行为分析
1 2
用户购买行为分析
分析用户的购买记录,识别用户的购买习惯和偏 好,为电商企业提供精准的产品推荐和营销策略 。
用户活跃度分析
分析用户的登录、浏览、搜索等行为,评估用户 的活跃度和兴趣,优化网站内容和结构。
3
用户满意度分析
通过用户评价和反馈,了解用户对产品的满意度 和需求,及时调整产品和服务,提高用户满意度 和忠诚度。
层次聚类算法的优缺点
层次聚类算法能够得到完整的聚类树,但计算复杂度高,且需要预先确定簇的数量或截断 线。
05
分类与回归
决策树算法
决策树算法概述
ID3算法
决策树是一种常见的分类与回归算法,通 过树形结构来表达决策过程。
ID3算法是决策树学习算法的一种,它根据 信息增益来选择划分属性。
C4.5算法
CART算法
C4.5算法是ID3算法的改进版,它引入了增 益率的概念,解决了ID3算法对可取值数目 较多的属性有所偏好的问题。
CART算法是一种采用二叉树结构的决策树 学习算法,概述
距离度量
K近邻算法是一种基本的分 类与回归算法,它根据距离 来衡量样本之间的相似性。
信用卡欺诈检测
01
异常交易检测
监测信用卡交易记录,及时发现 异常交易,如大额交易、异地交 易等,防止欺诈行为。
02
欺诈模式识别
03
实时监控与警报
通过对历史欺诈行为进行分析, 发现欺诈模式和特征,建立欺诈 检测模型。
实时监测信用卡交易,触发警报 机制,及时通知银行和持卡人, 防止欺诈行为。
股票价格预测
填充缺失值
对于缺失的数据,可以采 用不同的方法进行填充, 如用平均值、中位数或模 式匹配等方法。
《数据挖掘原理》课件
整理和探索数据集,包括数据质量
和统计分析,为后续挖掘建立基础。
3
建模
4
选择适合问题的算法并建立模型, 如聚类、分类、关联规则等。
5
模型应用
6
将模型应用于实际业务场景中,并 持续监控和改进模型效果和精度。
业务理解
从业务和应用角度理解挖掘目标和 任务,为挖掘流程提供方向。
数据准备
对数据进行清洗、转换和集成,为 挖掘算法提供结构化和规范化的数 据集。
应用领域
1
金融
数据挖掘可用于金融欺诈检测、交易
商业
2
预测和信用风险评估等。
数据挖掘可用于客户关系管理、市场
分析、产品推广和销售提高等。
3
医疗
数据挖掘可用于疾病诊断、药物研发
和临床治疗等,促进医疗卫生信息化
社交网络
4
建设。
数据挖掘可用于社交媒体分析、用户 画像和个性化推荐等,提高用户体验
和社群吸引力。
模型评估
对建立的模型进行检验和评估,确 定模型的准确性、可靠性和可用性。
常见的技术和方法
分类
将数据集分成类别或标签,用于预测、分类 和识别等,如决策树、支持向量机等。
关联规则
挖掘数据之间的关系和关联,如规律、频率 和趋势等,用于推荐系统、市场分析和交叉 销售等,如Apriori、FP-Growth等。
数据挖掘与商业
许多企业已经将数据挖掘技术应用于市场调查,推广,销售和客户服务等。
历史和发展
起源
发展
数据挖掘技术起源于1980年代, 那时主要应用于统计学和机器 学习领域。
随着数据和计算能力的爆炸性 增长,数据挖掘在20世纪90年 代得到快速发展,应用领域也 得到了拓宽。
《数据挖掘》课件
NumPy、Pandas、 Matplotlib等,能够方便地进 行数据处理、建模和结果展示
。
Python的易读性和灵活性使得 它成为一种强大的工具,可以 快速地开发原型和实现复杂的 算法。
Python在数据挖掘中主要用于 数据清洗、特征工程、机器学 习模型训练和评估等任务。
R在数据挖掘中的应用
01
等。
02
数据挖掘技术
聚类分析
聚类分析的定义
聚类分析是一种无监督学习方法 ,用于将数据集中的对象分组, 使得同一组(即聚类)内的对象 尽可能相似,而不同组的对象尽
可能不同。
常见的聚类算法
包括K-means、层次聚类、 DBSCAN等。
聚类分析的应用
在市场细分、模式识别、数据挖 掘、统计学等领域有广泛应用。
04
Spark提供了Spark SQL、Spark MLlib和Spark GraphX等组件,可以进行结构化和非结构化数据的 处理、机器学习、图计算等任务。
Tableau在数据可视化中的应用
01 02 03 04
Tableau是一款可视化数据分析工具,能够帮助用户快速创建各种图 表和仪表板。
Tableau提供了直观的界面和强大的功能,支持多种数据源连接和数 据处理方式。
03
到了广泛应用。
数据挖掘的应用场景
商业智能
通过数据挖掘技术,企业可以 对市场趋势、客户行为等进行 深入分析,从而制定更好的商
业策略。
金融
金融机构可以利用数据挖掘技 术进行风险评估、客户细分和 欺诈检测等。
医疗
数据挖掘在医疗领域的应用包 括疾病诊断、药物研发和患者 管理等。
科学研究
数据挖掘在科研领域的应用包 括基因组学、天文学和气候学
。
Python的易读性和灵活性使得 它成为一种强大的工具,可以 快速地开发原型和实现复杂的 算法。
Python在数据挖掘中主要用于 数据清洗、特征工程、机器学 习模型训练和评估等任务。
R在数据挖掘中的应用
01
等。
02
数据挖掘技术
聚类分析
聚类分析的定义
聚类分析是一种无监督学习方法 ,用于将数据集中的对象分组, 使得同一组(即聚类)内的对象 尽可能相似,而不同组的对象尽
可能不同。
常见的聚类算法
包括K-means、层次聚类、 DBSCAN等。
聚类分析的应用
在市场细分、模式识别、数据挖 掘、统计学等领域有广泛应用。
04
Spark提供了Spark SQL、Spark MLlib和Spark GraphX等组件,可以进行结构化和非结构化数据的 处理、机器学习、图计算等任务。
Tableau在数据可视化中的应用
01 02 03 04
Tableau是一款可视化数据分析工具,能够帮助用户快速创建各种图 表和仪表板。
Tableau提供了直观的界面和强大的功能,支持多种数据源连接和数 据处理方式。
03
到了广泛应用。
数据挖掘的应用场景
商业智能
通过数据挖掘技术,企业可以 对市场趋势、客户行为等进行 深入分析,从而制定更好的商
业策略。
金融
金融机构可以利用数据挖掘技 术进行风险评估、客户细分和 欺诈检测等。
医疗
数据挖掘在医疗领域的应用包 括疾病诊断、药物研发和患者 管理等。
科学研究
数据挖掘在科研领域的应用包 括基因组学、天文学和气候学
《数据挖掘导论》课件
详细描述
KNIME是一款基于可视化编程的数据挖掘工具,用户 可以通过拖拽和连接不同的数据流模块来构建数据挖掘 流程。它提供了丰富的数据挖掘和分析功能,包括分类 、聚类、关联规则挖掘、时间序列分析等,并支持多种 数据源和输出格式。
Microsoft Azure ML
总结词
云端的数据挖掘工具
详细描述
Microsoft Azure ML是微软Azure云平台上的数据挖掘工具,它提供了全面的数据挖掘和分析功能, 包括分类、聚类、关联规则挖掘、预测建模等。它支持多种数据源和输出格式,并提供了强大的可扩 展性和灵活性,方便用户在云端进行大规模的数据挖掘任务。
03
数据挖掘过程
数据准备
01
数据清洗
去除重复、错误或不完整的数据, 确保数据质量。
数据集成
将多个来源的数据整合到一个统一 的数据集。
03
02
数据转换
将数据从一种格式或结构转换为另 一种,以便于分析。
数据归一化
将数据缩放到特定范围,以消除规 模差异。
04
数据探索
数据可视化
通过图表、图形等展示数据的分布和关系。
序列模式挖掘
总结词
序列模式挖掘是一种无监督学习方法,用于 发现数据集中项之间具有时间顺序关系的有 趣模式。
详细描述
序列模式挖掘广泛应用于股票市场分析、气 候变化研究等领域。常见的序列模式挖掘算 法包括GSP、PrefixSpan等。这些算法通过 扫描数据集并找出项之间具有时间顺序关系 的模式,如“股票价格在某段时间内持续上
高维数据挖掘
高维数据的降维
高维数据的聚类和分类
利用降维技术如主成分分析、线性判 别分析等,将高维数据降维到低维空 间,以便更好地理解和分析数据。
数据挖掘培训ppt课件
p.item(k-1)<q.item(k-1)
23
Prune算法:从C[k]中除去大小为k-1且不在 L[k-1]中的子集
(1) For all itemsets c∈C[k] do (2) For all (k-1)-subsets s of c do (3) if (sL[k-1]) (4) then delete c from C[k]
用户规定的关联规则必须满足的最小支持度。
最小可信度minconf
用户规定的关联规则必须满足的最小可信度。
大项集(大项集、大物品集largeitemset)
支持度不小于最小支持度minsup的物品集
18
关联规则发现任务
给定一个事务数据库D,求出所有满足最小支 持度和最小可信度的关联规则。该问题可以分解 为两个子问题: 1) 求出D中满足最小支持度的所有大项集; 2) 利用大项集生成满足最小可信度的所有关联规
模糊集(fuzzy set) Zadeh 1965 支持向量机(Support Vector Machine) Vapnik 90
年代初 粗糙集(Rough Set) Pawlak 80年代初
9
知识发现的方法(2)
机器学习:
规则归纳:AQ算法 决策树:ID3、C4.5 范例推理:CBR 遗传算法:GA 贝叶斯信念网络
41
数据仓库的相关概念
事实表(Fact):存储用户需要查询分析的数据,事实表中 一般包含多个维(Dimension)和度量(Measurement)。 维:代表了用户观察数据的特定视角,如:时间维、地区维、 产品维等。每一个维可划分为不同的层次来取值,如时间维 的值可按年份、季度、月份来划分,描述了不同的查询层次。 度量:是数据的实际意义,描述数据“是什么”,即一个数 值的测量指标,如:人数、单价、销售量等。
23
Prune算法:从C[k]中除去大小为k-1且不在 L[k-1]中的子集
(1) For all itemsets c∈C[k] do (2) For all (k-1)-subsets s of c do (3) if (sL[k-1]) (4) then delete c from C[k]
用户规定的关联规则必须满足的最小支持度。
最小可信度minconf
用户规定的关联规则必须满足的最小可信度。
大项集(大项集、大物品集largeitemset)
支持度不小于最小支持度minsup的物品集
18
关联规则发现任务
给定一个事务数据库D,求出所有满足最小支 持度和最小可信度的关联规则。该问题可以分解 为两个子问题: 1) 求出D中满足最小支持度的所有大项集; 2) 利用大项集生成满足最小可信度的所有关联规
模糊集(fuzzy set) Zadeh 1965 支持向量机(Support Vector Machine) Vapnik 90
年代初 粗糙集(Rough Set) Pawlak 80年代初
9
知识发现的方法(2)
机器学习:
规则归纳:AQ算法 决策树:ID3、C4.5 范例推理:CBR 遗传算法:GA 贝叶斯信念网络
41
数据仓库的相关概念
事实表(Fact):存储用户需要查询分析的数据,事实表中 一般包含多个维(Dimension)和度量(Measurement)。 维:代表了用户观察数据的特定视角,如:时间维、地区维、 产品维等。每一个维可划分为不同的层次来取值,如时间维 的值可按年份、季度、月份来划分,描述了不同的查询层次。 度量:是数据的实际意义,描述数据“是什么”,即一个数 值的测量指标,如:人数、单价、销售量等。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
欺骗性检测和管理(1)
应用
广泛应用于医疗系统, 零售系统,信用卡服务, 电信(电 话卡欺骗行为), 等等. 利用历史性数据建立欺骗性行为模型并使用数据挖掘 帮助识别同类例子 汽车保险:检测出那些故意制造车祸而索取保险金的 人 来路不明钱财的追踪: 发现可疑钱财交易(美国财政部 的财政犯罪执行网) 医疗保险: 检测出潜在的病人,呼叫医生和证明人
了解应用领域:
相关的预备知识和应用目标
创建一个目标数据集:数据选择 数据清理和预加工(可能占用60%精力) 数据变换:
发现有用的特征,维/变量的变换,常量的表示
汇总,分类,关联,聚集
选择数据挖掘功能
选择挖掘算法 数据挖掘:搜索兴趣模式 模式评估和知识表达
可视化,变形,去掉冗余模式等等
其他应用
文本挖掘(新闻组,电子邮件,文件) 和WEB分 析 智能询问回答
市场分析和管理(1)
用于分析的数据从何来?
信用卡交易,信誉卡,折扣券,用户投诉电话,公众 生活方式调查。 找出具有相同特征(兴趣,收入水平,消费习惯等等) 的“模式”顾客群。 从单独银行账户向联合银行账户的转变。例如:结婚 不同产品之间的销售关联关系 在此关联信息上进行预测
数据挖掘功能(2)
分类和预测
找出描述并区分数据类和概念的模型(或函数)以便 能够使用模型预测类标记未知的对象类。 例如:依据气候划分国家类型或者依据每里的耗油量 划分汽车类型。 表示形式:判定树,分类规则,神经网络。 预测:预测某些未知的或空缺的数据值。 类标记未知:把数据聚类或分组成新的类,例如:把 房子聚类来找出房子的分布模式。 聚类依据以下原则:最大化类内的相似性和最小化类 间的相似性。
数据挖掘概念与技术
——第一章—— 滕少华 编 JiaweiHan(加)著 Micheline Kamber http://www.cs.sfu.ca
幻灯片的出处
指南部分的幻灯片: http://www.cs.sfu.ca/~han/dmbook 其它的会议介绍幻灯片: http://db.cs.sfu.ca/ or http://www.cs.sfu.ca/~han 研究论文,数据库挖掘系统和其它相 关信息: http://db.cs.sfu.ca/ or http://www.cs.sfu.ca/~han
第一章引言
什么激发了数据挖掘,为什么它是重要的? 什么是数据挖掘? 在何种数据上进行数据挖掘? 数据挖掘功能——可以挖掘什么类型的模式 所有模式都是有趣的吗? 数据挖掘系统的分类 数据挖掘的主要问题
动机:“需要是发明之母”
数据泛滥问题 自动数据收集工具和成熟的数据库技术使得大 量数据存储于数据库,数据仓库和其他信息库。 我们数据丰富但信息贫乏 解决办法:数据仓库和数据挖掘 数据仓库和联机分析处理 大型数据库中的有趣知识(规则、模式)
使用发现的知识
在何种数据上进行数据挖掘
关系数据库 数据仓库 事务数据库 高级数据库与信息库
面向对象和对象-关系数据库 空间数据库 时间序列数据库和暂时数据库 文本数据库和多媒体数据库 异源数据库和继承数据库 www
数据挖掘功能(1)
概念描述:特征化和区分
归纳,概括和比较数据特征,例如,干燥地区 和湿润地区
提供汇总信息
公司分析和风险管理
财政计划和财产评估
现金流分析和预测 财产分析的偶发性需求分析 典型性分析和时序分析(财政比率,趋势分析等等)
资源计划:
总结和比较资源和花销
控制对手和市场的方向 把顾客划分成许多类,依据类的划分编制价格程序 把这个价格策略放到高度竞争的市场环境内
竞争:
另外的名字和它们的“内在故事”������
什么不是数据挖掘?������
为什么进行数据挖掘——潜在应用
数据库分析和决定支持
市场分析和管理
目标市场,用户关系管理,市场菜篮子分析,交叉销 售, 市场分割。 预测,顾客保留,改善保险,质量控制, 竞争分析
风险性分析和管理
欺骗察觉和管理
什么是数据挖掘
数据挖掘(数据库中的知识发现)������
在大型数据库中提取有趣的(重要的,隐含的, 目前未知的,潜在有用的)信息和模式������ 数据挖掘: 一个错误的名字?������ 数据库中的知识发现(挖掘)(KDD), 知识提取, 数据/模式分析,数据考古,数据捕捞,信息收 获和商业智能等等。������ (演绎)询问过程������ 专家系统或小型的统计程序
数据库技术的演化(见图1-1)
20世纪60年代: 数据收集,数据库创建,信息管理系统(IMS)和数据库管理 系统(DBMS) 20世纪70年代 关系数据模型,关系数据库管理系统工具 20世纪80年代 关系数据库管理系统(RDBMS), 高级数据模型(面向对象、 演绎等等)和面向应用的DBMS(空间的、科学的、工程的) 20世纪90年代至今 数据挖掘和数据仓库,多媒体数据库和web数据库
目标市场
随着时间的推移决定顾客的购买方式
交叉市场分析
市场分析和管理(2)
顾客形象
数据挖掘可以告诉你什麽样的顾客会买什麽样 的产品(聚类或分类)
识别顾客需求
保证为不同的顾客提供了最好的产品 使用预测手段去发现什麽因素会吸引新的顾客。 各种各样的多方位汇总信息 统计的汇总信息(数据中心的趋势和变化)
实现途径
具体事例
欺骗性检测和管理(2)
发现不正确的医学治疗
澳大利亚医疗保险协会证明在许多情况下全面 审查测试是很需要的
检测电话错误
电话呼叫模式:呼叫目的地,持续时间,每天 或每周的次数。分析与预期标准相背离的模式 分析家估计38%的零售收缩缘于雇员的不诚实。
零售
KDD过程的步骤
关联分析(相关性和因果关系)
多维关联和单维关联 age(X, “20..29”) ^ income(X, “20..29K”) buys(X, “PC”) [support = 2%, confidence = 60%] contains(T, “computer”) ������ contains(x, “software”) [1%, 75%]