初中数学 三视图 专题试题及答案1

合集下载

2019-2020届初三 中考复习 三视图 综合题 专项练习(含答案解析)教学提纲

2019-2020届初三 中考复习 三视图 综合题 专项练习(含答案解析)教学提纲

三视图综合题专项练习一、选择题1、如图是按1:10的比例画出的一个几何体的三视图,则该几何体的侧面积是()A.200 cm2 B.600 cm2 C.100πcm2 D.200πcm2 2、如图,由高和直径相同的5个圆柱搭成的几何体,其左视图是().A. B. C. D.3、如图是由五个相同的小正方体搭成的几何体,则它的主视图是()A. B. C. D.4、下列几何体中,主视图是三角形的为()A. B. C. D.5、观察下列几何体,主视图、左视图和俯视图都是矩形的是()A. B. C. D.6、如图是某几何体的三视图及相关数据,则判断正确的是()A.a>c B.b>c C.4a2+b2=c2 D.a2+b2=c27、如图是由一些相同的小正方体搭成的几何体的三视图,搭成这个几何体的小正方体个数是( ) A.2个B.3个C.4个D.6个8、如图所示的几何体的俯视图是()9、如图是一个由5个相同的正方体组成的立体图形,它的三视图是()A. B.C. D.10、已知某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.二、填空题11、如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:cm),计算出这个立体图形的表面积是________cm2.12、如图,方桌正上方的灯泡(看作一个点)发出的光线照射方桌后,在地面上形成阴影(正方形)示意图,已知方桌边长1.2 m,桌面离地面1.2 m,灯泡离地面3.6 m,则地面上阴影部分的面积为________.13、如图是由几个相同的小立方块组成的三视图,小立方块的个数是 .14、长方体的主视图与俯视图如图297,则这个长方体的体积是________.图29715、三棱柱的三视图如图6226,在△EFG中,EF=8 cm,EG=12 cm,∠EGF=30°,则AB的长为____________cm.16、.图11-1是三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:cm).将它们拼成如图11-2的新几何体,则该新几何体的体积为_______________cm3.(计算结果保留)17、一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为1分米的正方体摆在课桌上成如图6形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为______.18、一个长方体的主视图和左视图如图所示(单位:cm),则其俯视图的面积是_______________.19、如图,分别是由若干个完全相同的小正方体组成的一个物体的主视图和俯视图,则组成这个物体的小正方体的个数是个.20、如图所示是用小立方块搭成的几何体的主视图、俯视图,它最少需要___________个小立方块,最多需要_____________个小立方块.三、简答题21、一个零件的主视图、左视图、俯视图如图所示(尺寸单位:厘米),(1)这个零件是什么几何体?(2)求这个零件的表面积、体积(结果保留π)22、某几何体的主视图、左视图和俯视图分别如图,试求该几何体的体积.23、由6个相同的小立方块搭成的几何体如图所示,请画出从三个方向看所得到的形状图.24、如图,下列是一个机器零件的毛坯,请将这个机器零件的三视图补充完整.25、已知图为一几何体从不同方向看的图形:(1)写出这个几何体的名称;(2)任意画出这个几何体的一种表面展开图;(3)若长方形的高为10厘米,三角形的边长为4厘米,求这个几何体的侧面积.26、画图:(1)画出圆锥的三视图.已知∠AOB,用直尺和圆规作∠A′O′B′=∠AOB(要求:不写作法,保留作图痕迹)27、如图是一个几何体的二视图(左图为正视图,右图为俯视图),求该几何体的体积(л取3.14).28、由一些大小相同的小正方体组成的简单几何体的主视图和俯视图(如图11). (1)请你画出这个几何体的一种左视图;(2分)(2)若组成这个几何体的小正方体的块数为n,请你写出n的所有可能值.(4分)29、如图是一个由若干个棱长相等的正方体构成的几何体的三视图。

(完整)初中数学三视图专题试题及答案1,推荐文档

(完整)初中数学三视图专题试题及答案1,推荐文档

面右图由 7 个立方体叠成的几何体,从正前方观察,可画出的平面图形是


A
B
C
D
4、下面是空心圆柱在指定方向上的视图,正确的是…( )
(A)
(B)
(C)
(D)
5、画出下面实物的三视图:
参考答案: 课前小测:
72
1、短 2、
35
第二十九章 投影与视图 29.2 三视图
64
3、 4、矩形,圆 5、空心圆柱
A.O B. 6 C.快 D.乐 三、综合训练:
1.小明从正面观察下图所示的两个物体,看到的是( )
正面
A
B
C
D
ห้องสมุดไป่ตู้
2、右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用
的小立方块的个数是( )
A5个 B6个
C7个
D8个
主主主主主主
主主主
主主主
3、如果用□表示 1 个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下
第二十九章 投影与视图
29.2 三视图 一、课前小测: 1、身高相同的甲、乙两人分别距同一路灯 2 米、3 米,路灯亮时,甲的影子比乙的影子
(填“长”或“短”) 2、小刚和小明在太阳光下行走,小刚身高 1.75 米,他的影长为 2.0m,小刚比小明矮
5cm,此刻小明的影长是________m. 3、墙壁D处有一盏灯(如图),小明站在A处测得他的影长与身长相等都
15
二、基础训练: 1、(1)球,圆柱体;(2)实线,虚线;(3)圆锥,正四棱锥,倒放的正三棱柱等;(4)
圆锥;(5)俯视图,正视图,左视图;(6)12. 2、A;3、C 4、B 5、B 三、综合训练: 1、C 2、D 3、B;4、A;5、题图:

初中数学投影与视图基础测试题附答案(1)

初中数学投影与视图基础测试题附答案(1)

初中数学投影与视图基础测试题附答案(1)一、选择题1.如图是某个几何体的三视图,该几何体是()A.长方体B.圆锥C.圆柱D.三棱柱【答案】D【解析】【分析】根据三视图看到的图形的形状和大小,确定几何体的底面,侧面,从而得出这个几何体的名称.【详解】俯视图是三角形的,因此这个几何体的上面、下面是三角形的,主视图和左视图是长方形的,且左视图的长方形的宽较窄,因此判断这个几何体是三棱柱,故选:D.【点睛】考查简单几何体的三视图,画三视图注意“长对正,宽相等,高平齐”的原则,三视图实际上就是从三个方向的正投影所得到的图形.2.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是带圆心的圆,根据图中所示数据,可求这个物体的体积为()A.πB3πC.33D.31)π【答案】C【解析】【分析】3得该几何体的体积.【详解】解:由三视图可知:该几何体是一个圆锥,其轴截面是一个正三角形.∴正三角形的边长:32sin 60=o , 设圆锥的底面圆半径为r ,高为h, ∴r=1,h=3∴底面圆面积:2=S r ππ=底, ∴该物体的体积:113h=333S ππ⨯=g 底 故答案为:C【点睛】本题是基础题,考查几何体的三视图,几何体的体积的求法,准确判断几何体的形状是解题的关键.3.如图是一个正六棱柱的茶叶盒,其俯视图为( )A .B .C .D .【答案】B【解析】【分析】【详解】解:正六棱柱的俯视图为正六边形.故选B .考点:简单几何体的三视图.4.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是( )A .圆柱B .圆锥C .棱锥D .球【答案】A【解析】【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【详解】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选A .【点睛】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.5.一个几何体的三视图如图所示,则这个几何体的表面积是( )A .25cmB .28cmC .29cmD .210cm【答案】D【解析】【分析】 由题意推知几何体为长方体,长、宽、高分别为1cm 、1cm 、2cm ,根据长方体的表面积公式即可求其表面积.【详解】由题意推知几何体是长方体,长、宽、高分别1cm 、1cm 、2cm ,所以其面积为:()()2211121210cm⨯⨯+⨯+⨯=,故选D .【点睛】本题考查了由三视图还原几何体、长方体的表面积,熟练掌握常见几何体的三视图是解题的关键.6.如图所示,该几何体的俯视图是( )A.B.C.D.【答案】C【解析】【分析】根据三视图的画法即可得到答案.【详解】解:从上面看是三个矩形,符合题意的是C,故选:C.【点睛】此题考查简单几何体的三视图,明确三视图的画法是解题的关键.7.一个由16个完全相同的小立方块搭成的几何体,它的主视图和左视图如图所示,其最下层放了9个小立方块,那么这个几何体的搭法共有()种.A.8种B.9种C.10种D.11种【答案】C【解析】【分析】先根据主视图、左视图以及最下层放了9个小立方块,确定每一列最大个数分别为3,2,4,每一行最大个数分别为2,3,4,画出俯视图.进而根据总和为16,分析即可.【详解】由最下层放了9个小立方块,可得俯视图,如图所示:若a为2,则d、g可有一个为2,其余均为1,共有两种情况若b为2,则a、c、d、e、f、g均可有一个为2,其余为1,共有6种情况若c为2,则d、g可有一个为2,其余均为1,共有两种情况++=种情况综上,共有26210故选:C.【点睛】本题考查了三视图(主视图、左视图、俯视图)的概念,依据题意,正确得出俯视图是解题关键.8.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()A.B.C.D.【答案】A【解析】解:将矩形木框立起与地面垂直放置时,形成B选项的影子;将矩形木框与地面平行放置时,形成C选项影子;将木框倾斜放置形成D选项影子;根据同一时刻物高与影长成比例,又因矩形对边相等,因此投影不可能是A选项中的梯形,因为梯形两底不相等.故选A.9.如图所示,该几何体的主视图为()A.B.C.D.【答案】B【解析】【分析】找到从正面看所得到的图形即可.【详解】从正面看两个矩形,中间的线为虚线,故选:B.【点睛】考查了三视图的知识,主视图是从物体的正面看得到的视图.10.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.【答案】B【解析】【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.【详解】解:四棱锥的主视图与俯视图不同.故选B.【点睛】考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.11.如图是由4个大小相同的立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.【答案】A【解析】【分析】主视图:从物体正面观察所得到的图形,由此观察即可得出答案.【详解】从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为:A.【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.12.如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )A.B.C.D.【答案】B【解析】【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中【详解】从几何体的左边看可得到一个正方形,正方形的右上角处有一个小正方形,故选B.【点睛】本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.13.由若干个相同的小正方体摆成的几何体的主视图和左视图均为如图所示的图形,则最多使用小正方体的个数为()A.8个B.9个C.10个D.11个【答案】C【解析】【分析】由主视图和左视图可还原该几何体每层的小正方体个数.【详解】解:由主视图可得该几何体有3列正方体,高有2层,最底层最多有9个正方体,第二层最多有1个正方体,则最多使用小正方形的个数为10.故选C【点睛】本题主要考查了空间几何体的三视图,由主视图和左视图确定俯视图的形状,再判断最多的正方体个数.14.如图所示的几何体的主视图是()A.B.C.D.【答案】A【解析】【分析】找到从正面看所得到的图形即可.【详解】解:从正面可看到从左往右2列一个长方形和一个小正方形,故选A.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.15.图甲是由若干个小正方体搭成的几何体的俯视图,小正方体中的数字表示在该位置的小正方体的个数,那么这个几何体的主视图是()A.B.C.D.【答案】B【解析】【分析】【详解】解:根据题意画主视图如下:故选B.考点:由三视图判断几何体;简单组合体的三视图.16.如图所示几何体的左视图是()A.B.C.D.【答案】B【解析】【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看是:故选B.【点睛】本题考查了简单几何体的三视图,左视图是从物体的左面看得到的视图.17.如图,某工厂加工一批无底帐篷,设计者给出了帐篷的三视图(图中尺寸单位:m).根据三视图可以得出每顶帐篷的表面积为()A.6πm2B.9πm2C.12πm2D.18πm2【答案】B【解析】【分析】根据三视图得到每顶帐篷由圆锥的侧面和圆柱的侧面组成,且圆锥的母线长为2m,底面圆的半径为1.5m,圆柱的高为2m,由于圆锥的侧面展开图为一扇形,圆柱的侧面展开图为矩形,则根据扇形面积公式和矩形面积公式分别计算,然后求它们的和【详解】根据三视图得到每顶帐篷由圆锥的侧面和圆柱的侧面组成,且圆锥的母线长为2m,底面圆的半径为1.5m ,圆柱的高为2m ,所以圆锥的侧面积=12π 1.522n n n =3π2m 圆柱的侧面积=2π 1.52n n =6π2m 所以每顶帐篷的表面积=3π+6π=9π2m故正确答案为B【点睛】此题考查了圆锥的计算:圆锥的侧面展开图是一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,也考查了三视图18.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是( )A .B .C .D .【答案】B【解析】【分析】 找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得:有3列小正方形第1列有2个正方形,第2列有1个正方形,第3列有1个正方形.故选B .【点睛】本题考查的知识点是简单组合体的三视图,解题关键是数出从上方看每一列各有几个正方形.19.下面四个几何体中,左视图是四边形的几何体共有()A .1个B .2个C .3个D .4个 【答案】B【解析】简单几何体的三视图.【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个.故选B.20.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为()A.B.C.D.【答案】C【解析】试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.故选C。

三视图练习题含答案

三视图练习题含答案

23正视图侧视图2俯视图 2第3题三视图练习题 (一)1.某几何体的三视图如图所示,则它的体积是( )A.283π-B.83π-C.π28-D.23π2.某四棱锥的三视图如图所示,该四棱锥的表面积是( )A .32 B.16+162 C.48 D.16322+3.如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体的体积为( ) A .43 B .4C .23 D .24.如图是某几何体的三视图,则该几何体的体积为( )A .942π+ B.3618π+C.9122π+D.9182π+5.一个空间几何体的三视图如图所示,则该几何体的表面积为( ) A. 48 B.32+817C.48+817D.806.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是( )A.35233cmB.32033cmC.22433cmD.16033cm7.若某空间几何体的三视图如图所示,则该几何体的体积是( )A.2B.1C.23D.138.某几何体的三视图如图所示,则该几何体的体积为( ) A.π816+ B.π88+ C.π1616+ D.π168+9. 某四棱台的三视图如图所示,则该四棱台的体积是() A.4 B.314 C.316D.610. 某三棱锥的三视图如图所示,已知该三视图中正视图和俯视图均为边长为2的正三角形,侧视图为如图所示的直角三角形,则该三棱锥的体积为( )A .1B .3C .4D .511. 一个几何体的三视图如图所示,则这个几何体的体积为( )332正视图侧视图俯视图第4题第5题第7题 第1题 第2题 第8题第9题第6 题A .(8)36π+B .(82)36π+C .(6)36π+D .(92)36π+12.某几何体的底面为正方形,其三视图如图所示,则该几何体的体积等于( )A .1B .2C .3D .413.某几何体的三视图如图所示,则其体积为______.14.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积等于______3cm . 15.某几何体的三视图如图所示,则该几何体的体积是______.16.已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是 17.一个空间几何体的三视图如图所示,则这个空间几何体的体积是. 18.如图所示,一个三棱锥的三视图是三个直角三角形,则该三棱锥外接球的表面积为19.若某空间几何体的三视图如下图所示,则该几何体的表面积是_______________.20.一个正方体的内切球与它的外接球的体积比是( ).A .1∶33B .1∶22C .1∶383 D .1∶4221.已知球面上A 、B 、C 三点的截面和球心的距离都是球半径的一半,且AB =BC =CA =2,则球表面积是( )A.π964 B. π38 C. π4 D. π91622. P 、A 、B 、C 是球O 面上的四点,且PA 、PB 、PC 的两两垂直,PA=PB=PC=9,则球心O 到截面ABC 的距离为23.半径为5的球被一个平面所截,截面面积为16π,则球心到截面的距离为 ( ) A.4 B.3 C.2.5 D.224.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________. 25.答案1.A2.B3.C4.D5.C6.B7.B8.A9.B 10.A 11.A 12.A 13.3π14.24 15.1616-π 16.1 17.67π18.29π 19. 20+82 20.A 21.A 22.233第10题3122正视图侧视图俯视图第11题 211俯视图侧视图正视图13第12题第17题24 3正视图 侧视图俯视图第18题 第15题 第14题第13题 第16题 第19题23.B 24. 2 25. ︒90 26.3500π27.π6 28.π29 29.72 30. 3629+3226-31.2500π 32.π1200。

人教九年级数学上册期中三视图测试题(含答案解析)

人教九年级数学上册期中三视图测试题(含答案解析)

人教版九年级数学上册期中三视图测试题(含答案解析)人教版九年级数学上册期中三视图测试题(含答案解析)一、选择题(40分)1、下列计算正确的是()A. B.C. D.2、已知三角形的两边长分别为3cm和8cm,则第三边的长可能是()A.4cmB.5cmC.6cmD.13cm3、如图,A、D是⊙O上的两点,BC是直径,若∠D=35°,则∠O AC的度数是()A. 35°B.55°C.65°D.70°4、下列函数中,属于反比例函数的是()A. B. C. D.5、若,则()A. B. C. D.26、关于二次函数,则下列说法正确的是()A.当x=1时,y有最大值为2.B. 当x=1时,y有最小值为2.C. 当x= —1时,y有最大值为2.D. 当x= —1时,y有最小值为2.7、二次函数与一次函数在同一直角坐标系中图象大致是()8、若菱形ABCD的对角线AC、BD的长分别是6cm、8cm,则菱形ABCD的面积是()A.20cm2B. 24cm2C. 36cm2D. 48cm29、如图,AB是半圆O的直径,CD是半圆的三等分点,AB=12,则阴影部分的面积是()A.4πB. 6πC. 12πD.10、已知△ABC中,AB=10,AC=8 ,D、E分别是AB、AC上的点,且AD=4,以A、D、E为顶点的三角形和△ABC相似,则AE的长是()A.5B.C.D.5或二、填空题(30分)11、一元二次方程的解为12、如图,直径CD平分弧AB,请你写出一个正确的结论13、在反比例函数的图象上有三个点的坐标分别为(-1,y1)、(1,y2)和(2,y3),则函数值y1 、y2 、y3的大小关系是14、如图是根据四边形的不稳定性制作的可活动的衣架,图中每个菱形的边长为16cm,若墙上相邻的两个钉子AB之间的距离为 cm,则∠α=15、某桥洞是呈抛物线形状,它的截面在平面直角坐标系中如图所示,现测得水面宽AB=16m,桥洞顶点O到水面距离为16m,当水面上升7m时,水面宽为 m16、如图,P1、P2、P3……PK分别是抛物线y=x2上的点,其横坐标分别是1,2,3……K,记△O P1P2的面积为S1,△O P2P3的面积为S2,△O P3P4的面积为S3,则S10=三、解答题(80分)17(8分)如果反比例函数与一次函数的图像都经过点A (a,2)。

初中数学(新人教版)九年级下册同步测试:三视图(同步测试)【含答案及解析】

初中数学(新人教版)九年级下册同步测试:三视图(同步测试)【含答案及解析】

29.2三视图第1课时简单几何体的三视图知能演练提升能力提升1.在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是()2.已知底面为正方形的长方体如图所示,下面有关它的三个视图的说法正确的是()A.俯视图与主视图相同B.左视图与主视图相同C.左视图与俯视图相同D.三个视图都相同3.下列几何体的主视图既是中心对称图形又是轴对称图形的是()4.如图,将Rt△ABC绕直角边AC所在直线旋转一周,所得几何体的主视图是()5.如图,该几何体的俯视图是()6.如图,李老师办公桌上放着一个圆柱形茶叶盒和一个正方体的墨水盒,小芳从上面看,看到的图形是()7.由若干个大小、形状完全相同的小立方块所搭成的几何体的俯视图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()8.下图中右面的三视图是左面棱锥的三视图,能反映物体的长和高的是()A.俯视图B.主视图C.左视图D.都可以创新应用★9.如图,这是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可恰好堵住圆形空洞,又可恰好堵住方形空洞的是()★10.5个棱长为1的小正方体组成如图所示的几何体.(1)该几何体的体积是(立方单位),表面积是(平方单位);(2)画出该几何体的主视图和左视图.能力提升能力提升1.A2.B3.D4.D Rt△ABC绕直角边AC旋转一周所得到的几何体是圆锥,所以它的主视图是等腰三角形.5.B6.A要注意看的方向,本题是从上面看,即俯视,圆柱从上面看应该是圆形,正方体从上面看应该是正方形,并且它们是并列摆放的.7.A8.B由实物图可以知道能反映长的视图是主视图和俯视图,能反映高的视图是主视图和左视图,故选B.创新应用9.B10.解(1)522(2)如图.第2课时复杂几何体的三视图知能演练提升能力提升1.已知一个水平放置的圆柱形物体如图所示,中间有一个细棒,则此几何体的俯视图是()2.手提水果篮抽象的几何体如图所示,以箭头所指的方向为主视图方向,则它的俯视图为()3.如图,该零件的左视图是()4.有一个零件(正方体中间挖去一个圆柱形孔)如图放置,它的左视图是()5.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵、横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图,该几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()6.如图,桌面上的模型由20个棱长为a的小正方体组成,现将该模型露在外面的部分涂上涂料,则涂上涂料部分的总面积为.7.已知某几何体的示意图如图所示,请画出该几何体的三视图.8.已知一个槽形工件如图所示,它是长方体中间切去了一个小的三角块,工人师傅要得到它的平面图形,请你画出它的三视图.★9.如图,下列是一个机器零件毛坯和它的主视图,请画出这个机器零件的左视图与俯视图.创新应用★10.如图,下列是一个机器零件的毛坯,请画出这个机器零件的三视图.★11.已知由若干个完全相同的小正方体组成的一个几何体如图所示.(1)请画出这个几何体的左视图和俯视图;(用阴影表示)(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加几个小正方体?能力提升1.C2.A3.D4.C5.A6.50a27.解如图所示.8.解如图所示.9.解如图所示.创新应用10.解三视图如图所示.11.解(1)左视图和俯视图如下:(2)在第二层第二列的第二行和第三行可各加一个;在第三层第二列的第三行可加一个,在第三列的第三行可加1个,2+1+1=4(个).故最多可再添加4个小正方体.第3课时从视图到实物知能演练提升能力提升1.已知由几个小正方体所搭的几何体的俯视图如图所示,小正方形中的数字表示在该位置小正方体的个数,则这个几何体的主视图为()2.已知一个几何体的三视图如图所示,则该几何体是()3.已知一个几何体的三视图如图所示,则该几何体的侧面积是()A.200 cm2B.600 cm2C.100π cm2D.200π cm24.已知一个由小正方体所搭的几何体如图所示,从不同的方向看所得到的平面图形中(小正方形中的数字表示在该位置的小正方体的个数),其中不正确的是()5.已知一个几何体的三视图如图所示(其中a,b,c为相应的边长),则这个几何体的体积是.6.用若干个小正方体搭成一个几何体,它的主视图和俯视图如图所示,问:搭成这样的几何体,最少需要多少个小正方体?最多需要多少个小正方体?7.已知某工件的三视图如图所示,求此工件的全面积.创新应用★8.如果一个几何体是由多个小正方体堆成,其三视图如图所示,那么这样的几何体一共有多少种情况?能力提升1.D2.D3.D通过三视图知原几何体是一个底面直径为10 cm,高为20 cm的圆柱体.则S侧面=10π×20=200π(cm)2.故选D.4.B A是从左面看到的,C是从正面看到的,D是从上面看到的.5.abc6.解由主视图得到该几何体有三列,高度分别为2,3,2;由俯视图得第一列和第三列各有2个,但是第二列最少有5个,最多有9个.所以搭成这样的几何体,最少需要9个小正方体,最多需要13个小正方体.7.解由三视图可知,该工件是一个底面半径为10 cm,高为30 cm的圆锥,圆锥的母线长为√302+102=10√10(cm),圆锥的侧面积为1×20π×10√10=100√10π(cm2),圆锥的底面积为2102π=100π(cm2),所以圆锥的全面积为100π+100√10π=100(1+√10)π(cm2).即工件的全面积为100(1+√10)π cm2.创新应用8.解主视图、左视图、俯视图都是由4个正方形组成,所以该物体是由一些完全一样的小正方体构成,所以该物体可以是由8个完全一样的小正方体组成的大正方体如图(1),而且也可以保持图(1)中下面一层有4个小正方体,那么上面一层4块中缺少任意一块,或缺对角的2块,这七种情况的三视图都如题图所示.。

初三数学视图试题及答案

初三数学视图试题及答案

初三数学视图试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的三视图(主视图、左视图、俯视图)表示?A. 圆、圆、圆B. 圆、正方形、正方形C. 正方形、正方形、圆D. 正方形、圆、圆答案:C2. 一个长方体的主视图和左视图都是正方形,俯视图是一个长方形,那么这个长方体的长、宽、高的关系是:A. 长=宽>高B. 长=高>宽C. 长>宽=高D. 长<宽=高答案:A3. 如果一个物体的三视图都是相同的圆形,那么这个物体可能是:A. 圆柱B. 圆锥C. 球体D. 长方体答案:C4. 一个物体的主视图和左视图都是矩形,俯视图是一个圆,这个物体最有可能是:A. 圆柱B. 圆锥C. 球体D. 长方体答案:A5. 下列哪个选项不是正确的三视图表示?A. 圆、圆、圆B. 正方形、正方形、圆C. 正方形、圆、正方形D. 圆、正方形、正方形答案:A6. 一个物体的主视图和左视图都是矩形,俯视图是一个圆,这个物体最有可能是:A. 圆柱B. 圆锥C. 球体D. 长方体答案:A7. 如果一个物体的三视图都是相同的正方形,那么这个物体可能是:A. 立方体B. 圆柱C. 圆锥D. 球体答案:A8. 一个物体的主视图是一个矩形,左视图是一个圆,俯视图是一个矩形,这个物体最有可能是:A. 圆柱B. 圆锥C. 球体D. 长方体答案:A9. 下列哪个选项是正确的三视图表示?A. 正方形、正方形、圆B. 圆、圆、正方形C. 圆、正方形、圆D. 正方形、圆、正方形答案:A10. 如果一个物体的主视图和左视图都是矩形,俯视图是一个圆,那么这个物体最有可能是:A. 圆柱B. 圆锥C. 球体D. 长方体答案:A二、填空题(每题4分,共20分)11. 一个长方体的主视图和左视图都是正方形,俯视图是一个长方形,那么这个长方体的长、宽、高的关系是:长=宽>高。

12. 如果一个物体的三视图都是相同的圆形,那么这个物体可能是球体。

三视图习题50道(含答案)

三视图习题50道(含答案)

word 格式三视图练习题则该几何体的体积是()(D)()(D ) 280第3题(单位cm ) 16033(D) 所得几何体的正则该几何体的俯视图为()1 3第5题(A) 2(主)视图与侧(左)视图分别如右图所示(B ) 1(C ) 292第1题(B ) 3603、若某几何体的三视图 如图所示,则此几何体的体积是 1、若某空间几何体的三视图如图所示—cm 34、一个长方体去掉一个小长方体 2、一个几何体的三视图如图,该几何体的表面积是(B ) 320cm 3“,f=L23(A ) 352cm 3 33r — 1111I ___J第2题1'1-T P5、 若一个底面是正三角形的三棱柱的正视图如图所示,则其侧.面积等于(A . . 3B . 2C . 2 3D . 66、 图2中的三个直角三角形是一个体积为20cm 2的几何体的三视图,则h=7、 一个几何体的三视图如图所示 ,则这个几何体的体积为 _____________AA // BB // CC , CC 丄平面 ABC3且3 AA = 3 BB = CC =AB,则多面体△ ABC - ABC 的正视图(也称主视图)是()8、如图,网格纸的小正方形的边长是1 ,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为9、如图1 , △ ABC 为正三角形,)S 2a.俯视图正(主)视图侧(左)视图A. 9 nB. 10 nC. 11 n D . 12 n10、一空间几何体的三视图如图所示,则该几何体的体积为().A.2 2.3B. 4 2 . 3侧(左)视图C. 2D. 4第11题第10题11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c m2)为(A) 48+12 . 2 (B) 48+24 . 2 ( C) 36+12 2 (D)36+24 213、若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是cm3第12题正视图侧视图俯视图15题14、设某几何体的三视图如上图所示。

中考三视图练习题

中考三视图练习题

中考三视图练习题一、选择题1. 下列哪个选项是正确的主视图?A. 左视图B. 俯视图C. 右视图D. 仰视图2. 三视图包括哪三个视图?A. 俯视图、左视图、右视图B. 主视图、俯视图、左视图C. 仰视图、俯视图、左视图D. 仰视图、右视图、左视图3. 观察一个物体时,哪个视图可以提供物体的宽度信息?A. 主视图B. 俯视图C. 左视图D. 仰视图4. 下列哪个选项是正确的俯视图?A. 显示物体的顶面形状B. 显示物体的侧面形状C. 显示物体的正面形状D. 显示物体的底面形状5. 当物体的主视图和左视图都相同,且都是矩形时,该物体可能是:A. 立方体B. 圆柱体C. 长方体D. 球体二、填空题6. 在三视图中,______视图显示物体的正面形状。

7. 当物体的主视图和俯视图都是圆形时,该物体可能是______。

8. 一个物体的三视图可以提供物体的______、______和______三个方向的信息。

9. 俯视图通常显示物体的______面形状。

10. 如果一个物体的主视图和左视图都是正方形,那么该物体可能是______。

三、判断题11. 一个物体的主视图和左视图可能完全不同。

()12. 三视图中的任何一个视图都不能单独表示物体的全部信息。

()13. 俯视图可以提供物体的高度信息。

()14. 物体的三视图是相互独立的,没有联系。

()15. 一个物体的三视图可以完全相同的情况是不存在的。

()四、简答题16. 请简述三视图在工程制图中的应用意义。

17. 描述如何通过三视图来确定一个物体的形状。

五、绘图题18. 根据以下描述,绘制一个物体的三视图:- 主视图:一个矩形,长为10cm,宽为5cm。

- 俯视图:一个矩形,长为8cm,宽为6cm。

- 左视图:一个矩形,长为10cm,宽为8cm。

19. 假设你面前有一个立方体,其边长为4cm,请绘制其三视图。

六、综合应用题20. 你是一名工程师,需要根据客户提供的三视图来制作一个零件。

九年级数学三视图测试题及答案[1]

九年级数学三视图测试题及答案[1]

九年级数学三视图测试题及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学三视图测试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学三视图测试题及答案(word版可编辑修改)的全部内容。

29。

2《三视图》检测题一、精心选一选(每小题3分,共24分)1、一个几何体的主视图、左视图、俯视图都是正方形,那么这个几何体一定是( )A 、长方体 B、正方体 C、四棱锥 D、圆柱2、下图中几何体的主视图是().(A) (B) (C) (D)3。

某几何体的三种视图分别如下图所示,那么这个几何体可能是()。

主视图左视图俯视图(A)长方体 (B)圆柱(C)圆锥(D)球4、水平放置的正方体的六面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是()A.O B. 6 C.快 D.乐5、小琳过14周岁生日,父母为她预定的生日蛋糕如图所示,它的主视图应该是( )第5题6、若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这一堆方便面共有()(A)5桶(B) 6桶(C)9桶(D)12桶7。

一个四棱柱的俯视图如右图所示,则这个四棱柱的主视图和左视图可能是( )8、如图是正三菱柱,它的主视图正确的是( )二、耐心填一填(每小题3分,共30分)9、俯视图为圆的几何体是 , __,______。

10、一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有____个碟子。

11、棱长是1cm 的小立方体组成如图所示的几何体,那么这个几何体的表面积是 .4243(A) (B) (C) (D)俯视图 主视图左视图九年级数学三视图测试题及答案(word 版可编辑修改)12、一个几何体的主视图和俯视图如图所示,那么这个几何体最多由_______个小立方体组成。

中考复习之三视图(含答案)

中考复习之三视图(含答案)

中考复习之三视图1、如图是由一些相同的小正方体搭成的立体图形的三视图,则搭成该立体图形的小正方体的个数是.2、在一仓库里堆放着若干相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来,如图所示,则这堆正方体货箱共有A. 箱B. 箱C. 箱D. 箱3、如图所示是由若干个完全相同的小正方体搭成的几何体的主视图和俯视图,则这个几何体可能是由____________________个小正方体搭成的.4、一个几何体是由许多规格相同的小正方体堆积而成的,其主视图、左视图如图所示,要摆成这样的图形,至少需用块小正方体,最多需用块小正方体.5、如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是__ __(结果保留π).6、已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的所有侧面积之和为.7、如图所示是某种型号的正六角螺母毛坯的三视图,则它的侧面积为cm2.8、如图是一个底面直径为,母线长也为的圆锥,是母线上的一点,,从点沿圆锥侧面到点的最短路径长是.9、如图是一个正六棱柱的主视图和左视图,则图中a的值为.10、图1是一个每条棱长均相等的三棱锥,图2是它的主视图、左视图与俯视图.若边AB的长度为a,则在这三种视图的所有线段中,长度为a的线段有()A.12条B.9条C.5条D.4条11、一个几何体的三视图如图所示,则这个几何体的表面积是 .12、如图所示的礼盒上下底面为全等的正六边形,其主视图与左视图均由矩形构成,主视图中大矩形边长如图所示,左视图中包含两个全等的矩形.如果用彩色胶带如图包扎礼盒,所需胶带长度至少为(结果保留整数).13、如图是一个长方体的表面展开图,其中四边形ABCD是正方形,根据图中标注的数据可求得原长方体的体积是 cm314、如图是由两个长方体组合而成的一个立体图形的从三个不同方向看到的形状图,根据图中所标尺寸(单位:mm),计算出这个立体图形的表面积是__________mm2.15、三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为cm.16、如图是某几何体的三视图,根据图中数据,求得该几何体的表面积为.17.如图,一个几何体的三视图分别是两个矩形、一个扇形,则这个几何体表面积的大小为.18、如图是一个几何体的主视图与俯视图,根据图中数据(单位:mm),求该几何体的体积(π取值3.14).19、如图1是一种包装盒的表面展开图,将它围起来可得到一个几何体的模型.(1)请说出这个几何体模型的最确切的名称是________.(2)如图2是根据 a,h的取值画出的几何体的主视图和俯视图(图中的粗实线表示的正方形(中间一条虚线)和粗实线表示的三角形),请在网格中画出该几何体的左视图.(3)在(2)的条件下,已知h=20 cm,求该几何体的表面积.20、如图所示,在平整的地面上,有若干个完全相同的棱长为10cm的正方体堆成的一个几何体.(1)这个几何体由个正方体组成.(2)如果在这个几何体的表面(露出的部分)喷上黄色的漆,则在所有的正方体中,有_________个正方体只有一个面是黄色,有个正方体只有两个面是黄色,有个正方体只有三个面是黄色.(3)求这个几何体喷漆的面积.21、某几何体的三视图如图所示,已知在△EFG中,FG=18cm,EG=12cm,∠EGF=30°;在矩形ABCD中,AD=16cm.(1)请根据三视图说明这个几何体的形状.(2)请你求出AB的长;(3)求出该几何体的体积.。

部编数学九年级下册专题09三视图(重难点突破)(解析版)_new含答案

部编数学九年级下册专题09三视图(重难点突破)(解析版)_new含答案

专题09 三视图理解三视图的概念,掌握三视图之间的位置与数量关系,能熟练画出简单几何体重点的三视图能用一个物体的三视图来描述这个物体,并能应用三视图的知识解决一些实际问难点题易错画物体的三视图时用线易出现错误一、物体的三视图三视图中的各视图,分别从不同方面表示物体的形状,三者合起来能够较全面地反映物体的形状,单独一个视图难以全面地反映物体的形状,在实际生活中常用三视图描述物体的形状.【例1】关于如图所示的几何体的三视图,下列说法正确的是()A.主视图和俯视图都是矩形B.俯视图和左视图都是矩形C.主视图和左视图都是矩形D.只有主视图是矩形【答案】C【详解】解:依据圆柱体放置的方位来说,主视图和左视图都是矩形,俯视图是一个圆.故选:C.【例2】图中几何体的三视图是()A.B.C.D.【答案】C【详解】由几何体可知,该几何体的三视图为故选C二、根据三视图确定几何体1.由三视图想象立体图时,要先分别根据主视图、俯视图和左视图想象立体图的前面、上面和左侧面,然后再综合起来考虑整体图形.2.从实线和虚线想象几何体看得见和看不见的部分的轮廓线.【例1】如图是一个立体图形的正视图、左视图和俯视图,那么这个立体图形是()A.圆锥B.三棱锥C.四棱锥D.五棱锥【答案】C【详解】解:根据三视图可以想象出该物体由四条棱组成,底面是正方形,此只有四棱柱的三视图与题目中的图形相符,故选:C.【例2】在下面的几个选项中,可以把左边的图形作为该几何体的三视图的是( )A.B.C.D.【答案】C【详解】解:由主视图和左视图可知该几何体的正面与左侧面都是矩形,所以A 不符合题意;再由主视图中矩形的内部有两条虚线,可知B 不符合题意;根据俯视图,可知该几何体的上面不是梯形,而是一个任意的四边形,所以D 不符合题意.符合题意的是C .故选:C .三、由视图确定几何体的表面积和体积某些立体图可沿其中一些线剪开成一个平面展开图,在实际生产中,常将立体图、三视图和平面展开图相结合进行相关运算.【例1】一个几何体的三视图如图所示,则这个几何体的表面积是( )A .18pB .20pC .16pD .14p【答案】A 【详解】解:依题意知这个几何体是圆锥和圆柱的组合体,圆锥的底面半径422=¸=,母线长为3,圆柱的底面半径422=¸=,高为2,则这个几何体的表面积是223222264818p p p p p p p ´´+´+´´´=++=.故选:A .【例2】某圆锥的三视图如图所示,由图中数据可知,该圆锥的体积为( )A .312cm p B .320cm p C .332cm p D .348cm p 【答案】A 【详解】观察三视图得:圆锥的底面半径为()623cm ¸=,高为4cm ,即圆锥的体积为()223113412cm 33r h p p p =´´=,故选:A .一、单选题1.下面四个几何体中,俯视图是三角形的是( ).A .B .C .D .【答案】D 【详解】解:A 的俯视图是四边形,B 的俯视图是圆及圆心,C 的俯视图是圆,D 的俯视图是三角形,A 、故选项错误,不符合题意;B 、故选项错误,不符合题意;C 、故选项错误,不符合题意;D 、故选项正确,符合题意.故选:D .2.用四个相同的小正方体搭几何体,要求每个几何体从正面看、从左面看、从上面看得到的图形中,至少有两种图形的形状是相同的,下列四种摆放方式中,不符合要求的是( ).A .B .C .D .【答案】D 【详解】选项主视图左视图俯视图ABCD只有选项D的三视图两两都不相同,故选D.3.如图试一个几何体的三视图,则这个几何体的形状是()A.圆柱B.圆锥C.球D.三棱锥【答案】B【详解】由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆形可得为圆锥.故选:B.4.如图是一个立方体的三视图,这个立方体由一些相同大小的小正方体组成,这些相同的小正方体的个数是()A.4B.5C.6D.7【答案】D【详解】根据题意,在俯视图上标注各个位置的个数为:所以一共有:1+2+2+1+1=7(个)故选D.5.由5个完全相同的小长方体搭成的几何体的主视图和左视图如图所示,则这个几何体的俯视图是( )A.B.C.D.【答案】A【详解】解:结合主视图、左视图可知俯视图中右上角有2层,其余1层.故选:A.6.长方体的主视图与俯视图如图1所示,则这个长方体的体积是().A.52B.32C.24D.9【答案】C【详解】由主视图可知,这个长方体的长和高分别为4和3,由俯视图可知,这个长方体的长和宽分别为4和2,因此这个长方体的长、宽、高分别为4、2、3,因此这个长方体的体积为4×2×3=24平方单位,故选C二、填空题7.如图,棱长为5cm的正方体,无论从哪一个面看,都有三个穿透的边长为1cm的正方形孔(阴影部分),则这个几何体的表面积(含孔内各面)是_______cm2.【答案】252【详解】解:由正方体的6个外表面的面积为5×5×6﹣1×1×3×6=132(cm2),9个内孔的内壁的面积为1×1×4×4×9﹣1×1×2×6=120(cm2),因此这个有孔的正方体的表面积(含孔内各面)为132+120=252(cm2),故答案为:252.8.如图所示的是从不同方向观察一个圆柱体得到的形状图,由图中数据计算此圆柱体的侧面积为________(结果保留π)【答案】6π【详解】解:∵圆柱的底面直径为2,高为3,∴侧面积= 2•π×3=6π..故答案为:6π.三、解答题9.请你在下边的方格中画出如图所示几何体的三视图.【答案】见解析【详解】解:如图所示:10.已知一个模型的三视图如图所示(单位:m).(1)请描述这个模型的形状;(2)若制作这个模型的木料密度为360 kg/m3,则这个模型的质量是多少?(3)如果用油漆漆这个模型,每千克油漆可以漆4 m2,那么需要多少千克油漆?【答案】(1)详见解析;(2)43380kg;(3)41.625kg.【详解】解:(1)此模型由两个长方体组成:上面的是小长方体,下面的是大长方体.(2)模型的体积=3×6×6+2.5×2.5×2=120.5(m3),模型的质量=120.5×360=43380(kg).(3)模型的表面积=2×2.5×2.5+2×2×2.5+2×6×3+2×3×6+2×6×6=166.5(m2),需要油漆:166.5÷4=41.625(kg).一、单选题1.下列几何体中,同一个几何体从正面看和从上面看不同的是()A.正方体B.球C.棱柱D.圆柱【答案】C【详解】解:A:正方体从正面看和从上面看均为正方形,故选项A不符合题意;B:球从正面看和从上面看均为圆,故选项B不符合题意;C:棱柱从正面看为长方形,从下面看为三角形,故选项C符合题意;D :圆柱从正面看和从上面看均为长方形,故选项D 不符合题意;故选:C .2.如图,分别是从上面、正面、左面看某立体图形得到的平面图形,则该立体图形是下列的( )A .长方体B .圆柱C .三棱锥D .三棱柱【答案】D 【详解】根据三视图的意义,该立体图形是三棱柱.故选:D .3.一个几何体由若干个大小相同的小正方体组成,从上面和左面观察这个几何体如图所示,则搭建这个几何体的小正方体的个数最多是( )A .8个B .10个C .12个D .13个【答案】D 【详解】解:由题意得:如图此时,小正方体的个数最多:3332213++++=;故选:D .4.图2是图1中长方体的三视图,用S 表示面积,223,,S x x S x x =+=+主左则S =俯( )A .232x x ++B .221x x ++C .243x x ++D .224x x+【答案】C 【详解】解:∵()233S x x x x =+=+主,()21S x x x x =+=+左,∴俯视图的长为()3x + ,宽为()1x +,∴()()23143S x x x x =++=++俯.故选:C5.如图是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是( )A .212πcmB .215πcmC .224πcmD .230πcm【答案】B 【详解】解:由三视图可知,原几何体为圆锥,∵5l ==∴26ππ515πcm 2S r l =××=´´=侧故选:B .6.从某个方向观察一个正六棱柱,可看到如图所示的图形,其中四边形ABCD 为矩形,E F 、分别是AB DC 、的中点.若86AD AB ==,,则这个正六棱柱的侧面积为( )A .B .96C .144D .【答案】D 【详解】解:如图,正六边形的边长为AG BG 、,过点G 作GE AB ^∴GE 垂直平分AB ,由正六边形的性质可知,11203032AGB A B AE AB Ð=°Ð=Ð=°==,,,∴ cos30AE AG ===°正六棱柱的侧面积668AG AD =´=´=故选:D .二、填空题7.某款不倒翁如图①所示,其主视图如图②所示,PA ,PB 分别与¼AMB所在圆相切于点A ,B .若该圆半径是10cm ,36P Ð=°,则¼AMB 的长是______(结果保留p ).【答案】12πcm ##12π厘米【详解】解:如图,设¼AMB所在的圆的圆心为O ,连接AO ,BO ,∵PA ,PB 分别与¼AMB所在圆相切于点A ,B .∴AO PA ^,BO AB ^,∴90OAP OBP Ð=Ð=°,∵36P Ð=°,∴144AOB Ð=°,∴优弧AMB 对应的圆心角为360144216°-°=°,∴优弧AMB 的长是:216π1012π180´=,故答案为:12πcm .8.如图为一个用正方体积木搭成的几何体的三视图,俯视图中方格上的数字表示该位置上积木累积的个数.若保证正视图和左视图成立,则+++a b c d 的最大值为 _____.【答案】13【详解】解:由正视图第1列和左视图第1列可知a 最大为3,由正视图第2列和左视图第2列可知b 最大为3,由正视图第3列和左视图第1列和第2列可知c 最大为4,d 最大为3;所以+++a b c d 的最大值为:+++=334313故答案为:13三、解答题9.如图是一个几何体的展开图.(1)写出该几何体的名称______;(2)用一个平面去截该几何体,截面形状可能是______(填序号);①三角形;②四边形;③五边形;④六边形(3)根据图中标注的长度,求该几何体的表面积和体积.【答案】(1)长方体(2)①②③④(3)222m ;36m 【详解】(1)解:根据几何体的展开图共有6个面,且各面有正方形及长方形,∴此几何体为长方体,故答案为:长方体;(2)∵长方体有六个面,∴用平面去截长方体时最多与六个面相交得六边形,最少与三个面相交得三角形,∴用一个平面去截长方体,截面的形状可能是三角形、四边形、五边形、六边形,故答案为:①②③④;(3)231232221222(m )S =´´+´´+´´=,所以表面积是222m ;33216(m )V =´´=,所以体积是36m .10.用棱长为2cm 的若干小正方体按如所示的规律在地面上搭建若干个几何体.图中每个几何体自上而下分别叫第一层、第二层,L ,第n 层(n 为正整数)(1)搭建第④个几何体的小立方体的个数为 .(2)分别求出第②、③个几何体的所有露出部分(不含底面)的面积.(3)为了美观,若将几何体的露出部分都涂上油漆(不含底面),已知喷涂21cm 需要油漆0.2克,求喷涂第20个几何体,共需要多少克油漆?【答案】(1)30;(2)第②个几何体露出部分(不含底面)面积为264cm ,第③个几何体露出部分(不含底面)面积为2132cm ;(3)992克.【详解】(1)搭建第①个几何体的小立方体的个数为1,搭建第②个几何体的小立方体的个数为21412+=+,搭建第③个几何体的小立方体的个数为22149123++=++,归纳类推得:搭建第④个几何体的小立方体的个数为22212341491630+++=+++=,故答案为:30;(2)第②个几何体的三视图如下:由题意,每个小正方形的面积为2224()cm ´=,则第②个几何体的所有露出部分(不含底面)面积为()232324464()cm ´+´+´=;第③个几何体的三视图如下:则第③个几何体的所有露出部分(不含底面)面积为()2626294132()cm ´+´+´=;(3)第20个几何体从第1层到第20层小立方体的个数依次为221,2,,20L ,则第20个几何体的所有露出部分(不含底面)面积为()()2221220212202044960()cm éù´++++´++++´=ëûL L ,因此,共需要油漆的克数为49600.2992´=(克),答:共需要992克油漆.。

三视图习题50道(含答案)

三视图习题50道(含答案)

三视图练习题1、若某空间几何体的三视图如图所示,则该几何体的体积是()(A)2(B)1(C)23(D)132、一个几何体的三视图如图,该几何体的表面积是()(A)372 (B)360 (C)292 (D)2803、若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是(A)3523cm3(B)3203cm3 (C)2243cm3(D)1603cm34、一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为:()5、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于 ( )AB.2 C..66、图2中的三个直角三角形是一个体积为20cm2的几何体的三视图,则h= cm第2题第5题7、一个几何体的三视图如图所示,则这个几何体的体积为 。

8、如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.9、如图1,△ ABC 为正三角形,AA '//BB ' //CC ' , CC ' ⊥平面ABC 且3AA '=32BB '=CC '=AB,则多面体△ABC -A B C '''的正视图(也称主视图)是( )10、一空间几何体的三视图如图所示,则该几何体的体积为( ).A.2π+B. 4π+C. 2π+D. 4π11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .B .C .D .9π10π11π12π第7题侧(左)视图正(主)视图俯视图俯视图正(主)视图侧(左)视图12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为 ()(A )(B )(C )(D )13、若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .14、设某几何体的三视图如上图所示。

初中三视图试题及答案

初中三视图试题及答案

初中三视图试题及答案
1. 题目:观察下列物体的正视图和侧视图,画出其俯视图。

答案:根据正视图和侧视图,我们可以确定物体的俯视图是一个圆形。

2. 题目:给出一个物体的三视图,判断该物体的形状。

答案:该物体是一个长方体。

3. 题目:如果一个物体的正视图和俯视图都是矩形,而侧视图是一个
三角形,那么这个物体是什么形状?
答案:这个物体是一个三角柱。

4. 题目:观察下列物体的三视图,计算其体积。

答案:物体的体积为长×宽×高,具体数值根据三视图中给出的尺
寸计算得出。

5. 题目:根据下列物体的三视图,判断其表面积。

答案:物体的表面积为各面面积之和,具体数值根据三视图中给出
的尺寸计算得出。

6. 题目:如果一个物体的正视图是一个正方形,侧视图是一个矩形,
俯视图是一个圆形,那么这个物体是什么形状?
答案:这个物体是一个圆柱。

7. 题目:观察下列物体的三视图,判断其是否为对称图形。

答案:该物体是对称图形,因为它的三视图在对称轴两侧是相同的。

8. 题目:给出一个物体的三视图,计算其棱长总和。

答案:物体的棱长总和为各棱长度之和,具体数值根据三视图中给出的尺寸计算得出。

9. 题目:如果一个物体的三视图都是相同的圆形,那么这个物体是什么形状?
答案:这个物体是一个球体。

10. 题目:观察下列物体的三视图,判断其是否为多面体。

答案:该物体是一个多面体,因为它的三视图显示了多个平面的交线。

三视图习题50道(含答案)

三视图习题50道(含答案)

三视图练习题1、若某空间几何体的三视图如图所示,则该几何体的体积是()(A)2(B)1(C)23(D)132、一个几何体的三视图如图,该几何体的表面积是()(A)372 (B)360 (C)292 (D)2803、若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是(A)3523cm3(B)3203cm3 (C)2243cm3(D)1603cm34、一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为:()5、若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于 ( )AB.2 C..66、图2中的三个直角三角形是一个体积为20cm2的几何体的三视图,则h= cm第2题第5题7、一个几何体的三视图如图所示,则这个几何体的体积为 。

8、如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为______.9、如图1,△ ABC 为正三角形,AA '//BB ' //CC ' , CC ' ⊥平面ABC 且3AA '=32BB '=CC '=AB,则多面体△ABC -A B C '''的正视图(也称主视图)是( )10、一空间几何体的三视图如图所示,则该几何体的体积为( ).A.2π+B. 4π+C. 2π+D. 4π11、上图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )A .B .C .D .9π10π11π12π第7题侧(左)视图正(主)视图俯视图俯视图正(主)视图侧(左)视图12、一个棱锥的三视图如图,则该棱锥的全面积(单位:c 2m )为 ()(A )(B )(C )(D )13、若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .14、设某几何体的三视图如上图所示。

初中数学三视图作图题专题训练含答案

初中数学三视图作图题专题训练含答案

初中数学三视图作图题专题训练含答案姓名:__________ 班级:__________考号:__________一、作图题(共21题)1、画出下面立体图形的三视图.2、画出如图几何体的三视图.3、按要求完成下列视图问题(1)如图(一),它是由个同样大小的正方体摆成的几何体.将正方体①移走后,新几何体的三视图与原几何体的三视图相比,哪一个视图没有发生改变?(2)如图(二),请你借助虚线网格画出该几何体的俯视图.(3)如图(三),它是由几个小立方块组成的俯视图,小正方形上的数字表示该位置上的正方体的个数,请你借助虚线网格画出该几何体的主视图.4、如图是一根钢管的直观图,画出它的三视图.5、请观察下面的立体图形,分别画出从正面、左面、上面看到的平面图形。

6、从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图。

7、如右图是由11个小立方体搭成的几何体,请画出它们的从三个不同方向看到的平面图形。

8、画出直四棱柱的三种视图.9、如图,是由5个正方体组成的图案,请在方格纸中分别画出它的主视图、左视图、俯视图.10、画出下面实物的三视图.图9-5511、画出图6中空心圆柱的主视图、左视图、俯视图.12、某糖果厂为儿童设计一种新型的装糖果的不倒翁(如图4所示)请你为包装厂设计出它的主视图、左视图和府视图.13、在下面画出此实物图的三种视图.14、主视图:左视图:俯视图:15、图6是由一些小正方体搭成的几何体从上面看到的平面图形,小正方形中的数字表示该位置上小正方体的个数,你能画出从它正面和左面看到的平面图形吗?试一试,你准行!16、如图,是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,请你画出这个几何体的主视图和左视图.17、由3个相同的小立方块搭成的几何体如图所示,请画出它的主视图和俯视图.18、如图是一个由一些相同的小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数,请你画出它的主视图和左视图.19、如图是一个水管的三叉接头图,那么从左面看、从上面看能得到的图形是什么?请分别画出来。

初中数学精品试题:根据物体的三视图计算其表面积和体积(含答案)

初中数学精品试题:根据物体的三视图计算其表面积和体积(含答案)

专训2根据物体的三视图计算其表面积和体积名师点金:在实际问题中,常常要求根据物体的三视图和尺寸计算物体的表面积或体积.解决此类题型的方法是先由三视图想象出几何体的形状,再根据图中的尺寸利用相应的公式进行计算.利用三视图求几何体的表面积1.如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S1,S2,S3,则S1,S2,S3的大小关系是()A.S1>S2>S3B.S3>S2>S1C.S2>S3>S1D.S1>S3>S22.(1)如图①是一个组合体,如图②是它的两种视图,请在横线上填写出两种视图的名称;(2)根据两种视图中的尺寸(单位:cm),计算这个组合体的表面积.(π取3.14)利用三视图求几何体的体积3.某糖果厂想要为儿童设计一种新型的装糖果的不倒翁,请你根据包装厂设计好的三视图(如图)的尺寸计算其容积.⎝⎛⎭⎫球的体积公式:V =43πr 34.一透明的敞口正方体容器ABCD -A ′B ′C ′D ′内装有一些液体,棱AB 始终在水平桌面上,容器底部的倾斜角为α (∠CBE =α).如图①,液面刚好过棱CD ,并与棱BB ′交于点Q ,此时液体的形状为直三棱柱,其三种视图及尺寸如图②.解决问题:(1)CQ 与BE 的位置关系是________,BQ 的长是________dm ;(2)求液体的体积.参考答案1.D2.解:(1)主;俯 (2)表面积=2×(11×7+11×2+7×2)+4×π×6≈301.36(cm 2).3.解:圆锥的高为132-52=12(cm ),则不倒翁的容积为13π×52×12+12×43π×53=100π+250π3=550π3(cm 3). 4.解:(1)CQ ∥BE ;3(2)V 液=12×3×4×4=24(dm 3).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十九章 投影与视图
29.2 三视图
一、课前小测:
1、身高相同的甲、乙两人分别距同一路灯2米、3米,路灯亮时,甲的影子比乙的影子 (填“长”或“短”)
2、小刚和小明在太阳光下行走,小刚身高1.75米,他的影长为2.0m ,小刚比小明矮5cm ,此刻小明的影长是________m.
3、墙壁D处有一盏灯(如图),小明站在A处测得他的影长与身长相等都
为1.6m ,小明向墙壁走1m 到B处发现影子刚好落在A点,则灯泡与地
面的距离CD =_______.
4、圆柱的左视图是 ,俯视图是 ;
5、如图,一几何体的三视图如右: 那么这个几何体是 ; 主视图 左视图 俯视图 二、基础训练:
1、填空题
(1)俯视图为圆的几何体是 , .
(2)画视图时,看得见的轮廓线通常画成 ,看不见的部分通常画成 .
(3)举两个左视图是三角形的物体例子: , .
(4)如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称 . (5)请将六棱柱的三视图名称填在相应的横线上.
(6)一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有 ( )个碟子.
2、有一实物如图,那么它的主视图 ( )
A B C D
3、下图中几何体的主视图是( ).
俯视图 主视图 左视图
主视图
俯视图主(正)视图左视图
(A) (B) (C) (D)
4、若干桶方便面摆放在桌子上,实物图片左边所给的是
它的三视图,则这一堆方便面共有( )
(A )5桶 (B ) 6桶
(C )9桶 (D )12桶
5、水平放置的正方体的六面分别用“前面、后面、上
面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是 ( )
A .O
B . 6
C .快
D .乐
三、综合训练:
1.小明从正面观察下图所示的两个物体,看到的是( )
2、右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是( ) A 5个 B 6个 C 7个 D 8个
3、如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是 ( )
4、下面是空心圆柱在指定方向上的视图,正确的是…( )
B A
C D
正面 A B C D (A) (B) (C) (D)
5、画出下面实物的三视图:
第二十九章 投影与视图
29.2 三视图
参考答案:
课前小测:
1、短
2、3572
3、15
64 4、矩形,圆 5、空心圆柱 二、基础训练:
1、(1)球,圆柱体;(2)实线,虚线;(3)圆锥,正四棱锥,倒放的正三棱柱等;(4)圆锥;
(5)俯视图,正视图,左视图;(6)12.
2、A;
3、C
4、B
5、B
三、综合训练:
1、C
2、D
3、B;
4、A;
5、题图:
主视图左视图俯视图。

相关文档
最新文档