大学物理下册复习题
大学物理考卷答案(下学期)

大学物理考卷(下学期)一、选择题(每题4分,共40分)A. 速度B. 力C. 位移D. 加速度2. 在国际单位制中,下列哪个单位属于电学基本单位?A. 安培B. 伏特C. 欧姆D. 瓦特A. 物体不受力时,运动状态不会改变B. 物体受平衡力时,运动状态会改变C. 物体受非平衡力时,运动状态不变D. 物体运动时,必定受到力的作用A. 功B. 动能C. 势能D. 路程A. 速度大小B. 速度方向C. 动能D. 动量6. 下列哪个现象属于光的衍射?A. 彩虹B. 海市蜃楼C. 水中倒影D. 光照射在单缝上产生的条纹A. 恢复力与位移成正比B. 恢复力与位移成反比C. 恢复力与位移的平方成正比D. 恢复力与位移的平方成反比8. 一个电路元件的电压u与电流i的关系为u=2i+3,该元件是:A. 电阻B. 电容C. 电感D. 非线性元件A. 电磁波在真空中传播速度小于光速B. 电磁波在介质中传播速度大于光速C. 电磁波在真空中传播速度等于光速D. 电磁波在介质中传播速度等于光速10. 一个理想变压器的初级线圈匝数为1000匝,次级线圈匝数为200匝,若初级线圈电压为220V,则次级线圈电压为:A. 110VB. 220VC. 440VD. 880V二、填空题(每题4分,共40分)1. 在自由落体运动中,物体的加速度为______。
2. 一个物体做匀速圆周运动,其线速度的大小不变,但方向______。
3. 惠更斯原理是研究______现象的重要原理。
4. 一个电阻的电压为10V,电流为2A,则该电阻的功率为______。
5. 根据电磁感应定律,当磁通量发生变化时,会在导体中产生______。
6. 在交流电路中,电阻、电感和电容元件的阻抗分别为______、______和______。
7. 一个单摆在位移为0时速度最大,此时摆球所受回复力为______。
8. 光的折射率与光的传播速度成______比。
9. 一个电子在电场中受到的电势能变化量为______。
《大学物理》复习题及答案

《大学物理》复习题及答案《大学物理》复习题及答案一:填空题1: 水平转台可绕通过中心的竖直轴匀速转动.角速度为?,台上放一质量为m的物体,它与平台之间的摩擦系数为?,m在距轴R处不滑动,则?满足的条件是??; 2: 质量为m的物体沿x轴正方向运动,在坐标x处的速度大小为kx,则此时物体所受力的大小为F?。
3: 质点在xoy平面内运动,任意时刻的位置矢量为r?3sin?ti?4cos?tj,其中?是正常数。
速度v?,速率v?,运动轨迹方程;物体从x?x1运动到x?x2所需的时间为4: 在合外力F?3?4x(式中F以牛顿,x以米计)的作用下,质量为6kg的物体沿x 轴运动。
如果t?0时物体的状态为,速度为x0?0,v0?0,那么物体运动了3米时,其加速度为。
25:一质点沿半径为米的圆周运动,其转动方程为??2?t。
质点在第1s 末的速度为,切向加速度为6: 一质量为m?2kg的质点在力F?4ti?(2?3t)j(N)作用下以速度v0?1j(m?s?1)运动,若此力作用在质点上的时间为2s,则此力在这2s内的冲量I?在第2s末的动量P? ;质点7:一小艇原以速度v0行驶,在某时刻关闭发动机,其加速度大小与速率v成正比,但方向相反,即a??kv,k为正常数,则小艇从关闭发动机到静止这段时间内,它所经过的路程?s?,在这段时间内其速率v与时间t的关系为v? 8:两个半径分别为R1和R2的导体球,带电量都为Q,相距很远,今用一细长导线将它们相连,则两球上的带电量Q1?则球心O处的电势UO?,Q2?9:有一内外半径分别为R及2R金属球壳,在距离球心O为R处放一电量为q的点电荷,2.在离球心O为3R处的电场强度大小为E?,电势U? 2210: 空间某一区域的电势分布为U?Ax?By,其中A,B为常数,则场强分布为Ex?为,Ey? ;电势11: 两点电荷等量同号相距为a,电量为q,两电荷连线中点o处场强为;将电量为?q0的点电荷连线中点移到无穷远处电场力做功为12: 在空间有三根同样的长直导线,相互间距相等,各通以同强度同方向的电流,设除了磁相互作用外,其他影响可忽略,则三根导线将13: 一半径为R的圆中通有电流I,则圆心处的磁感应强度为第1页。
大学普通物理((下册))期末考试题

大学物理学下册考试题1 两根长度相同的细导线分别密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,2R r =,螺线管通过的电流相同为I ,螺线管中的磁感应强度大小R B 、r B ,满足 ( )(A )2R r B B = (B )R r B B = (C )2R r B B = (D )4R r B B =选择(c ) N N r N R N 222='⇒'=ππ2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为 ( ) (A )22r B π (B )2r B π (C )22cos r B πα (D )—2cos r B πα选择(D )3在图(a )和(b )中各有一半经相同的圆形回路1L 、2L ,圆周有电流1I 、2I ,其分布相同,且均在真空中,但在(b )图中2L 回路外有电流3I ,1P 、2P 为两圆形回路上的对应点,则 ( ) (A )1212,P P L L B dl B dl BB ⋅=⋅=⎰⎰ (B )1212,P P L L B dl B dl BB ⋅≠⋅=⎰⎰ (C )1212,P P L L B dl B dl BB ⋅=⋅≠⎰⎰ (D )1212,P P L L B dl B dl BB ⋅≠⋅≠⎰⎰选择(c )习题11图 习题13图1L1PL 2P3(a)(b)4 在磁感应强度为B的均匀磁场中,有一圆形载流导线,a、b、c、是其上三个长度相等的电流元,则它们所受安培力大小的关系为:选择(c)二,填空题1、如图5所示,几种载流导线在平面分布,电流均为I,他们在o点的磁感应强度分别为(a)(b)(c)图5(a)0()8IRμ向外(b)0()2IRμπ1(1-)向里(c)0()42IRμπ1(1+)向外2 已知一均匀磁场的磁感应强度B=2特斯拉,方向沿X轴正方向,如图所示,c点为原点,则通过bcfe面的磁通量0 ;通过adfe面的磁通量2x0.10x0.40=0.08Wb ,通过abcd面的磁通量0.08Wb 。
(完整word版)《大学物理》下册复习资料.docx

《大学物理》(下)复习资料一、电磁感应与电磁场1. 感应电动势——总规律:法拉第电磁感应定律i d m,多匝线圈dt id,N m 。
dti 方向即感应电流的方向,在电源内由负极指向正极。
由此可以根据计算结果判断一段导体中哪一端的电势高(正极)。
①对闭合回路,i 方向由楞次定律判断;②对一段导体,可以构建一个假想的回路(使添加的导线部分不产生i)( 1)动生电动势(B不随t变化,回路或导体L运动)bi v B 一般式:i v B d;直导线:a动生电动势的方向: v B 方向,即正电荷所受的洛仑兹力方向。
(注意)一般取 v B 方向为d方向。
如果 v B ,但导线方向与v B 不在一直线上(如习题十一填空 2.2 题),则上式写成标量式计算时要考虑洛仑兹力与线元方向的夹角。
( 2)感生电动势(回路或导体L不动,已知 B / t 的值):B,B与回路平面垂直时i d s is tBStB磁场的时变在空间激发涡旋电场 E i :E i dsB d s(B增大时B同磁场方向,右图)t L t t E i[解题要点 ]对电磁感应中的电动势问题,尽量采用法拉第定律求解——先求出 t 时刻穿过回路的磁通量m B dS ,再用Sd m求电动势,最后指出电动势的方向。
(不用法拉弟定律:①直导线切割磁力线;②L不动且已知 B / t 的值)idt[ 注 ] ①此方法尤其适用动生、感生兼有的情况;②求m时沿 B 相同的方向取dS,积分时t 作为常量;③长直电流/;④i 的结果是函数式时,根据“i>0 即m减小,感应电流的磁场方向与回路中原磁场同向,而i与感应B r = μI 2πr电流同向”来表述电动势的方向:i >0 时,沿回路的顺(或逆)时针方向。
2. 自感电动势i LdI,阻碍电流的变化.单匝:dtm LI ;多匝线圈NLI ;自感系数L N mI I互感电动势12M dI 2,21M dI1。
(方向举例:1线圈电动势阻碍2线圈中电流在1线圈中产生的磁通量的变化)dt dt若dI2dI1 则有1221;1 2MI 2,21MI 1,M12M 21 M ;互感系数M12 dt dt I 2I13.电磁场与电磁波位移电流:I D=D dS ,j D D(各向同性介质D E )下标C、D分别表示传导电流、位移电流。
大学物理下册考试题

一、选择题图示为一轴对称性静电场的E ~r 关系曲线,请指出该电场是由哪种带电体产生的(E 表示电场强度的大小, r 表示离对称轴的距离) ( C )A 、“无限长”均匀带电直线B 、半径为R 的“无限长”均匀带电圆柱体C 、半径为R 的“无限长”均匀带电圆柱面D 、半径为R 的有限长均匀带电圆柱面在点电荷激发的电场中,如以点电荷为心作一个球面,关于球面上的电场,以下说法正确的是 ( A )A 、球面上的电场强度矢量E 处处不等;B 、球面上的电场强度矢量E 处处相等,故球面上的电场是匀强电场;C 、球面上的电场强度矢量E 的方向一定指向球心;D 、球面上的电场强度矢量E 的方向一定沿半径垂直球面向外.下列说法正确的是 ( C )A 、场强大的地方,电势一定高,场强小的地方,电势一定低B 、等势面上各点的场强大小一定相等C 、场强相等的地方,电势梯度一定相等D 、场强为零处,电势一定为零,电势为零处,场强也一定为零直线移在点电荷q +和q -产生的电场中,a 、b 、c 、d 为同一直线上等间距的四个点,若将一点电荷0q +由b 点移到d 点,则电场力 ( A )A 、做正功B 、做负功C 、不做功D 、不能确定如图所示,在C 点放置电荷1q ,A 点放置电荷2q ,S 是包围1q 的封闭曲面,P 点是曲面上的任意一点,今把2q 从A 点移到B 点,则:( D )A 、通过S 面的电通量改变,但P 点的电场强度不变B 、通过S 面的电通量和P 点的电场强度都改变C 、通过S 面的电通量P 点电场强度都不变D 、通过S 面的电通量不变,但P 点的电场强度改变当一个带电导体达到静电平衡时 ( D )A 、表面上电荷密度较大处电势较高B 、表面曲率较大处电势较高C 、导体内部的电势比导体表面的电势高D 、导体内任一点与其表面上任一点的电势差等于零电荷q 在静电场中沿任意闭合曲线移动一周,关于电场力所作的功,正确的叙述是 ( C )A 、若0>q ,则电场力所作的功为正。
大学物理 下 计算题参考答案

大学物理 下 复习题 部分计算题 参考答案 答案来自网络 仅供参考1四条平行的载流无限长直导线,垂直通过一边长为a 的正方形顶点,每条导线中的电流都是I ,方向如图,求正方形中心的磁感应强度。
⎪⎭⎫⎝⎛a I πμ02解0222Iaμπ=2.如图所示的长空心柱形导体半径分别为1R 和2R ,导体内载有电流I ,设电流均匀分布在导体的横截面上。
求 (1)导体内部各点的磁感应强度。
(2)导体内壁和外壁上各点的磁感应强度。
解:导体横截面的电流密度为2221()IR R δπ=-在P 点作半径为r 的圆周,作为安培环路。
由0B dl I μ∙=∑⎰得 222201012221()2()I r R B r r R R Rμπμδπ-=-=-即 22012221()2()I r R B r R R μπ-=- 对于导体内壁,1r R =,所以 0B = 对于导体外壁,2r R =,所以 022IB R μπ=3. 如图, 一根无限长直导线,通有电流I , 中部一段弯成圆弧形,求图中O 点磁感应强度的大小。
解:根据磁场叠加原理,O 点的磁感应强度是)A (-∞、)ABC (和)C (∞三段共同产生的。
)A (-∞段在O 点磁感应强度大小:)cos (cos x4IB 2101θθπμ-=将6021πθθ==,,a 213cosa x ==π代入 得到:)231(a 2IB 01-=πμ,方向垂直于纸面向里; )C (∞段在O 点磁感应强度大小:)cos (cos x4IB 2102θθπμ-=将πθππθ=-=216,,a 213cos a x ==π带入得到:)231(a 2I B 02-=πμ,方向垂直向里;)ABC (段在O 点磁感应强度大小:⎰=203a Idl 4B πμ,)a 32(a I 4B 203ππμ=,a6IB 03μ=,方向垂直于纸面向里。
O 点磁感应强度的大小:321B B B B ++=,)231(a I a6IB 00-+=πμμ, 方向垂直于纸面向里。
大学物理下册重点复习题

例11-8 设在半径为R 的球体内,其电荷分布是对称的,电荷体密度 ρ= k r (0≤r ≤R ),ρ=0(r>R ),k 为一正的常量,用高斯定理求场强与r 的函数关系。
在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为r r kr V q d 4d d 2π⋅==ρ 在半径为r 的球面内包含的总电荷为403d 4kr r kr dV q rVπ=π==⎰⎰ρ(r ≤R)以该球面为高斯面,按高斯定理有0421/4εkr r E π=π⋅得到()0214/εkr E =,(r ≤R ) 方向沿径向向外。
按高斯定理有0422/4εkR r E π=π⋅得到()20424/r kR E ε=,(r >R )方向沿径向向外。
假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电例11-13假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电. (1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功?(2) 使球上电荷从零开场增加到Q 的过程中,外力共作多少功? (1) 令无限远处电势为零,那么带电荷为q 的导体球,其电势为RqU 04επ=将d q 从无限远处搬到球上过程中,外力作的功等于该电荷元在球上所具有的电势能q RqW A d 4d d 0επ==(2)带电球体的电荷从零增加到Q 的过程中,外力作功为⎰⎰==QR qq A A 004d d πεR Q 028επ=11-1 如下图,真空中一长为L 的均匀带电细直杆,总电荷为q ,试证明在直杆延长线上距杆的一端距离为d 的P 点的电场强度大小为:()d L d q+π=04E ε设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q /L , 在x 处取一电荷元d q =λd x = q d x /L , 它在P 点的场强:()204d d x d L q E -+π=ε()204d x d L L x q -+π=ε总场强为:⎰+π=Lx d L xL q E 020)(d 4-ε()d L d q +π=04ε 11-5 图中所示为一沿x 轴放置的长度为l 的不均匀带电细棒,其电荷线密度为λ=λ0 (x -a ),λ0为一常量.取无穷远处为电势零点,求坐标原点O 处的电势.解:在任意位置x 处取长度元d x ,其上带有电荷 d q =λ0 (x -a )d x 它在O 点产生的电势()xxa x U 004d d ελπ-=O 点总电势⎥⎦⎤⎢⎣⎡-π==⎰⎰⎰++l a a la a x x a x dU U d d 400ελ⎥⎦⎤⎢⎣⎡+-π=a l a a l ln 400ελ11-6 一半径R 的均匀带电圆盘,电荷面密度为σ.设无穷远处为电势零点.计算圆盘中心O 点电势 在圆盘上取一半径为r →r +d r X 围的同心圆环.其面积为 d S =2πr d r 其上电荷为 d q =2πσr d rLqx它在O 点产生的电势为002d 4d d εσεrr q U =π=总电势02d 2d εσεσRr U U RS ===⎰⎰ 11-7 在盖革计数器中有一直径为2.00 cm 的金属圆筒,在圆筒轴线上有一条直径为0.134 mm 的导线.如果在导线与圆筒之间加上850 V 的电压,试分别求: (1) 导线外表处 (2) 金属圆筒内外表处的电场强度的大小.设导线上的电荷线密度为λ,与导线同轴作单位长度的、半径为r 的(导线半径R 1<r <圆筒半径R 2)高斯圆柱面,那么 高斯定理有 2πrE =λ / ε0得到E = λ/ (2πε0r ) (R 1<r <R 2)方向沿半径指向圆筒.导线与圆筒之间的电势差⎰⎰⋅π==2121d 2d 012R R R R r rr E U ελ120ln 2R R ελπ=那么()1212/ln R R r U E = 代入数值,那么:(1) 导线外表处()121121/ln R R R U E ==2.54 ×106 V/m(2) 圆筒内外表处()122122/ln R R R U E ==1.70×104 V/m 11-8 在强度的大小为E ,方向竖直向上的匀强电场中,有一半径为R 的半球形光滑绝缘槽放在光滑水平面上(如图).槽的质量为M ,一质量m 带有电荷+q 的小球从槽的顶点A 处由静止释放.如果忽略空气阻力且质点受到的重力大于其所受电场力,求:(1) 小球由顶点A 滑至半球最低点B时相对地面的速度;(2) 小球通过B 点时,槽相对地面的速度.设小球滑到B 点时相对地的速度为v ,槽相对地的速度为V .小球从A →B 过程中球、槽组成的系统水平方向动量守恒 m v +MV =0 对该系统,由动能定理mgR -EqR =21m v 2+21MV 2② ①、②两式联立解出()()m M m qE mg MR +-=2v 方向水平向右.()()m M M qE mg mR M m V +--=-=2v 方向水平向左. 11-9 如下图,一半径为R 的均匀带正电圆环,其电荷线密度为λ.在其轴线上有A 、B 两点,它们与环心的距离分别为R OA 3=,R OB 8= . 一质量为m 、电荷为q 的粒子从A 点运动到B 点.求在此过程中电场力所作的功.设无穷远处为电势零点,那么A 、B 两点电势分别为0220432ελελ=+=R R RU A 0220682ελελ=+=R R R U B q 由A 点运动到B 点电场力作功()0001264ελελελq q U U q A B A =⎪⎪⎭⎫ ⎝⎛-=-= 11-10 电荷以一样的面密度σ 分布在半径为r 1=10 cm 和r 2=20 cm 的两个同心球面上.设无限远处电势为零,球心处的电势为U 0=300 V .(1) 求电荷面密度σ.(2) 要使球心处的电势也为零,外球面上应放掉多少电荷? (1) 球心处的电势为两个同心带电球面各自在球心处产生的电势的叠加,⎪⎪⎭⎫ ⎝⎛+π=22110041r q r q U ε⎪⎪⎭⎫ ⎝⎛π-ππ=22212104441r r r r σσε()210r r +=εσ2100r r U +=εσ=8.85×10-9C / m 2(2) 设外球面上放电后电荷面密度为σ',那么应有()21001r r U σσε'+='= 0即σσ21r r -='外球面上应变成带负电,共应放掉电荷()⎪⎪⎭⎫ ⎝⎛+π='-π='212222144r r r r q σσσ()20021244r U r r r εσπ=+π==6.67×10-9C 11-12 质量为m 、电荷为-q 的粒子沿一圆轨道绕电荷为+Q 的固定粒子运动,证明运动中两者间的距离的立方与运动周期的平方成正比. 设半径为r 、周期为T ,那么有r /m r4qQ220v =πε 因为v = r ω = r( 2π / T ) 所以qQ / (4πε0r 2) = mr (4π2 / T 2) M A m,q CBEEO ARλ R 3 R 8 B即得r 3 = Q qT 2 / (16π3ε0m )11-15 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量. 由题意知E x =200 N/C , E y =300 N/C ,E z =0平行于xOy 平面的两个面的电场强度通量01=±==⋅S E S E z eΦ 平行于yOz 平面的两个面的电场强度通量2002±=±==⋅S E S E xeΦb 2N ·m 2/C 平行于xOz 平面的两个面的电场强度通量3003±=±==⋅S E S E yeΦb 2 N ·m 2/C11-18 图示为一个均匀带电的球层,其电荷体密度为ρ,球层内外表半径为R 1,外外表半径为R 2.设无穷远处为电势零点,求空腔内任一点的电势.由高斯定理知空腔内E =0,故带电球层的空腔是等势区,各点电势均为U . 在球层内取半径为r →r +d r 的薄球层.其电荷为d q = ρ 4πr 2d r 该薄层电荷在球心处产生的电势()00/d 4/d d ερεr r r q U =π=整个带电球层在球心处产生的电势()212200002d d 21R R r r U U R R-===⎰⎰ερερ因为空腔内为等势区所以空腔内任一点的电势U 为()2122002R R U U -==ερ11-19 电荷Q (Q >0)均匀分布在长为L 的细棒上,在细棒的延长线上距细棒中心O 距离为a 的P 点处放一电荷为q (q >0)的点电荷,求带电细棒对该点电荷的静电力. 沿棒方向取坐标Ox ,原点O 在棒中心处.求P 点场强:()()20204d 4d d x a x x a q E -π=-π=ελε()⎰--π=2/2/204d L L x a x E ελ()2202/2/0414L a Qx a L L -π=-⋅π=-εελ解:令1B 、2B 、acb B 和ab B分别代表长直导线1、2和三角形框ac 、cb 边和ab 边中的电流在O 点产生的磁感强度ab acb B B B B B+++=211B :由于O 点在导线1的延长线上,所以1B= 0. 2B :由毕-萨定律)60sin 90(sin 402︒-︒π=dIB μ 式中6/330tan 21l l Oe d =︒⋅== )231(34602-⋅π=lI B μ)332(40-π=l I μ方向:垂直纸面向里.acb B 和ab B:由于ab 和acb 并联,有acb acb ab ab R I R I ⋅=⋅又由于电阻在三角框上均匀分布,有21=+=cb ac ab R R acb ab ∴acb ab I I 2= 由毕奥-萨伐尔定律,有ab acb B B =且方向相反.方向沿x 轴正向.点电荷受力:=F 例14-1在真空中,电流由长直导线b 点从三角形框流出,经长直导线求正三角形的中心点O 处的磁感强Oxzy bb b PO -L/2 L/2 d x d qa.∴)332(402-π==lIB B μ,B的方向垂直纸面向里.例14-2 如下图,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为δ ,求与平板共面并且距离平板一边为b 的任意点P 的磁感强度.利用无限长载流直导线的公式求解.(1) 取离P 点为x 宽度为d x 的无限长载流细条,它的电流x i d d δ=(2) 这载流长条在P 点产生的磁感应强度xiB π=2d d 0μxxπ=2d 0δμ方向垂直纸面向里.(3) 所有载流长条在P 点产生的磁感强度的方向都一样,所以载流平板在P 点产生的磁感强度==⎰B B d ⎰+πba bxdx 20δμb ba +π=ln 20δμ方向垂直纸面向里. 例14-3 如下图,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.λωR I =2/32230)(2y R R B B y +==λωμB的方向与y 轴正向一致.例14-4 平面闭合回路由半径为R 1及R 2 (R 1 > R 2 )的两个同心半圆弧和两个直导线段组成(如图).两个直导线段在两半圆弧中心O 处的磁感强度为零,且闭合载流回路在O 处产生的总的磁感强度B 与半径 为R 2的半圆弧在O 点产生的磁感强度B 2的关系为B = 2 B 2/3,求R 1与R 2的关 由毕奥-萨伐尔定律可得,设半径为R 1的载流半圆弧在O 点产生的磁感强度为B 1那么1014R IB μ=同理, 2024R IB μ=∵21R R >∴21B B <故磁感强度12B B B -=204R I μ=104R Iμ-206R I μ=∴213R R =例14-7 如图,一条任意形状的载流导线位于均匀磁场中,试证明导线a 到b 之间的一段上所受的安培力等于载同一电流的直导线ab 所受的安培力.由安培定律B l I f ⨯=d d ,ab 整曲线所受安培力为 ⎰⎰⨯==b aB l I f fd d 因整条导线中I 是一定的量,磁场又是均匀的,可以把I和B 提到积分号之外,即⎰⨯=b aB l I f d B l I ba⨯=⎰)d (B ab I⨯=载流一样、起点与终点一样的曲导线和直导线,处在均匀磁场中,所受安培力一样.例14-9 如下图,一半径为R 的均匀带电无限长直圆筒,面电荷密度为σ.该筒以角速度ω线匀速旋转.试求圆筒内部的磁感强度.如下图,圆筒旋转时相当于圆筒上具有同向的面电流密度i ,σωσωR R i =ππ=)2/(2作矩形有向闭合环路如右图中所示.从电流分布的对称性分析可知,在ab 上各点B且B 的方向平行于ab ,在bc 和fa 上各点B的方向与线元垂直,在de , cd fe ,0=B.应用安培环路定理∑⎰⋅=I l B 0d μ 可得ab i ab B 0μ=σωμμR i B 00==.均匀磁场,磁感强度的大小为σωμR B 0=,方向平行轴线朝右.14-4 如图,一半径为R 的带电塑料圆盘,其中半径为r 的阴影局部均匀带正电荷,面电荷密度为+σ ,其余局部均匀带负电荷,面电荷密度为-σ 当圆盘以角速度ω 旋转时,测得圆盘中心O 点的磁感强度为零,问R 与r 满足什么关系?带电圆盘转动时,可看作无数的电流圆环的磁场在O 点的叠加. 某一半径为ρ 的圆环的磁场为)2/(d d 0ρμi B =而ρσωρωρρσd )]2/([d 2d =π⋅π=i ∴ρσωμρρσωρμd 21)2/(d d 00==B正电局部产生的磁感强度为r B r2d 2000σωμρσωμ==⎰+负电局部产生的磁感强度为)(2d 200r R B Rr-==⎰-σωμρσωμ今-+=B B ∴r R 2=14-9 如下图,有两根平行放置的长直载流导线.它们的直径为a ,反向流过一样大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.解:建立坐标系,应用安培环路定理,左边电流产生的磁感应强度x 2IB 01πμ=; 方向向里 右边电流产生的磁感应强度)x a 3(2I B 02-πμ=; 方向向外 应用磁场叠加原理可得磁场分布为, )3(2200x a I x I B -π+π=μμ)252(a x a ≤≤B 的方向垂直x 轴及图面向里. 14-1 在一顶点为45°的扇形区域,有磁感强度为B方向垂直指向纸面内的均匀磁场,如图.今有一电子(质量为m ,电荷为-e )在底边距顶点O 为l 的地方,以垂直底边的速度v射入该磁场区域,假设要使电子不从上面边界跑出,电子的速度最大不应超过多少? 电子进入磁场作圆周运动,圆心在底边上.当电子轨迹与上面边界相切时,对应最大速度,此时有如下图情形.R R l =︒+45sin )(∴l l R )12()12/(+=-=由)/(eB m R v =,求出v 最大值为m leBm eBR )12(+==v14-2 一边长a =10 cm 的正方形铜线圈,放在均匀外磁场中,B 竖直向上,且B = 9.40×10-3 T ,线圈中电流为I =10 A .(1) 今使线圈平面保持竖直,问线圈所受的磁力矩为多少? (2) 假假设线圈能以某一条水平边为固定轴自由摆动,问线圈平衡时,线圈平面与竖直面夹角为多少?(铜线横截面积S = 2.00 mm 2,铜的密度ρ = 8.90 g/cm 3 )(1) 2Ia p m =,方向垂直于线圈平面.︒=⨯=90sin B p B p M mm = 9.40×10-4 N ·m (2) 设线圈绕AD 边转动,并且线圈稳定时,线圈平面与竖直平面夹角为θ ,那么磁场对线圈的力矩为)21sin(θ-π=⨯=B p B p M m m θcos B p m =重力矩:)sin 21(2sin θθa mg mga L +=θρsin 22g S a ==θcos B p m θρsin 22g S a 712.3)/(2ctg ==BI g S ρθ 于是θ = 15°14-3 试证明任一闭合载流平面线圈在均匀磁场中所受的合磁力恒等于零.由安培公式,电流元l Id 受磁场作用力为OrR ωIa a I xO2aIa aIxO 2a l 45° vBOOO ′R Rl45°B AC DImg mg mg n B)(21θ-.B l I F⨯=d d 那么闭合电流受总磁力为B l I B l I F F ⨯=⨯==⎰⎰⎰)d (d d 其中,因为B 为恒矢量,可提出积分号外而保持叉乘顺序不变.由于0d =⎰l (∵多边形矢量叠加法那么) ∴0=F(证毕)14-4一通有电流I 1 (方向如图)的长直导线,旁边有一个与它共面通有电流I 2 (方向如图)每边长为a 的正方形线圈,线圈的一对边和长直导线平行,),在维持它们的电流不变和保证共面的条件下,将它们的距离从2/3a 变为2/5a 形线圈所做的功.如图示位置,线圈所受安培力的合力为])(22[10102a x I xI aI F +π-π=μμ 方向向右 从x = a 到x = 2a 磁场所作的功为⎰+-π=aax ax x IaI A 2210d )11(2μ)3ln 2ln 2(2210-π=I aI μ例16-2 如下图,一电荷线密度为λ的长直带电线(与一正方形线圈共面并与其一对边平行)以变速率v =v (t )沿着其长度方向运动,正方形线圈中的总电阻为R ,求t 时刻方形线圈中感应电流i (t )的大小(不计线圈自身的自感)长直带电线运动相当于电流λ⋅=)(t I v .正方形线圈内的磁通量可如下求出x a x a I d 2d 0+⋅π=μΦ2ln 2d 2000⋅π=+π=⎰Ia x a x Ia a μμΦ2ln t d I d 2a t d d 0i πμ=-=εΦ2ln t d )t (d a 20v λπμ=2ln td )t (d a R 2R )t (i 0i v λπμ=ε=例16-3电荷Q 均匀分布在半径为a 、长为L ( L >>a )的绝缘薄壁长圆筒外表上,圆筒以角速度ω 心轴线旋转.一半径为2a 、电阻为R 的单匝圆形线圈套在圆筒上(如下图))/1(00t t -=ωω的规律(ω 0和t 0是常数)筒以ω旋转时,相当于外表单位长度上有环形电流π⋅2ωL Q ,它和通电流螺线管的nI 等效. 按长螺线管产生磁场的公式,筒内均匀磁场磁感强度为:LQ B π=20ωμ (方向沿筒的轴向)筒外磁场为零.穿过线圈的磁通量为:La Q B a 2202ωμΦ=π=在单匝线圈中产生感生电动势为=Φ-=εt d d )d d (220t L Qa ωμ-00202Lt Qa ωμ=感应电流i 为0020RLt 2Qa R i ωμ=ε=i 的流向与圆筒转向一致. 例16-5 一内外半径分别为R 1, R 2的均匀带电平面圆环,电荷面密度为σ,其中心有一半径为r 的导体小环(R 1 >>r ),二者同心共面如图.设带电圆环以变角速度ω =ω(t )绕垂直于环面的中心轴旋转,导体小环中的感应电流i 等于多少?方向如何(小环的电阻为R ')?带电平面圆环的旋转相当于圆环中通有电流I .在R 1与R 2之间取半径为R 、宽度为d R 的环带 带内有电流R t R I d )(d ωσ=d I 在圆心O 点处产生的磁场R t R I B d )(21/.d 21d 00σωμμ== 在中心产生的磁感应强度的大小为 ))((21120R R t B -=σωμI 2I 2a选逆时针方向为小环回路的正方向,那么小环中2120))((21r R R t π-≈σωμΦ t t R R r t i d )(d )(2d d 1220ωσμΦε-π-=-=tt R R R r R i i d )(d 2)(π1220ωσμε⋅'--='=例16-6 求长度为L 的金属杆在均匀磁场B中绕平行于磁场方向的定轴OO '转动时的动生电动势.杆相对于均匀磁场B的方位角为θ,杆的角速度为ω,转向如下图.在距O 点为l 处的d l 线元中的动生电动势为 d ε l Bd )(⋅⨯=v θωsin l =v∴⎰⎰⋅απ=⨯=εLv vd cos )21sin(B d )B (L⎰⎰θω=θω=ΛθL2d sin B sin d sin lB θω22sin 21BL =ε 的方向沿着杆指向上端.例16-9 两根平行无限长直导线相距为d ,载有大小相等方向相反的电流I ,电流变化率d I /d t =α >0.一个边长为d 的正方形线圈位于导线平面内与一根导线相距d ,如下图.求线圈中的感应电动势ε,并说明线圈中的感应电动势的方向.无限长载流直导线在与其相距为r 处产生的磁感强度为:)2/(0r I B π=μ以顺时针为线圈回路的正方向,与线圈相距较远和较近的导线在线圈中产生的磁通量为:23ln 2d 203201π=π⋅=⎰Idr r I d dd μμΦ2ln 2d 20202π-=π⋅-=⎰Id r r I d ddμμΦ总磁通量34ln 2021π-=+=Id μΦΦΦ感应电动势为:34ln 2d d )34(ln 2d d 00αμμεπ=π=-=d t I d t Φ由ε >0,所以ε 的绕向为顺时针方向,线圈中的感应电流亦是顺时针方向.16-2半径为R 的长直螺线管单位长度上密绕有n 匝线圈.在管外有一包围着螺线管、面积为S 的圆线圈,其平面垂直于螺线管轴线.螺线管中电流i 随时间作周期为T 的变化,如下图.求圆线圈中的感生电动势ε.画出ε─t 曲线,注明时间坐标. 螺线管中的磁感强度ni B 0μ=,通过圆线圈的磁通量i R n 20π=μΦ. 取圆线圈中感生电动势的正向与螺线管中电流正向一样,有td id R n t d d 20i πμ-=Φ-=ε. 在0 < t < T / 4内,TI T I t im m 44/d d ==,20i R n πμ-=εT I m 4=T I nR m /420μπ-=在T / 4 < t < 3T / 4内,T I T I t im m 42/2d d -=-=,=εi T /I nR 4m 20μπ. 在3T / 4 < t < T 内,TI T I t im m 44/d d ==,=εi T I nR m /420μπ-.ε ─t 曲线如图. 16-4 如下图,有一根长直导线,载有直流电流I ,近旁有一个两条对边与它平行并与它共面的矩形线圈,以匀速度v沿垂直于导线的方向离开导线.设t =0时,线圈位于图示位置,求:(1) 在任意时刻t 通过矩形线圈的磁通量Φ.(2) 在图示位置时矩形线圈中的电动势ε. 建立坐标系,x 处磁感应强度x2IB 0πμ=;方向向里在x 处取微元,高l 宽dx ,微元中的磁通量:OωBθLdI I εi tT /4 3T /4T /2 TOiI m -I T /4 T /23T /4Tta bvlxdx x 2I Bydx S d B d 0 πμ==⋅=Φ 磁通量:⎰⎰⋅πμ==S0x d r 2I S d B )t ( Φ⎰++πμ=tb t a 0x x d 2I v v t a t b ln 2I 0v v ++μ=π 感应电动势ab2)a b (I t d d 00t π-μ=-=ε=v Φ方向:顺时针 16-5在一长直密绕的螺线管中间放一正方形小线圈,假设螺线管长1 m ,绕了1000匝,通以电流I =10cos100πt (SI ),正方形小线圈每边长5 cm ,共 100匝,电阻为1 Ω,求线圈中感应电流的最大值(正方形线圈的法线方向与螺线管的轴线方向一致,μ0 =4π×10-7 T ·m/A .) n =1000 (匝/m) nI B 0μ=nI a B a 022μΦ=⋅=tI n Na t Nd d d d 02με-=Φ-==π2×10-1 sin 100 πt (SI) ==R I m m /επ2×10-1 A= 0.987 A16-8 两相互平行无限长的直导线载有大小相等方向相反的电流,长度为b 的金属杆CD 与两导线共面且垂直,相对位置如图.CD 杆以速度v平行直线电流运动,求CD 杆中的感应电动势,并判断C 、D 两端哪端电势较高?建立坐标(如图)那么:21B B B +=x I B π=201μ,)(202a x I B -π=μxIa x I B π--π=2)(200μμ,B 方向⊙ d εx x a x I x B d )11(2d 0--π==v v μ ⎰⎰--πμ=ε=ε+x d )x1a x 1(2I d ba 202av b a b a I ++π=2)(2ln20v μ感应电动势方向为C →D ,D 端电势较高.16-11两根平行长直导线,横截面的半径都是a ,中心线相距d ,属于同一回路.设两导线内部的磁通都略去不计,证明:这样一对导线单位长的自感系数为 aa d L -π=ln 0μ取长直导线之一的轴线上一点作坐标原点,设电流为I ,那么在两长直导线的平面上两线之间的区域中B 的分布为 rIB π=20μ)(20r d I-π+μ 穿过单位长的一对导线所围面积〔如图中阴影所示〕的磁通为==⎰⋅SS B d Φr rd r Iad ad )11(20⎰--+πμa a d I -π=ln0μa a d I L -π==ln 0μΦ例18-1在双缝干预实验中,波长λ=5.50×10-7m 的单色平行光垂直入射到缝间距a =2×10-4 m 的双缝上,屏到双缝的距离D=2 m .求:(1) 中央明纹两侧的两条第10级明纹中心的间距;(2) 用一厚度为e =6.6×10-5 m 、折射率为n =1.58的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处?(1)∆x =20D λ / a =0.11 m(2) 覆盖云玻璃后,零级明纹应满足 (n -1)e +r 1=r 2设不盖玻璃片时,此点为第k 级明纹,那么应有r 2-r 1=k λ所以(n -1)e = k λk =(n -1) e / λ=6.96≈7零级明纹移到原第7级明纹处例18-6 图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸外表的曲率半 径是R =400 cm .用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30cm .(1) 求入射光的波长.(2) 设图中OA =1.00 cm ,求在半径为OA 的X 围内可观察到的明环数目. a2a x +d x 2a +bII C Dv xOx2a drIIOr(1) 明环半径()2/12λ⋅-=R k r ()Rk r 1222-=λ=5×10-5 cm (或500 nm) (2) (2k -1)=2 r 2 / (R λ) 对于r =1.00 cm ,k =r 2 / (R λ)+0.5=50.5 故在OA X 围内可观察到的明环数目为50个. 18-3 薄钢片上有两条紧靠的平行细缝,用波长λ=546.1 nm (1 nm=10-9 m)的平面光波正入射到钢片上.屏幕距双缝的距离为D =2.00 m ,测得中央明条纹两侧的第五级明条纹间的距离为∆x =12.0 mm .(1) 求两缝间的距离. (2) 从任一明条纹(记作0)向一边数到第20条明条纹,共经过多大距离? (1) x = 2kD λ / dd = 2kD λ /∆x 此处k =5∴d =10 D λ / ∆x =0.910 mm (2) 共经过20个条纹间距,即经过的距离l =20 D λ / d =24 mm18-6 用波长为500 nm (1 nm=10-9 m)的单色光垂直照射到由两块光学平玻璃构成的空气劈形膜上.在观察反射光的干预现象中,距劈形膜棱边l = 1.56cm 的A 处是从棱边算起的第四条暗条纹中心.(1) 求此空气劈形膜的劈尖角θ;(2) 改用600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干预条纹,A 处是明条纹还是暗条纹?(1) 棱边处是第一条暗纹中心,在膜厚度为e 2=λ/2处是第二条暗纹中心,依此可知第四条暗纹中心处,即A 处膜厚度e 4=2/3λ∴()l l e 2/3/4λθ===4.8×10-5 rad (2) 由上问可知A 处膜厚为e 4=3×500 / 2 nm =750 nm 对于λ'=600 nm 的光,连同附加光程差,在A 处两反射光的光程差为2/24λ'+e ,它与波长λ'之比为0.32/1/24=+'λe .所以A 处是明纹 18-8 曲率半径为R 的平凸透镜和平板玻璃之间形成空气薄层,如下图.波长为λ的平行单色光垂直入射,观察反射光形成的牛顿环.设平凸透镜与平板玻璃在中心O 点恰好接触.求: (1) 从中心向外数第k 个明环所对应的空气薄膜的厚度e k .(2) 第k 个明环的半径用r k ,(用R ,波长λ和正整数k 表示,R 远大于上一问的e k .) (1)第k 个明环,λλk e k =+2124/)12(λ-=k e k(2)(2)∵λλk e k ==212222)(k k e R r R -+=2222k k k e Re R r +-+=式中k e 为第k 级明纹所对应的空气膜厚度∵k e 很小,R e k <<,∴2k e 可略去,得)2/(2R r e k k =∴λλk R r k =+21)2/(222/)12(λR k r k -=(k =1, 2, 3 …)例19-3一双缝,缝距d =0.40 mm ,两缝宽度都是a =0.08 mm ,用波长为λ=480 nm (1 nm = 10-9 m) 的平行光垂直照射双缝,在双缝后放一焦距f =2.0 m 的透镜,求:〔1〕在透镜焦平面处的屏上,双缝干预条纹的间距;〔2〕在单缝衍射中央亮纹X 围内的双缝干预亮纹数目N 和相应的级数。
大学物理下考试题及答案

大学物理下考试题及答案一、选择题(每题2分,共20分)1. 根据麦克斯韦方程组,电磁波在真空中的传播速度是多少?A. 100m/sB. 300m/sC. 1000m/sD. 3×10^8 m/s答案:D2. 一个物体的动能是其势能的两倍,如果物体的总能量是E,那么它的势能U是多少?A. E/2B. E/3C. 2E/3D. E答案:B3. 在理想气体状态方程PV=nRT中,P代表的是:A. 温度B. 体积C. 压力D. 气体常数答案:C4. 下列哪个现象不是由量子力学效应引起的?A. 光电效应B. 原子光谱C. 超导现象D. 布朗运动答案:D5. 一个电子在电场中受到的电场力大小是1.6×10^-19 N,如果电子的电荷量是1.6×10^-19 C,那么电场强度E是多少?A. 1 N/CB. 10 N/CC. 100 N/CD. 1000 N/C答案:A6. 根据狭义相对论,一个物体的质量m与其静止质量m0之间的关系是:A. m = m0B. m = m0 / sqrt(1 - v^2/c^2)C. m = m0 * sqrt(1 - v^2/c^2)D. m = m0 * (1 - v^2/c^2)答案:C7. 一个物体从静止开始自由下落,其下落的高度h与时间t之间的关系是:A. h = 1/2 gt^2B. h = gt^2C. h = 2gtD. h = gt答案:A8. 在双缝干涉实验中,相邻的明亮条纹之间的距离是相等的,这种现象称为:A. 单缝衍射B. 多缝衍射C. 双缝干涉D. 薄膜干涉答案:C9. 一个电路中的电阻R1和R2并联,总电阻Rt可以用以下哪个公式计算?A. Rt = R1 + R2B. Rt = R1 * R2 / (R1 + R2)C. Rt = 1 / (1/R1 + 1/R2)D. Rt = (R1 * R2) / (R1 + R2)答案:C10. 根据热力学第一定律,一个系统吸收了100 J的热量,同时对外做了50 J的功,那么系统的内能增加了多少?A. 50 JB. 100 JC. 150 JD. 200 J答案:B二、填空题(每题2分,共20分)11. 光的粒子性质在________现象中得到了体现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:v
A
Bt
at
dv dt
B
t
t
s 0 vdt 0 ( A Bt)dt 2R
求出:t代入v A Bt A2 4RB
或:vt2 v02 2at s
vt2 A2 4RB
an
vt2 R
A2
4RB
R
☻圆周运动 5
码的支受持到力木1.为板68的N摩0擦.2力8为。N 砝码受到木板
切向t:N cos mg cos fs sin 0
法向n:mg sin
fs
cos
N
s in
m
v2 R
☻
fs
m
v2 R
cos
0.28N
N mg m v2 sin 1.68N
圆周运动
R
8
(3-5)例6、人造地球卫星作椭圆轨道运动,卫星
18
例16、平行单色光垂直入射在缝宽为a=
0.15mm的单缝上,缝后有焦距为f=400mm的
凸透镜,在其焦平面上放置观察屏幕。现测得屏
幕上中央明条纹两侧的两个第三级暗纹之间的距
离为8mm,则入射光的【波5长00为nmλ=】
。
2x 2 f k 2 f 3 8103
a
a
☻单缝缝宽公式 19
例17、波长λ=550nm的单色光垂直入射于光栅
条纹宽度: x D
d
☻干涉条纹宽度
17
(13-7)例15、设光栅平面、透镜均与屏幕平行,
则当入射的平行单色光从垂直于光栅平面入射变
为斜入射时,能观测到的光谱线的最高级次k
(A)变小;
(B)变大;
(C)不变;
(D)改变无法确定
【B】
☻光栅公式
(a b)sin k (a b)(sin sin) k
31
由动量守恒定律:
m1v10 m2v20 m1v1 m2v2
由动能守恒:
1 2
m1v120
1 2
m2v220
1 2
m1v12
1 2
m2v22
求解得:v1
m1 m1
m2 m2
v10
2m2 m1 m2
v20
v2
m2 m1 m1 m2
v20
2m1 m1 m2
v10
20
计算题
21
例1. 一艘快艇在速率为 v时0 关闭发动机,其加 速度 a kv,2 式中 为k 常数,试证明关闭发 动机后又行驶 x 距离时,快艇速率为: v v0ekx
证明: a dv dv dx vdv kv2 dt dx dt dx
dv kdx v
v dv
x
kdx
(2-2) 例3、如图,物体A、B质量相同,
B在光滑水平桌面上。滑轮与绳的质量以及
空气阻力均不计,滑轮与轴之间的摩擦也
不计。系统无初速地释放。则物体A下落的
加速度是:
(A)g (B)4g/5
B
(C)g/2 (D)g/3
☻牛顿第二定律
mA g TA mAaA mA mB
TB mBaB TB 2TA
A
C
D
B
23
解:建立坐标系并作受力分析图: Y
N2
T
O
X
N1
T
FD
T
A
B
T
Mg 列方程:
m1g 解出:
m2g
T=m1ax
T sin m2ax
ax
m2 g m12 m22
T cos m2 g
F (m1 m2 M )m2 g
F T T sin Max
m12 m22
=784N
24
例3:质量为m的小球,在水中受的浮力为常力F,当
同学们好!
1
19、20周答疑时间 7月3日上午10-11时 7月7日下午2-4时 7月8日上午9-11时 下午2-4时 4-211(教师休息室)
2
填空、选择题
3
(1-9)例1、一质点沿x方向运动,其加速度随时
间变化关系为a=3+2t (SI) 如果初始时质点 的速度v0为5m/s,则当t为3s时,质点的速度v=
mg
s in
,sin , N2 11
(4-16)例9、在劲度系数为k的弹簧,
上重端物固在定O出,达下到端平悬衡挂,重现物取。重当物弹在簧O伸处长时x0,
的各种势能均为0,系统的重力势能为
系统的弹性势能为
系k统x0总2 的势能为
-0.5kx02
☻ 解:x0
0.5kx02
mg k (k x0
保守力做功
【π】
y
A cos[(t
x u
)
0
]
2 x2 x1
Tu
☻振动相差 15
(12-2)例13、如图所示,平行光垂直照射
到薄膜上,经上下两表面反射的两束光发生干涉, 若射点薄率的膜为相厚位n1度 差的为 :媒e质,中并的且波n长1<,n2则>两n3束,λ1反为射入光射在光相在遇折
((((ABCD))))2[[44π4πππeeenennn22/12/(//n(((nnn1121λλ1λλ111);)))]]。++ππ;【;C】
为m2的物体B发生对心完全弹性碰撞,如何选择
☻ m最2大的动大能小是,多使少得?m2在碰撞后动具量有、最机大的械动能能守?恒此
解:在对心完全弹性碰撞中,v20 0,则有
v2
(m2
m1)v20 2m1v10 m1 m2
2m1v10 m1 m2
物体B的动能
Ek 2
1 2
m2v22
1 2
m2
(
v
dv
t
dt
0 (mg kv F ) / m 0
kt
v (mg F )(1 e m ) / k
得证。
26
例4、
如图 M=2kg , k =200Nm-1 , S=0.2m , g ≈ 10m·s
-2
不计轮、绳质量和摩擦,弹簧最初为自然长度,
缓慢下拉, 则 AF = ? 解: 用 F 将绳端下拉0. 2 m , 物体
0
0.1
kx | Mgx | 1
2 0.1
0.2
2
0
0.1
3J
k
SF
M
28
例5:一质量为m的质点,在xoy平面上运动。
其位置矢量为: r a costi bsint j
其中a,b,为正值常数,a > b。
(1)求质点在A (a,0)点和B(0,b)点时的动能。 (2)求质点所受的作用力以及当质点从A运动到B的 过程中分力Fx、Fy所做的功。
aA
2aB
2
d 2x dt 2
aA
4 5
g
6
(2-3)例4、如图,滑轮、绳子质量及运动中的摩 擦质((((量ABCD阻))))m力((22都4。mmm忽m在111mm略+1A+22不、mggm//2计B(()运m2,)mg1动物;+1g+过体m;m程【2A)2中的)D弹。质】;簧量秤m1S大的于读物数体是B的
2m1v10 m1 m2
)
2
由 dEk 2 dm2
(m2 m1)2m12v120 (m1 m2 )3
0得m1
m2
又 d 2Ek 2 dm2
2
m2 m1=2m12v120
3m2 4m1 (m1 m2 )4
0 m2 m1
故m1 m2时,m2的动能有最大值。此最大值为:
Ek
=
2
1 2
m1v120
10
(4-2)例8、质量为m的小球,放在光滑的木板合光
滑的墙壁之间,并保持平衡,如图所示。设木板和
墙壁之间的夹角为α ,当α逐渐增大时,小球对木板
的压力
((AD))增先加是;增加(,B)后减又小减;小(。C压)力不增变减;的分【解B角】45
度。
☻受力分析
N2 sin mg N2 cos N1
N2
1 2
mvy2
1 ma2 2
2
(2)F max i may j
ma 2 costi mb 2 sint j
Wx
0
a Fxdx
0 ma 2
a
c ostdx
1 2
ma2 2
Wy
b
0 Fy dy
b mb 2
0
sin tdy
1 2
mb
2
2
30
例6、若质量为m1以速率v10运动的物体A与质量
mg)
E p1
0
x0 mgdx mgx0
k x02
E p2
0 x0
k x0dx
1 2
k x02
Ep
E p1
Ep2
1 2
k x02
12
(10-17)例10、在图中所示为两个简谐振动的振
动曲线。若以余弦函数表示这两个振动的合成结 果,则合振动的方程为x=x1+x2=
【0.04cos(πt-0.5π)】
☻变力做功
M将上升多高?
kx0 Mg x0 0.1m S 0.2m
弹簧伸长 0.1 m 得
物体上升 0.1 m
k
SF
M
27
缓慢下拉:每时刻物体处于平衡态
k x (0<x≤0.1m) 前0.1m为变力 F=
k x0 =Mg (0.1<x≤0.2m) 后0.1m为恒力
0.1
0.2
A kxdx Mgdx
v v0
0
ln v kx v0