过程控制系统概述

合集下载

过程控制系统综述

过程控制系统综述

过程控制系统综述一、过程控制的发展状况过程控制是工业生产过程的自动化(人为干预和控制)。

过程控制系统是工业生产过程参数(T、P、L、H)的实时控制自动控制系统。

过程控制系统={电子技术、自动控制技术、计算机技术、网络通信技术}发展经历三个阶段仪表化与局部自动化阶段年代:50~60年代组成:基地仪表(多数是气动仪表)——机构部件特点:单输入——单输出的单回路定值控制系统;对生产过程的热工参数,如温度,压力,流量和液位进行自动控制;控制目的是保持这些参数的稳定。

理论:频率法和根轨迹法为主体的经典控制理论。

四、过程控制分类(一)按系统的结构分类1.反馈控制系统反馈控制系统是根据被控参数与给定值的偏差进行控制的,最终达到消除或减小偏差的目的,偏差值是控制的依据。

它是最常用、最基本的一种过程控制系统。

由于该系统由被控量的反馈构成一个闭合回路,故又称为闭环控制系统。

反馈信号也可有多个,构成一个以上闭环回路,称为多回路反馈控制系统。

2.前馈控制系统前馈控制系统是根据扰动量的大小进行控制的,扰动是控制的依据。

由于没有被控量的反馈,所以是一种开环控制系统。

它是开环控制系统,无法检查其控制效果,故不能单独应用。

3.前馈—反馈控制系统前馈控制主要优点是能迅速及时克服主要扰动对被控量影响,前馈-反馈控制利用反馈控制克服其它扰动,系统稳定时,使被控量迅速而准确地稳定在给定值上提高系统的控制质量。

(二)按给定值信号分类1.定值控制系统工业生产过程中大多数工艺要求系统的被控量能稳定在某一给定值上,定值控制系统是应用最多的一种控制系统。

若由于扰动作用,偏差一旦出现,系统便产生控制作用克服扰动对被控量的影响,使被控量稳定在给定值。

2.随动控制系统随动控制系统是被控量的给定值随时间任意变化的控制系统。

3.程序控制系统程序控制系统被控量的给定值是按预定的时间程序而变化的。

五、过程控制质量指标单个指标1.静态指标余差(静态偏差) e 余差是指系统过渡过程结束后,被控参数新的稳定值与给定值之差,其值可正可负。

过程控制系统第1章 过程控制系统概述

过程控制系统第1章 过程控制系统概述

(3)集中型计算机控制系统
图1-1
典型的DDC控制系统原理图
(4)集散控制系统 集中型计算机控制系统由于其可靠性方面的重大缺陷,在当时 的过程控制中并没有得到成功的应用。人们开始认识到,要提 高系统的可靠性,需要把控制功能分散完成;但考虑到生产过 程的整体性要求,各个局部的控制系统之间还应当存在必要的 相互联系,即所有控制系统的运行应当服从工业生产和管理的 总体目标。这种管理的集中性和控制的分散性是生产过程高效、 安全运行的需要,它直接推动了集散控制系统的产生和发展。
(2)单元组合仪表控制系统 单元组合式控制仪表是根据控制系统各组成环节的不同功能和 使用要求,将仪表做成能实现一定功能的独立仪表(称为单元), 各个仪表之间用统一的标准信号进行联系。将各种单元进行不 同的组合,可以构成多种多样、适用于各种不同场合需要的自 动检测或控制系统,实现如PID控制和串级、均匀、比值、前 馈、选择性等一些常用的复杂控制功能。
(5)现场总线控制系统
图1-3
传统计算机控制结构示意图
1.1.2 过程控制的特点 1)生产过程的连续性 在过程控制系统中,大多数被控过程都
是以长期的或间歇形式运行,被控变量不断地受到各种扰动的
影响。 2)被控过程的复杂性 过程控制涉及范围广:石化过程的精馏 塔、反应器;热工过程的换热器、锅炉等;生物发酵过程的发 酵罐、成品包装系统等。 3)控制方案的多样性 被控过程对象特性各异,工艺条件及要 求不同,过程控制系统的控制方案非常丰富,有常规的单回路
过程控制系统与装 置
第1章 过程控制系统概述 1.1 过程控制的发展和特点
1.2 过程控制系统的组成
1.3 控制系统的过渡过程和品质指标
1.1 过程控制的发展和特点 1.1.1 过程控制的发展概况

现代过程控制基础 1 过程控制系统综述

现代过程控制基础 1 过程控制系统综述

1.1.4 过程控制系统的品质指标
a-发散震荡过程
b-等幅震荡过程
c-衰减震荡过程
d-非周期过程
几种不同的过渡过程
递减比: 积分性能指标:
动态偏差:B1 调整时间:TC 静态偏差 C
1.2 单回路控制系统
f
r
e
u
q
y
调节器 调节阀 被控对象

z 检测元件、变送器
r:给 定 值 e:偏 差 u:控 制 量 q:操 纵 量 y: 输 出 f: 扰 动 z: 测 量 值
• 过程扰动通道的放大系数Kf应尽可能小;时间 常数Tf要大;引入系统的位置要远离被控参数;
• 应尽量设法把广义过程的几个时间常数错开, 使其中一个时间常数比其他时间常数大得多;
• 注意工艺操作的合理性、经济性。
1.2.9 控制系统投运(1)
• 投运:在控制系统方案设计、仪表安装 调校就绪后,或者经过停车检修之后, 再将系统投入生产使用的过程。
具有两个以上的检测元件和变送器, 或调节器,或执行器的控制系统
1.3.1 串级控制系统
r 主调节器
- 主回路
副回路
d2
副调节器 -
阀 副对象
副变送器
主变送器
d1
y 主对象
d1:一次扰动 d2:二次扰动
1.3.1.1 串级控制系统的结构
串级控制系统是改善控制质量的有效方法之一, 在过程控制中得到了广泛地应用。
• 一 次 扰动——不包括在副回路内的扰动。 • 二 次 扰动——包括在副回路内的扰动。
1.3.1.3 串级控制系统主要特点
• 1.改善了被控过程的动态特性; • 2.提高了系统的工作频率; • 3.具有较强的抗扰动能力; • 4.具有一定的自适应能力。

过程控制系统(DCS系统原理)精选

过程控制系统(DCS系统原理)精选

过程控制系统(DCS系统原理)精选过程控制系统,又称分布式控制系统(DCS),在现代工业生产中发挥着举足轻重的作用。

DCS系统原理以其高度集中、分散控制的特点,为生产过程提供了稳定、高效的保障。

下面,让我们一起来深入了解DCS系统的核心原理。

一、DCS系统概述DCS系统是一种以计算机技术、通信技术和控制技术为基础,实现对生产过程进行实时监控、操作和管理的控制系统。

它将整个生产过程划分为若干个子系统,通过分散控制、集中管理的方式,确保生产过程稳定、高效运行。

二、DCS系统原理1. 分散控制DCS系统采用分散控制原理,将复杂的工业生产过程分解为若干个相对简单的子过程。

每个子过程由相应的控制器进行实时监控和控制,降低了系统故障的风险,提高了生产过程的可靠性。

2. 集中管理虽然DCS系统采用分散控制,但整个生产过程仍需进行集中管理。

DCS系统通过高速通信网络将各子系统的数据实时传输至中央控制室,操作人员可以在中央控制室对整个生产过程进行监控、调整和优化。

3. 模块化设计4. 开放式通信协议DCS系统采用开放式通信协议,便于与其他系统进行集成。

这使得DCS系统可以轻松地与企业管理系统、数据库等实现数据交换,为企业生产提供全面的信息支持。

5. 故障诊断与处理DCS系统具备强大的故障诊断和处理能力,能够实时监测系统运行状态,发现异常情况及时报警,并采取相应措施进行处理,确保生产过程不受影响。

三、DCS系统在现代工业生产中的应用1. 石化行业:DCS系统在石化行业中应用广泛,用于对炼油、化工等生产过程进行控制,提高产品质量和产量。

2. 电力行业:DCS系统在发电厂、电网调度等领域发挥着重要作用,保障电力系统安全、稳定运行。

3. 冶金行业:DCS系统应用于冶金行业的烧结、炼铁、炼钢等工序,提高生产效率,降低能耗。

4. 环保行业:DCS系统在污水处理、烟气脱硫等环保领域具有显著效果,助力企业实现绿色生产。

DCS系统原理在现代工业生产中具有广泛的应用前景,为企业提高生产效率、降低成本、保障安全生产提供了有力支持。

第1章 过程控制系统概述ppt课件

第1章 过程控制系统概述ppt课件

三、过程控制系统的分类
1. 按结构特点分类 (1) 反馈控制系统 (2) 前馈控制系统
(3) 前馈—反馈控制系统(复合控制系统)
2. 按给定信号的特点分类 (1) 定值控制系统
(2) 程序控制系统 (3) 随动控制系统
(1) 方框图中每一个方框表示一个具体的实物。 (2) 方框之间带箭头的线段表示它们之间的信号联系,与 工艺设备间物料的流向无关。 (3) 比较点不是一个独立的元件,而色色 2. 控制过程多属缓慢过程和参量控制形式 3. 控制方案多种多样 4. 定值控制是过程控制的一种主要控制形式
要求学生能应用控制理论和工程处理方法,掌握 过程控制系统控制方案的分析、设计和工程实施能 力。
§1—2 过程控制系统的组成、特征及分类
一、过程控制系统的组成
1. 常用术语(见表1—2—1)
2. 方框图
方框图是控制系统或系统中每个环节的功能和信号流向的 图解表示,是控制系统进行理论分析、设计中常用到的一种形 式。每一个方框表示系统中的一个组成部分(也称为环节), 方框内填入表示其自身特性的数学表达式或文字说明。
学习目标
1. 了解过程控制的发展历程和发展方向。 2. 了解本课程的地位和性质。 3. 掌握过程控制的定义,弄清过程控制的目的。 4. 掌握过程控制系统的组成和特点。 5. 掌握过程控制系统的分类以及相互之间的区别。
§1—1 绪论
一、过程控制概述
1.定义 过程控制系统是以表征生产过程的参量为被控制量,使 之接近给定值或保持在给定范围内的自动控制系统。这里 “过程” 是指在生产装置或设备中进行的物质和能量的相 互作用和转换过程。表征过程的主要参量有温度、压力、 流量、液位、成分和浓度等。过程控制系统的任务就是通 过对过程参量的控制,使生产过程中产品的产量增加、质 量提高、能耗减少,实现工业生产过程自动化。

过程控制系统 (2)

过程控制系统 (2)

过程控制系统简介过程控制系统(Process Control System)是一种用于监控和控制生产过程的系统。

它由多个硬件设备和软件组成,能够实时监测各种传感器和执行器的状态,并根据设定的规则和算法进行自动控制。

过程控制系统广泛应用于工业生产、能源管理、环境监测等领域,能够提高生产效率、降低能源消耗、提升产品质量和安全性。

架构过程控制系统通常由以下几个组件构成:1. 传感器传感器是过程控制系统的输入设备,用于实时监测和采集生产过程中的各种数据。

常见的传感器包括温度传感器、压力传感器、流量传感器等。

这些传感器将检测到的数据传输给控制系统进行处理和分析。

2. 执行器执行器是过程控制系统的输出设备,用于根据系统的控制策略执行操作。

例如,根据温度传感器的数据,过程控制系统可以控制执行器来调节加热或冷却设备的操作,以维持所需的温度。

3. 控制器控制器是过程控制系统的核心组件,负责接收传感器数据、计算控制策略,并通过执行器来实现控制。

控制器可以是硬件控制器,如可编程逻辑控制器(PLC),也可以是软件控制器,如基于计算机的控制系统。

4. 监视界面监视界面是过程控制系统的用户界面,用于显示实时数据、报警信息和操作状态,方便操作人员进行监控和操作。

监视界面通常具有图形化界面,方便用户进行数据浏览、参数调整和报表生成等操作。

5. 数据存储与分析过程控制系统还需要具备数据存储和分析功能,以便后续的监测和分析。

数据存储可以使用数据库或云存储等方式,分析可以使用数据挖掘、统计学等方法,以提供对生产过程的优化建议。

工作原理过程控制系统的工作原理可分为以下几个步骤:1.传感器实时采集生产过程中的数据,如温度、压力、流量等。

2.数据被传输到控制器,控制器将采集到的数据与设定的控制规则进行比较,并计算出相应的控制量。

3.控制器通过执行器来实现控制操作,例如调节温度、打开或关闭阀门等。

4.控制器还会将数据传输到监视界面,以便操作人员实时监测生产过程,并及时处理异常情况。

过程控制系统概述

过程控制系统概述

过程控制系统概述杨峰电信学院06自动化3班学号:40604010321所谓过程控制(Process Control)是指根据工业生产过程的特点,采用测量仪表、执行机构和计算机等自动化工具,应用控制理论,设计工业生产过程控制系统,实现工业生产过程自动化。

一﹑过程控制的特点随着生产过程的连续化﹑大型化和不断强化, 随着对过程内在规律的进一步了解,以及仪表﹑计算机技术的不断发展, 生产过程控制技术近年来发展异常迅速.所谓生产过程自动化, 一般指工业生产中(如石油﹑化工﹑冶金﹑炼焦﹑造纸﹑建材﹑陶瓷及热力发电等)连续的或按一定程序周期进行的生产过程的自动控制.凡是采用模拟或数字控制方式对生产过程的某一或某些物理参数(如温度﹑压力﹑流量等)进行的自动控制统称为过程控制.生产过程的自动控制, 一般要求保持过程进行中的有关参数为一定值或按一定规律变化. 由于被控参数不但受内﹑外界各种条件的影响, 而且各参数之间也会相互影响, 这就给对某些参数进行自动控制增加了复杂性和困难性. 除此之外, 过程控制尚有如下一些特点:1. 被控对象的多样性.对生产过程进行有效的控制, 首先得认识被控对象的行为特征, 并用数学模型给以表征, 这叫对象特性的辨识. 由于被控对象多样性这一特点, 就给辨识对象特性带来一定的困难.2. 被控对象存在滞后.由于生产过程大多在比较庞大的设备内进行, 对象的储存能力大, 惯性也大. 在热工生产过程中, 内部介质的流动和热量转移都存在一定的阻力, 因此对象一般均存在滞后性. 由自动控制理论可知, 如系统中某一环节具有较大的滞后特性, 将对系统的稳定性和动态质量指标带来不利的影响, 增加控制的难度.3. 被控对象一般具有非线性特点.当被控对象具有的非线性特性较明显而不能忽略不计时, 系统为非线性系统, 必需用非线性理论来设计控制系统, 设计的难度较高. 如将具有明显的非线性特性的被控对象经线性化处理后近似成线性对象, 用线性理论来设计控制系统, 由于被控对象的动态特性有明显的差别, 难以达到理想的控制目的.4. 控制系统比较复杂.控制系统的复杂性表现之一是其运行现场具有较多的干扰因素. 基于生产安全上的考虑, 应使控制系统具有很高的可靠性.由于以上特点, 要完全通过理论计算进行系统设计与控制器的参数整定至今乃存在相当的困难, 一般是通过理论计算与现场调整的方法, 达到过程控制的目的.二﹑过程控制系统的组成过程控制系统的组成, 一般可用如下框图表示被控参数(变量)y(t ) ;控制(操纵)参数(变量)q(t) ;扰动量f(t) ;给定值r(t) ;当前值z(t); 偏差e(t) ;控制作用u(t)三、过程控制系统的分类按系统的结构特点来分反馈控制系统,前馈控制系统,复合控制系统(前馈-反馈控制系统)按给定值信号的特点来分定值控制系统,随动控制系统1.反馈控制系统偏差值是控制的依据,最后达到减小或消除偏差的目的。

过程控制系统及工程课件

过程控制系统及工程课件

过程控制系统及工程课件一、引言过程控制系统是指用于监控、调节和控制工业过程的设备和技术的集合体。

它在工业领域起着至关重要的作用,能够提高生产效率、确保产品质量并降低成本。

本课件将介绍过程控制系统及工程的基本概念、主要组成部分和实际应用。

二、过程控制系统概述2.1 过程控制系统定义过程控制系统是指一组硬件设备、软件系统和控制策略,用于监测和操纵工业过程以满足特定的要求和性能指标。

它通常包括传感器、执行器、控制器和人机界面等组成部分。

2.2 过程控制系统的作用和优势过程控制系统在工业生产中发挥着重要作用,主要体现在以下几个方面:•自动化控制:过程控制系统能够自动实现对工业过程的监控和控制,减少人工干预,提高生产效率和产品质量。

•系统集成:过程控制系统能够集成不同的硬件设备和软件系统,实现协同工作,提高系统的可靠性和一体化程度。

•数据采集与分析:过程控制系统能够采集大量的过程数据,并对其进行实时分析和处理,为决策提供支持,并优化生产过程。

•故障诊断与预测:过程控制系统能够及时检测和诊断设备故障,并通过数据分析和模型预测,提前预防故障的发生,减少停机时间和维修成本。

2.3 过程控制系统的工程流程过程控制系统的设计和实施需要遵循一定的工程流程,一般包括以下几个阶段:•系统需求分析:明确过程控制系统的功能需求和性能指标,制定详细的技术规格书。

•系统设计与选择:根据需求分析结果,选择合适的硬件设备和软件系统,并进行系统设计和配置。

•系统集成与调试:将选择的设备和系统进行集成,并进行调试和测试,确保各项功能正常运行。

•系统运行与维护:系统正式投入使用后,需要进行运行和维护,包括数据采集、故障诊断和维修等工作。

三、过程控制系统组成3.1 传感器传感器是过程控制系统中的重要组成部分,用于将被控对象的物理量转换为可测量的信号。

常见的传感器包括温度传感器、压力传感器、流量传感器等。

3.2 执行器执行器是过程控制系统用来实现对被控对象进行操作和调节的设备。

过程控制系统第1章-过程控制系统概述课件

过程控制系统第1章-过程控制系统概述课件
7
2.自动化仪表的发展
自动化仪表是一种“信息机器”,其主要功能是信息形式的转换 和表达,将输入信号转换成输出信号。信号可以按时间域或频 率域表达,信号的传输则可调制成连续的模拟量或断续的数字 量形式。自动化仪表的发展一直适应着工业的需要,经历了自 力式、基地式、单元组合式、智能式和总线式几个发展阶段。 按照工作能源的不同,单元组合仪表还可分为电动单元组合仪 表(DDZ)和气动单元组合仪表(QDZ)两大类,它们都经历了Ⅰ型、 Ⅱ型、Ⅲ型3个阶段。智能仪表就是在普通的模拟仪表基础上增 加微处理器电路而形成的仪表。这里所谓的“智能”,是指现场 仪表具有普通模拟仪表拥有的信号变换、补偿、驱动等常规功 能以外,还具有一定的拟人智能的特性或功能,例如自适应、 自学习、自校正、自诊断和自组织等。
6
1.传递函数
图1-13 环节的输入-输出关系
31
2.框图变换 (1)框图的基本元素 (2)框图运算法则 (3)复杂框图的化简及应用
32
2.框图变换
图1-14 简单控制系统框图
33
(1)框图的基本元素 构成控制系统框图的基本元素包括信息、分支点、汇合点和 环节。 1)信息 2)分支点 3)汇合点 4)环节
4
1.控制理论的发展
自动控制理论是研究自动控制共同规律的技术科学,它的发展 初期是以反馈理论为基础的自动调节原理。根据自动控制技术 发展的不同阶段,自动控制理论相应经历了从经典控制理论、 现代控制理论,到控制论、信息论、系统论等学科交叉的若干 发展阶段。 经典控制理论是指在20世纪40年代到50年代末期所形成的理论 体系,它主要是研究单输入单输出(SISO)线性定常系统的分析 和设计,其理论基础是描述系统输入-输出关系的传递函数,解 决SISO系统的稳定性问题。

第五章 过程控制系统概述

第五章 过程控制系统概述

第五章过程控制系统概述第一节 自动检测与自动控制系统一、自动检测系统实现被测变量的自动检测、数据处理及显示 (记录)功能的系统叫过程自动检测系统。

自动检 测系统由两部分组成:检测对象和检测装置。

如下 图所示:检测部分检测对象 转换放大 就地显示远传显示检测装置 数据处理计算机系统若检测装置由检测部分、转换放大和就地显示环节构 成,则检测装置实际为一块就地显示的检测仪表。

如单圈弹 簧管压力表、玻璃温度计等。

若检测装置由检测部分、转换放大和数据处理环节 与远传显示仪表(或计算机系统)组成,则把检测、转换 、数据处理环节称为“传感器”(如霍尔传感器、热电 偶、热电阻等),它将被测变量转换成规定信号送给远传显 示仪表(或计算机系统)进行显示。

若传感器输出信号为国 际统一标准信号4~20mA DC电流(或20~100KPa气 压),则称其为变送器(如压力变送器、温度变送器等)。

二、过程自动控制系统能替代人工来操作生产过程的装置组成了过程自动控制系统。

由 于生产过程中“定值系统”使用最多,所以常常通过“定值系统” 来讨论过程自动控制系统。

(利用自动控制装置对生产中某些关键性参数进行自动控制,使 他们在受到外界扰动的影响而偏离正常状态时,能自动的回到 规定范围。

)过程控制系统的组成框图过程控制系统的组成过程控制系统 检测元件和变送器比较机构 检测被控制的物理量,其作用是把被控变量转化为测量值 将设定值与测量值比较并产生偏差值工艺参数需要控制的工艺设备、机器或生产过程, 如上例中的水槽 对象 控制器 根据偏差的正负、大小及变化情况,按预定的控制规律实施控制作用,比较机构和控制器通常组合在一起,它可以是气动控制器、电动控制器、可编程序控制器、分布式控制系统(DCS )等过程控制系统的组成被控变量 设定值被控对象中,通过控制能达到工艺要求设 定值的工艺变量,如上例中的水槽液位被控变量的希望值,由工艺要求决 定,如上例中的50%液位高度接受控制器送来的信号,相应地去改变操纵变 量q以稳定被控变y,最常用的执行器是气动薄膜 控制阀执行器过程控制系统的组成偏差e 操纵变量 操纵变量q q 设定值与被控变量的测量值(统一标准信号)之差由控制器操纵,能使被控变量恢复到设定值的物理量或能量,如上例中的出水量 被控变量的实际测量值 测量值Z扰动 扰动ff 除操纵变量外,作用于生产过程对象并引起被控变量变化的随机因素,如进料量的波动 起被控变量变化的随机因素,如进料量的波动第二节 传递函数与方块图变换传递函数可以直观、形象地表示出一个系统 的结构和系统各变量之间的关系。

(完整word版)过程控制系统的简介

(完整word版)过程控制系统的简介
比例度(比例带):比例度 表示比例控制输出与偏差成线性关系的比例控制器输入(偏差)的范围
当 和 均无量纲(采用计算机控制),则
故此:
(由此可见,比例度与比例系数成反比)
比例度的物理含义:如果 直接代表调节阀开度的变化量,那么 表示调节阀开度改变100%,即从全关到全开所需被调量的变化范围。只有当偏差处在这个范围以内时,调节阀的开度才与偏差成正比。超出比例带外,调节阀已处于全关或全开的状态,此时调节阀的输入输出已不再保持比例关系!
Risetime:上升时间Setting time:调节时间y(t):输出值 :峰值
1.衰减比 (稳定性)
定义为两个相邻的同相波峰值之比 ,衰减比越大,系统越稳定
系统的响应为衰减振荡 系统的响应为等幅振荡
系统的响应为发散振荡
一般随动系统,常取衰减比为10:1;定值系统常取衰减比为4:1;
2. 衰减率(快速性)ห้องสมุดไป่ตู้
过程控制系统
过程控制的主要控制对象:
温度(Temperature),压力(Pressure),液位(Liquid level),
成分(Component)和物性(Physical property)等参数
控制系统首要的要求:
系统稳定性,所有参数必须保证系统能够运行正常且具有一定的稳定裕度,通常可取衰减比作为稳定指标,随动系统,常取衰减比为10:1;定值系统常取衰减比为4:1;
时域控制性能指标:
以二阶系统的单位阶跃响应输出为例
; ;
:为系统的无阻尼自然振荡角频率
:阻尼比
:系统的振荡周期
上升时间
峰值时间: ( 为第 个峰值,峰值时间 为第一个峰值时间)
最大超调量:
过渡过程时间(调节时间):

过程控制系统概述

过程控制系统概述
程的数学模型。
2.试验辨识法
先给被控过程人为地 施加一个输入作用,然后 记录过程的输出变化量, 得到一系列试验数据或曲 线,最后再根据输入-输 出试验数据确定其模型的 结构(包括模型形式、阶 次与纯滞后时间等)与模 型的参数。
主要步骤
3.混合法
机理演绎法与试验辩识法的相互交替使用的一种方法 精品文档
锅炉汽包水位的变化过程为典型的具有反向特性的过程
在给水量阶跃增大而燃料量和蒸汽负荷不变的情况下,由于蒸发率的 降低,于是刚开始时水位会下降,然后才逐渐上升。
精品文档
3.1.3 过程(guòchéng)建模方 法
1.机理(jī lǐ)演绎法 根据被控过程的内部机理,运用已知的静态或动态平衡关系,用数学解析的方法求取被控过
3 过程控制系统(kònɡ zhì xì tǒnɡ)概述
LOGO
精品文档
主要 (zhǔyào)内 3容.1 被控过程的数学模型
3.2 简单(jiǎndān) 控制系统 3.3 常用高性能控制系统
3.4 实现特殊工艺要求的控制系统
精品文档
3.1 被控过程的数学模型
3.1.1 被控过程(guòchéng)的数学模型及 其作用 被控(bèi kònɡ)过程的数学模型是指过程的输入变量与输出变量之间定量关系的描述。
衰减振荡的传递函数一般可表示为
Ke s
G(s) (T 2s2 2Ts 1) 精品文档
(0 1)
• 具有(jùyǒu)反向特性的过 程
对过程(guòchéng)施加一阶跃输入信号,若在开始一段时间内,过程(guòchéng)输出先降 后升或先升后降,即出现相反的变化方向,则其为具有反向特性的被控过程(guòchéng)。
(a)

过程控制系统的四个环节以及相关概念

过程控制系统的四个环节以及相关概念

过程控制系统的四个环节以及相关概念过程控制系统是一种广泛应用于工业生产、交通运输、能源等领域的自动化控制技术。

它通过将输入信号与输出信号之间的映射关系进行计算,实现对被控对象的精确控制。

过程控制系统的研究和发展可以分为四个环节:传感器、执行器、控制器和监测系统。

本文将对这四个环节进行详细阐述,并介绍相关概念。

传感器是过程控制系统中的关键部件,它负责将被控对象的状态信息转换为电信号。

传感器的种类繁多,包括温度传感器、压力传感器、流量传感器等。

这些传感器可以根据不同的测量对象和测量要求进行选择。

例如,在温度控制过程中,我们可以使用温度传感器来测量炉子的温度,并将测量结果传递给控制器。

执行器是过程控制系统中的另一个重要组成部分,它负责将控制器发出的指令转化为实际的物理动作。

执行器的种类也很多,包括气动执行器、电动执行器、液压执行器等。

执行器的性能直接影响到控制系统的精度和稳定性。

因此,在选择执行器时,需要考虑其响应速度、负载能力等因素。

第三,控制器是过程控制系统的核心部件,它根据传感器提供的信号和预设的控制策略来计算输出信号。

控制器可以采用不同的算法和结构,如开环控制、闭环控制、模糊控制等。

其中,闭环控制具有较高的精度和稳定性,但需要对系统的动态特性进行建模和分析。

控制器还需要具备一定的自适应能力,以应对环境变化和被控对象非线性问题。

监测系统是过程控制系统的辅助部分,它负责对控制系统的运行状态进行实时监测和故障诊断。

监测系统可以通过人机界面、数据采集卡等方式实现对控制系统的可视化和远程操作。

当监测系统发现异常情况时,可以向控制器发送报警信号,以便及时采取措施避免事故的发生。

除了以上四个环节外,过程控制系统还涉及到一些相关概念,如采样周期、稳态误差、快速响应等。

采样周期是指传感器对被测信号进行采样的时间间隔,通常以秒为单位。

稳态误差是指系统在达到稳定状态后仍存在的偏差,它与系统的动态响应特性有关。

快速响应是指控制器能够在短时间内对输入信号做出有效反应的能力,这对于某些高速或紧急情况下的应用非常重要。

过程控制系统的概念及组成

过程控制系统的概念及组成

过程控制系统的概念及组成
过程控制系统是一种能够对实时运行的工业过程进行控制和监测的系统,能够确保工
业过程的稳定运行和质量的保证。

其主要功能是收集、处理、传输和控制信息,以实现对
工业过程的控制。

过程控制系统主要由控制模块、执行元件和信号设备等多种组件构成。

控制模块包括控制器和计算机等硬件和软件系统,是过程控制的核心部分,主要负责
处理传感器和执行元件反馈的数据,将其转换为控制指令,并向执行元件发出控制信号,
从而保证工业过程的正常运行。

计算机控制系统主要采用全自动控制,电子计算机能处理
大量复杂的信息,通过汇集、整理、分析大量数据,对控制系统进行优化。

执行元件是控制模块转换的控制指令的执行设备,包括电动执行机构、气动执行机构、液动执行机构和手动执行机构等,它们通过对工业过程中传递的能量进行定量调节,对过
程进行控制,实现对工业过程的调节和控制。

信号设备包括收集和处理过程信息的各种传感器和执行元件,如温度传感器、压力传
感器、液位传感器、流量传感器、电动执行机构和液压执行机构等。

以及各种报警装置、
显示设备、操作面板等,用来监控和调节工业过程的各项参数和指标。

过程控制系统在实际工业生产中应用广泛,可以有效提高工业过程的响应速度、自动
化程度和稳定性,使工业生产更加安全、高效、环保和经济。

过程控制系统的发展,将有
助于促进工业生产的转型和升级,实现智能化制造。

《过程控制》

《过程控制》

《过程控制》课程笔记第一章概论一、过程控制系统组成与分类1. 过程控制系统的基本组成过程控制系统主要由被控对象、控制器、执行器、检测仪表四个部分组成。

(1)被控对象:指生产过程中的各种设备、机器、容器等,它们是生产过程中需要控制的主要对象。

被控对象具有各种不同的特性,如线性、非线性、时变性等。

(2)控制器:控制器是过程控制系统的核心部分,它根据给定的控制策略,对检测仪表的信号进行处理,生成控制信号,驱动执行器动作,从而实现对被控对象的控制。

控制器的设计和选择直接影响控制效果。

(3)执行器:执行器是控制器与被控对象之间的桥梁,它接收控制器的信号,调节阀门的开度或者调节电机转速,从而实现对被控对象的控制。

执行器的响应速度和精度对控制系统的性能有很大影响。

(4)检测仪表:检测仪表用于实时测量被控对象的各项参数,如温度、压力、流量等,并将这些参数转换为电信号,传输给控制器。

检测仪表的准确性和灵敏度对控制系统的性能同样重要。

2. 过程控制系统的分类根据控制系统的结构特点,过程控制系统可以分为两大类:开环控制系统和闭环控制系统。

(1)开环控制系统:开环控制系统没有反馈环节,控制器根据给定的控制策略,直接生成控制信号,驱动执行器动作。

开环控制系统的优点是结构简单,成本低,但缺点是控制精度较低,容易受到外部干扰。

(2)闭环控制系统:闭环控制系统具有反馈环节,控制器根据检测仪表的信号,实时调整控制策略,生成控制信号,驱动执行器动作。

闭环控制系统的优点是控制精度高,抗干扰能力强,但缺点是结构复杂,成本较高。

二、过程控制系统性能指标1. 稳态误差:稳态误差是指系统在稳态时,输出值与设定值之间的差值。

稳态误差越小,表示系统的控制精度越高。

稳态误差可以通过调整控制器的参数来减小。

2. 动态性能:动态性能是指系统在过渡过程中,输出值随时间的变化规律。

动态性能指标包括上升时间、调整时间、超调量等。

动态性能的好坏直接影响到系统的响应速度和稳定性。

过程控制系统的基本概念

过程控制系统的基本概念
第十章 过程控制系统的 基本概念
一、过程控制系统
二、过程控制系统的组成 三、控制系统方框图
四、过程控制系统的系统
自动控制:就是在没有人直接参与的情况下, 利用外加的设备或装置(控制装置),使机器、 设备或生产过程(控制对象)的某个工作状态或 参数(被控量)按照预定的规律自动地运行。
文本 本次讲课到此结束 谢谢您的聆听
自动控制系统的未来发展前景 : 现代化工厂向规模集约化方向发展时,生产 工艺对控制系统的可靠性、运算能力、扩展能 力、开放性、操作及监控水平等方面提出了越 来越高的要求。传统的DCS系统已经不能满足 现代工业自动化控制的设计标准和要求。随着 工业自动化控制理论、计算机技术和现代通信 技术的迅速发展,自动控制系统的未来发展方 向将向智能化、网络化、全集成自动化等方向 发展。
自动控制系统:是在无人直接参与下可使生产过 程或其他过程按期望规律或预定程序进行的控制 系统。
过程控制系统:以表征生产过程的参量为被 控制量使之接近给定值或保持在给定范围内 的自动控制系统。
1
二、控制系统的组成
对象:被控制的装置或设备,其输出即为被控量; 检测元件及变送器:检测元件的功能是感受并测 出被控量的大小,变送器的作用则是检测元件测 出的被控量变换成控制器所需要的信号形式; 控制器:它将检测元件或变送器送来的信号与被 控变量的设定值信号进行比较得出偏差信号,根 据这个偏差信号的大小按一定的运算规律计算控 制信号u,然后将控制信号传送给执行器。 执行器:其作用是接受控制器发出的控制信号u, 直接改变操纵量q(例如电流、重油、煤气等的 量),即调整能量或物料的平衡,使被控量回复 至设定数值。
2010年服务工作总结
三、控制系统方框图
四、过程控制系统的分类

过程控制系统(1)

过程控制系统(1)

第一章过程控制系统概述1.五大参量:温度、压力、流量、物位(液位)、成分2.过程控制系统的组成:控制器,执行器,被控过程和测量变送等组成;除被控对象外都是变送单元。

过程控制系统由两大部分组成:过程仪表和被控对象过程控制系统由三大部分组成:检测变送单元,控制器,被控对象。

系统中的名词术语:1)被控过程:生产过程中被控制的工艺设备或装置(即从被控参数检测点至调节阀之间的管道或设备)。

2)检测变送器:检测量转换为统一标准的电信号。

3)调节器(控制器):实时地对被控系统施加控制用。

4)执行器:将控制信号进行放大以驱动调节阀。

5)被控参数:被控过程内要求保持稳定的工艺参数。

6)控制参数:使被控参数保持期望值的物料量或能量。

7)设定值:被控参数的预定值。

8)测量值:测量变送器输出的被控参数值。

9)偏差:设定值与测量值之差。

10)扰动作用:作用于被控对象并引起被控变量变化的作用。

11)控制作用:调节器的输出(控制调节阀的开度)。

控制器,执行器和检测变送环节称为过程仪表;过程控制系统由过程仪表和被控过程组成。

3.性能指标:包含了对控制系统的稳定性、准确性和快速性三方面的评价。

稳态误差ess:描述系统稳态特性的唯一指标(静态指标)。

衰减比n:n<1,表示过渡过程为发散振荡;n=1,表示过渡过程为等幅振荡;n>1,表示过渡过程为衰减振荡。

一般为4:1-10:1,4:1为理想指标,也是用来调试的。

前馈,反馈控制特点(1)反馈控制系统:根据系统被控参数与给定值的偏差进行工作;是按照偏差进行调节,达到减小或消除偏差的目的;偏差值是系统调节的依据;可以有多个反馈信号;属于闭环控制系统。

(2)前馈控制系统:根据扰动大小进行控制,扰动是控制的依据;控制及时;属于开环控制系统;实际生产中不采用第二章过程检测仪表控制器输出:1.电动仪表:4-20mA,DC(远距离);1-5V,DC(短距离)气动仪表:20-100Kpa(100m)直流电流4-20mA,空气压力20-100Kpa为通用标准信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⑴ 单回路控制系统
原料(混合)
TC M
TT
T
冷却液输出
产品 冷却液
⑵ 串级控制系统
原料(混合)
TC1
外给
TT1
T
冷却液输出
TC2
M
TT2
T′
产品 冷却液
㈡、管式加热炉温度控制 1.管式加热炉原理
出口
炉膛 T 燃料
原料油
2.控制方案
⑴ 单回路控制系统 T TT 出口
TC M 燃料 炉膛
原料油
⑵ 串级控制系统
2.局限性:
⑴、不可能针对每一个干扰都设计并应用一套独立的前馈控 制系统。 ⑵、对不可测的干扰无法实现前馈控制。 ⑶、前馈控制调节规律难以实现。
五、前馈控制的几种形式 1.单纯前馈控制控制系统 ⑴ 换热器温度控制
FC
FT
M

TC
TT
⑵ 锅炉汽包液位控制
LT
FT1
FT1
M
FC ∑ LC

前馈控制一般不单独使用(因为达不到预期效果),实际上 常与反馈控制混合使用,即组成前馈—反馈控制系统。
TC1 外给 TT1 T 出口
TC2
M 燃料
TT2 T′ 炉膛
原料油
㈢、锅炉主蒸汽温度控制
1.锅炉原理
2.控制方案
⑴ 单回路控制系统
饱和蒸汽 T′ T 过热蒸汽
TT
给水 减温水
M
TC
给定
⑵ 串级控制系统
饱和蒸汽
T′ T 过热蒸汽
TT2
TT1
给水
给定
M TC2 TC1
外给
减温水
二、串级控制系统典型方框图
3.2.2 简单控制系统设计
① 被控变量和操纵变量的选择
设计步骤
② 调节规律的选择
③ 自动化仪表设备选择(包括软件编制)
④ 控制系统组建
一、被控变量选择
生产过程中希望保持恒定或按一定规律变化的变量 一般选择对产品的质量、产量或安全生产具有决定性作 用的关键变量。
选择原则:
① 应能代表一定的工艺操作指标或能反映工艺操作状态,一 般都为工艺过程中比较重要的变量。 ② 该量在工艺操作过程中经常受到一些干扰而发生变化,为 维持恒定需较频繁调节。 ③ 尽量选直接参数。如直接参数难以测量,则应选与直接参
理论计算法 整定方法
一、临界比例度法
工程整定法
(实验整定法)
二、衰减曲线法
三、经验凑试法
3.3 常用高性能控制系统
主要内容
串级 控制系统
前馈 控制系统
大滞后过程 控制系统
3.3.1 串级控制系统
一、组成及工作原理
㈠ 反应釜温度控制
原料(混合)
1.反应釜原理
冷却液输出
夹套
反应槽
T℃
槽壁
冷却液
产品
2.温度控制方案
FT
Ff FIC MFC1ຫໍສະໝຸດ MTCFT2
加 热 炉
空气Q2
三、比值系数计算
煤气Q1
FT
FC1
M
I1
Ff
I2
FIC FT2
M
加 热 炉
空气Q2

值:K=Q2/Q1
比值系数:K′=(I2-4)/(I1-4)
1.流量与测量信号成非线性关系时
I24 q 1max K'K I 4 q 2max 1
当数学模型是采用数学方程式来描述时,称为参量模型。对象的 参量模型可以用描述对象输入、输出关系的微分方程式、偏微分方程 式、状态方程、差分方程等形式来表示。
被控过程的数学模型在过程控制中的作用:
1.全面、深入地掌握被控过程的数学模型是控制系统设计的基础。 2.良好数学模型的建立是控制器参数确定的重要依据。 3.数学建模是仿真或研究、开发新型控制策略的必要条件。 4.设计与操作生产工艺及设备时的指导。通过对生产工艺过程及相关设备 数学模型的分析或仿真,可以为生产工艺及设备的设计与操作提供指导。
2.流量与测量信号成线性关系时
2
q1max I2' 4 K' K ' q2max I1 4
四、比值控制系统的实现
具体实现方案有两种: 1.把两个流量的测量值相除,
其商作为调节器的反馈值,
称为相除控制方案。
2.把一个流量的测量值乘以 比值系数,其乘积作为副调 节器的设定值,称为相乘控 制方案。
例 a :温度控制系统 例 b : PH值控制系统图
2.调节器选择
主要依据:调节规律、输入通道数
3.其它仪表选择
变送器、配电器、执行器、记录仪、显示仪、计算机等
五、自动控制系统组建
操纵 变量
给定值 Z
调节器
-X
I
执行器
对象
被控变量
测量变送
3.2.3 参数整定
参数整定:对某一具体的控制系统,确定最合适的比例度、积 分时间和微分时间。
3 过程控制系统概述
LOGO
主要内容
3.1 被控过程的数学模型 3.2 简单控制系统 3.3 常用高性能控制系统
3.4 实现特殊工艺要求的控制系统
3.1 被控过程的数学模型
3.1.1 被控过程的数学模型及其作用
被控过程的数学模型是指过程的输入变量与输出变量之间定量关系的描述。 其中:过程的输入变量至输出变量的信号联系称为通道; 控制作用至输出变量的信号联系称为控制通道; 干扰作用至输出变量的信号联系称为干扰通道; 过程的输出为控制通道与干扰通道的输出之和。
三、调节规律的选择 PID调节规律:
1 de y Kp (e edt Td ) Ti dt
PID调节规律阶跃响应特性曲线
PID调节规律特点综述:
四、自动化仪表选择
1.测量元件选择
① 测量元件时间常数(主要指测温元
件时间常数) 会造成测量滞后
② 测量元件纯滞后(主要由测量元件安装位置引起)
系统结构特点:两个闭会回路(主回路、副回路),两个变量 (主变量、副变量),两个调节器(主调节器、副调节器,一 个调节器的输出作为另一个调节器的设定值),两个测量变送 器(主测量变送器、副测量变送器)。
三 、应用范围
1.容量滞后较大的过程 2.纯延时较大的过程
3.干扰变化激烈且幅度 较大的过程
4.参数相关联的过程
煤气Q1
FT
Ff FIC FT2 M
加 热 炉
空气Q2
② 方框图
比值给定器
测量变送2 测量变送1 Q1
调节器
执行器
对象
Q2
③ 特点
A、缺点:设备多,投资多;
B、优点:能保证Q2与Q1成比例。
3.双闭环比值控制系统 ① 原理图
煤气Q1
FT Ff FIC FT2 M
FC1
M
加 热 炉
空气Q2
② 方框图
数成单值函数的间接参数。
④ 该量应能够被测量出来,且有足够的灵敏度。 ⑤ 应考虑工艺合理性和国产仪表产品现状。
⑥ 该量应是独立可控的。
二、操纵变量的选择
用来克服干扰对被控变量的影响,实现控制作用的变量。
选择原则:
① 操纵变量应是可控的,即工艺上允许调节的变量。 ② 操纵变量一般比其它干扰对被控变量的影响更加灵敏。
上升。
3.1.3 过程建模方法
1.机理演绎法 根据被控过程的内部机理,运用已知的静态或动态平衡关系,用数学解析 的方法求取被控过程的数学模型。 2.试验辨识法 先给被控过程人 为地施加一个输入作 用,然后记录过程的 输出变化量,得到一 系列试验数据或曲线, 最后再根据输入-输 出试验数据确定其模 型的结构(包括模型 形式、阶次与纯滞后 时间等)与模型的参 数。 主要步骤 3.混合法 机理演绎法与试验辩识法的相互交替使用的一种方法
3)纯滞后的存在使系统的开环频率特性相角滞后随频率 的增大而增大,结果使闭环系统的稳定裕度下降。而要保证其 稳定裕度,只能减小调节器的放大倍数,但这将导致调节质量 的下降。
解决方案:微分先行、中间反馈、斯密斯预估、内模控制等。
3.4 实现特殊工艺要求的控制系统
主要内容
比值 控制系统 均匀 控制系统 分程 控制系统 选择性 控制系统
用于控制的数学模型(a、b)与用于工艺设计与分析的 数学模型(c)不完全相同。 一般是在 工艺流程和设 备尺寸等都确 定的情况,研 究对象的输入 变量是如何影 响输出变量的。
(a) 研 究 的目的是 为了使所 设计的控 制系统达 到更好的 控制效果。 (b) 在产品规格 和产量已确定的 情况下,通过模 型计算,确定设 备的结构、尺寸、 工艺流程和某些 工艺条件。 (c)
3.2 简单控制系统
3.2.1 概述
对象
LT
LIC M
单回路控制系统:由一个测量元件、一个变送器、一个调
节器、一个执行器和一个对象组成的单 闭环控制系统。也称简单控制系统。
冷液
蒸汽
M
TIC
TT
热液
对以上两个控制系统可用下述方框图表示:
被控对象
简单控制系统组成
测量变送器
控制(调节)器
控制阀(包括执行器)
衰减振荡的传递函数一般可表示为
Ke s G( s) (T 2 s 2 2 Ts 1)
(0 1)
• 具有反向特性的过程
对过程施加一阶跃输入信号,若在开始一段时间内,过程输出先降后升 或先升后降,即出现相反的变化方向,则其为具有反向特性的被控过程。
锅炉汽包水位的变化过程为典型的具有反向特性的过程 在给水量阶跃增大而燃料量和蒸汽负荷不变的情况下, 由于蒸发率的降低,于是刚开始时水位会下降,然后才逐渐
数学模型的表达形式
相关文档
最新文档