2019~2020学年度第二学期南康六中八年级第四周周测数学试卷及答案
2019-2020学年八年级下学期期中数学试卷(含解析)
2019-2020学八年级第二学期期中数学试卷一、选择题1.(3分)下列运算正确的是()A.=﹣2B.C.=x D.2.(3分)下列式子是最简二次根式的是()A.B.C.D.3.(3分)若在实数范围内有意义,则x的取值范围是()A.x<﹣2B.x>﹣2C.x≤﹣2D.x≥﹣24.(3分)下列二次根式中,与是同类二次根式的是()A.B.C.D.5.(3分)下列计算正确的是()A.=±2B.C.2﹣=2D.6.(3分)下列计算正确的是()A.=x B.x2•x5=x10C.(x2)3=x6D.=+ 7.(3分)下列各组数据不是勾股数的是()A.2,3,4B.3,4,5C.5,12,13D.6,8,10 8.(3分)如图,正方形ABCD的面积是()A.5B.25C.7D.19.(3分)如图,数轴上的点A表示的数是﹣2,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为()A.B.+2C.﹣2D.210.(3分)由下列条件不能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.AB:BC:AC=3:4:5C.∠A+∠B=∠C D.AB2=BC2+AC211.(3分)如图,△ABC中,∠ACB=90°,AC=2,BC=3.设AB的长是m,下列关于m的四种说法,其中,所有正确说法的序号是()①m是无理数②m是13的算术平方根③2<m<3④m可以用数轴上的一个点来表示A.①②B.①③C.①②④D.②③④12.(3分)如图,高速公路上有A、B两点相距10km,C、D为两村庄,已知DA=4km,CB=6km.DA⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则EB的长是()kmA.4B.5C.6D.二、填空题(本大题共6小题,每小题3分,共18分)请把答案填在答题卷指定的位置上.13.(3分)将二次根式化为最简二次根式.14.(3分)化简:=.15.(3分)如果最简二次根式与是同类二次根式,那么a=.16.(3分)已知a=﹣1,则a2+2a+2的值是.17.(3分)如图,两树高分别为10米和4米,相距8米,一只鸟从一树的树梢飞到另一树的树梢,问小鸟至少飞行米.18.(3分)如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.三、解答题(本大题共9小题,共66分)请在答题卷指定位置上写出解答过程.19.(6分)计算:(1);(2).20.(6分)计算:(1);(2).21.(8分)计算:(3﹣)(3+)+(2﹣)22.(8分)已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2(2)a2﹣2ab+b2.23.(8分)如图,在平面直角坐标系中,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.(1)直接写出点A,B,C的坐标;(2)试判断△ABC是不是直角三角形,并说明理由.24.(10分)一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?25.(10分)如图,小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端9米处,发现此时绳子底端距离打结处约3米,请算出旗杆的高度.26.(5分)如图,某工厂C前面有一条笔直的公路,原来有两条路AC、BC可以从工厂C 到达公路,经测量AC=600m,BC=800m,AB=1000m,现需要修建一条公路,使工厂C到公路的距离最短.请你帮工厂C设计一种方案,并求出新建的路的长.27.(5分)如图,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m.(1)试判断以点A,B,C为顶点的三角形的形状,并说明理由;(2)求该图的面积.参考答案一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,请用2B铅笔在答题卷上将选定的答案代号涂黑.1.(3分)下列运算正确的是()A.=﹣2B.C.=x D.解:A.=|﹣2|=2,此选项错误;B.与不是同类二次根式,不能合并,此选项错误;C.=|x|,此选项错误;D.==×=2,此选项正确;故选:D.2.(3分)下列式子是最简二次根式的是()A.B.C.D.解:A、=2,则不是最简二次根式,故此选项不合题意;B、是最简二次根式,故此选项符合题意;C、==,则不是最简二次根式,故此选项不合题意;D、=,则不是最简二次根式,故此选项不合题意;故选:B.3.(3分)若在实数范围内有意义,则x的取值范围是()A.x<﹣2B.x>﹣2C.x≤﹣2D.x≥﹣2解:由题意,得x+2≥0,解得x≥﹣2.故选:D.4.(3分)下列二次根式中,与是同类二次根式的是()A.B.C.D.解:A、=2,与不是同类二次根式,故本选项错误;B、=3,与不是同类二次根式,故本选项错误;C、=,与是同类二次根式,故本选项正确;D、与不是同类二次根式,故本选项错误.故选:C.5.(3分)下列计算正确的是()A.=±2B.C.2﹣=2D.解:A、原式=2,所以A选项错误;B、原式==,所以B选项正确;C、原式=,所以C选项错误;D、与不能合并,所以D选项错误.故选:B.6.(3分)下列计算正确的是()A.=x B.x2•x5=x10C.(x2)3=x6D.=+解:A、,错误;B、x2•x5=x7,错误;C、(x2)3=x6,正确;D、,错误;故选:C.7.(3分)下列各组数据不是勾股数的是()A.2,3,4B.3,4,5C.5,12,13D.6,8,10解:A、12+32≠42 ,不能构成直角三角形,所以不是勾股数,故符合题意;B、32+42=52,能构成直角三角形,所以是勾股数,故不符合题意;C、52+122=132,能构成直角三角形,所以是勾股数,故不符合题意;D、62+82=102,能构成直角三角形,所以是勾股数,故不符合题意;故选:A.8.(3分)如图,正方形ABCD的面积是()A.5B.25C.7D.1解:设正方形的边长为c,由勾股定理可知:c2=32+42,∴c2=25,故选:B.9.(3分)如图,数轴上的点A表示的数是﹣2,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为()A.B.+2C.﹣2D.2解:由题意可得,AB=3,BC=2,AB⊥BC,∴AC===,∴AD=.∴点D表示数为﹣2.故选:C.10.(3分)由下列条件不能判断△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.AB:BC:AC=3:4:5C.∠A+∠B=∠C D.AB2=BC2+AC2解:A、∵∠A:∠B:∠C=3:4:5,且∠A+∠B+∠C=180°,可求得∠C≠90°,故△ABC不是直角三角形;B、不妨设AB=3x,BC=4x,AC=5x,此时AB2+BC2=25x2=AC2,故△ABC是直角三角形;C、∠A+∠B=∠C,且∠A+∠B+∠C=180°,可求得∠C=90°,故△ABC是直角三角形;D、AB2=BC2+AC2,满足勾股定理的逆定理,故△ABC是直角三角形;故选:A.11.(3分)如图,△ABC中,∠ACB=90°,AC=2,BC=3.设AB的长是m,下列关于m的四种说法,其中,所有正确说法的序号是()①m是无理数②m是13的算术平方根③2<m<3④m可以用数轴上的一个点来表示A.①②B.①③C.①②④D.②③④解:由勾股定理可知:m===,故①②④正确,∵3<<4,∴3<m<4,故③错误,故选:C.12.(3分)如图,高速公路上有A、B两点相距10km,C、D为两村庄,已知DA=4km,CB=6km.DA⊥AB于A,CB⊥AB于B,现要在AB上建一个服务站E,使得C、D两村庄到E站的距离相等,则EB的长是()kmA.4B.5C.6D.解:设BE=x,则AE=(10﹣x)km,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=42+(10﹣x)2,在Rt△BCE中,CE2=BC2+BE2=62+x2,由题意可知:DE=CE,所以:62+x2=42+(10﹣x)2,解得:x=4km.所以,EB的长是4km.故选:A.二、填空题(本大题共6小题,每小题3分,共18分)请把答案填在答题卷指定的位置上.13.(3分)将二次根式化为最简二次根式5.解:原式=5,故答案为:514.(3分)化简:=.解:原式===,故答案为.15.(3分)如果最简二次根式与是同类二次根式,那么a=1.解:∵最简二次根式与是同类二次根式,∴1+a=4a﹣2,解得a=1.故答案为1.16.(3分)已知a=﹣1,则a2+2a+2的值是12.解:∵a=﹣1,∴a2+2a+2=(a+1)2+1=(﹣1+1)2+1=11+1=12.故答案为:12.17.(3分)如图,两树高分别为10米和4米,相距8米,一只鸟从一树的树梢飞到另一树的树梢,问小鸟至少飞行10米.解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,则EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6(m),在Rt△AEC中,AC═=10(m),答:小鸟至少飞行10米.故答案为:10.18.(3分)如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为10.解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.三、解答题(本大题共9小题,共66分)请在答题卷指定位置上写出解答过程.19.(6分)计算:(1);(2).解:(1)原式=7﹣25=﹣18;(2)原式==.20.(6分)计算:(1);(2).解:(1)原式=2+2×2=+4=5;(2)原式=+6﹣=2+6﹣4=2+2.21.(8分)计算:(3﹣)(3+)+(2﹣)解:原式=9﹣7+2﹣2=2.22.(8分)已知a=3+,b=3﹣,分别求下列代数式的值:(1)a2﹣b2(2)a2﹣2ab+b2.解:(1)∵a=3+,b=3﹣,∴a+b=3++3﹣=6,a﹣b=3+﹣3+=2,则a2﹣b2=(a+b)(a﹣b)=6×=12;(2)由(1)知a﹣b=2,∴a2﹣2ab+b2=(a﹣b)2=(2)2=8.23.(8分)如图,在平面直角坐标系中,正方形网格的每个小方格都是边长为1的正方形,△ABC的顶点都在格点上.(1)直接写出点A,B,C的坐标;(2)试判断△ABC是不是直角三角形,并说明理由.解:(1)A(﹣1,5),B(﹣5,2),C(﹣3,1);(2)△ABC是直角三角形.证明:∵AB=,BC=,AC=,∴.由勾股定理的逆定理可知,△ABC是直角三角形,∠ACB=90°.24.(10分)一架梯子长25米,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米到A′,那么梯子的底端在水平方向滑动了几米?解:(1)由题意得:AC=25米,BC=7米,AB==24(米),答:这个梯子的顶端距地面有24米;(2)由题意得:BA′=20米,BC′==15(米),则:CC′=15﹣7=8(米),答:梯子的底端在水平方向滑动了8米.25.(10分)如图,小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端9米处,发现此时绳子底端距离打结处约3米,请算出旗杆的高度.解:设旗杆的高度为x米,根据勾股定理,得x2+92=(x+3)2,解得:x=12;答:旗杆的高度为12米26.(5分)如图,某工厂C前面有一条笔直的公路,原来有两条路AC、BC可以从工厂C 到达公路,经测量AC=600m,BC=800m,AB=1000m,现需要修建一条公路,使工厂C到公路的距离最短.请你帮工厂C设计一种方案,并求出新建的路的长.解:过A作CD⊥AB,垂足为D,∵6002+8002=10002,∴AC2+BC2=AB2,∴∠ACB=90°,S△ACB=AB•CD=AC•BC,×600×800=×1000×DB,解得:BD=480,∴新建的路的长为480m.27.(5分)如图,∠ADC=90°,AD=4m,CD=3m,AB=13m,BC=12m.(1)试判断以点A,B,C为顶点的三角形的形状,并说明理由;(2)求该图的面积.解:(1)以点A,B,C为顶点的三角形的形状是直角三角形,理由是:∵∠ADC=90°,AD=4m,CD=3m,∴由勾股定理得:AC==5cm,∵AB=13m,BC=12m,∴AC2+BC2=AB2,∴∠ACB=90°,即以点A,B,C为顶点的三角形的形状是直角三角形;(2)图形的面积S=S△ACB﹣S△ADC===24(cm)2.。
(精品模拟)人教版2019-2020学年八年级(下)期中数学试卷解析版
人教版2019-2020学年八年级(下)期中数学试卷姓名座号题号一二三总分得分考后反思(我思我进步):一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,请将正确答案的字母代号填入对应题目后的括号内)1.(3分)下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个B.2个C.3个D.4个2.(3分)如果一个多边形的内角和是外角和的5倍,那么这个多边形的边数是()A.10B.11C.12D.133.(3分)在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()A.75°B.60°C.45°D.30°4.(3分)如图,∠BAC=90°,AD⊥BC,则图中与∠ABD互余的角有()A.2个B.3个C.4个D.5个5.(3分)如图,若在象棋棋盘上建立直角坐标系,使“帥”位于点(﹣1,﹣2),“馬”位于点(2,﹣2),则“兵”位于点()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)6.(3分)如图所示,在▱ABCD中,对角线AC、BD交于点O,下列式子中一定成立的是()A.AC⊥BD B.OA=OC C.AC=BD D.AO=OD 7.(3分)下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形8.(3分)如图所示,在矩形ABCD中,O是BC的中点,∠AOD=90°,若矩形ABCD 的周长为30cm,则AB的长为()A.5 cm B.10 cm C.15 cm D.7.5 cm 9.(3分)如图,正方形ABCD中,∠DAF=25°,AF交对角线BD于点E,那么∠BEC等于()A.45°B.60°C.70°D.75°10.(3分)在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限11.(3分)任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形D.△EHF为等腰三角形12.(3分)如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在Rt△ABC内且满足S△ABC =3S△PAC,则点P到A,C两点距离之和PA+PC的最小值为()A.1+B.2C.D.二、填空题(本大题共6小题,每小题3分,共18分)请将答案填在答题卷上.第14题图13.(3分)在平面直角坐标系中,点(﹣4,4)在第象限.14.(3分)如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为.15.(3分)已知菱形ABCD的两条对角线长分别为4和5,则其面积为.16.(3分)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC 于点F,E为垂足,连接DF,则∠CDF的度数=度.17.(3分)如图所示,已知▱ABCD,下列条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC中,能说明▱ABCD是矩形的有(填写序号).18.(3分)在平面直角坐标系中,小明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n 被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是.三、解答题(本大题共8题,共66分)19.(6分)如图,这是某市部分简图,请以火车站为坐标原点建立平面直角坐标系,并分别写出各地的坐标.20.(6分)如图,顺次连结四边形ABCD各边中点E,F,G,H,得到的四边形EFGH,求证:四边形EFGH是平行四边形.21.(8分)如图,矩形ABCD和矩形AEFG关于点A中心对称,(1)四边形BDEG是菱形吗?请说明理由.(2)若矩形ABCD面积为8,求四边形BDEG的面积.22.(8分)如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O.(1)求证:△ABC≌△DCB;(2)求证:△OBC是等腰三角形.23.(8分)如图所示,AD为△ABC的角平分线,DE⊥AC于点E,DF⊥AB于点F,EF交AD于点M,求证:AM⊥EF.24.(8分)如图所示,在菱形ABCD中,AE⊥BC,E为垂足,且BE=CE,AB=2,求:(1)∠BAD的度数;(2)对角线AC的长及菱形ABCD的周长.25.(10分)如图,矩形ABCD中,AC、BD相交于O,AE平分∠BAD交BC于E,若∠CAE=15°,求∠BOE的度数.26.(12分)平行四边形ABCD中,AB=2cm,BC=12cm,∠B=45°,点P在边BC 上,由点B向点C运动,速度为每秒2cm,点Q在边AD上,由点D向点A 运动,速度为每秒1cm,连接PQ,设运动时间为t秒.(1)当t为何值时,四边形ABPQ为平行四边形;(2)设四边形ABPQ的面积为ycm2,请用含有t的代数式表示y的值;(3)当P运动至何处时,四边形ABPQ的面积是▱ABCD面积的四分之三?参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是正确的,请将正确答案的字母代号填入对应题目后的括号内)1.(3分)下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有()A.1个B.2个C.3个D.4个【分析】根据中心对称图形的概念即可求解.【解答】解:第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,故选:B.【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.2.(3分)如果一个多边形的内角和是外角和的5倍,那么这个多边形的边数是()A.10B.11C.12D.13【分析】根据多边形的内角和公式(n﹣2)•180°与外角和定理列出方程,然后求解即可.【解答】解:设这个多边形是n边形,根据题意得,(n﹣2)•180°=5×360°,解得n=12.故选:C.【点评】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.3.(3分)在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()A.75°B.60°C.45°D.30°【分析】根据直角三角形两锐角互余的性质列式进行计算即可得解.【解答】解:∵在一个直角三角形中,有一个锐角等于60°,∴另一个锐角的度数是90°﹣60°=30°.故选:D.【点评】本题主要考查了直角三角形两锐角互余的性质,是基础题,熟记性质是解题的关键.4.(3分)如图,∠BAC=90°,AD⊥BC,则图中与∠ABD互余的角有()A.2个B.3个C.4个D.5个【分析】此题直接利用直角三角形两锐角之和等于90°的性质即可顺利解决.【解答】解:∵∠BAC=90°∴∠ABD+∠C=90°;又∵AD⊥BC,∴∠BDA=90°,∴∠ABD+∠BAD=90°,故图中与∠ABD互余的角有2个.故选:A.【点评】本题主要考查了直角三角形的性质,根据互余定义,找到与∠ABD和为90°的角即可.5.(3分)如图,若在象棋棋盘上建立直角坐标系,使“帥”位于点(﹣1,﹣2),“馬”位于点(2,﹣2),则“兵”位于点()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(﹣3,1)D.(1,﹣2)【分析】直接利用已知点坐标得出原点位置,进而得出答案.【解答】解:如图所示:兵”位于点为:(﹣3,1).故选:C.【点评】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.6.(3分)如图所示,在▱ABCD中,对角线AC、BD交于点O,下列式子中一定成立的是()A.AC⊥BD B.OA=OC C.AC=BD D.AO=OD【分析】根据平行四边形的对角线互相平分即可判断.【解答】解:A、菱形的对角线才相互垂直.故不对.B、根据平行四边形的对角线互相平分可知此题选B.C、只有平行四边形为矩形时,其对角线相等,故也不对.D、只有平行四边形为矩形时,其对角线相等且平分.故也不对.故选:B.【点评】此题主要考查平行四边形的性质.即平行四边形的对角线互相平分.7.(3分)下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形【分析】直接利用菱形的判定定理、矩形的性质与平行四边形的判定定理求解即可求得答案.【解答】解:A、对角线互相垂直且平分的四边形是菱形;故本选项错误;B、矩形的对角线相等,菱形的对角线互相垂直;故本选项错误;C、两组对边分别平行的四边形是平行四边形;故本选项错误;D、四边相等的四边形是菱形;故本选项正确.故选:D.【点评】此题考查了矩形的性质、菱形的判定以及平行四边形的判定.注意掌握各特殊平行四边形对角线的性质是解此题的关键.8.(3分)如图所示,在矩形ABCD中,O是BC的中点,∠AOD=90°,若矩形ABCD 的周长为30cm,则AB的长为()A.5 cm B.10 cm C.15 cm D.7.5 cm【分析】首先证明△ABO≌△DCO,推出OA=OB,由∠AOD=90°,推出∠OAD=∠ODA=45°,由∠BAD=∠CDA=90°,推出∠BAO=∠CDO=45°,推出∠BAO=∠AOB,∠CDO=∠COD,推出AB=BO=OC=CD,设AB=CD=x,则BC=AD=2x,由题意x+x+2x+2x=30,解方程即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AB=CD,∠B=∠C=90°,在△ABD和△DCO中,,∴△ABO≌△DCO,∴OA=OB,∵∠AOD=90°,∴∠OAD=∠ODA=45°,∵∠BAD=∠CDA=90°,∴∠BAO=∠CDO=45°,∴∠BAO=∠AOB,∠CDO=∠COD,∴AB=BO=OC=CD,设AB=CD=x,则BC=AD=2x,由题意x+x+2x+2x=30,∴x=5,∴AB=5,故选:A.【点评】本题考查矩形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会构建方程解决问题,属于中考常考题型.9.(3分)如图,正方形ABCD中,∠DAF=25°,AF交对角线BD于点E,那么∠BEC等于()A.45°B.60°C.70°D.75°【分析】首先证明△AED≌△CED,即可证明∠ECF=∠DAF=25°,从而求得∠BEC,再根据三角形内角和定理即可求解.【解答】解:∵AD=CD,∠ADE=∠CDE,DE=DE∴△AED≌△CED∴∠ECF=∠DAF=25°,又∵在△DEC中,∠CDE=45°,∴∠CED=180°﹣25°﹣45°=110°,∴∠BEC=180°﹣110°=70°.故选:C.【点评】本题主要考查了正方形的性质,正确理解,证明△AED≌△CED是解题的关键.10.(3分)在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】分点P的横坐标是正数和负数两种情况讨论求解.【解答】解:①m﹣3>0,即m>3时,﹣2m<﹣6,4﹣2m<﹣2,所以,点P(m﹣3,4﹣2m)在第四象限,不可能在第一象限;②m﹣3<0,即m<3时,﹣2m>﹣6,4﹣2m>﹣2,点P(m﹣3,4﹣2m)可以在第二或三象限,综上所述,点P不可能在第一象限.故选:A.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).11.(3分)任意一条线段EF,其垂直平分线的尺规作图痕迹如图所示.若连接EH、HF、FG,GE,则下列结论中,不一定正确的是()A.△EGH为等腰三角形B.△EGF为等边三角形C.四边形EGFH为菱形D.△EHF为等腰三角形【分析】根据等腰三角形的定义、菱形的定义、等边三角形的定义一一判断即可.【解答】解:A、正确.∵EG=EH,∴△EGH是等腰三角形.B、错误.∵EG=GF,∴△EFG是等腰三角形,若△EFG是等边三角形,则EF=EG,显然不可能.C、正确.∵EG=EH=HF=FG,∴四边形EHFG是菱形.D、正确.∵EH=FH,∴△EFH是等腰三角形.故选:B.【点评】本题考查线段的垂直平分线的性质、作图﹣基本作图、等腰三角形的定义等知识,解题的关键是灵活一一这些知识解决问题,属于中考常考题型.12.(3分)如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,点P在Rt△ABC内且满足S△ABC =3S△PAC,则点P到A,C两点距离之和PA+PC的最小值为()A.1+B.2C.D.【分析】如图在BC 上取一点E,使得EC=BC=1,作EF∥AC,作点C关于EF的对称点C′,连接AC′交EF于P,连接PC,此时此时S△ABC =3S△PAC,PA+PC的值最小.【解答】解:如图在BC 上取一点E,使得EC=BC=1,作EF∥AC,作点C关于EF的对称点C′,连接AC′交EF于P,连接PC,此时此时S△ABC=3S△PAC,PA+PC 的值最小.PA+PC的最小值=PA+PC′=AC′==2.故选:B.【点评】本题考查轴对称﹣最短问题,三角形的面积,勾股定理等知识,解题的关键是学会利用轴对称解决最短问题.二、填空题(本大题共6小题,每小题3分,共18分)请将答案填在答题卷上.第14题图13.(3分)在平面直角坐标系中,点(﹣4,4)在第二象限.【分析】根据各象限内点的坐标特征解答.【解答】解:点(﹣4,4)在第二象限.故答案为:二.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).14.(3分)如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为110°.【分析】首先由在▱ABCD中,∠1=20°,求得∠BAE的度数,然后由BE⊥AB,利用三角形外角的性质,求得∠2的度数.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAE=∠1=20°,∵BE⊥AB,∴∠ABE=90°,∴∠2=∠BAE+∠ABE=110°.故答案为:110°.【点评】此题考查了平行四边形的性质以及三角形外角的性质.注意平行四边形的对边互相平行.15.(3分)已知菱形ABCD的两条对角线长分别为4和5,则其面积为10.【分析】由菱形ABCD的两条对角线长分别为4和5,根据菱形的面积等于对角线积的一半,即可求得其面积.【解答】解:∵菱形ABCD的两条对角线长分别为4和5,∴其面积为:×4×5=10.故答案为:10.【点评】此题考查了菱形的性质.注意熟记定理是解此题的关键.16.(3分)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC 于点F,E为垂足,连接DF,则∠CDF的度数=60度.【分析】根据菱形的性质求出∠ADC=100°,再根据垂直平分线的性质得出AF=DF,从而计算出∠CDF的值.【解答】解:连接BD,BF∵∠BAD=80°∴∠ADC=100°又∵EF垂直平分AB,AC垂直平分BD∴AF=BF,BF=DF∴AF=DF∴∠FAD=∠FDA=40°∴∠CDF=100°﹣40°=60°.故答案为:60.【点评】此题主要考查线段的垂直平分线的性质和菱形的性质.17.(3分)如图所示,已知▱ABCD,下列条件:①AC=BD,②AB=AD,③∠1=∠2,④AB⊥BC中,能说明▱ABCD是矩形的有(填写序号)①④.【分析】矩形是特殊的平行四边形,矩形有而平行四边形没有的特征是:矩形的四个内角是直角;矩形的对角线相等且互相平分;可根据这些特点来选择条件.【解答】解:能说明▱ABCD是矩形的有:①对角线相等的平行四边形是矩形;④有一个角是直角的平行四边形是矩形.【点评】此题主要考查的是矩形的判定方法.18.(3分)在平面直角坐标系中,小明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n 被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是(100,33).【分析】根据走法,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,用100除以3,然后根据商和余数的情况确定出所处位置的横坐标与纵坐标即可.【解答】解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是(100,33).故答案为:(100,33).【点评】本题考查了坐标确定位置,点的坐标位置的规律变化,读懂题目信息并理解每3步为一个循环组依次循环是解题的关键.三、解答题(本大题共8题,共66分)19.(6分)如图,这是某市部分简图,请以火车站为坐标原点建立平面直角坐标系,并分别写出各地的坐标.【分析】确定原点位置,建立直角坐标系,如图所示.根据坐标系表示各地的坐标.【解答】解:以火车站为原点建立直角坐标系.各点的坐标为:火车站(0,0);医院(﹣2,﹣2);文化宫(﹣3,1);体育场(﹣4,3);宾馆(2,2);市场(4,3);超市(2,﹣3).【点评】本题考查了平面直角坐标系的建立,与点的坐标的书写,由于所写点的位置比较多,可以根据象限的顺序依次写出,避免重写或漏写.20.(6分)如图,顺次连结四边形ABCD各边中点E,F,G,H,得到的四边形EFGH,求证:四边形EFGH是平行四边形.【分析】连结BD,根据三角形中位线定理得到EH=BD,EH∥BD,同理得到FG= BD,FG∥BD;根据平行四边形的判定定理证明.【解答】证明:连结BD,∵点E、H是AB、AD的中点,∴EH是△ABD的中位线;∴EH=BD,EH∥BD;同理:FG=BD,FG∥BD;∴EH=FG=BD,EH∥BD∥FG∴四边形EFGH是平行四边形.【点评】本题考查的是中点四边形、平行四边形的判定,掌握三角形中位线定理、平行四边形的判定定理是解题的关键.21.(8分)如图,矩形ABCD和矩形AEFG关于点A中心对称,(1)四边形BDEG是菱形吗?请说明理由.(2)若矩形ABCD面积为8,求四边形BDEG的面积.【分析】(1)直接利用菱形的判定方法得出答案;(2)直接利用矩形的面积结合菱形的性质得出答案.【解答】解:(1)四边形BDEG是菱形.∵矩形ABCD和矩形AEFG关于点A中心对称,∴AB=AE,AD=AG,BE⊥DG,∴根据勾股定理得:BD2=DE2=EG2=GB2=AB2+AD2,∴四边形BDEG是菱形.=S ABCD=4,(2)若矩形ABCD面积为8,则S△ABD∴根据菱形性质:四边形BDEG的面积为S BDEG=4S△ABD=16.【点评】此题主要考查了中心对称以及菱形的判定,正确把握菱形的判定是解题关键.22.(8分)如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O.(1)求证:△ABC≌△DCB;(2)求证:△OBC是等腰三角形.【分析】(1)根据已知条件,用HL公理证:Rt△ABC≌Rt△DCB;(2)利用Rt△ABC≌Rt△DCB的对应角相等,即可证明△OBC是等腰三角形.【解答】证明:(1)在△ABC和△DCB中,∠A=∠D=90°,AC=BD,根据勾股定理:AB2=BC2﹣AC2;DC2=BC2﹣BD2;∴AB2=DC2=BC2﹣BD2,∴AB=DC,在Rt△ABC与Rt△DCB中∴Rt△ABC≌Rt△DCB(HL)(2)∵△ABC≌△DCB,则∠ACB=∠DBC,在△OBC中,即∠OCB=∠OBC∴△OBC是等腰三角形.【点评】此题主要考查全等三角形的判定和性质,关键是学生对直角三角形全等的判定和等腰三角形的判定与性质的理解和掌握.23.(8分)如图所示,AD为△ABC的角平分线,DE⊥AC于点E,DF⊥AB于点F,EF交AD于点M,求证:AM⊥EF.【分析】由AD为△ABC的角平分线,得到DE=DF,推出∠AEF和∠AFE相等,得到AE=AF,即可推出结论.【解答】证明:∵DE⊥AC于点E,DF⊥AB于点F,∴∠AED=∠AFD=90°,∵AD为三角形ABC的角平分线,∴∠EAD=∠FAD,而AD=AD,∴△AED≌△AFD∴ED=DF,AE=AF∴△AEF为等腰三角形,AM为∠BAC的平分线∴AM是△AEF的高,即AM⊥EF.【点评】本题考查的是全等三角形的判定和性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.24.(8分)如图所示,在菱形ABCD中,AE⊥BC,E为垂足,且BE=CE,AB=2,求:(1)∠BAD的度数;(2)对角线AC的长及菱形ABCD的周长.【分析】(1)由在菱形ABCD在,AE⊥BC,BE=CE,易证得△ABC是等边三角形,继而求得∠BAD的度数;(2)由(1),可求得AC的长,由菱形的性质可知其四边相等,进而可求出其周长.【解答】解:(1)∵在菱形ABCD中,AB=BC,∵AE⊥BC,E为垂足,且BE=CE,∴△ABC等腰三角形,∴AB=AC,∴△ABC为等边三角形,∴∠BAD=2∠BAC=120°;(2)∵AB=2,AB=AC∴AC=AB=2,菱形ABCD的周长=4AB=8.【点评】此题考查了菱形的性质、等边三角形的判定与性质、线段垂直平分线的性质,此题难度不大,熟记菱形的各种性质是解题关键.25.(10分)如图,矩形ABCD中,AC、BD相交于O,AE平分∠BAD交BC于E,若∠CAE=15°,求∠BOE的度数.【分析】先根据AE平分∠BAD交BC于E可得∠AEB=45°,再根据三角形的外角性质求出∠ACB=30°,然后判断出△AOB是等边三角形,从而可以得出△BOE 是等腰三角形,然后根据三角形的内角和是180°进行求解即可.【解答】解:∵AE平分∠BAD交BC于E,∴∠AEB=45°,AB=BE,∵∠CAE=15°,∴∠ACB=∠AEB﹣∠CAE=45°﹣15°=30°,∴∠BAO=60°,又∵OA=OB,∴△BOA是等边三角形,∴OA=OB=AB,即OB=AB=BE,∴△BOE是等腰三角形,且∠OBE=∠OCB=30°,∴∠BOE=(180°﹣30°)=75°.【点评】本题考查了矩形的性质,等边三角形的判定及性质,求出∠ACB=30°,然后判断出等边三角是解本题的关键.26.(12分)平行四边形ABCD中,AB=2cm,BC=12cm,∠B=45°,点P在边BC 上,由点B向点C运动,速度为每秒2cm,点Q在边AD上,由点D向点A运动,速度为每秒1cm,连接PQ,设运动时间为t秒.(1)当t为何值时,四边形ABPQ为平行四边形;(2)设四边形ABPQ的面积为ycm2,请用含有t的代数式表示y的值;(3)当P运动至何处时,四边形ABPQ的面积是▱ABCD面积的四分之三?【分析】(1)因为在平行四边形ABCD中,AQ∥BP,只要再证明AQ=BP即可,即点P所走的路程等于Q点在边AD上未走的路程.(2)因为四边形ABPQ是梯形,梯形的面积公式(上底+下底)×高÷2,AQ和BP都能用含有t的字母表示出来,缺少高,过A点作BC边上的高,再利用等腰直角三角形的性质和已知条件求出高线即可.(3)因为平行四边形ABCD的面积可求,利用(2)中的关系式列方程即可.【解答】解:(1)由已知可得:BP=2t,DQ=t,∴AQ=12﹣t.∵四边形ABPQ为平行四边形,∴12﹣t=2t,∴t=4,∴t=4秒时,四边形ABPQ为平行四边形;(2)过A作AE⊥BC于E,在Rt△ABE中,∠AEB=90°,∵AB=2,∠B=45°∴AE=AB=∴SABPQ=(BP+AQ)×AE=(12+t),即y=(12+t);(3)有(2)得S▱ABCD=12,∵×12=(12+t),∴t=6,∴BP=2t=12=BC,∴当P与C重合时,四边形ABPQ的面积是▱ABCD面积的四分之三.【点评】本题考查了平行四边形的判断方法:有一对对边平行且相等的四边形是平行四边形,梯形的面积公式;等腰直角三角形的性质;和用代数方法(列方程)解决几何问题;动点问题,综合性很强.。
2019-2020学年___八年级(下)期中数学试卷-解析版
2019-2020学年___八年级(下)期中数学试卷-解析版2019-2020学年___八年级(下)期中数学试卷一、选择题(本大题共8小题,共24.0分)1.下列图形,①角;②两相交直线;③圆;④平行四边形,其中一定是轴对称图形的有()A.四个B.三个C.两个D.一个2.2019年被称为中国的5G元年,如果运用5G技术下载一个4.8M的短视频,大约只需要0.秒,将数字0.用科学记数法表示应为()A.0.96×10^-4B.9.6×10^-3C.9.6×10^-5D.96×10^-63.要使√(x+4)有意义,则()A.x<-4B.x≤-4C.x≥-4D.x>-44.如图,在△ABC中,AB=AC,分别以点A、点B为圆心,以大于AB长为半径画弧,两弧交点的连线交AC于点D,交AB于点E,连接BD,若∠x=40°,则∠xxx=()A.40°B.30°C.20°D.10°5.疫情无情,人有情爱心捐款传真情,感染的肺炎疫情期间,某班同学积极参加献爱心活动,该班50名学生的捐款统计情况如表:金额/元人数5 610 1730 1450 8100 5则他们捐款金额的平均数和中位数分别是()A.39,10B.39,30C.30.4,30D.30.4,106.如图,在△ABC中,已知AB=15,AC=13,CD=5,则BC的长为()A.14B.13C.12D.97.设计一个摸球游戏,先在一个不透明的小盒子中放入5个白球,如果希望从中任意摸出一个球,是白球的概率为4/5,那么应该向盒子中再放入多少个其他颜色的球(游戏用球除颜色外均相同)()A.5B.10C.158.在平行四边形ABCD中,对角线AC的垂直平分线交AD于点E连接CE,若平行四边形ABCD的周长为30,则△CDE的周长为()A.25B.20C.15D.20二、填空题(本大题共12小题,共36.0分)9.等腰三角形一个角等于100°,则它的一个底角是80°.10.若点P(a,-3)在第四象限,且到原点的距离是5,则a=4.11.如图,在△ABC中,∠C=90°,∠BAC=∠ADC=60°,若CD=4,则BD=4√3.12.如果分式(a-2)/(a+3)的值是-1/2,则a=1.三、解答题(共4小题,共20.0分)13.如图,已知ABCD为矩形,AC=2BD,E为BC上一点,且∠BAE=45°,连接DE交AC于F,若AF=6,则DF的长为()解:由题意,AC=2BD,又ABCD为矩形,故AD=BC=BD,因此△ABD为等腰直角三角形,∠ABD=45°,又∠BAE=45°,所以△ABE为等腰直角三角形,BE=AB/√2,即BD/√2,又∠BDE=45°,所以△BDE为等腰直角三角形,DE=BD,因此DF=AF-AE=6-DE=6-BD=6-AD/√2=6-BC/√2=6-AC/2√2=6-6/2√2=6-3√2.答:DF的长为6-3√2.14.如图,在△ABC中,∠A=60°,D为BC上一点,且AD=AC,连接AC,BD,交于点E,若AB=2,则BE的长为()解:由题意,AD=AC=AB/2,所以△ACD为等边三角形,∠ACD=60°,又∠A=60°,所以△ABC为等边三角形,AB=BC=AC=2AD,所以BD=AB-AD=3AD,又由相似三角形可得AE=2AD,所以DE=AE-AD=AD,所以△BDE为等腰直角三角形,BE=BD/√2=3AD/√2=3AC/√2=3AB/4√2=3/2√3.答:BE的长为3/2√3.15.解不等式:(x+1)/(x-2)>0.解:首先求出不等式的定义域,即x≠2,然后找出函数的零点,即x=-1,然后根据零点将实数轴分成三段:x2,然后在每一段上确定函数的正负性,x0,x>2时,(x+1)/(x-2)2}.答:不等式的解集为{x|x2}.16.如图,在△ABC中,∠C=90°,AB=8,BC=6,D为BC上一点,且AD垂直于BC,连接AC,BD,交于点E,若∠BAE=∠CAD,则AE的长为()解:由题意,∠BAE=∠CAD,所以△ABE与△CAD相似,因此AE/AC=AB/AD,即AE/(AE+CE)=AB/BD,代入已知条件可得AE/(AE+6)=8/AD,又由勾股定理可得AD=10,代入上式可得AE=20/3.答:AE的长为20/3.1.判断轴对称图形的关键在于寻找对称轴,图形两部沿对称轴叠后可重合。
江西省赣州市2019-2020学年中考第四次质量检测数学试题含解析
江西省赣州市2019-2020学年中考第四次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知,C是线段AB的黄金分割点,AC<BC,若AB=2,则BC=()A.3﹣5B.12(5+1)C.5﹣1 D.12(5﹣1)2.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+13.81的算术平方根是()A.9 B.±9 C.±3 D.34.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x5.函数y=mx2+(m+2)x+12m+1的图象与x轴只有一个交点,则m的值为()A.0 B.0或2 C.0或2或﹣2 D.2或﹣26.下列各式计算正确的是()A.a+3a=3a2B.(–a2)3=–a6C.a3·a4=a7D.(a+b)2=a2–2ab+b27.如图,在中,,,,将折叠,使点与的中点重合,折痕为,则线段的长为()A.B.C.D.8.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()A.310B.15C.12D.7109.下列实数为无理数的是 ( ) A .-5B .72C .0D .π10.下列运算中,正确的是( )A .(ab 2)2=a 2b 4B .a 2+a 2=2a 4C .a 2•a 3=a 6D .a 6÷a 3=a 2 11.若 |x | =-x ,则x 一定是( ) A .非正数B .正数C .非负数D .负数12.如图给定的是纸盒的外表面,下面能由它折叠而成的是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.计算:82-=_______________.14.化简:a+1+a (a+1)+a (a+1)2+…+a (a+1)99=________.15.如图,点D 是线段AB 的中点,点C 是线段AD 的中点,若CD=1,则AB=________________.16.如图,AB 为O e 的直径,AC 与O e 相切于点A ,弦//BD OC .若36C ∠=o ,则DOC ∠=______o .17.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的正弦值为__.18.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为倡导“低碳生活”,人们常选择以自行车作为代步工具、图(1)所示的是一辆自行车的实物图.图(2)是这辆自行车的部分几何示意图,其中车架档AC 与CD 的长分别为45cm 和60cm ,且它们互相垂直,座杆CE 的长为20cm .点A 、C 、E 在同一条直线上,且∠CAB=75°.(参考数据:sin75°=0.966,cos75°=0.259,tan75°=3.732)(1)求车架档AD的长;(2)求车座点E到车架档AB的距离(结果精确到1cm).20.(6分)某班为确定参加学校投篮比赛的任选,在A、B两位投篮高手间进行了6次投篮比赛,每人每次投10个球,将他们每次投中的个数绘制成如图所示的折线统计图.(1)根据图中所给信息填写下表:投中个数平均数中位数众数统计A 8B 7 7(2)如果这个班只能在A、B之间选派一名学生参赛,从投篮稳定性考虑应该选派谁?请你利用学过的统计量对问题进行分析说明.21.(6分)太阳能光伏建筑是现代绿色环保建筑之一,老张准备把自家屋顶改建成光伏瓦面,改建前屋顶截面△ABC如图2所示,BC=10米,∠ABC=∠ACB=36°,改建后顶点D在BA的延长线上,且∠BDC=90°,求改建后南屋面边沿增加部分AD的长.(结果精确到0.1米)22.(8分)某校航模小组借助无人飞机航拍校园,如图,无人飞机从A处水平飞行至B处需10秒,A在地面C的北偏东12°方向,B在地面C的北偏东57°方向.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果精确到0.1米,参考数据:sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)23.(8分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A1、A2,图案为“蝴蝶”的卡片记为B)∠=α,点E在对角线BD上. 将线段CE绕点C顺时针旋转24.(10分)如图,在菱形ABCD中,BADα,得到CF,连接DF.(1)求证:BE=DF;⊥.(2)连接AC,若EB=EC ,求证:AC CF25.(10分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.组别分数段频次频率A 60≤x<70 17 0.17B 70≤x<80 30 aC 80≤x<90 b 0.45D 90≤x<100 8 0.08请根据所给信息,解答以下问题:表中a=______,b=______;请计算扇形统计图中B组对应扇形的圆心角的度数;已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.26.(12分)如图,在ABC V 中,CD AB ⊥,垂足为D ,点E 在BC 上,EF AB ⊥,垂足为F.12∠∠=,试判断DG 与BC 的位置关系,并说明理由.27.(12分)如图,将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,FC 交AD 于E .求证:△AFE ≌△CDF ;若AB=4,BC=8,求图中阴影部分的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】根据黄金分割点的定义,知BC 为较长线段;则BC=512AB ,代入数据即可得出BC 的值. 【详解】解:由于C 为线段AB=2的黄金分割点,且AC <BC ,BC 为较长线段;则BC=2×512-=5-1.故答案为:5-1.【点睛】本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的352-倍,较长的线段=原线段的51-倍.2.B【解析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,,…,,下边三角形的数字规律为:1+2,,…,,∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.3.D【解析】【分析】根据算术平方根的定义求解.【详解】81,又∵(±1)2=9,∴9的平方根是±1,∴9的算术平方根是1.811.故选:D.【点睛】考核知识点:算术平方根.理解定义是关键.4.C【解析】【分析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可【详解】.故选C.解:设安排x名工人生产螺钉,则(26-x)人生产螺母,由题意得1000(26-x)=2×800x,故C答案正确,考点:一元一次方程.5.C【解析】【分析】根据函数y=mx2+(m+2)x+12m+1的图象与x轴只有一个交点,利用分类讨论的方法可以求得m的值,本题得以解决.【详解】解:∵函数y=mx2+(m+2)x+12m+1的图象与x轴只有一个交点,∴当m=0时,y=2x+1,此时y=0时,x=﹣0.5,该函数与x轴有一个交点,当m≠0时,函数y=mx2+(m+2)x+12m+1的图象与x轴只有一个交点,则△=(m+2)2﹣4m(12m+1)=0,解得,m1=2,m2=﹣2,由上可得,m的值为0或2或﹣2,故选:C.【点睛】本题考查抛物线与x轴的交点,解答本题的关键是明确题意,利用分类讨论的数学思想解答.6.C【解析】【分析】根据合并同类项、幂的乘方、同底数幂的乘法、完全平方公式逐项计算即可.【详解】A. a+3a=4a,故不正确;B. (–a2)3=(-a)6,故不正确;C. a3·a4=a7,故正确;D. (a+b)2=a2+2ab+b2,故不正确;故选C.【点睛】本题考查了合并同类项、幂的乘方、同底数幂的乘法、完全平方公式,熟练掌握各知识点是解答本题的关键.7.C【解析】【分析】设BN=x,则由折叠的性质可得DN=AN=9-x,根据中点的定义可得BD=3,在Rt△BND中,根据勾股定理可得关于x的方程,解方程即可求解.【详解】设,则.由折叠的性质,得.因为点是的中点,所以.在中,由勾股定理,得,即,解得,故线段的长为4.故选C.【点睛】此题考查了折叠的性质,勾股定理,中点的定义以及方程思想,熟练掌握折叠的性质及勾股定理是解答本题的关键.8.A【解析】【分析】让黄球的个数除以球的总个数即为所求的概率.【详解】解:因为一共10个球,其中3个黄球,所以从袋中任意摸出1个球是黄球的概率是3 10.故选:A.【点睛】本题考查概率的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.9.D【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A、﹣5是整数,是有理数,选项错误;B、72是分数,是有理数,选项错误;C、0是整数,是有理数,选项错误;D、π是无理数,选项正确.故选D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10.A【解析】【分析】直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析得出答案.【详解】解:A、(ab2)2=a2b4,故此选项正确;B、a2+a2=2a2,故此选项错误;C、a2•a3=a5,故此选项错误;D、a6÷a3=a3,故此选项错误;故选:A.【点睛】此题主要考查了积的乘方运算以及合并同类项和同底数幂的乘除运算,正确掌握运算法则是解题关键.11.A【解析】【分析】根据绝对值的性质进行求解即可得.【详解】∵|-x|=-x,又|-x|≥1,∴-x≥1,即x≤1,即x是非正数,故选A.【点睛】本题考查了绝对值的性质,熟练掌握绝对值的性质是解题的关键.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是1.12.B【解析】【分析】将A、B、C、D分别展开,能和原图相对应的即为正确答案:【详解】A、展开得到,不能和原图相对应,故本选项错误;B、展开得到,能和原图相对,故本选项正确;C、展开得到,不能和原图相对应,故本选项错误;D、展开得到,不能和原图相对应,故本选项错误.故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)132【解析】【分析】82.【详解】82=222.2.【点睛】本题考查了二次根式的运算,正确对二次根式进行化简是关键.14.(a+1)1.【解析】【分析】原式提取公因式,计算即可得到结果.【详解】原式=(a+1)[1+a+a (a+1)+a (a+1)2+…+a (a+1)98],=(a+1)2[1+a+a (a+1)+a (a+1)2+…+a (a+1)97],=(a+1)3[1+a+a (a+1)+a (a+1)2+…+a (a+1)96],=…,=(a+1)1.故答案是:(a+1)1.【点睛】考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.15.4【解析】∵点C 是线段AD 的中点,若CD=1,∴AD=1×2=2,∵点D 是线段AB 的中点,∴AB=2×2=4,故答案为4.16.1【解析】【分析】利用切线的性质得90OAC ∠=o ,利用直角三角形两锐角互余可得54AOC ∠=o ,再根据平行线的性质得到54OBD AOC ∠=∠=o ,D DOC ∠=∠,然后根据等腰三角形的性质求出D ∠的度数即可.【详解】∵AC 与O e 相切于点A ,∴AC ⊥AB ,∴90OAC ∠=o ,∴90903654AOC C ∠=-∠=-=o o o o ,∵//BD OC ,∴54OBD AOC ∠=∠=o ,D DOC ∠=∠,∵OB OD =,∴54D OBD∠=∠=o,∴54DOC∠=o.故答案为1.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.17.2 2【解析】【分析】首先利用勾股定理计算出AB2,BC2,AC2,再根据勾股定理逆定理可证明∠BCA=90°,然后得到∠ABC 的度数,再利用特殊角的三角函数可得∠ABC的正弦值.【详解】解:连接ACAB2=32+12=10,BC2=22+12=5,AC2=22+12=5,∴AC=CB,BC2+AC2=AB2,∴∠BCA=90°,∴∠ABC=45°,∴∠ABC的正弦值为22.2.【点睛】此题主要考查了锐角三角函数,以及勾股定理逆定理,关键是掌握特殊角的三角函数.18.5 12【解析】【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用绿灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是绿灯的概率为多少即可.【详解】抬头看信号灯时,是绿灯的概率为255 3025512=++.故答案为:5 12.【点睛】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:(1)随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.(2)P(必然事件)=1.(3)P(不可能事件)=2.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.63cm.【解析】试题分析:(1)在Rt ACD,AC=45,DC=60,根据勾股定理可得AD=即可得到AD 的长度;(2)过点E作EF AB,垂足为F,由AE=AC+CE,在直角EFA中,根据EF=AEsin75°可求出EF的长度,即为点E到车架档AB的距离;试题解析:20.(1)7,9,7;(2)应该选派B;【解析】【分析】(1)分别利用平均数、中位数、众数分析得出答案;(2)利用方差的意义分析得出答案.【详解】(1)A成绩的平均数为16(9+10+4+3+9+7)=7;众数为9;B 成绩排序后为6,7,7,7,7,8,故中位数为7;故答案为:7,9,7;(2)2A S =16 [(7﹣9)2+(7﹣10)2+(7﹣4)2+(7﹣3)2+(7﹣9)2+(7﹣7)2]=7; 2B S =16 [(7﹣7)2+(7﹣7)2+(7﹣8)2+(7﹣7)2+(7﹣6)2+(7﹣7)2]= 13; 从方差看,B 的方差小,所以B 的成绩更稳定,从投篮稳定性考虑应该选派B .【点睛】此题主要考查了中位数、众数、方差的定义,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 21.1.9米【解析】试题分析:在直角三角形BCD 中,由BC 与sinB 的值,利用锐角三角函数定义求出CD 的长,在直角三角形ACD 中,由∠ACD 度数,以及CD 的长,利用锐角三角函数定义求出AD 的长即可.试题解析:∵∠BDC=90°,BC=10,sinB=, ∴CD=BC•sinB=10×0.2=5.9,∵在Rt △BCD 中,∠BCD=90°﹣∠B=90°﹣36°=54°, ∴∠ACD=∠BCD ﹣∠ACB=54°﹣36°=18°, ∴在Rt △ACD 中,tan ∠ACD=, ∴AD=CD•tan ∠ACD=5.9×0.32=1.888≈1.9(米),则改建后南屋面边沿增加部分AD 的长约为1.9米.考点:解直角三角形的应用22.29.8米.【解析】【分析】作AD BC ⊥,BH CN ⊥,根据题意确定出ABC ∠与BCH ∠的度数,利用锐角三角函数定义求出AD 与BD 的长度,由CD BD +求出BC 的长度,即可求出BH 的长度.【详解】解:如图,作AD BC ⊥,BH CN ⊥,由题意得:MCD 57MCA 12AB CH ∠∠︒︒P =,=,, ACB 45BCH ABC 33∠∠∠∴︒︒=,==,AB 40Q =米,AD CD sin ABC?AB 40sin33m BD AB?cos3340cos33===,==∠∴⨯︒︒⨯︒米,BC CD BD 40sin33cos3355.2∴+⨯︒+︒≈==()米,则BH BC?sin3329.8︒≈=米,答:这架无人飞机的飞行高度为29.8米.【点睛】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键. 23.49【解析】【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【详解】列表如下:A 1 A 2B A 1(A 1,A 1) (A 2,A 1) (B ,A 1) A 2(A 1,A 2) (A 2,A 2) (B ,A 2) B (A 1,B ) (A 2,B ) (B ,B )由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为49. 【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比. 24.证明见解析【解析】【分析】(1)根据菱形的性质可得BC=DC ,BAD BCD α∠∠==,再根据ECF α∠=,从而可得 BCD ECF ∠∠=,继而得BCE ∠=DCF ∠,由旋转的性质可得CE =CF ,证明BEC V ≌DFC V ,即可证得BE =DF ;(2)根据菱形的对角线的性质可得ACB ACD ∠∠=,AC BD ⊥,从而得ACB+EBC 90∠∠=︒,由EB=EC ,可得EBC=BCE ∠∠,由(1)可知,可推得DCF+ACD EBC ACB 90∠∠∠∠=+=︒,即可得ACF 90∠=︒,问题得证.【详解】(1)∵四边形ABCD 是菱形,∴BC=DC ,BAD BCD α∠∠==,∵ECF α∠=,∴ BCD ECF ∠∠=,∴BCE=DCF ∠∠,∵线段CF 由线段CE 绕点C 顺时针旋转得到,∴CE=CF ,在BEC V 和DFC V 中,BC DC BCE DCF CE CF =⎧⎪∠=∠⎨⎪=⎩,,,∴BEC V ≌()DFC SAS V ,∴BE=DF ;(2)∵四边形ABCD 是菱形,∴ACB ACD ∠∠=,AC BD ⊥,∴ACB+EBC 90∠∠=︒,∵EB=EC ,∴EBC=BCE ∠∠,由(1)可知,EBC=DCF ∠∠,∴DCF+ACD EBC ACB 90∠∠∠∠=+=︒,∴ACF 90∠=︒,∴AC CF ⊥.【点睛】本题考查了旋转的性质、菱形的性质、全等三角形的判定与性质等,熟练掌握和应用相关的性质与定理是解题的关键.25.(1)0.3 ,45;(2)108°;(3)16. 【解析】【分析】(1)首先根据A 组频数及其频率可得总人数,再利用频数、频率之间的关系求得a 、b ;(2)B 组的频率乘以360°即可求得答案;(2)画树形图后即可将所有情况全部列举出来,从而求得恰好抽中者两人的概率;【详解】(1)本次调查的总人数为17÷0.17=100(人),则a=30100=0.3,b=100×0.45=45(人). 故答案为0.3,45;(2)360°×0.3=108°.答:扇形统计图中B 组对应扇形的圆心角为108°.(3)将同一班级的甲、乙学生记为A、B,另外两学生记为C、D,画树形图得:∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为212=16.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.DG∥BC,理由见解析【解析】【分析】由垂线的性质得出CD∥EF,由平行线的性质得出∠2=∠DCE,再由已知条件得出∠1=∠DCE,即可得出结论.【详解】解:DG∥BC,理由如下:∵CD⊥AB,EF⊥AB,∴CD∥EF,∴∠2=∠DCE,∵∠1=∠2,∴∠1=∠DCE,∴DG∥BC.【点睛】本题考查平行线的判定与性质;熟练掌握平行线的判定与性质,证明∠1=∠DCE是解题关键.27.(1)证明见解析;(2)1.【解析】试题分析:(1)根据矩形的性质得到AB=CD,∠B=∠D=90°,根据折叠的性质得到∠E=∠B,AB=AE,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AF=CF,EF=DF,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论.试题解析:(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵将矩形ABCD沿对角线AC翻折,点B落在点E处,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF与△CDF中,∵∠E=∠D,∠AFE=∠CFD,AE=CD,∴△AEF≌△CDF;(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴图中阴影部分的面积=S△ACE﹣S△AEF=12×4×8﹣12×4×3=1.点睛:本题考查了翻折变换﹣折叠的性质,熟练掌握折叠的性质是解题的关键.。
2019-2020学年八年级下学期期中数学试卷(含解析)
2019-2020学年八年级第二学期期中数学试卷一、填空题(共6小题).1.(3 分)计算6X24^=.2.(3分)已知一个直角三角般的两直角边长分别为3和4,则斜边长是.3.(3分)要使式子J市有意义,则x的取值范围是.4.(3分)如国,在ZUBC中,。
、E分别为A3、4c边的中点,若DE=2,则8c边的长为.5.(3分)如图,一棵大树在离地面3加、5加两处折成三段,中间一段43恰好与地面平行,大树顶部落在离大树底部6加处,则大树折断前的高度是.6.(3分)菱形A3CO的对角线AC=4, 30=2,以AC为边作正方形ACEF,则3尸的长为____ 二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列式子是最简二次根式的是()A.任B.C. V2QD./8.(4分)判断下列各组数能作为直角三角形三边的是()A. 3, 4, 6B. 4, 5, 7C. 2, 3, ^7D. 7, 6, A/139.(4分)如图,已知菱形A3CD的对角线交于点O, DB=6f AD=5,则菱形A3CD的面积为()10. (4 分)在 RtAABC 中,ZABC=90° , 0 为斜边 AC 的中点,30=5,则 AC=()11. (4分)下列计算中,正确的是( A.收-3) 2二 ±3 B.历+ 如二9C.D.卑一心V 212. (4分)不能判定四边形A3CD 为平行四边形的条件是(13. (4分)如图,延长翅形A5co 的边BC 至点E,使CE=CA,连接AE,若N5AC=三、解答题(本大题共9小题,共70分)15. (6分)计算:倔+(证-3)°-导(2%)216. (6分)国家交通法规定:小汽车在城市街道上行驶速度不得超过60々加小,一辆小汽车在一条城市街道上由西向东行驶,此时在小汽车正南方向25m 处有一个车速检测仪, 过了 4s 后,测得小汽车距禺测速仪65m.这辆小汽车超速了吗?通过计算说明理由(lw/s=3.6k”i/h)17. (8分)如图,四边形43。
2019-2020学年下学期八年级数学周测卷(二)
2019-2020学年下学期八年级数学周测试卷(二)内容:二次根式、勾股定理、平行四边形的性质一、选择题(每题4分,共40分)1.【a】下列二次根式中,与√6是同类二次根式的是()D. √30A. √12B. √18C. √232.【a】实数a,b在数轴上的位置如图所示,则化简√(a−1)2−√(a−b)2+b的结果是()A. 1B. b+1C. 2aD. 1−2a3.【a】若√(5−x)2=x−5,则x的取值范围是()A. x<5B. x≤5C. x≥5D. x>54.【a】如图,AB=AC,则数轴上点C所表示的数为()A. √5+1B. √5−1C. −√5+1D. −√5−15.【a】已知a、b、c是三角形的三边长,如果满足(a−5)2+|b−12|+c2−26c+169=0,则三角形的形状是()A. 底与边不相等的等腰三角形B. 等边三角形C. 钝角三角形D. 直角三角形6.【a】若3+√5的小数部分为a,3−√5的小数部分为b,则a+b的值为()A. 0B. 1C. −1D. 27.【a】平行四边形的一条边长为14,则它的两条对角线长可以是()A.16和12 B.20和22 C.10和16 D.14和128.【a】如图,在水池的正中央有一根芦苇,它高出水而1尺,水池宽10尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,则这根芦苇的长度是()A. 10尺B. 11尺C. 12尺D. 13尺9.【b】如图,正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数有()A. 4个B. 6个C. 8个D. 10个10.【a】如图,以Rt△ABC为直径分别向外作半圆,若S1=10,S3=8,则S2=()A. 2B. 6C. √2D. √6有意义的x的取值范围是 .11.【a】使式子√x+1x−112.【a】已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为 .13.【a】如图,在长方形ABCD中,AB=8,BC=4,将长方形沿AC折叠,点D落在点E 处,且CE与AB交于F,那么S△ACF为 .14.【a】如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行______米.15.【a】如图,在▱ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=2,BC的长为 .16.【a】课本中有这样一句话:“利用勾股定理可以作出√3,√5,…线段(如图所示).”即:OA=1,过A作AA1⊥OA且AA1=1,根据勾股定理,得OA1=√2;再过A1作A1A2⊥OA1且A1A2=1,得OA2=√3;…以此类推,得OA2020 =______ .(第13题)(第14题)(第15题)(第16题)三、计算题(每题6分,共12分)×√12+√2417.【a】(1)√48÷√3−√12⋅(x−1),其中x=√2+1.(2)先化简再求值:2x−1x2−2x+1四、解答题(每题8分,共24分)18.【a】如图,四边形ABCD 中,AB=20,BC=15,CD=7,AD=24,∠B=90°.(1)判断∠D是否是直角,并说明理由.(2)求四边形ABCD 的面积.19.【a】如图,在Rt△ABC 中, ∠ACB=90°,CD ⊥AB 于点D ,∠B=30°,CD=2,求AB 的长.20.【b】已知甲、乙两船同时从港口A出发,甲船以6 n mile/h的向北偏东25°航行,乙船向南偏东65°航行.2h后,甲船到达C岛,乙船到达B岛, 若C,B两岛相距20 n mile, 求乙船的速度是多少n mile/h?(请画出相应的图形并解答)。
2019-2020年八年级下学期期中考试数学试题 Word版含答案(IV)
2019-2020年八年级下学期期中考试数学试题 Word版含答案(IV)一.精心选一选,旗开得胜(每小题3分,共30分)1. 把直角三角形的两直角边均扩大到原来的两倍,则斜边扩大到原来的( )A.8倍B.4倍错误!未找到引用源。
C. 2倍D. 6倍2.两个直角三角形全等的条件是()A. 一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条边对应相等3.下面的性质中,平行四边形不一定具有的是()A.内角和为360°B.邻角互补C.对角相等D. 对角互补4.如图,如果平行四边形ABCD的对角线AC、BD相交于点O,那么图中的全等三角形共有()A.1对B.2对C.3对D.4对第4题图5.□ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则□ABCD的两条对角线的和是()A.18B.28C.36D.466. 若点M(x,y)满足x+y=0,则点M位于()A. 第一、三象限两坐标轴夹角的平分线上;B. x轴上;C. 第二、四象限两坐标轴夹角的平分线上;D. y轴上。
7.已知x、y为正数,且||+(y2-3)2=0,如果以x,y的长为直角边作一直角三角形,那么以此直角三角形的斜边为边长的正方形的面积为()A.5B.25C.7D.158.在平面中,下列说法正确的是()A.四个角相等的四边形是矩形B.对角线垂直的四边形是菱形C.对角线相等的四边形是矩形D.四边相等的四边形是正方形9.下列图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个第9题图第10题图10. 如图所示,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若 BD= 6,则四边形CODE的周长是 ( )A.10 B.12 C.18 D.24二.细心填一填,一锤定音(每小题3分,共30分)11. 在RtABC中,∠C=90°,∠A=65°,则∠B= .12一个等腰直角三角形中,它的斜边与斜边上的高的和是18cm,那么斜边上的高为cm .13.如图,已知□ABCD中,AB=4,BC=6,BC边上的高AE=2,则DC边上的高AF的长是 .1 第13题图 第15题图 第17题图14.□ABCD 的周长为60cm,其对角线交于O 点,若△AOB 的周长比△BOC 的周长多10cm, 则 AB= cm.15.如图,已知在□ABCD 中,AB=4cm,AD=7cm ,∠ABC 的平分线交AD 于点E ,交CD 的延长线 于点F ,则DF= cm.16. 一个多边形的每一个外角等于30°,则此多边形是 边形,它的内角和等于 。
最新人教版八年级数学下册2019-2020学年度下学期检测试题(含答题卡、答案)
D.不能确定
12.已知,在平面直角坐标系 xOy 中,点 A(-4,0),点 B 在直线 y=x+2 上.当 A、B 两点间的 距离最小时,点 B 的坐标是( )
A.( 2 2 , 2 ) B.( 2 2 , 2 ) C.(-3,-1) 二、填空题:你能填得又对又快吗?(每小题 4 分,共 24 分)
∵AD⊥DC ∴∠ADC=90° 在 Rt△ADC 中,根据勾股定理
AC AD 2 CD 2 42 32 5(cm ) …………………………………………3 分
在△ABC 中,
∵ AC 2 BC 2 52 122 132 AB 2
△ABC 是直角三角形
………………………………………………6 分
23、
24、
26、
八年级数学答案及评分标准
注意:解答题只给出一种解法,考生若有其他正确解法应参照本标准给分. 一、选择题(每小题 3 分,共 36 分)
CDABC BCABA DC
二、填空题(每小题 3 分,共 18 分)
13. x 2 14. 4 15. 3 a 16. 4 2 17. ① ③ ④ 18. 2.4
6.如图,在矩形 ABCD 中,对角线 AC,BD 交于点 O,已知∠AOD=120°,AB=2,则 AC 的长为
A.2
B.4
C.6
D.8
7. 已知 P1(﹣3,y1),P2(2,y2)是一次函数 y x 1 的图象上的两个点,则 y1,y2 的大小关
系是 A.y1=y2
B.y1<y2
C.y1>y2
;
直线 BD 与直线 CF 的位置关系是
.
ii)请利用图②证明上述结论. (2)如图③,当△ABC 绕点 A 逆时针旋转 45°时,延长 DB 交 CF 于点 H,若 AB= 线段 FC 的长.
2019-2020学年八年级下学期期中考试数学试卷(解析版)
2019-2020学年八年级下学期期中考试数学试卷一、选择题(本大题共10小题,共40.0分) 1. 下列式子是分式的是( )A. x2B. 2xC. xπD.x+y 22. 在平面直角坐标系中,点(-1,-2)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 若反比例函数y =kx 的图象经过点(1,-2),则k =( )A. −2B. 2C. 12D. −124. 已知a2=b3=c4,则a+b c的值是( )A. 45B. 74C. 1D. 545. 纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为( )A. 3.5×104米B. 3.5×10−4米C. 3.5×10−5米D. 3.5×10−9米6. 若把分式x+yxy 中的x 和y 都扩大2倍,那么分式的值( )A. 扩大2倍B. 不变C. 缩小2倍D. 缩小4倍7. 若关于x 的分式方程2x−4=3+m4−x 有增根,则m 的值是( )A. −2B. 2C. ±2D. 48. 已知反比例函数y =kx(k ≠0),当x <0时,y 随x 的增大而增大,那么一次函数y =kx -k 的图象经过( ) A. 第一、二、三象限B. 第一、二、四象限C. 第一、三、四象限D. 第二、三、四象限9. 函数y =kx 与y =kx -k 在同一坐标平面内的图象大致是( )A. B.C.D.10. 已知a b+c =b a+c =ca+b =k ,则直线y =kx +2k 一定经过( )A. 第1,2象限B. 第2,3象限C. 第3,4象限D. 第1,4象限二、填空题(本大题共6小题,共24.0分)11. 已知a 是整数,点A (2a +1,2+a )在第二象限,则a =______.12. 点A (1,m )在函数y =2x 的图象上,则关于x 轴的对称点的坐标是______. 13. 化简:2aa 2−4-1a−2=______. 14. 方程3x =470−x 的解是______.15. 如图,点A 是反比例函数y =4x 图象上一点,AB ⊥y 轴于点B ,那么△AOB 的面积是______.16. 若关于x 的方程1x−4+mx+4=m+3x 2−16无解,则m 的值为______. 三、计算题(本大题共1小题,共8.0分) 17. 解方程:12x−1=12-34x−2.四、解答题(本大题共8小题,共78.0分) 18. 计算:3b 216a÷bc2a 2⋅(−2a b).19. 已知直线y =2x +1.(1)求已知直线与y 轴交点A 的坐标;(2)若直线y =kx +b 与已知直线关于y 轴对称,求k 与b 的值.20.已知如图,一次函数y=kx+b的图象与反比例函数y=mx的图象相交于A、B 两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.21.“苏宁电器”家电部送货人员与销售人员人数之比为1:8,由于今年4月以来家电的销量明显增多,经理决定从销售人员中抽调22人去送货,结果送货人员与销售人员人数之比为2:5,求这个商场家电部原来各有多少名送货人员和销售人员.22.如图,反比例函数y=-6x在第二象限的图象上有两点A,B,它们的横坐标分别为-1,-3,直线AB与x 轴交于点C,求△AOC的面积.23.某超市预购进A、B两种品牌的T恤共200件,已知两种T恤的进价如表所示,设购进A种T恤x件,且所购进的两种T恤全部卖出,获得的总利润为W元.品牌进价/(元/件)售价/(元/件)A 50 80B 40 65(1)求W关于x的函数关系式;(2)如果购进两种T恤的总费用不超过9500元,那么超市如何进货才能获得最大利润?并求出最大利润.(提示:利润=售价-进价)24.如图,已知直线y=x-2与双曲线y=kx(x>0)交于点A(3,m).(1)求m,k的值;(2)连接OA,在x轴的正半轴上是否存在点Q,使△AOQ是等腰三角形?若存在,请直接写出所有符合条件的点Q的坐标;若不存在,请说明理由.25.如图,已知反比例函数y=k1x(x>0)的图象与反比例函数y=k2x(x<0)的图象关于y轴对称,A(1,4),B(4,m)是函数y=k1x(x>0)图象上的两点,连接AB,点C(-2,n)是函数y=k2x(x<0)图象上的一点,连接AC,BC.(1)求m,n的值;(2)求AB所在直线的表达式;(3)求△ABC的面积.答案和解析1.【答案】B【解析】解:A、的分母中均不含有字母,因此它们是整式,而不是分式.故本选项错误;B、分母中含有字母,因此是分式.故本选项正确;C、分母没有字母,故C错误;D、分母中没有字母是整式,故D错误;故选:B.判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.本题考查的是分式的定义,在解答此题时要注意分式是形式定义,只要是分母中含有未知数的式子即为分式.2.【答案】C【解析】解:∵点的横纵坐标均为负数,∴点(-1,-2)所在的象限是第三象限.故选:C.根据横纵坐标的符号可得相关象限.考查点的坐标的相关知识;用到的知识点为:横纵坐标均为负数的点在第三象限.3.【答案】A【解析】解:∵点(1,-2)在反比例函数y=的图象上,∴点P(1,-2)满足反比例函数的解析式y=,∴-2=,解得k=-2.故选:A.根据反比例函数图象上的点的坐标特征,将(1,-2)代入反比例函数的解析式y=,然后解关于k的方程即可.此题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.解答此题时,借用了“反比例函数图象上的点的坐标特征”这一知识点.4.【答案】D【解析】解:令=k,得:a=2k、b=3k、c=4k,===.故选:D.令=k,得到:a=2k、b=3k、c=4k ,然后代入即可求解.本题考查了比例的性质,解题的关键是用一个字母表示出a、b、c,然后求值.5.【答案】C【解析】解:35000纳米=35000×10-9米=3.5×10-5米.故选:C.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.此题主要考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6.【答案】C【解析】解:由题意,分式中的x和y都扩大2倍,∴==;分式的值是原式的,即缩小2倍;故选:C.根据题意,分式中的x和y都扩大2倍,则==;本题考查了分式的基本性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,分子、分母、分式本身同时改变两处的符号,分式的值不变.7.【答案】A【解析】解:方程两边都乘(x-4),得2=3(x-4)-m∵当最简公分母x-4=0时,方程有增根,∴把x-4=0代入整式方程,∴m=-2.故选:A.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x-4=0,所以增根是x=4,把增根代入化为整式方程的方程即可求出未知字母的值.增根问题可按如下步骤进行:①代入最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.【答案】B【解析】解:因为反比例函数(k≠0),当x<0时,y随x的增大而增大,根据反比例函数的性质,k<0,再根据一次函数的性质,一次函数y=kx-k的图象经过第一、二、四象限.故选:B.由反比例函数的性质可判断k的符号,再根据一次函数的性质即可判断一次函数的图象经过的象限.此题考查了反比例函数y=(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.9.【答案】A【解析】解:A、反比例函数y=的图象经过第二、四象限,则k<0;所以一次函数y=kx-k的图象经过第一、二、四象限;故本选项正确;B、反比例函数y=的图象经过第二、四象限,则k<0;所以一次函数y=kx-k的图象经过第一、二、四象限;故本选项错误;C、反比例函数y=的图象经过第二、四象限,则k<0;所以一次函数y=kx-k的图象经过第一、二、四象限;故本选项错误;D、反比例函数y=的图象经过第一、三象限,则k>0;所以一次函数y=kx-k的图象经过第一、三、四象限;故本选项错误;故选:A.根据反比例函数的图象所在的象限确定k的符号,然后由k的符号来判定一次函数的图象所在的象限.本题考查反比例函数与一次函数的图象特点:①反比例函数y=的图象是双曲线;②当k>0时,它的两个分支分别位于第一、三象限;③当k<0时,它的两个分支分别位于第二、四象限.10.【答案】B【解析】解:分情况讨论:当a+b+c≠0时,根据比例的等比性质,得:k=,此时直线为y=x+1,直线一定经过1,2,3象限.当a+b+c=0时,即a+b=-c,则k=-1,此时直线为y=-x-2,即直线必过2,3,4象限.综合两种情况,则直线必过第2,3象限.故选:B.根据已知条件分情况讨论k的值,即可知道直线一定经过的象限.当a+b+c≠0时,此时直线为y=x+1,直线一定经过1,2,3象限.当a+b+c=0时,此时直线为y=-x-2,即直线必过2,3,4象限.综合两种情况,则直线必过第2,3象限.注意求k的方法,要分情况讨论进行求解.还要非常熟悉根据直线的k,b值确定直线所经过的象限.11.【答案】-1【解析】解:根据题意得:,解得:-2<a <,又∵a是整数,∴a=-1.故填:-1.第二象限的点的坐标,横坐标小于0,纵坐标大于0,因而就得到关于a的不等式组,求出a的范围,又由于a是整数,就可以求出a的值.本题主要考查了坐标平面内各象限点的坐标的符号,常与不等式、方程结合起来求一些字母的取值范围,此类题往往转化成解不等式或不等式组的问题.这是一个常见的题目类型.12.【答案】(1,-2)【解析】解:根据题意可知m=2,所以点A(1,2)关于x轴的对称点的坐标是(1,-2).首先求出m的值,然后根据关于x轴对称的点的坐标规律:横坐标相同,纵坐标互为相反数,得出结果.主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.13.【答案】1a+2【解析】解:原式=-==,故答案为:原式通分并利用同分母分式的减法法则计算,约分即可得到结果.此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.【答案】x=30【解析】解:方程的两边同时乘以x(70-x),得:3(70-x)=4x解得x=30.检验:把x=30代入x(70-x)≠0∴原方程的解为:x=30.观察可得最简公分母为x(70-x),方程两边同时乘以最简公分母,把分式方程转化为整式方程求解.解分式方程的思路是将分式方程化为整式方程,然后求解.去分母后解出的结果须代入最简公分母进行检验,结果为零,则原方程无解;结果不为零,则为原方程的解.15.【答案】2【解析】解:由题意得,S△AOB==2.故答案为:2.根据在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变,进行解答即可.此题考查了反比例函数的几何意义,属于基础题,掌握k的几何意义是解答此类题目的关键.16.【答案】-1或5或-13【解析】解:去分母得:x+4+m(x-4)=m+3,可得:(m+1)x=5m-1,当m+1=0时,一元一次方程无解,此时m=-1,当m+1≠0时,则x==±4,解得:m=5或-,综上所述:m=-1或5或-,故答案为:-1或5或-.直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.此题主要考查了分式方程的解,正确分类讨论是解题关键.17.【答案】解:去分母得:2=2x-1-3,解得:x=3,经检验x=3是分式方程的解.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.18.【答案】解:原式=3b216a •2a2bc•(-2ab)=-3a24c.【解析】先把除法变成乘法,再根据分式的乘法法则进行计算即可.本题考查了分式的乘除法则的应用,注意:把除法变成乘法后进行约分即可.19.【答案】解:(1)当x=0时,y=1,所以直线y=2x+1与y轴交点A的坐标为(0,1);(2)对于直线y=2x+1,当x=0时,y=1;当y=0时,x=-12,即直线y=2x+1与两坐标轴的交点分别是(0,1),(-12,0),∵两直线关于y轴对称∴直线y=kx+b过点(0,1),(12,0),所以{1=b0=12k+b,∴{b=1k=−2.所以k=-2,b=1.【解析】(1)求直线与y轴的交点坐标,令交点的横坐标为0即可;(2)先求出直线y=2x+1与两坐标轴的交点(0,1),(-,0),因为两直线关于y轴对称,所以两直线都过点(0,1),它们与x轴的交点横坐标互为相反数,从而可知所求直线过点(0,1),(,0),进而利用待定系数法,通过解方程组,即可求出答案.此类题目结合轴对称出现,体现了数形结合的思想,需找出几对对应点的坐标,再利用待定系数法解决问题.20.【答案】解:(1)据题意,反比例函数y=mx的图象经过点A(-2,1),∴有m=xy=-2∴反比例函数解析式为y=-2x,又反比例函数的图象经过点B(1,n)∴n=-2,∴B(1,-2)将A、B两点代入y=kx+b,有{k+b=−2−2k+b=1,解得{b=−1k=−1,∴一次函数的解析式为y=-x-1,(2)一次函数的值大于反比例函数的值时,x取相同值,一次函数图象在反比例函数上方即一次函数大于反比例函数,∴x<-2或0<x<1,【解析】(1)利用已知求出反比例函数的解析式,再利用两函数交点求出一次函数解析式;(2)利用函数图象求出使一次函数的值大于反比例函数的值的x的取值范围.此题主要考查了待定系数法求反比例函数解析式以及待定系数法求一次函数解析式,利用图象判定函数的大小关系是中学的难点,同学们应重点掌握.21.【答案】解:设原来有x 名送货人员,则有8x 名销售人员,依题意,得:x+228x−22=25, 解得:x =14,经检验,x =14是原方程的解,且符合题意, ∴8x =112.答:原来有14名送货人员,有112名销售人员. 【解析】设原来有x 名送货人员,则有8x 名销售人员,根据“从销售人员中抽调22人去送货,结果送货人员与销售人员人数之比为2:5”,即可得出关于x 的分式方程,解之经检验后即可得出结论. 本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 22.【答案】解:∵反比例函数y =-6x 在第二象限的图象上有两点A ,B ,它们的横坐标分别为-1,-3,∴A (-1,6),B (-3,2).设直线AB 的函数关系式为y =kx +b ,则 {−3k +b =2,−k+b=6,解得{b =8,k=2,则直线AB 的函数关系式为y =2x +8. 令y =0,得x =-4, ∴CO =4,∴S △AOC =12×6×4=12. 即△AOC 的面积是12. 【解析】根据已知点横坐标得出其纵坐标,进而求出直线AB 的解析式,求出直线AB 与x 轴横坐标交点,即可得出△AOC 的面积.此题主要考查了反比例函数图象上点的坐标特征以及待定系数法求一次函数解析式,得出直线AB 的解析式是解题关键.23.【答案】解:(1)设购进A 种T 恤x 件,则购进B 种T 恤(200-x )件,由题意得:w =(80-50)x +(65-40)(200-x ), w =30x +5000-25x , w =5x +5000.答:w 关于x 的函数关系式为w =5x +5000; (2)∵购进两种T 恤的总费用不超过9500元,∴50x +40(200-x )≤9500, ∴0≤x ≤150. ∵w =5x +5000. ∴k =5>0∴w 随x 的增大而增大,∴x =150时,w 的最大值为5750. ∴购进A 种T 恤150件.∴购进A 种T 恤150件,购进B 种T 恤50件可获得最大利润,最大利润为5750元. 【解析】(1)由总利润=A 品牌T 恤的利润+B 品牌T 恤的利润就可以求出w 关于x 的函数关系式; (2)根据“两种T 恤的总费用不超过9500元”建立不等式求出x 的取值范围,由一次函数性质就可以求出结论.本题考查了由销售问题的数量关系求函数的解析式的运用,列一元一次不等式解实际问题的运用,一次函数的性质的运用,解答时求出函数的解析式是关键. 24.【答案】解:(1)∵点A (3,m )在直线y =x -2上∴m =3-2=1∴点A 的坐标是(3,1) ∵点A (3,1)在双曲线y =kx 上 ∴1=k3 ∴k =3(2)存在①若OA =OQ ,则Q 1(√10,0); ②若OA =AQ ,则Q 2(6,0); ③若OQ =AQ ,则Q 3(53,0).∴Q 1(√10,0),Q 2(6,0),Q 3(53,0). 【解析】点A (3,m )在直线y=x-2上,把A 点坐标代入解析式就可以求出m 的值;再把A 代入双曲线y=(x >0)中即可求解.本题主要考查了待定系数法求函数解析式,以及函数图象上的点与解析式的关系,图象上的点一定满足函数解析式.25.【答案】解:(1)因为点A 、点B 在反比例函数y =k1x (x >0)的图象上,∴k 1=1×4=4, ∴m ×4=k 1=4, ∴m =1∵反比例函数y =k1x (x >0)的图象与反比例函数y =k2x (x <0)的图象关于y 轴对称. ∴k 2=-k 1=-4 ∴-2×n =-4, ∴n =2(2)设直线AB 所在的直线表达式为y =kx +b 把A (1,4),B (4,1)代入,得{1=4k +b 4=k+b解得{b =5k=−1∴AB 所在直线的表达式为:y =-x +5(3)如图所示:过点A 、B 作x 轴的平行线,过点C 、B 作y 轴的平行线,它们的交点分别是E 、F 、B 、G . ∴四边形EFBG 是矩形.则AF =3,BF =3,AE =3,EC =2,CG =1,GB =6,EG =3 ∴S △ABC =S 矩形EFBG -S △AFB -S △AEC -S △CBG =BG ×EG -12AF ×FB -12AE ×EC -12BG ×CG =18-92-3-3=152 【解析】(1)先由点A 确定k ,再求m 的值,根据关于y 轴对称,确定k 2再求n ; (2)先设出函数表达式,再代入A 、B 两点,得直线AB 的表达式;(3)过点A 、B 作x 轴的平行线,过点C 、B 作y 轴的平行线构造矩形,△ABC 的面积=矩形面积-3个直角三角形的面积.本题考查了反比例函数的图形及性质、待定系数法确定一次函数解析式及面积的和差关系.题目具有综合性.注意图形的面积可以用割补法也可以用规则的几何图形求和差.。
2019--2020学年第二学期教学质量检测八年级数学试题卷及答案
2019--2020学年第二学期教学质量检测八年级数学试题卷及答案一.选择题(每小题3分,共30分)1. 代数式a 有意义的条件是( ) A. 0≠a B. 0≥a C. 0<a D.0≤a2. 下列各组线段哪个,能够组成直角三角形的一组是( )A. 1,2,3B. 2,3,4C. 4,5,6D.1,3,23. 甲、乙、丙、丁四人各进行了6次跳远测试,他们的平均成绩相同,方差分别是45.050.055.065.02222====丁丙乙甲,,,S S S S ,则跳远成绩最稳定的是( )A. 甲B. 乙C. 丙D.丁4. 下列计算正确的是( )A. 10220=B. 532=+B. 632=⨯ D.32212=+5. 如图,在菱形ABCD 中,对角线AC 与BD 交于点O , OE ⊥AB ,垂足为E ,若∠ADC=130°,则∠AOE 的大小为( )A. 75°B. 65°C. 55°D.50°6. 点A ()()2211,,,y x B y x 都在直线y=kx+2(k<0)上,且2121,,y y x x 则<的大小关系是( )A. 21y y =B. 21y y <B. 21y y > D.21y y ≥7.如图,平行四边形ABCD的周长为36cm,若点E是AB 的中点,则线段OE与线段AE的和为()A.18cmB.12cmC. 9cmD. 6cm8.如图,一次函数bxy+=1与一次函数3k2+=xy的图像交于点P(1,2),则关于不等式x+b>kx+3的解集是()A.x>0B. x>1C. x<1D. x<09.如图,在矩形ABCD中,AB=3,BC=5,过对角线交点O作EF⊥AC交AD于点F,交BC于点E,连接CF,△DFC的周长为()A.10B. 9C. 8D. 710.如图,点P从△ABC的顶点A出发,沿A--B--C匀速运动,到点C停止运动,点[运动时,线段AP的长度y与运动时间x的函数关系如图2所示,其中D为曲线部分的最低点,则△ABC 的面积是()A.10B. 12C. 20D. 24二.填空题(每题3分,共15分)11. 计算246+的结果是 . 12. 一组数据2,3,5,6,8,x (其中x 最大)的平均数与中位数相等,则x 为 .13. 在平面直角坐标系中,点P 的坐标为(-1,2)则OP 的长是 .14. 一次函数y=kx+b 的图像如图所示,则关于x 方程kx+b=0的解为 .15. 如图,在边长为8的正方形ABCD 中,E 是AB 边上的一点,且BE=2,点Q 为对角线AC 上的动点,则△BEQ 周长的最小值为 .三.解答题(本大题共8小题,共75分)16. (8分)计算:(1)27-8-1218+ (2)()()()2-323232⨯+++ 17. (8分)有一架秋千,当它静止时,踏板离地面的垂直高度DE=1m,将它往前推送6m (水平距离BC=6m )时,秋千的踏板离地的垂直高度BF=4m ,秋千的绳索始终拉得很直,求绳索AD 的长度.18.(8分)某中学八(1)班、(2)班各选5名同学参加“爱我中华”演讲比赛,其预赛成绩(满分100分)如右图所示:(1)根据右图信息填写下表:平均分中位数众数八(1)班85 85八(2)班85 80(2)根据两班成绩的平均数和中位数,分析哪班成绩较好?(3)如果每班各选2名同学参加决赛,你认为哪个班实力更强些?请说明理由.19.(10分)在平行四边形ABCD中,过点B作BE⊥CD于点E,点F 在边AB上,AF=CE,连接DF,CF.(1)求证:四边形DFBE是矩形;(2)当CF平分∠DCB时,若CE=3,BC=5,求CD的长.20.星期五小颖放学徒步从学校回家,当她走了一段路后,想起要去买彩笔做画报,于是原路返回到刚路过的文具店,买到彩笔后继续往家走,如图是她离家的距离与所用时间的关系示意图,请根据图中提供的信息回答下列问题:(1)小颖家与学校的距离是米;(2)AB表示的实际意义是;(3)小颖本次从学校回家的整个过程中,走的路程是多少米?(4)买到彩笔后,小颖从文具用品店回到家步行的速度是多少米/分?21.(10分)某市园林局打算购买A,B两种花装点城区道路,负责人小李去花卉基地调查发现:购买1盆A种花和2盆B种花需要14元,购买2盆A种花和1盆B种花需要13元.(1)求A,B两种花的单价各为多少元?(2)市园林局若购买A,B两种花共10000盆,且购买A种花不少于3000盆,但不多于5000盆,①设购买的A种花m盆,总费用为W元,求W与m的关系式;②请你帮小李设计一种购花方案使总花费最少?并求出最少费用为多少元?22.(10分)四边形ABCD是正方形,G是直线BC上任意一点,BE ⊥AG于点E,DF⊥AG于点F,当点G在BC边上时(如图1),易证DF-BE=EF,(1)当点G在BC延长线上时,在图2中补全图形,写出DF、BE、EF的数量关系,并证明.(2)当点G在CB延长线时,在图3中补全图形,写出DF、BE、EF 的数量关系,不用证明.23.(12分)如图,在平面直角坐标系中,直线AB分别交x轴于点A(a,0)点B(0,b),且a-ba+a满足,点P是坐标平面内一ba424,2=-+点,(1)求直线AB的解析式;(2)若点P在x轴上,且∠APB=45°,求点P的坐标;(3)若点P在y轴上在坐标平面内是否存在点Q,使以A,B,P,Q为顶点,且以AB为边的四边形是菱形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.。
2019-2020年八年级下学期期中考试数学试卷(IV)
2019-2020年八年级下学期期中考试数学试卷(IV)一.选择题:(每小题3分,共45分)(请将选择题答案写在......)..指定的位置上.........答卷1. 下列各式中正确的是()A. B. C. D.2.式子在实数范围内有意义,则x的取值范围是()A.B.C. D.3. 以下化简正确的是()A. B.C. D.4.下列四组数据不能作为直角三角形的三边长的是()A. 0.3、0.4、0.5B. 1、、C. 3、5、6D. 5、12、135.下列条件,不能使四边形ABCD是平行四边形的是().A.AB∥CD,AB=CD; B.AB∥CD,BC∥AD;C.AB∥CD,BC=AD; D.AB=CD,BC=AD;6. 如图所示:有一个长、宽都是2米,高为3米的无盖长方体纸盒,一只小蚂蚁从A点爬到B点,那么这只蚂蚁爬行的最短路径为()米.A.4 B.5 C.D.77.用两个全等的直角三角形,一定..能拼出下列图形中的()⑴等腰三角形;⑵平行四边形;⑶菱形;⑷矩形;A.⑴⑵⑶ B.⑴⑵⑷ C.⑴⑵⑶⑷ D.⑵⑶⑷8.正方形具有而矩形不一定具有的性质是()A.对角线互相平分; B. 对角相等;C. 对角线相等;D. 一条对角线平分一组对角.9. 菱形的边长和一条对角线长都为2,则另一条对角线长为().A. 2 B. C. D.10.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是()A.测量对角线,看是否互相平分;B.测量两组对边,看是否分别相等;C.测量对角线,看是否相等;D.测量对角线的交点到四个顶点的距离,看是否都相等.11.如图,矩形ABCD中,点O为对角线的交点,E为BC的中点,OE=3,AC=12,则AD =( )A. B. 8 C. 6 D.12. 面积为4cm2的正方形,对角线的长为()cm.A. B. C. D.13. 关于正比例函数,下列说法错误的是()A. 图象经过原点;B. 其图象是一条直线;C. 随增大而增大;D. 点(-2,6)在其图象上.14.一次函数的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限15. 已知:直线与直线都经过A(-2,0),且与y轴分别交于B、C两点,则:△ABC的面积为()A. 4B. 5C. 6D. 7宜昌四中xx年春季期中考试八年级数学试卷答卷题号1 2 3 4 5 6 7 8 9 11112131415答案16.(6分) 化简:⑴⑵17.(6分) 已知:如图,在□ABCD中,E,F是对角线BD上的两点,且BF=DE.求证:四边形AECF为平行四边形..18.(7分) ⑴请在下面边长为1的正方形网格中画一个钝角..△ABC,使AB=.⑵你画的图中,BC= ,CA= ,△ABC的面积= .19.(7分) 已知:如图,△ABC中,DE∥BC,EF∥AB,BE平分∠ABC.⑴求证:四边形BFED是菱形.⑵若AB=BC=8,求菱形BFED的周长.20.(8分) 现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.实施操作:将纸片沿直线AE折叠,使点B落在矩形ABCD内,记为点B′.⑴求证:∠BB′C=900;⑵求B′C的长度.21. (8分) 为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费,即:每月用水10吨以内(包括10吨)的用户,每吨收水费a元;每月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设居民月用水吨,应收水费元,与之间的函数关系如图所示:⑴求a的值;某户居民上月用水8吨,应收水费多少元?⑵求b的值,并写出当x>10时,y与x之间的函数关系式;⑶已知:居民甲上月比居民乙多用水4吨,两家共收水费46元,求两户居民上月分别用水多少吨?22. (10分) 如图,在四中八年级学生耐力测试赛中,甲、乙两学生跑的距离S(米)与时间t(秒)之间的函数关系的图象分别为折线OABC和线段OD. 根据图象的信息,解答以下问题:⑴甲同学前15秒跑了米,同学先到终点.⑵出发后第几分钟两位同学第一次相遇?本次测试的全程是多少米?⑶两位同学第二次相遇是在距终点多远的地方?23. (11分) 如图,直线y=-2x+4与坐标轴分别交于B、D, 四边形ABCD为菱形,其对角线交于点P,AC交y轴于点E.⑴求B、D、A三个点的坐标;⑵求PE的长.24. (12分) 如图,已知正方形ABCD的边长为4,点E、F分别从C、A两点同时出发,以相同的速度作直线运动.已知点E沿射线CB运动,点F沿边BA的延长线运动,连接DF、DE、EF,EF与对角线AC所在的直线交于点P,点H为FB的中点,连接PH.(图1供参考)⑴请写出DE与DF的关系,并说明理由;⑵设CE =x,PH=y,求: y与x之间的函数关系式,并写出自变量x的取值范围.接23题答题区:-----如有帮助请下载使用,万分感谢。
江西省赣州市南康区2019-2020学年度第二学期线上教学检测八年级数学试题卷(《二次根式》、《勾股定理》)
3 15 3 2 8 27 3 33 34 - 4a + a23 14 [a b - (2 2 a 2 + b 2 - c 2 22) ] 18 32 2 3 3 利用平方差公式可以进行简便计算: 例 1:99×101=(100-1)(100+1)=1002-12=10000-1=9999 例 2:39×410=39×4110=(40-1)(40+1)×10=(402-12)×10=(1600-1)×10=1599×10=159902019 一 2020 学年度第二学期教学检测八年级数学试题卷9. 一个三角形的三边长分别为 8cm , 12cm , 18cm ,则它的周长是 cm .10. 如图所示,是一个外轮廓为长方形的机器零件平面示意图,根据图中标出的尺寸(单位:mm )则两圆孔中心 A 和 B 的距离是mm .11. 我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,一、选择题(本大题共 6 个小题,每小题 3 分,共 18 分.在每小题给出的四个选项中,只有一项是符合题目要求的)给出了著名的秦九韶公式,也叫三斜求积公式.即:如果一个三第 10 题1. 如果是二次根式,那么 x 应满足的条件是()角形的三边长分别为 a ,b ,c ,那么该三角形的面积为 S = . A .x ≥0B .x ≥2C .x >2D .x >4已知△ABC 的三边长分别为 ,2,1,则△ABC 的面积为.2. 如图,在 Rt △ABC 中,∠C =90°, AB = 2 , AC = ,则 BC 的长为()12. 有一直角三角形两直角边分别为 6cm 、8cm ,在其外部拼上一个以 8cm 为直角边的直角三角形,此时变成等腰三角形,则该等腰三角形的周长是 cm .A.B .C . 3D .153. 下列计算正确的是()A . 2 + 4 = 6 C . ÷ = 3B.= 4 D .= -3三、(本大题共 4 个小题,每小题 5 分,共 20 分)13.计算: + - 1 - .4. 如图,△ABC 和△DCE 都是边长为 4 的等边三角形,点 B ,C ,E 在同一条直线上,连接 BD ,则 BD 的长为( )A .B . 2C . 3D . 4 第 4 题14. 如图,在 Rt △ABC 中,∠C =90°,若 AC =6,CB =8,则 AB 上的高 CD 是多少?5. 《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何? 意思是:一根竹子,原高一丈(一丈=10 尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部 6 尺远,问折断处离地面的高度是多少?设折断处离地面的高度为 x 尺,则可列方程为( )A .x 2﹣6=(10﹣x )2B .x 2﹣62=(10﹣x )2C .x 2+6=(10﹣x )2D .x 2+62=(10﹣x )26. 小华和小明计算a + 时,得出两种不同的答案.小华正确审题,得到的答案是“2a ﹣2”,小明忽略了算式后面括号中的条件,得到的结果是“2”,请你判断,括号中的条件 是 ( )A .a <2B .a ≥2C .a ≤2D .a ≠2二、填空题(本大题共 6 个小题,每小题 3 分,满分 18 分)15.请你参考黑板中老师的讲解,运用平方差公式简便计算:(1)19 ⨯ 21; (2) (2020 + 2020 2 )( - 2 ) .7. 计算: 2 2- =.8.在 Rt △ABC 中,∠C =90°,a ∶b =3∶4,c =15,则 a 的值是.2x - 4 3 35 2(-3)2 327 5第 2 题题 号 一二三总 分得 分7 716.已知实数 a 、b 、c 在数轴上的对应点为 A 、B 、C ,如图所示:20. 如图,教学楼走廊左右两侧是竖直的墙,一架梯子 AB 斜靠在左墙时,梯子底端到左墙角的化简: b - a - + c - b - .C A 0 B距离为 AC =0.7 米,顶端距离地面 BC =2.4 米,如果保持梯子底端位置不动,将梯子斜在右墙时,顶端距离地面 B 'D = 2 米,求教学楼走廊 CD 的宽度.四、(本大题共 5 个小题,每小题 7 分,共 35 分)17.如图 11 有 3 张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长都是 1,请在方格纸中分别画出符合要求的图形,所画图形各顶点必须与方格纸中小正方形的顶点重合, 具体要求如下:(1) 在图 1 中,画一个直角边长为 4,面积为 6 的直角三角形; (2) 在图 2 中,画一个底边长为 4,面积为 8 的等腰三角形; (3) 在图 3 中,画一个面积为 5 的等腰直角三角形;(1)(2)(3)21. 在 Rt △ABC 中,∠C =90°,AC =6,BC =8,D ,E 分别是 AB 和 CB 上的点,把△ABC 沿着直线 DE 折叠,顶点 B 的对应点是点 B '.(1) 如图 1,如果点 B '恰好与顶点 A 重合,求 CE 的长;(2) 如图 2,如果点 B '恰好落在直角边 AC 的中点上,求 CE 的长.五、(本大题 1 小题,共 9 分)22. 已知,如图,在 Rt △ABC 中,∠C =90°,∠A =30°,BC =9 cm .动点 P 从点 B 出发,18. 先化简,再求值: (1 +1) ÷ x + 2 x 2- 9 x - 3,其中 x =- 2 .沿 BC 向点 C 运动,动点 Q 从点 A 出发,沿 AB 向点 B 运动,如果动点 P 以 1 cm/s ,Q 以 2cm/s 的速度同时出发,设运动时间为 t (s ),解答下列问题:(1) 当 t =s 时,BP =BQ ;(2) 连接 PQ .19. 已知 a =+ 2 , b = - 2 ,求下列代数式的值:(1) a 2b + b 2a ;(2) a 2 - b 2.①当 t =4 时,求线段 PQ 的长;②在运动过程中,△BPQ 的形状不断发生变化,它能否构成直角三角形?如果能则求出此时t 的值,如果不能,请说明理由.b 2 (a -c )23八年级数学参考答案一、选择题(本大题共6个小题,每小题3分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1-6 BCCDAB二、填空题(本大题共6个小题,每小题3分,满分18分)7.23 8.9 9.(5223)+ 10.100 11.1 12. 32或245+三、(本大题共4个小题,每小题5分,共20分) 13.解:原式3242(21)=+-- 324221=+-+ 621=+14.解:Rt△ABC 中,△△C =90°,AC =6,CB =8, △由勾股定理,得22226810AB AC BC =+=+=.由面积公式,得1122AC BC AB CD ⨯=⨯,即11681022CD ⨯⨯=⨯⨯, △ 4.8CD =. 15.解:(1)原式1(201)(201)4=-+ 21(201)4=- 3994=. (2)原式2020(32)(32)=+- 2020(32)=⨯-=1.16.解:由数轴可知,, 0, , ,b a b c b a c >><> △原式=()()()b a b c b a c ------=b a b c b a c ---+-+ =2a b -+.四、(本大题共5个小题,每小题7分,共35分)17.解:如图所示:18.解:原式=2132(3)(3)x x x x x ++-++-g =312(3)x x x +++g =12x +.当23-=x 时,123x ==+.19.解:由2a =,2b =-,得2)743ab ==-=,22a b +=+=,2)2)4a b -=-=.(1)原式=()ab a b +3=⨯=(2)原式=()()4a b a b +-== 20.解:在Rt△ABC 中,△AC =0.7,BC =2.4,△ 2.5AB ===.在Rt△AB D '中,△ 2.5AB AB '==,2B D '=,△ 1.5AD ==.故0.7 1.5 2.2CD AC AD =+=+=. 答:教学楼走廊CD 的宽度为2.2米.21.解:设CE=x ,则BE =8-x.(1)在图1中,由折叠的性质,得AE=BE , △在Rt△ACE 中,2226AE x =+, △2226(8)x x +=-,解得74x =. 即CE 的长为74. (2)在图2中,由折叠的性质,得B E BE '=, △在Rt△B CE '中,2223B E x '=+, △2223(8)x x +=-,解得5516x =. 即CE 的长为5516.五、(本大题1小题,共9分)22.解:(1)6;(2)在Rt △ABC 中,∠C =90°,∠A =30°,BC =9 cm . ∴AB=18 cm ,AC =3991822=-cm , 由P 、Q 的运动速度可知:BP =t ,AQ =2t , ①当t =4时,如答图1,B P =4,AQ =8, 作QM ⊥BC ,QN ⊥AC ,则有 QN =421=AQ =CM ,344822=-=AN , ∴PM =9﹣4﹣4=1,Q M =CN =AC ﹣AN =35, ∴192)35(122=+=PQ ; ②能构成直角三角形,有以下两种情况: 如答图2,当PQ ⊥BC 时,PQ //AC , ∴∠BQP =∠A =30°,∴BQ =2BP =2t , 即AB =4t =18,解得t =4.5;如答图3,当PQ ⊥BA 时,∠BPQ =30°, ∴B P =2BQ =t ,BQ =0.5t , 即AB =2.5t =18,解得t=7.2;综上所述,当t 为4.5或7.2时,△BPQ 是直角三角形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019~2020学年度第二学期南康六中八年级第四周周测数学试卷
一、选择题(共15小题;共60分)
1. 下列运算正确的是
B.
C.
2. 下列说法正确的是
A. 有一个角是直角的四边形是矩形
B. 两条对角线相等的四边形是矩形
C. 两条对角线互相垂直的四边形是矩形
D. 四个角都是直角的四边形是矩形
3. 如图,在矩形中,对角线,相交于点,以下说法错误的是
A. B. C. D.
4. 顺次连接一个矩形各边的中点,得到的四边形一定是
A. 菱形
B. 矩形
C. 正方形
D. 梯形
5. 菱形是轴对称图形,它的对称轴有
A. 条
B. 条
C. 条
D. 条
6. 命题“若,则”与其逆命题的真假性为
A. 该命题与其逆命题都是真命题
B. 该命题是真命题,其逆命题是假命题
C. 该命题是假命题,其逆命题是真命题
D. 该命题与其逆命题都是真命题
7. 下列式子中,属于最简二次根式的是
A. D.
8. 如图,已知直线,的面积为,的面积为,则与的数量关系
为
A. B. C. D.
9. 如图,已知平行四边形,从下列四个条件中选两个作为补充条件,使平行四边形
成为正方形.
;
;
;
.
下列四种选法错误的是
A. B. C. D.
10. 直角三角形中,两直角边长分别是和,则斜边上的中线长是
A. B. C. D.
11. 梯形中,,,,,,则的长为
A. B. C. D.
12. 如图,在中,,分别以,为边向外作正方形和正方
形,过点作,垂足为,交于点,连接,.下列
结论中,不正确的是
A. B.
C. D.
13. 如图所示,一圆柱高,底面半径长,一只蚂蚁从点爬到点处吃食,要爬行的
最短路程(取)是
A. B. C. D. 无法确定
14. 如图,在梯形中,,,若,则
的大小是
A. B. C. D.
15. 平行四边形中,对角线和相交于点,如果,,
,那么的取值范围是
A. B. C. D.
二、解答题(共3小题;共40分)
16. 一只蚂蚁沿图中立方体的表面从顶点爬到顶点,图是图立方体的表面展开图,
设立方体的棱长为.
(1)在图中标出点的位置.
(2)求蚂蚁从点到点爬行的最短路径长.
17. (1)尝试:把一个等腰直角三角形沿斜边上的中线(裁剪线)剪一刀,把分割成的
两部分拼成一个四边形,如图①所示.(以下有画图要求的,工具不限,不必写画法和证明)
()猜一猜:四边形一定是;
()试一试:按上述的裁剪方法,请你拼一个与图①不同的四边形,并在图②中画出示意图.
(2)探究:在等腰直角三角形中,请你沿一条中位线(裁剪线)剪一刀,把分割成的两部分拼成一个四边形.
()想一想:你能拼得的四边形分别是;(写出两种)
()画一画:请分别在图③,图④中画出你拼得的这两个四边形的示意图.
18. 如图,矩形被两条对角线分成四个小三角形,如果四个小三角形的周长的和是,
对角线的长是,那么矩形的周长是多少?
答案
第一部分
1. D 【解析】A,故此选项错误;
B.,故此选项错误;
C.,故此选项错误;
,正确.
2. D
3. D
4. A
5. B
6. B
7. D
8. B
9. A
10. C
11. B
12. C
13. B
14. C 【解析】,
.
.
15. C
第二部分
16. (1)图略.点有两个位置.
(2)
17. (1)()平行四边形;
()如图①所示.
(2)()平行四边形、梯形或矩形(从这三种中任意选两种作答);()如图②,③,④,⑤所示(选出上一问中自己作答的那两种图形).
18. 四边形是矩形,
,,(矩形的对角线相等且互相平分),,.
.
,
.矩形的周长是.。