无刷直流电机绕组
无刷直流电机工作原理
无刷直流电机工作原理
无刷直流电机的工作原理是基于电磁感应原理和功率电子器件的控制。
无刷直流电机的转子上有一个固定的磁铁,称为永磁体。
在电机的定子上有多个绕组,每个绕组之间的位置相隔一定的角度,形成若干个电磁极。
通过控制电极绕组的电流方向,可以产生一个旋转的磁场。
当定子电极绕组通电时,产生的磁场与永磁体的磁场相互作用,使得定子中的绕组受到电磁力的作用,导致电机转子开始转动。
为了控制电机的转速和方向,需要使用电子器件来控制定子电极绕组的电流。
这些电子器件通常是功率MOSFET(金属氧
化物半导体场效应晶体管)或IGBT(绝缘栅双极型晶体管),它们可以通过PWM(脉冲宽度调制)技术来控制电流的大小
和方向。
通过定子电极绕组的电流控制,可以使得电机旋转的速度和方向按需调整。
而且,由于无刷直流电机没有碳刷和换向器,所以具有更高的效率和寿命。
总结起来,无刷直流电机的工作原理是通过定子电极绕组的电流与永磁体之间的相互作用来产生电磁力,从而使得转子开始旋转。
通过控制电子器件来控制电流的大小和方向,可以调整电机的转速和方向。
无刷直流电机电阻电感反电势与绕组的关系
无刷直流电机电阻电感反电势与绕组的关系下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
本文下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Downloaded tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The documents can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!直流电机是一种将电能转换为机械能的重要动力装置,而无刷直流电机作为一种新型的直流电机,在各个领域得到了广泛的应用。
直流无刷电机电机工作原理
直流无刷电机电机工作原理
直流无刷电机工作原理:
直流无刷电机是一种使用永磁体作为转子的电机。
它由定子、转子和电子换向器组成。
定子是由绕组和磁铁组成的,绕组分布在定子的一周,通过施加电流使绕组产生磁场,产生固定的磁极。
转子由永磁体组成,它的磁极与定子的磁极相互作用。
当永磁体的磁极与定子磁极对齐时,磁极之间存在吸引力,使转子受力旋转。
电子换向器是控制电流流向的装置。
它根据转子位置和速度信号,通过控制转子绕组的电流,使转子始终保持转动。
具体工作原理如下:当转子磁极与定子的磁极对齐时,电子换向器会改变绕组的电流方向,使得转子磁极继续转动。
当转子继续旋转到下一个磁极对齐时,电子换向器再次改变绕组的电流方向,实现连续的旋转。
通过电子换向器的控制,无刷电机可以实现高速、高效率的运转。
由于无刷电机没有需要摩擦的碳刷,在运转过程中减少了能量损耗和摩擦产生的热量,因此具有高效率和长寿命的特点。
此外,无刷电机转速可通过电子换向器的控制精确地调节。
无刷直流电动机的工作原理
无刷直流电动机的工作原理无刷直流电动机是一种新型的电动机,其工作原理与传统的直流电动机有所不同。
无刷直流电动机通过电子调速装置控制转子上的永磁体产生磁场,与定子上的绕组相互作用,从而产生转矩,实现电机的运转。
下面将详细介绍无刷直流电动机的工作原理。
无刷直流电动机的转子上安装有永磁体,这些永磁体产生磁场,而定子上则绕有绕组。
当电机通电时,电流通过定子绕组,产生磁场。
由于磁场的存在,转子上的永磁体受到磁力的作用,开始旋转。
在传统的直流电动机中,转子上的永磁体是由电刷与电枢绕组产生的磁场来驱动的,而无刷直流电动机中则是通过电子调速装置来控制转子上的永磁体产生磁场。
电子调速装置中包含了一个电子器件,它能够根据电机的运行状态来控制电流的方向和大小,从而控制永磁体的磁场。
无刷直流电动机的电子调速装置通过检测电机的转子位置和转速,来确定电流的方向和大小。
具体来说,电子调速装置中包含了一个位置传感器,用来检测转子的位置,以及一个速度传感器,用来检测电机的转速。
通过这些传感器提供的信息,电子调速装置能够准确地控制电流的方向和大小,从而精确地控制永磁体的磁场。
无刷直流电动机的工作原理可以简单地总结为:电子调速装置通过控制电流的方向和大小,来控制转子上的永磁体产生磁场,与定子上的绕组相互作用,从而产生转矩,实现电机的运转。
与传统的直流电动机相比,无刷直流电动机具有转速调节范围广、转速稳定、噪音低、寿命长等优点。
无刷直流电动机在现代工业中被广泛应用,特别是在需要精确控制转速和转矩的场合。
例如,无刷直流电动机常用于机床、自动化生产线、机器人等设备中。
此外,无刷直流电动机还被广泛应用于家用电器、电动汽车等领域。
无刷直流电动机通过电子调速装置控制转子上的永磁体产生磁场,与定子上的绕组相互作用,从而产生转矩,实现电机的运转。
无刷直流电动机具有转速调节范围广、转速稳定、噪音低、寿命长等优点,被广泛应用于各个领域。
通过不断的技术创新和研发,无刷直流电动机在未来的发展中有着广阔的前景。
直流无刷电机工作原理
直流无刷电机工作原理
直流无刷电机是一种采用电子换向的电机,它不同于传统的直流有刷电机,无需使用碳刷来实现换向。
直流无刷电机由转子和定子两部分组成,其中转子上的永磁体产生磁场,而定子上的绕组则通过电流产生磁场,从而实现电机的运转。
直流无刷电机的工作原理主要包括磁场产生、电流控制和换向三个方面。
首先是磁场产生。
直流无刷电机的转子上通常安装有永磁体,它可以产生一个恒定的磁场。
而定子上的绕组通过外部电源供电,产生一个可控的磁场。
这两个磁场之间的相互作用产生了电机运转所需的力。
其次是电流控制。
直流无刷电机的定子绕组通过电子器件进行控制,以实现对电流的调节。
一般来说,电机控制器会根据电机转子的位置和速度来控制定子绕组的电流,从而实现对电机转矩和速度的精确控制。
最后是换向。
直流无刷电机的换向是通过电子器件来实现的,
通常采用霍尔传感器或者编码器来检测转子的位置,然后根据检测
结果来控制定子绕组的电流。
这样就可以实现电机的正常运转,并
且避免了传统有刷电机中碳刷的磨损和电火花的产生。
总的来说,直流无刷电机的工作原理是通过控制定子绕组的电
流来产生磁场,从而与转子上的永磁体相互作用,实现电机的运转。
同时,通过精确的电流控制和换向技术,可以实现对电机转矩和速
度的精确控制,从而满足不同应用场景对电机性能的要求。
直流无刷电机由于其结构简单、寿命长、效率高等优点,已经
在各种领域得到了广泛的应用,包括工业生产、家用电器、电动汽
车等。
随着电子技术的不断发展,相信直流无刷电机在未来会有更
广阔的应用前景。
永磁无刷直流电机的数学模型
永磁⽆刷直流电机的数学模型 ⽆刷直流电机绕组中产⽣的感应电动势与电机转速匝数成正⽐,电枢绕组串联公式为 其中,E为⽆刷直流电机电枢感应线电动势(V);p为电机的极对数;α为极弧系数;W为电枢绕组每相串联的匝数;φ为每极磁通(Wb);n为转速(r/min)。
在反电动势E和极对数p已经确定的情况下,为使电机具有较⼤的调速范围,就须限制电枢绕组的匝数W。
因此,磁悬浮飞轮电机绕组电感和电阻都⾮常⼩,使得电机在运⾏过程中,相电流可能存在不连续状态。
假定电机定⼦三相完全对称,空间上互差120°电⾓度;三相绕组电阻、电感参数完全相同;转⼦永磁体产⽣的⽓隙磁场为⽅波,三相绕组反电动势为梯形波;忽略定⼦绕组电枢反应的影响;电机⽓隙磁导均匀,磁路不饱和,不计涡流损耗;电枢绕组间互感忽略。
公式中,Va、Vb、Vc和Vn分别为三相端电压和中点电压(V),R和E为三相电枢绕组电阻(Ω)和电感(H),Ea、Eb和Ec为三相反电动势(V),ia、ib.和ic为三相绕组电流(A)。
可将⽆刷直流电机每相绕组等效为电阻、电感和反电动势串联。
⽆刷直流电机绕组采⽤三相星形结构,数学模型⽅程如式(2-2)所⽰: 在电机运⾏过程中,电磁转矩的表达式为 电机的机械运动⽅程为 式中,Te和TL分别为电磁转矩和负载转矩(Nm);J为转⼦的转动惯量(kg·2m);f为阻尼系数(N·m·s)。
电机设计反电动势为梯形波,其平顶宽度为120°电⾓度,梯形波的幅值与电机的转速成正⽐。
其中,反电动势系数乃e由以下公式计算为 电机转⼦每运⾏60°电⾓度进⾏⼀次换相,因此在每个电⾓度周期中,三相绕组反电动势有6个状态。
电机运⾏过程中瞬态功耗的公式为 其中,Ω为电机⾓速度,P为功耗。
永磁⽆刷直流电机的控制可分为三相半控、三相全控两种。
三相半控电路的特点简单,-个可控硅控制⼀相的通断,每个绕组只通电1/3的时间,另外2/3时间处于断开状态,没有得到充分的利⽤。
直流无刷电机控制原理
二直流无刷电机工作原理及换向初始化直流无刷电机在结构上与三相永磁同步电动机相同,但控制原理却与直流有刷电动机相同。
直流有刷电机通过有刷换向使每个磁极下电枢导体的电流方向保持不变,从而产生能使电机连续旋转的转矩;直流无刷电机是通过电子换向使转子每个磁极下定子绕组导体电流的方向保持不变而产生能使电机连续旋转的转矩。
由于采用电子无刷换向代替直流有刷电机的有刷换向,所以交流永磁同步伺服电机又称直流无刷伺服电机。
直流有刷电动机必须正确调整换向电刷的机械位置才能使电机工作正常。
同样,直流无刷电机加电时必须建立正确的初始换向角,才能使直流无刷电机正常工作。
确定初始换向角的过程称为无刷换向的初始化过程。
为了了解换向初始化过程,必须先了解直流无刷电机的控制原理。
1. 直流无刷电机的控制原理1.1 直流有刷电机的工作原理直流有刷电机由定子(产生主磁场)、转子(电枢)和换向装置(换向片和电刷)组成。
直流有刷电机通过有刷换向使主磁极下的电枢导体的电流方向保持不变,从而使产生转矩的方向不变,使电动机的转子能连续旋转。
为了使直流有刷电动机在电枢绕组流过电流时能产生最大转矩,必须正确调整有刷换向装置中电刷的位置。
下面进行较为详细的讨论。
(1)有刷换向装置的作用有刷换向装置由电刷和换向片组成。
直流有刷电机的电枢绕组为环形绕组,主磁极下的每个电枢导体连接到换向片上。
换向片为彼此绝缘,均匀分布在换向器圆周上的金属片组成。
电刷与换向片滑动接触。
电枢电流通过电刷和连接电枢导体的换向片引入电枢绕组。
电枢旋转时,电刷和换向片就象一个活动接头一样始终与主磁极下的导体连接,使主磁极下电枢导体的电流方向不变,产生使电枢连续旋转的转矩。
(2)产生最大转矩的条件产生最大转矩的条件是:一个磁极下的所有电枢导体的电流方向一致。
或者说,电枢导体产生的合成磁场与主磁场垂直。
(3)直流有刷电机的运行直流有刷电机的运行可用四个基本方程式来描述:①转矩平衡方程式:电流I M流过电枢绕组,载流导体在磁场中受力(受力方向用左手法则判断),产生能使电枢连续旋转的转矩T M。
直流无刷电机与永磁同步电机区别
无刷直流电机通常情况下转子磁极采用瓦型磁钢, 经过磁路设计, 可以获得梯形波的气隙磁 密,定子绕组多采用集中整距绕组,因此感应反电动势也是梯形波的。
无刷直流电机的控制 需要位置信息反馈, 必须有位置传感器或是采用无位置传感器估计技术,构成自控式的调速 系统。
控制时各相电流也尽量控制成方波, 逆变器输出电压按照有刷直流电机PWM 的方法 进行控制即可。
本质上, 无刷直流电机也是一种永磁同步电动机, 调速实际也属于变压变频调速范畴。
通常说的交流永磁同步伺服电机具有定子三相分布绕组和永磁转子,在磁路结构和绕组分布上保证感应电动势波形为正弦, 外加的定子电压和电流也应为正弦波,一般靠交流变压变 频器提供。
永磁同步电机控制系统常采用自控式, 也需要位置反馈信息, 可以采用矢量控制 (磁场定向控制)或直接转矩控制的先进控制方式。
两者区别可以认为是方波和正弦波控制导致的设计理念不同。
最后明确一个概念,无刷直流电机的所谓“直流变频”实质上是通过逆变器进行的交流变频, 从电机理论上讲,无刷直 流电机与交流永磁同步伺服电机相似, 应该归类为交流永磁同步伺服电机;但习惯上被归类 为直流电机,因为从其控制和驱动电源以及控制对象的角度看,称之为 “无刷直流电机”也算是合适的。
无刷直流电机通常情况下转子磁极采用瓦型磁钢, 经过磁路设计, 可以获得梯形波的气隙磁 密,定子绕组多采用集中整距绕组,因此感应反电动势也是梯形波的。
无刷直流电机的控制 需要位置信息反馈, 必须有位置传感器或是采用无位置传感器估计技术,构成自控式的调速 系统。
控制时各相电流也尽量控制成方波,逆变器输出电压按照有刷直流电机 PWM 的方法进行控制即可。
本质上,无刷直流电动机也是一种永磁同步电动机,调速实际也属于变压变频调速范畴。
通常说的永磁同步电动机具有定子三相分布绕组和永磁转子, 在磁路结构和绕组分布上保证感应电动势波形为正弦, 外加的定子电压和电流也应为正弦波,一般靠交流变压变 频器提供。
无刷直流电机绕组
第三章 直流无刷电动机的绕组第一节 概述同其他类型电动机一样,直流无刷电动机本体也是由定子和转子两大部件构成。
转子是指电动机在运行时可以转动的部分,通常由转轴、永久磁钢及磁轭等部件组成。
其主要作用是在电动机的气隙内产生足够的磁感应强度,并同通电后的定子绕组相互作用产生感应电势,以驱动自身运转。
定子是指电动机在运行时不动的部分,主要由硅钢冲片同分布在它们槽内的绕组以及机壳、端盖、轴承等部件组成。
所谓“绕组”,是指一些按一定的规律连接起来的线圈的总和。
绕组通电后,与转子磁钢所产生的磁场相互作用,产生力或感应电势驱使转子带动负载一块转动。
转子磁钢转动后,其磁力线反过来又切割定子绕组,在定子绕组中产生感应电动势,反过来又影响了电动机内电动势的平衡关系。
可见通电绕组和磁场之间的相互作用,是电动机内部机电能量转换的主要媒介。
只有搞清电动机内磁场的分布和作用情况,才能确切地分析绕组所产生的感应电势和感生电动势的大小及方向,以便导出电动机的感应电势平衡方程和电动势平衡方程。
然而离开了绕组的具体结构及联接方式,很难讲清楚电动机内机电能量转换的基本过程,对感应电动势、电路参数和电磁感应电势等基本问题,也会感到空洞或不着边际。
在本章里,将结合直流无刷电动机的基本性能要求来讨论绕组结构的一些基本问题。
为了简明扼要地分析有关绕组问题,首先对直流无刷电动机的磁路及气隙磁通作些必要的描述和简化。
第二节 直流无刷电动机磁场的简化在直流无刷电动机中,主磁场一般由转子磁钢产生,通常用主磁路如图3.1所示,它通过相邻两个极的中心线,经定子和转子铁心闭合。
主磁路主要由气隙、定子齿、定子轭和转子轭几部分组成。
图中,U Φ为工作磁通,M Φ为永久磁钢内磁通,ΦS 为漏磁通。
图3.1电动机内部磁路1—定子铁心2—软铁极靴3—永久磁钢严格地说,直流无刷电动机内的磁场是含有不同磁介质的三维场,由于其几何形状复杂,又含有铁磁物质等非线性因素,使得问题变得非常复杂。
永磁无刷直流电机工作原理 知乎
永磁无刷直流电机工作原理知乎永磁无刷直流电机是一种采用永磁体作为励磁源,通过电子器件进行电流控制的电机。
它相比传统的有刷直流电机,具有结构简单、转速范围广、效率高等优点,被广泛应用于各种领域。
我们来了解一下永磁无刷直流电机的结构。
它主要由转子和定子两部分组成。
转子是由永磁体组成,永磁体的磁场可以提供转子的磁场。
定子上布置了若干绕组,通过这些绕组与转子磁场的相互作用,实现电机的运动。
我们来看一下永磁无刷直流电机的工作原理。
当电机通电时,电流会通过定子绕组,产生磁场。
磁场与转子上的永磁体磁场相互作用,使得转子受到力矩的作用,从而开始转动。
同时,电流的方向也会根据传感器的反馈进行调整,以保持电机的转速稳定。
在永磁无刷直流电机中,转子上的永磁体起到了关键的作用。
永磁体的磁场强度决定了电机的输出功率和转矩。
而永磁体的材料选择和制造工艺则直接影响了电机的性能。
目前常用的永磁体材料有钕铁硼磁铁和磁体陶瓷等,它们具有高磁能积、高矫顽力和稳定的磁性能。
永磁无刷直流电机还需要通过电子器件进行电流控制。
这些电子器件通常包括功率电子器件和驱动电路。
功率电子器件用于将电源提供的直流电转换成交流电,以产生恰当的电磁场。
而驱动电路则根据传感器的反馈信号,控制功率电子器件的开关状态,以实现电机的转速调节和保护功能。
传统的有刷直流电机需要通过机械刷子和换向器来实现转子的磁场变化。
而永磁无刷直流电机通过电子器件控制电流,不再需要机械刷子和换向器,从而避免了机械磨损和换向器故障等问题。
这不仅提高了电机的可靠性和寿命,还减小了电机的体积和重量。
总的来说,永磁无刷直流电机是一种高效、可靠的电机。
它通过永磁体提供转子磁场,通过电子器件控制电流,实现电机的运动。
相比传统的有刷直流电机,永磁无刷直流电机具有结构简单、转速范围广、效率高等优点。
在电动车、机器人、家用电器等领域得到了广泛应用。
随着永磁材料和电子器件的不断发展,永磁无刷直流电机的性能还将进一步提升,为各种应用场景带来更多可能性。
无刷直流电机的关键技术及应用
无刷直流电机的关键技术及应用一、无刷直流电机系统结构无刷直流电机是一种具有高效、低噪音、长寿命等优点的电机,广泛应用于各种领域。
其系统结构主要包括定子、转子、传感器和控制系统等部分。
定子由铁芯和绕组组成,绕组通过电流产生磁场;转子为永磁体,与定子磁场相互作用产生转矩;传感器用于检测转子的位置和速度;控制系统根据传感器信号控制电机的运行。
二、无刷直流电机工作原理无刷直流电机的工作原理是利用电子换向器代替了传统的机械换向器,通过控制电流的方向和大小来改变电机的运行状态。
具体来说,当定子绕组通电后,会产生磁场,吸引转子永磁体转动;当转子转动时,位置传感器检测到转子的位置,将信号传递给控制系统;控制系统根据位置信号控制电子换向器,改变电流的方向和大小,从而改变电机的运行状态。
三、转子位置传感器技术转子位置传感器是无刷直流电机的重要组成部分,用于检测转子的位置和速度。
常用的位置传感器有光电编码器、霍尔传感器等。
这些传感器能够将转子的位置和速度信号转化为电信号,传递给控制系统。
四、电子换相线路技术电子换相线路是无刷直流电机的关键技术之一,用于控制电流的方向和大小。
常用的电子换相线路有H桥电路、PWM控制等。
这些电路能够根据控制系统输出的信号,控制电机的运行状态。
五、永磁转子设计与制造永磁转子是无刷直流电机的重要组成部分,其设计与制造直接影响到电机的性能。
永磁转子的材料一般为钕铁硼、铁氧体等高性能永磁材料,其形状和尺寸需要根据电机的具体需求进行设计。
制造过程中需要保证永磁体的质量和精度,以保证电机的性能稳定可靠。
六、定子绕组设计与制造定子绕组是无刷直流电机的另一个重要组成部分,其设计与制造同样直接影响到电机的性能。
定子绕组的材料一般为铜或铝,其形状和尺寸需要根据电机的具体需求进行设计。
制造过程中需要保证绕组的精度和质量,以保证电机的性能稳定可靠。
七、控制系统设计与优化控制系统是无刷直流电机的重要组成部分,用于控制电机的运行状态。
无刷直流电机简介
无刷直流电机简介导言:无刷直流电机是一种常用于工业和家用电器的电机类型。
相较于传统的有刷直流电机,无刷直流电机具有更高的效率、更低的噪音和更长的寿命。
本文将对无刷直流电机进行详细介绍,包括其原理、结构、工作特性以及应用领域等方面。
一、原理无刷直流电机是一种基于霍尔效应的电机。
它由转子、定子、永磁体和驱动电机控制器组成。
无刷直流电机的转子由多个钢芯和多个绕组组成,绕组悬浮在转子轴上。
当转子转动时,控制器通过电流传感器检测转子位置,进而控制定子绕组的电流方向和大小,从而实现效果良好的转矩输出。
二、结构无刷直流电机的结构相对简单,由永磁体和转子组成。
常见的永磁体材料有多种选择,如永磁铁氧体、钕铁硼和硬磁材料等。
转子通过电机轴连接到驱动装置上,使转子能够旋转。
另外,无刷直流电机通常还具有散热装置以保持其工作温度。
三、工作特性1.高效率:无刷直流电机的转换效率通常可以达到90%以上,相较于有刷直流电机的60%-70%,能够更好地转化电能为机械能,减少能量损耗。
2.高转矩:无刷直流电机具有较高的初始转矩,能够在启动瞬间提供更大的扭矩,适用于启动重负载。
3.宽调速范围:无刷直流电机的调速范围较宽,可以通过改变驱动电机控制器的电流和电压来实现。
4.高精度:无刷直流电机的控制器能够精确地检测转子位置和速度,可以实现高精度的转速控制。
5.低噪音:无刷直流电机由于不需要有刷子,噪音更低,能够在要求低噪音的场合使用。
四、应用领域1.工业自动化:无刷直流电机在工业机械自动化中广泛应用,如数控机床、输送设备、机器人等。
2.家电:无刷直流电机可用于家电产品中,如电风扇、吸尘器、洗衣机等。
3.电动工具:无刷直流电机在电动工具中的运用越来越普遍,如电钻、电锤等。
4.汽车工业:无刷直流电机在汽车工业中应用广泛,如电动车、车载空调、电动窗等。
5.医疗设备:无刷直流电机在医疗设备中有着重要的应用,如手术机器人、血液离心机等。
结语:无刷直流电机以其高效率、高性能和低噪音的特点,成为现代工业和家庭电器中一种重要的驱动装置。
直流电机绕组
直流电机直流电机(direct current machine)是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。
它是能实现直流电能和机械能互相转换的电机。
当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。
组成:直流电机电枢绕组:通常采用双层绕组。
线圈的有效部分包含左、右两个有效边。
放在槽内且靠近槽口的有效边叫上层边,靠近槽底的有效边叫下层边。
同一槽中上下层间用绝缘纸隔开。
同一线圈上下两有效边沿圆周方向的距离即为线圈的跨距,通常用槽距(两相邻槽间距离)的倍数表示。
跨距约等于一个极距(相邻两磁极的距离,也常用槽距的倍数表示)。
电枢绕组断路的检查直流电枢绕组分叠绕组、波绕组和蛙绕组3种。
每个线圈的两个出线端连接到换向器的两个换向片上,两者在换向器圆周表面上相隔的距离称为换向器节距,用Ys表示。
不同形式的绕组具有不同的换向器节距。
①叠绕组有单叠绕组和复叠绕组之分。
单叠绕组是将同一磁极下相邻的线圈依次串联起来,构成一条并联支路,所以对应一个磁极就有一条并联支路。
单叠绕组的基本特征是并联支路数等于磁极数。
各条支路间通过电刷并联。
单叠绕组线圈的换向器节距Ys=1。
Ys>1者称复叠绕组。
比较常用的是Ys=2的复叠绕组,又称双叠绕组。
双叠绕组在一个磁极下有两条并联支路。
例如一台四极直流电机,采用双叠绕组时,共有8条并联支路。
各条支路间也是通过电刷并联。
电刷组数等于电机的极数。
其中一半为正电刷组,另一半为负电刷组。
叠绕组的并联支路数较多,它等于极数或为极数的整倍数,所以又叫并联绕组。
②波绕组有单波绕组和复波绕组。
单波绕组的特点是将同极性下的所有线圈按一定规律全部串联起来,形成一条并联支路。
所以整个电枢绕组只有两条并联支路。
波绕组线圈的换向器节距式中P为磁极对数;k为换向片数;a为使Ys等于整数的正整数,它等于波绕组的并联支路对数。
无刷直流电机工作原理
无刷直流电机工作原理无刷直流电机,也称为永磁同步电机,是一种使用永磁体作为励磁源,通过电子器件将电流进行控制的直流电机。
相比传统的刷式直流电机,无刷直流电机具有效率高、寿命长、无电刷磨损等优点,因此在许多领域被广泛应用。
一、无刷直流电机的基本原理无刷直流电机的基本原理是电磁互作用,通过电流在永磁体和绕组之间产生的磁场相互作用,在转子上产生驱动转动的力。
在无刷直流电机中,永磁体通常置于定子上,通过外加直流电源进行励磁。
转子上的绕组被称为“驱动绕组”,通过在驱动绕组中施加不同的电流,可产生不同的磁场。
二、无刷直流电机的基本结构无刷直流电机主要由转子、定子、传感器、控制器等组成。
1. 转子:转子是无刷直流电机的旋转部分,通常由永磁体和绕组组成。
永磁体的磁场与定子绕组的磁场相互作用,产生旋转力。
2. 定子:定子是无刷直流电机的静止部分,通常包括固定的绕组和铁芯。
定子绕组通过外加的电流产生磁场,与转子的磁场相互作用,驱动转动。
3. 传感器:传感器用于检测转子位置和速度等信息,并将其反馈给控制器。
常见的传感器包括霍尔传感器、光电传感器等。
4. 控制器:控制器是无刷直流电机的核心部件,用于根据传感器反馈的信息,控制驱动绕组的电流,从而实现转子的精准控制。
三、无刷直流电机的工作过程无刷直流电机的工作过程可以分为电气转子和机械转子两个阶段。
1. 电气转子阶段:在电气转子阶段,控制器根据传感器反馈的转子位置信息,确定要施加给驱动绕组的电流。
根据电流的方向和大小,驱动绕组上的磁场与定子磁场相互作用,产生转矩。
在电气转子阶段,控制器会周期性地改变驱动绕组上的电流方向和大小,以确保转矩的连续性和平稳性。
通过精密的控制,无刷直流电机可以实现精准的速度和位置控制。
2. 机械转子阶段:在电气转子阶段完成后,转子进入机械转子阶段。
在机械转子阶段,转子受到的驱动力逐渐减小,最终达到平衡状态。
此时,无刷直流电机转子的运动速度和位置由外界负载和机械特性决定。
无刷直流电机的组成及工作原理
无刷直流电机的组成及工作原理无刷直流电机,也称作无刷直流电机或电子换向无刷电机,是一种通过电子换向控制电机转子磁场和电枢绕组之间的相互作用来实现电机运行的电机。
与传统的直流电机相比,无刷直流电机具有结构简单、寿命长、噪音低、效率高等优势,在工业自动化、机械设备、汽车等领域有着广泛的应用。
1.转子:转子是无刷直流电机的旋转部分,它由永磁体和转子轴构成。
转子轴连接旋转部件,传递转矩。
2.定子:定子是无刷直流电机的固定部分,它由电枢绕组和磁场极轴构成。
定子电枢绕组通过电流传递电能,产生磁场。
3.电子换向控制系统:电子换向控制系统包括电子换向器、位置传感器及控制电路。
位置传感器用于检测转子位置,将信号传递给电子换向器。
电子换向器根据转子位置信号控制电流方向和大小,实现转子磁场与电枢绕组之间的相互作用。
4.电源系统:无刷直流电机需要直流电源来提供电流供电。
电源系统可以由直流电池、整流器和相关电路组成。
具体而言1.位置检测:电机的位置传感器(通常采用霍尔传感器)检测转子的位置,并将该信息传递给电子换向器。
2.相序切换:电子换向器根据转子位置信号,通过对电流的控制,按照预定的相序切换规律,控制定子绕组中的电流方向和大小。
3.磁场生成:定子绕组中的电流通过电子换向器控制的方式,产生磁场。
磁场的方向和大小由电流方向和大小决定。
4.磁场作用:转子上的永磁体产生的磁场与定子绕组中的磁场相互作用,使转子受到力矩作用,开始旋转。
5.旋转控制:电子换向器不断改变定子绕组中电流的方向和大小,使得磁场方向和大小也改变,进而改变转子受到的力矩方向和大小。
通过控制电流,可以实现电机的转速和负载的控制。
总之,无刷直流电机通过电子换向控制系统控制磁场和电枢绕组之间的相互作用,实现电机的运转。
通过不断改变电流方向和大小,可以控制电机的速度和输出扭矩。
直流无刷电机停止时电压升高的原因
直流无刷电机停止时电压升高的原因
首先,当直流无刷电机停止转动时,电机的转子不再产生反电动势。
在正常运转时,电机的转子以一定的速度旋转,通过磁感应原理产生反电动势,这个反电动势会降低电机绕组的电压,使得电机的电压保持在一个相对稳定的水平。
但是当电机停止时,反电动势消失,这会导致电机绕组的电压升高。
其次,电机停止时,由于电机绕组的电感作用,电机绕组中会产生自感电动势。
这个自感电动势会导致电机绕组的电压升高。
另外,当电机停止时,如果外部负载突然消失,电机的转速会急剧增加,这会导致电机绕组的电压升高。
此外,还有一种可能的原因是电机的控制电路设计不当,或者控制参数设置不合理,导致电机停止时电压升高。
例如,可能存在电机刹车系统设计不当或者故障,导致电机停止后无法及时降低电压。
综上所述,直流无刷电机停止时电压升高的原因可以归结为反电动势消失、自感电动势产生、外部负载突然消失以及控制电路问
题等多个方面。
在实际应用中,需要针对具体情况进行分析和处理,以确保电机运行的稳定性和安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 直流无刷电动机的绕组第一节 概述同其她类型电动机一样,直流无刷电动机本体也就是由定子与转子两大部件构成。
转子就是指电动机在运行时可以转动的部分,通常由转轴、永久磁钢及磁轭等部件组成。
其主要作用就是在电动机的气隙内产生足够的磁感应强度,并同通电后的定子绕组相互作用产生感应电势,以驱动自身运转。
定子就是指电动机在运行时不动的部分,主要由硅钢冲片同分布在它们槽内的绕组以及机壳、端盖、轴承等部件组成。
所谓“绕组”,就是指一些按一定的规律连接起来的线圈的总与。
绕组通电后,与转子磁钢所产生的磁场相互作用,产生力或感应电势驱使转子带动负载一块转动。
转子磁钢转动后,其磁力线反过来又切割定子绕组,在定子绕组中产生感应电动势,反过来又影响了电动机内电动势的平衡关系。
可见通电绕组与磁场之间的相互作用,就是电动机内部机电能量转换的主要媒介。
只有搞清电动机内磁场的分布与作用情况,才能确切地分析绕组所产生的感应电势与感生电动势的大小及方向,以便导出电动机的感应电势平衡方程与电动势平衡方程。
然而离开了绕组的具体结构及联接方式,很难讲清楚电动机内机电能量转换的基本过程,对感应电动势、电路参数与电磁感应电势等基本问题,也会感到空洞或不着边际。
在本章里,将结合直流无刷电动机的基本性能要求来讨论绕组结构的一些基本问题。
为了简明扼要地分析有关绕组问题,首先对直流无刷电动机的磁路及气隙磁通作些必要的描述与简化。
第二节 直流无刷电动机磁场的简化在直流无刷电动机中,主磁场一般由转子磁钢产生,通常用主磁路如图3、1所示,它通过相邻两个极的中心线,经定子与转子铁心闭合。
主磁路主要由气隙、定子齿、定子轭与转子轭几部分组成。
图中,U Φ为工作磁通,M Φ为永久磁钢内磁通,ΦS 为漏磁通。
图3、1电动机内部磁路1—定子铁心2—软铁极靴3—永久磁钢严格地说,直流无刷电动机内的磁场就是含有不同磁介质的三维场,由于其几何形状复杂,又含有铁磁物质等非线性因素,使得问题变得非常复杂。
在工程分析中,为了突出主要的过程,抓住主要矛盾,常作下列简化。
如有必要,当对某些问题做进一步的深入研究时,再对某个被忽略的因素进行一定的补差与适当的修正。
(1)不计端部效应。
即不计电动机主磁场向两端的扩散,则在电动机绕组直线部分气隙中的磁场没有轴向分量,这样一来,就把气隙内的磁场简化为一个二维平面场;(2)不计铁心部分的磁压降及铁心内的磁滞、涡流效应。
这样,铁心内磁通就是连续的。
但场强为零,磁能及损耗皆为零,因而可以局限于研究气隙内的磁场;(3)不计定子铁心表面开槽的影响,或者用一个等效的均匀气隙来考虑定子开槽的影响。
这样,就使相当复杂的气隙磁场大大简化;(4)由于通常气隙宽度δ远小于气隙半径D,所以在气隙中可不计磁场的切向分量及气隙沿径向的变化,即空气隙中磁感应强度B δ与场强H δ只有一个值,方向就是径向的。
于就是整个问题就简化为一维场。
图3、2理想气隙磁感应强度分布波形 图3、2示出了在上述假定条件下的直流无刷电动机气隙磁感应强度B δ的分布情况。
这时气隙磁感应强度B δ与每极磁通量Φ有以下关系:B LδτΦ=(3、1) 式中:τ—极距;L —电动机铁心的有效长度。
由于磁通具有边缘扩散现象,气隙磁感应强度分布就变成如图3、3所示,为了进一步改善气隙磁感应强度的分布波形,通常都使转子磁钢外圆R p 与定子内圆R 有不同圆心,如图3、4a 所示,这时气隙就不均匀了,磁极两边对应的气隙比极中间的大,叫最大气隙,用δmax 表示。
气隙小的地方,磁阻小,磁力线密;气隙大的地方,磁阻大,磁力线疏,所以气隙里各处磁感应强度大小就不同了。
最大气隙与最小气隙的比值一般取δmax /δmin =1、3~1、8。
图3、3考虑边缘扩散现象的气隙磁感应强度波形图3、4气隙不均匀时的磁感应强度波形的分布形状就可变成图3、4b所示的接近正弦形的气隙满足这些要求后,Bδ磁感应强度。
还要说明一下,图3、4b所示的气隙磁感应强度分布波形,就是在假设定子铁心表面没有齿槽的条件下画出的。
实际上,电动机的定子表面有齿与槽,会对气隙磁感应强度波形有影响,其中增加了与齿数有关的齿谐波,在此就不详加讨论了。
第三节绕组的构成及基本要求绕组的基本单元就是线圈。
每个线圈有两个边,分别放置在定子叠片的两个槽内。
两个线圈边相联接的部分,称为线圈端部。
线圈边的直线部分放在槽内,称为线圈的有效部分,如图3、5所示。
直流无刷电动机中的电磁能量转换主要通过线圈的直线部分进行。
线圈一般就是由多匝导线组成,即由若干匝数的导线串联构成,如图3、5b所示。
在特殊情况下,也可以就是单匝的,如图3、5a所示。
图3、5线圈的基本结构一个线圈的两个有效边沿圆周相隔的距离,称为线圈的节距y,一般用定子内的槽数或它与极距的比值β来表示。
当线圈的节距与极距相等时,称为整距(或全距)绕组。
节距小于极距时,称为短距绕组。
在特殊情况下,节距也可以大于极距,称为长距绕组。
例如,某直流无刷电动机转子为两对极(p=2),定子槽数Z=36,则s /2p=36/(2×2)=9槽。
如采用整距绕组,则取节距y=τ=9,即将一个线极距τ=Zs圈的两边分别放在第1槽与第10槽,如图3、6所示。
如上例中节距小于极距τ(τ=9)。
这时线圈两边分别放置在第1槽与第9槽中,这种绕组就称为短距绕组。
y=8 (3、2)或β=8/9=0、889图3、6 y=9时线圈在槽中的分布在直流无刷电动机内,绕组又可分为单层绕组与双层绕组。
每个槽内放置一个线圈边时,称为单层绕组;每个槽内放置两个线圈边,且分为上、下层时,称为双层绕组。
双层绕组一般都采用短距绕组,其节距y在0、8τ左右,以使其5次与7次谐波的影响同时削减到比较小,这样既改善了电动机的电磁性能,又可节省材料(因为绕组的端部接线缩短了)。
单层绕组,每相每极仅一个线圈,而双层绕组,每相每极仅两个线圈时称为集中绕组。
单层绕组每相每极有两个或更多个线圈、双层绕组每相每极有两个以上线圈时,称为分布绕组。
电动机的定子(或转子),其圆周等于360°,这种用机械关系计量的空间角度叫做机械角。
但就是在电工技术中,经常用到电角度(简称电角)的概念。
每对磁极占定子圆周的空间的机械角为360°/(极对数),但其电角度为360°。
且每经过一对磁极,就相应转过360°电角度。
显然电角度就是与磁极数有关,它与机械角度的关系(图3、7)为电角度=极对数×机械角度(3、3)归纳起来,直流无刷电动机对绕组有下列基本要求:图3、7电动机机械角与电角的关系a)4极电机磁场示意图 b)转子导体1的感应电动势波形(1)绕组导体沿定子圆周排列,通电后产生的磁场,应形成与转子磁场相同的极对数,这就是最基本的要求。
否则,它将无法运行;(2)节约用铜。
在用铜量一定时,产生的感应电势或电动势最大;(3)绕组的结构应尽力使工艺简单,制作维修方便;(4)绝缘可靠,散热条件好。
第四节单层绕组前已指出,直流无刷电动机的绕组一般就是由多个线圈串联起来的,如图3、8所示。
若节距y等于极距时,叫整距绕组。
最简单的情况,用一个整距绕组作为电动机中一相的绕组称为集中绕组。
图3、8整距绕组最简单的三相直流无刷电动机由三个单相整距集中绕组组成。
为了使三个相绕组所产生的对称的感应电动势,要求三相绕组完全对称,所以在安排三相绕组时,各相绕组必须完全一样,它们之间的相位互差120°电角度。
如果气隙中磁通分布为正弦波,它们所产生的感应电动势也应该为正弦波形,相互之间的相位差也就是120°电角度。
因此,可用矢量图表示各相感应电动势的基波,如图3、9所示。
图3、9三相对称基波对称感应电动势矢量图为了有效地利用定子内表面空间,便于绕组散热。
每相绕组一般不用一个集中绕组,而就是用几个线圈均匀地分散在定子表面上作为一个相绕组,这就就是所谓的分布绕组。
当一个集中绕组被几个分布绕组代替后,怎样组成三相绕组呢?又怎样计算它们所产生的合成感应电动势呢?由于各分布绕组在定子上的位置不同,它们所产生的感应电势波形在相位上也不相同。
我们知道,对于不同相位的感应电势所形成的合成感应电势应该用矢量与来计算。
为此在计算时不仅需要求出各个分布绕组里所产生感应电势幅值的大小,还要找出它们之间的相位关系。
如果每个分布绕组的匝数都一样,且它们在同一磁感应强度的作用下,各分布绕组所产生的感应电势幅值大小应该都就是一样的。
问题就是它们之间的相位关系如何确定。
为此,通过一个具体实例来说明。
设某直流无刷电动机的总槽数z=36,极对数2p=4,相数m=3,如图3、10所示。
在转子磁钢所产生的磁场作用下,产生一定的感应电势,当转子磁钢转过一对磁极的位置后,导体里所产生的感应电势在时间上也完成了一个周期。
即导体相对于磁极位移了360°空间电角度时,导体中基波感应电势在时间上也度过了360°电角度。
图3、10槽导体在定子上的分布图3、11导体感应电势矢量如果有两根导体(如图3、10中第36号导体与第1号导体)在定子表面上相距α空间电角度,通电后一旦电动机开始转动,在某一稳定的转速下,不难瞧出该绕组上所产生的基波感应电势的在时间上必然也相差α电角度,如图3、11所示。
这样就可以把图3、10中所有导体的基波感应电势矢量画出来。
在画图前,先算出α角的大小。
=2×360°/36=20°电角度α=p×360°/ZD式中p—极对数;Z—总槽数。
D按照相邻两槽内导体的感应电势基波矢量相差α电角度的规律,画出电动机内全部槽导体感应电势基波矢量图(叫做星形矢量图),如图3、12所示。
在星形矢量图上,可以清楚地瞧出各槽导体感应电势之间的相对关系。
星形矢量图对于安排绕组的联接方法,以及计算绕组的感应电势大小都有很大的用途。
图3、12星形矢量图利用星形矢量图,并根据三相绕组对称与合成感应电势最大的原则来分配各相绕组分别包含哪些槽导体,然后把它们联成三相绕组。
仍以图3、10的电动机为例,把图3、12的感应电势矢量分成六等分。
由每一等分里矢量对应的槽组成一个相带(即每一相在电枢表面所占的空间地带),并以顺时针转向依次标上A 、C ′、B 、A ′、C 、B ′,每个相带占有60°电角度空间,这种分法叫60°相带法。
为了分相带方便,可以先计算每个相带中包含的槽数,即每极每相槽数q 为 36q 32232z mp ===⨯⨯ q 等于整数的,叫整数槽绕组;等于分数的,叫分数槽绕组,分数槽绕组在后面再介绍。
把图3、10沿轴向剖开,再展成一平面,磁极在定子上边就不画了,如图3、13所示。