影响等离子切割质量的五大因素
数控等离子切割下料质量影响因素与控制措施
数控等离子切割下料质量影响因素与控制措施摘要:在整个国家经济持续向好的背景下,各种不同的新技术实现了较快发展,这些新技术开始在机械制造行业中获得了广泛应用,比如数控技术。
在机械制造中,数控技术的应用具备十分重要的作用,是机械生产加工实现高质量发展的必要保障。
本文结合笔者工作这些年的经验,对影响数控等离子切割下料质量的因素进行了阐述,并且提出了相关的控制措施。
关键词:数控;等离子切割;下料质量;钢材引言这些年信息科技的快速发展,使数控技术获得更多良好的发展基础。
传统的钢板切割一般采用人工方法,而新时代数控机床技术的发展,使钢板切割更加高效和精准。
钢板下料过程中,传统的手动数控机床存在很多弊端,误差也不小。
在实际加工精度优化过程中,需要对数控加工的各个环节加以全面的剖判,更多地发挥出优势,才能为企业节省更多成本。
数控技术在机床设备之中的应用,能够促进机床的自动化发展,从而提高加工质量和效率。
数控切割需要相关人员具备较高的实操技能,需要满足较高的精度方面的要求,不然也会出现一些失误。
1、数控自动化技术概述所谓数控技术,即是在设备加工、设备运行等机械制造中通过数字信号、数字化编辑进行控制的自动化技术。
与传统机械生产制造所使用的技术不同,数控技术是很多新技术的融合,包括电子科技、检测技术、自动控制方法等等,其应用可以使机械行业实现更高的自动化发展,保证机械制造的质量。
数控自动化技术是多种新技术的有效融汇,其应用有很多益处。
比如,通过运用数控技术开展数字信息编程,能够提升相关工艺的精准度。
常见的切削用量调整,换批加工等都离不开数控技术。
辅以计算机技术的应用,能够使曲面或者比较复杂的零件加工操作问题变得更加简单。
今后该项技术的发展一定会融入更多新科技元素。
机械制造业必须要以人类可持续发展为生产原则,加快加深数控技术的应用,才能不断实现资源优化配置及利用。
2、影响数控等离子切割下料质量的主要因素总的来说,影响数控等离子切割下料质量的因素有很多,比如钢材料本身的质量、工作人员本身的失误、传统系统磨损误差、割嘴与钢板的表面垂直误差、氧气纯度不足等等。
数控等离子切割机切割质量效果的原因
数控等离子切割机切割质量效果的原因
我们在使用数控等离子切割机是经常会遇到客户因为数控等离子切割机气体气压
设置不当,造成的切割效果不好,总是以为我们的产品有问题。
为保证等离子切割质量效果,一般在采用数控等离子切割机加工时,需要根据切割材
料材质的特点选择适合的切割工作气体,我们比较常见的就有空气等离子切割,这里
森达焊接公司主要就一些共性的内容与广大用户分享交流。
首先我们需要了解数控等离子切割机在工作气体气压等相关参数设置有问题的前
提下,对切割质量的影响主要体现在以下几个方面,其一是对等离子切割机的切割弧
稳定性造成影响;其二是造成等离子切割相关易损件的更换频率提高。
等离子切割机
电弧的不稳定性直接影响着切割质量,等离子电弧不稳定现象,会导致切口参差不齐、积瘤等缺陷,也会导致控制系统的相关元件寿命的降低,喷嘴、电极频繁更换。
最后我们需要指出一个特殊情况就是当等离子切割机割矩喷嘴和电极因工作气体
设置不当造成烧损后,我们建议使用人员按照切割工件的技术要求,正确调整设备各
挡位,检查割矩喷嘴是否安装牢固,需通冷却水的喷嘴应提前使冷却水循环起来。
切
割时,根据工件的厚度调整割矩与工件之间的距离。
应经常检查火花发生器放电极,
使其表面保持平整,适时调整火花发生器的放电电极间隙(0.8-1.2mm),必要时更
换控制板。
当然造成上述问题的原因可能不是工作气体方面的原因,例如因喷嘴安装
不当,如丝扣未上紧,设备割档位调整不当,需用水冷却的割矩在工作时,未按要求
通入流动的冷却水以及频繁起弧,都会造成喷嘴过早损坏。
等离子切割下料质量影响因素与控制措施
等离子切割下料质量影响因素与控制措施等离子切割下料是板材下料常用的切割下料方式,同时影响等离子切割下料的因素有很多。
本文结合实际生产中出现的问题和分析处理方法进行研究,对等离子切割下料生产中常见的质量缺陷及其影响因素进行总结和分析,针对这些影响因素提出质量控制措施,从而针对实际生产中存在的问题提出有针对性的解决方案,达到提高等离子切割下料的产品质量的目的,为提高生产效率,节约生产成本提供借鉴和指导。
标签:等离子切割;质量缺陷;影响因素;质量控制1 概述等离子切割技术融合了数控技术、电源技术、等离子技术于一体,是目前切割技术中的一项高新技术,相对于传统的火焰切割技术,具有切割下料效率高、切割质量好、下料精确、热输入和热变形小的优势,广泛应用于航空航天、机械制造等各类工业领域。
液压支架是用于控制采煤工作面,承受矿山压力的主要设备,主要由中厚板下料、拼装、焊接而成。
等离子切割下料由于其一系列的优点,在液压支架生产下料工作中得到了广泛的应用。
目前车间配备的数控等离子切割设备,能够完成各类形状复杂的配件的切割下料。
在进行批量生产的过程中,等离子切割的技术优势更加明显。
本文主要分析了在等离子切割下料生产中常见的质量问题及其产生的原因,有针对性的提出了提高产品质量和生产效率的控制措施。
2 等离子切割的工作原理等离子切割的工作原理主要是采用等离子流高温、高速的特点作为切割过程的热源,等离子枪将压缩气体电离,产生高温高速的等离子电弧熔化金属,同时高速、高压的气流将融化的金属吹开,从而实现金属的切割,如图1所示。
3 等离子切割下料质量影响因素与质量控制措施3.1 起弧和収弧缺陷与控制措施在等离子切割过程中,起弧和収弧过程出现的缺陷是等离子切割过程中常见缺陷之一。
起弧缺陷主要是由于板材不平以及工件在切割过程中产生变形或者位移,起弧线以及补偿值不合理等原因造成的。
由于板料不平,在完成切割的瞬间,工件从母材上掉落,在掉落瞬间,工件会被等离子弧灼伤,这是产生起弧缺陷的主要原因。
等离子切割机常见问题及解决方法
等离子切割机常见问题及解决方法
1.工作气压过低
等离子切割机工作时,如工作气压远低于说明书所要求的气压,这意味着等离子弧的喷出速度减弱,输入气流小于所要求的值,此时不能形成高能量、高速度的等离子弧,从而造成切口质量差、切不透、切口积瘤的现象。
气压不足的原因有:空压机输入空气不足。
切割机空气调节阀调压过低,电磁阀内有油污,气路不通畅等。
因此需要从这些方面逐个检查,发现问题及时改善。
2.工作气压过高
若输入空气压力过高,则在形成等离子弧后,过大的气流会吹散集中的弧柱,使弧柱能量分散,减弱了等离子弧的切割强度。
产生原因主要是:输入空气调节不当、空气过滤减压阀调节过高或者是空气过滤减压阀失效。
3.电极喷嘴等易损件安装不当
电极喷嘴有螺纹的,需要拧紧到位。
因喷嘴安装不当,如丝扣未上紧,涡流环安装不规范,都会造成切割不稳定,易损件过快损坏。
4.输入交流电压过低
调试使用前,检查等离子切割机所接入电网是否有足够的承载能力,电源线规格是否符合要求。
等离子切割机安装地点,应远离大型用电设备和经常有电气干扰的地方。
5.地线与工件接触不良
接地是切割前一项必不可少的准备工作。
未使用专用的接地工具,工件表面有绝缘物及长期使用老化严重的地线等,都会使地线与工件接触不良。
6.切割速度和割枪夹持的垂直度
切割速度的快与慢,应当根据切割不同的材质和厚度,电流大小相符合。
过快或者过慢,都会造成切割面不平,上下沿挂渣。
另外,割枪夹持不垂直,喷出的等离子弧也是斜着喷出,也会造成切割面有斜度。
数控等离子切割下料质量影响因素与控制措施
数控等离子切割下料质量影响因素与控制措施摘要:近年来,科学技术的发展推动了数控技术的不断更新。
在此背景下,传统的手工切割钢板也被数控机床所取代,开始采用更先进的切割技术。
钢板下料过程中,传统的手动数控机床在不断改进的同时,不可避免地会产生大量的误差。
因此,在优化数控机床的工件精度时,最好对数控加工过程进行分析和加工。
这样,数控机床才能最大限度地发挥数控切割的优势,节省人力物力,最大限度地减少数控切割误差。
关键词:数控切割;误差产生;原因;优化策略数控切割不仅要求精度高,而且要求实用的操作技术。
要达到这个水平,技术操作人员自然需要有丰富的技术经验。
如果没有这样的操作技术,在实际的操作过程中难免会出现一定的错误。
因此,在保证数控切割精度的基础上,应该采取更多的措施来减少误差。
一、数控等离子切割下料质量影响因素(一)钢材质量引起的误差在数控切割过程中,许多原材料往往是影响钢材质量的重要因素。
如果在切削过程中忽略钢材的质量,将不可避免地产生误差。
这种方式不仅会影响工件的焊接,还会影响数控切割的速度。
而且钢材本身具有变形特性,在运输过程中必然会受到影响,最终改变钢材本身的变形程度。
在钢材生产过程中,如果不能保证钢材的平整度和质量,那么在切割过程中会影响更多的下料件,从而造成更多的错误。
此外,钢材在变形时会产生热量,因此在数据切割时不可避免地会导致钢材倾斜,最终会产生严重的扭曲变形。
(二)技术人员操作中出现的问题1)数控切割需要优质高效的切割方法,而高效的切割方法需要熟练的操作人员。
切割过程中不可避免地会发生严重事故,导致切割面倾斜、钢材变形等现象。
产生问题的原因与氧气纯度、切割速度、氧气压力等各种因素密切相关此。
此外,数控切割不仅需要加载数控程序,还需要数控程序编程方法中的切割误差,这将影响整个数控切割的结果。
正因如此,数控切割技术人员的专业问题应该得到更多的重视,否则会导致更严重的数控错误。
2)除现场技术人员操作出现的失误以外,套料人员选择合理的套料方式也至关重要。
数控等离子切割机质量标准
评估数控等离子切割机质量的5大标准一般情况下我们在判断数控等离子切割机切割质量的时候通常通过五个因素来作为标准。
分别是切口的宽度、表面粗糙度、切口棱边的方形度、热影响区的宽度、挂渣量。
下面山西华恒数控设备有限公司为您一一解释这五个因素的判断标准。
一、切口的宽度它是评价切割机切割质量的最重要特征值之一,也反映切割机所能切割最小圆的半径尺寸。
它是以切口最宽处的尺寸来计量的,大部分等离子切割机的切口宽度在0.15~6mm之间。
造成的影响:1、过宽的切口不仅会浪费材料,也会降低切割速度和增大能耗。
2、切口宽度主要与喷嘴孔径有关,一般来说,切口宽度总是要比喷嘴孔径大10%~40%。
3、当切割厚度增加时,往往需要使用更大的喷嘴孔径,切口也将随之加宽。
4、切口宽度增加,会使割件的变形量增大。
二、表面粗糙度它用来描述切口表面的外观,确定切割后是否需要再加工。
它是测量切口深度2/3处横断面上的Ra值。
由于切割气流的作用在切割前进方向上产生纵向振动的结果,主要形式是切割波纹。
一般要求氧乙炔法切割后的表面粗糙度:1级Ra≤30µm,2级Ra≤50µm,1级Ra≤100µm。
等离子弧切割的切口Ra值通常超过火焰切割的水平,但是低于激光切口Ra值(小于50µm)三、切口棱边的方形度它也是反映切割质量的重要参数,关系到切割后所需要再加工程度。
该指标常用垂直度U或角度公差来表示。
一般来说:等离子弧切割时其U值与板厚及工艺参数关系密切,通常在U≤(1%~4%)δ(δ为板厚),激光切割U≤0.5mm。
四、热影响区的宽度该指标对于那些可硬化或可热处理的低合金钢或合金钢非常重要,过宽的热影响区宽度会明显改变切口附近的性能。
空气等离子弧切割的热影响区宽度在0.3mm左右,水下等离子弧切割时,热影响区宽度还可以更窄。
五、挂渣量是描述热切割后在切口下缘粘附的氧化物熔渣或重新凝固材料的多少。
挂渣的等级通常是靠肉眼观测来确定的,一般用无、轻微、中等和严重等术语来描述。
影响等离子切割机的精度有哪些因素
影响等离子切割机的精度有哪些因素
1、等离子切割机电源,必须有足够高的空载电压,才能随意引弧和使等离子弧不熄灭。
2、空载电压和弧柱电压
增加气流量既能提高弧柱电压又能加强对弧柱的收紧作用而使等离子弧能量更加集中、放射力更强,从而提高切割速度率和质量。
3、切割速度
最佳切割速度范围可按照设备说明选定或用试验来确定,由于材料的厚薄度,材质不同,熔点高低,热导率大小以及熔化后的表面张力等因素,切割速度也相应的变化
4、气体流量
气体流量过大过小都影响切割质量及切割耗材的寿命。
气体流量过大,反而是弧柱缩短,损失热量过大,是切割能力消弱,直至切割不能正常进行;气体流量过小,弧柱能量不足,切割能力下降,钢板挂扎会增加,并且会堵塞耗材,影响耗材质量。
5、切割电流
切割电流要根据实际情况调整。
切割电流增大,电弧能量增加,
切割能力提高,切割速度是随之增大;切割电流增大,电弧直径增加,电弧变粗使得切口变宽;切割电流过大使得喷嘴热负荷增大,喷嘴过早地损伤,切割质量自然也下降,甚至无法进行正常割。
6、割炬高度控制器的精度及稳定性
割炬高度控制器的精度高及稳定性好对等离子切割质量有比较大影响。
本文来源:数控切割机/。
等离子切割 电极损耗
等离子切割电极损耗
等离子切割电极损耗主要有以下原因:
1、使用不当造成的损坏。
比如切割时距离板材太近,输入的电压过高或者电压不稳定等。
2、切割板材的厚度和材质。
一般来说,板材厚度越厚,割嘴损坏程度越厉害,比如10MM以上的板材比较损耗割嘴。
此外,板材的材质也会影响割嘴的损耗,比如切割铜、铝、不锈钢等这些材质的比较损耗割嘴。
3、割嘴本身的质量问题。
生产割嘴的厂家太多,质量型号都有差别,尽量使用与原厂家配套的割嘴。
综上所述,等离子切割机电极损耗的原因包括使用不当、切割板材的厚度和材质以及割嘴本身的质量问题。
为了减少电极损耗,应该根据实际情况选择合适的割嘴型号和参数设置,并尽量使用与原厂家配套的割嘴。
数控等离子切割机断弧的真正原因
如输入•气压已达要求,解应检决查空方气过法滤减:压阀使的调用节是前否正应确;表当压显注示能意满足观切割察要求空。 压机输出压力显示, 如不符合要求,可调整压力或检修空压机。如输入气压已 另外,割炬喷嘴气压过低,还需更换减压阀;气路截面变小也会造成气压过低,可按说明书要求更换气管。
解决方法:使用前应当注意观察空压机输出压力显示,如不符合要求,可调整压力或检修空压机。 等离子切割工作气压过高或者过低都将对切割效果形成影响。
•
1.气压稳定
•
等离子切割工作气压过高或者过低都将对切割效果形
成影响。如果工作气压远低于说明书要求气压,意味着等
离子弧的喷出速度减弱,输入空气流量小于规定值,此时
不能形成高能量、高速度的等离子弧,从而造成切口质量
差、切不透、切口积瘤的现象。假设输入空气压力远远超
过0.45MPa,那么工作气压过大,在形成离子弧后,过大
数控等离子切割机断弧的真正原因
•
数控等离子切割从原理上看,是依靠高压等离子弧对
材料的贯穿进行切割,所以等离子切割机电弧的稳定性将
直接影响切割质量。等离子电弧不稳定现象,会导致切口
参差不齐、积瘤等缺陷,也会导致控制系统的相关元件寿
命降低,喷嘴、电极频繁更换。针对此现象,武汉领航数
焊接电流焊接速度离子气流量
焊接电流焊接速度离子气流量焊接电流、焊接速度、离子气流量对等离子体切割的影响等离子体切割是一种高效的切割方式,其主要原理是通过将气体离子化形成等离子体,利用等离子体产生的高温和高能量进行材料切割。
在等离子体切割过程中,焊接电流、焊接速度和离子气流量是影响切割效果的重要因素。
一、焊接电流对等离子体切割的影响1.1 焊接电流大小对等离子体温度的影响在等离子体切割中,焊接电流是产生等离子体的关键因素之一。
当焊接电流增大时,等离子体内部的温度也随之增加。
这样可以提高材料表面温度,从而加快材料熔化和蒸发速度,进而提高切割速度。
1.2 焊接电流大小对切缝宽度的影响除了影响材料熔化和蒸发速度外,焊接电流还会直接影响刀口宽度。
当焊接电流增大时,由于材料受热均匀性差,会导致切割缝宽度增大。
因此,在实际操作中,需要根据材料性质和厚度确定合适的焊接电流大小。
二、焊接速度对等离子体切割的影响2.1 焊接速度大小对等离子体温度的影响焊接速度是指刀具在材料表面移动的速度。
当焊接速度增大时,等离子体内部的温度会随之降低。
这是因为快速移动的刀具会带走部分热量,从而使等离子体内部温度下降。
2.2 焊接速度大小对切缝宽度的影响除了影响等离子体温度外,焊接速度还会直接影响切缝宽度。
当焊接速度增大时,由于材料受热时间减少,会导致切割缝宽变窄。
因此,在实际操作中,需要根据材料性质和厚度确定合适的焊接速度大小。
三、离子气流量对等离子体切割的影响3.1 离子气流量大小对等离子体温度的影响离子气流量是指等离子体切割时所需要的气体流量。
当离子气流量增大时,等离子体内部的温度也会随之增加。
这是因为气体中的分子和离子会与等离子体碰撞,从而传递能量和热量。
3.2 离子气流量大小对切缝宽度的影响除了影响等离子体温度外,离子气流量还会直接影响切缝宽度。
当离子气流量增大时,由于气体对材料表面产生的冷却效应增强,会导致切割缝宽变窄。
因此,在实际操作中,需要根据材料性质和厚度确定合适的离子气流量大小。
等离子数控切割机切割各方面分析讲解
等离子数控切割机切割各方面分析等离子数控切割机在切割过程中具有割速快、割缝小等特点,但许多用户企业在实际操作过程往往会出现各种各样的问题,导致实际切割速度有限、割缝过大、割面不整等现象,排除等离子数控切割机自身机械故障等方面因素,用户企业在操作中未正确设置等离子数控切割机相关参数也将影响实际切割效果,武汉蓝讯科技有限公司多年从事数控切割机设备研发及生产,下面将以实际使用经验总结影响等离子数控切割机切割效果的各方面因素,和广大用户企业交流一下: 1. 空载电压和弧柱电压等离子切割电源,必须具有足够高的空载电压,才能容易引弧和使等离子弧稳定燃烧。
空载电压一般为120-600V,而弧柱电压一般为空载电压的一半。
提高弧柱电压,能明显地增加等离子弧的功率,因而能提高切割速度和切割更大厚度的金属板材。
弧柱电压往往通过调节气体流量和加大电极内缩量未达到,但弧柱电压不能超过空载电压的65%,否则会使等离子弧不稳定。
2. 切割电流增加切割电流同样能提高等离子弧的功率,但它受到最大允许电流的限制,否则会使等离子弧柱变粗、割缝宽度增加、电极寿命下降。
3. 气体流量增加气体流量既能提高弧柱电压,又能增强对弧柱的压缩作用而使等离子弧能量更加集中、喷射力更强,因而可提高切割速度和质量。
但气体流量过大,反而会使弧柱变短,损失热量增加,使切割能力减弱,直至使切割过程不能正常进行。
4. 电极内缩量所谓内缩量是指电极到割嘴端面的距离,合适的距离可以使电弧在割嘴内得到良好的压缩,获得能量集中、温度高的等离子弧而进行有效的切割。
距离过大或过小,会使电极严重烧损、割嘴烧坏和切割能力下降。
内缩量一般取8-11mm。
5. 割嘴高度割嘴高度是指割嘴端面至被割工件表面的距离。
该距离一般为4~10mm。
它与电极内缩量一样,距离要合适才能充分发挥等离子弧的切割效率,否则会使切割效率和切割质量下降或使割嘴烧坏。
6. 切割速度以上各种因素直接影响等离子弧的压缩效应,也就是影响等离子弧的温度和能量密度,而等离子弧的高温、高能量决定着切割速度,所以以上的各种因素均与切割速度有关。
等离子切割最佳参数
等离子切割的最佳参数取决于许多因素,包括材料类型、材料厚度、切割速度、电流强度、气体类型和气体压力等。
以下是一些一般的建议:1.材料类型和厚度:对于较薄的材料,可以使用较低的电流和较快的切割速度。
对于较厚的材料,可能需要更高的电流和较慢的切割速度。
2.切割速度:切割速度应该足够快,以避免过度熔化材料,但又不能太快,以免切割不彻底。
如果切割速度过慢,可能会导致熔滴堆积在切口底部;如果切割速度过快,可能会导致切口不整齐或不彻底。
3.电流强度:电流强度应根据材料的厚度和切割速度进行调整。
一般来说,电流越高,切割速度和切割深度也会增加。
4.气体类型和气体压力:气体类型和气体压力也会影响切割效果。
一般来说,氩气和氮气用于不锈钢和铝的切割,而氧气用于碳钢的切割。
气体压力应根据材料的厚度和切割速度进行调整。
下面是一些基本的参数范围,这些范围是基于等离子切割机的一般操作经验和制造商的建议:1.碳钢:厚度:1-25mm电流:30-200A切割速度:约2000-3000mm/min气体:氧气,气压约4.5-5.5 bar2.不锈钢:厚度:1-50mm电流:30-200A切割速度:约1000-2500mm/min气体:氩气或氮气,气压约4.5-5.5 bar3.铝:厚度:1-30mm电流:30-200A切割速度:约2000-3000mm/min气体:氩气或氮气,气压约4.5-5.5 bar请注意,这些参数只是大致的范围,实际的最佳参数可能会根据具体的设备、材料和应用需求有所不同。
在使用等离子切割机时,应始终遵循制造商的指南和建议。
等离子弧切割工艺及提高切割质量的措施
等离子弧切割工艺及提高切割质量的措施随着现代制造业的发展,等离子弧切割技术已经成为了一种重要的金属加工工艺。
等离子弧切割技术具有切割速度快、精度高、适用范围广等优点,因此在机械制造、汽车制造、航空航天等领域都有广泛的应用。
但是,等离子弧切割技术也存在着一些问题,如切割质量不稳定、切割精度不高等。
因此,提高等离子弧切割的质量,成为了一个亟待解决的问题。
一、等离子弧切割的原理等离子弧切割是利用等离子体的高温和高能量,将金属材料切割成所需形状的工艺。
等离子弧切割的原理是将氧气、氮气、氩气等气体通过等离子弧加热,使气体分子激发成原子和离子,形成高温等离子体。
等离子体中的离子和电子不断碰撞、交换能量,使等离子体温度升高,形成高温火花,利用高温火花将金属材料加热至熔化点以上,然后通过气流将熔化的金属喷出,从而实现切割的目的。
二、等离子弧切割的工艺流程等离子弧切割的工艺流程主要包括预处理、切割参数设置、切割、后处理等环节。
(一)预处理预处理是等离子弧切割的重要环节,它直接影响到切割质量和切割效率。
预处理包括清洗、除锈、磨光等步骤。
清洗是指将金属表面的油污、灰尘等杂质清除干净,以保证等离子弧切割时不受污染。
除锈是指将金属表面的氧化铁皮、锈斑等物质除去,以保证等离子弧切割时不受干扰。
磨光是指将金属表面进行抛光,以保证等离子弧切割时表面光滑、平整。
(二)切割参数设置切割参数设置是等离子弧切割的关键步骤,它直接影响到切割质量和切割效率。
切割参数包括等离子弧电流、等离子弧电压、气体流量、切割速度等。
其中,等离子弧电流和等离子弧电压是影响等离子体温度和能量的主要参数,气体流量是影响等离子体形成和稳定的重要参数,切割速度是影响切割效率和切割质量的关键参数。
在设置切割参数时,需要根据不同的金属材料、厚度、形状等要素进行调整,以达到最佳的切割效果。
(三)切割切割是等离子弧切割的核心步骤,它直接决定了切割质量和切割效率。
切割时需要保证等离子弧和金属材料之间的距离、角度、速度等参数稳定,避免出现等离子弧熄灭、金属材料烧穿等问题。
引起等离子弧不稳定现象的原因
引起等离子弧不稳定现象的原因数控等离子切割机若出现等离子电弧不稳定的现象,将造成切口参差不齐、积瘤、切口不光滑等缺陷,同时还会缩短割嘴和电极的使用寿命,导致控制系统的基本元件故障频繁。
高压等离子弧的稳定性决定了切割质量。
要想控制等离子弧的稳定性,首先应了解造成等离子弧不稳定的原因。
1、气压稳定性不足若工作气压过低,造成等离子弧的喷出速度减弱,而无法形成高能量、高速度的等离子弧,从而造成切口质量差、切不透、切口积瘤的现象。
若工作气压过大,过大的气流会使弧柱能量分散,减弱了等离子弧的切割强度。
因此,在切割过程中,应选择合适的气压值,最好与说明书上要求的气压值一致,以免影响切割精度。
2、交流电压不稳等离子切割机内部主回路元件故障是导致输入交流电压不稳的原因之一。
而电路元件损坏主要是由于切割过程中控制器积累灰尘造成,因此操作人员应定期清理控制器。
另外由于等离子切割机使用时消耗电量较大,若同时与大型用电设备一起运行,极有可能造成供电电压不稳而影响等离子电弧的稳定性。
3、地线接触不良接地是切割前必不可少的准备工作,它不仅影响了切割质量还影响操作人员的人身安全。
接地应备有专用的接地工具,还要杜绝因长期使用而严重老化的地线,以免造成地线与工件接触不良而影响等离子弧稳定性。
4、起弧不稳由高频振荡器激发电极与喷嘴内壁之间的气体,产生高频放电,使气体局部电离而形成小弧,并受压缩空气的作用,从喷嘴喷出以引燃等离于弧。
这一系列的工序都是由火花发生器完成。
火花发生器若无法自动断弧,通常是由于控制线路板元件失调或者火花发生器的放电电极间隙不合适造成的。
因此应定期检查火花发生器放电极,适时调整火花发生器的放电电极间隙。
5、割嘴、电极损坏在切割过程中割炬喷嘴和电极烧损,不仅会增加使用成本,还会造成等离子弧不稳定。
在更换切割机的时候检查切割机割嘴是否按要求安装完成,定期对割炬割嘴和电极进行维护、检修。
影响等离子切割质量的五大因素
影响等离子切割质量的五大因素数控等离子切割机的加工质量对于企业生产具有十分重要的意义,在目前等离子切割所应用的众多领域里,对切割精度及坡口斜度的改进将为企业的二次加工带来巨大效益。
下面为大家详细介绍影响等离子切割质量的五项重要因素,掌握此部分知识,从此切割质量不用愁。
图1:数控等离子切割机现场应用一、数控等离子切割机工作气体数控等离子切割机工作气体与流量是影响切割质量效果的一项主要参数,目前所普遍采用空气等离子切割仅为众多工作气体中的一类,概因使用成本相对较低而得到广泛普及,但从加工效果来说的确有所欠缺,我们所指的数控等离子切割机工作气体包括切割气体和辅助气体,有些设备还要求起弧气体,通常要根据切割材料的种类、厚度和切割方法来选择合适的工作气体。
切割气体既要保证等离子射流的形成,又要保证去除切口中的熔融金属和氧化物。
过大的气体流量会带走更多的电弧热量,使得射流的长度变短,导致切割能力下降和电弧不稳。
过小的气体流量则使等离子弧失去应有的挺直度而使切割的深度变浅,同时也容易产生挂渣。
因此,气体流量一定要与切割电流和速度配合的很好。
现在的等离子弧切割机大多靠气体压力来控制流量,因为当割炬孔径一定时,控制了气体压力也就控制了流量。
切割一定板厚材料所使用的气体压力通常要按照客户提供的数据选择,若有其它的特殊应用时,气体压力需要通过实际切割试验来确定。
最常用的工作气体有:空气、氧气、氮气、氩气以及H35、氩-氮混合气体等。
1.空气中含有体积分数约78%的氮气,所以利用空气切割所形成的挂渣情况与用氮气切割时很相像;空气中还含有体积分数约21%的氧气,因为氧的存在,用空气切割低碳钢材料的速度也很高;同时空气也是最经济的工作气体。
但单独使用空气切割时,会出现挂渣、切口氧化、增氮等问题,而且电极和喷嘴的寿命较低也会影响工作效率和切割成本。
2.氧气可以提高切割低碳钢材料的速度。
使用氧气进行切割时,切割模式与火焰切割很相像,高温高能的等离子弧使得切割速度更快,但是必须配合使用抗高温氧化的电极,同时对电极进行起弧时的防冲击保护,以此延长电极的寿命。
等离子弧型钢切割机的质量控制
1 相关知识1.1 型钢生产线工作原理火焰切割、等离子弧切割和激光切割是目前金属的切割主要形式。
其中,等离子弧切割以质量好、成本低、节约材料和高效率得到了广泛应用。
等离子弧切割先把需要切割的金属加热到熔融状态,然后用辅助气体把切割的部分吹开,通过控制不同的能量密度、温度和运行速度对金属进行切割。
1.2 等离子弧型钢切割机工作流程等离子弧型钢生产线由锯床、钻床、传送装置、数控型钢切割机等部分组成。
通常由计算机用NC语言编写图形,然后将NC语言转化成机器码,进而把机器码转换为驱动电机的指令完成切割。
第一步:成品型钢吊装至传送带;第二步:人工操作传送带将型钢传送至数控三位钻床;第三步:将钻床程序输入钻床电脑控制平台进行打点划线;第四步:将型钢传送至锯床切割机,用红外射线扫描型钢上已有的打点孔,然后人工操作锯床控制平台进行锯断;第五步:将锯断后的型钢传送至数控型钢切割机,输入程序进行端头切割;第六步:将切割完成后的杆件运送出型钢切割车间。
2 影响切割质量的因素2.1 钢材加工前原材料的变形型钢是细长型材,变形是由于存放、运输、吊装以及内部残余应力引起的。
型材的残余应力引起的变形在钢铁厂生产过程中产生。
型钢这类型材存放不当易发生弯曲、扭曲。
由于杆件较长、较大且数量多,长时间堆放、地面的高低不平都会造成型钢的弯曲。
型材在运输过程中的一些不当操作也会引起变形,如吊点的选取、夹具的安装等。
2.2 机器切割机精度引起的误差型钢切割机的精度包括机械精度和电子精度。
机械精度主要是受导轨的直线度、平行度、水平度以及齿轮或钢带等的传动精度影响。
此外,切割平台的水平度也影响工件精度。
电子的精度主要是数控系统软件及运动控制卡、脉冲当量、伺服及伺服驱动等方面的影响。
当脉冲当量设置不准确时,就会发生杆件上的圆形不准、不对称等诸多问题。
2.3 人为不当引起的误差(1)图形尺寸错误。
在单件图和排版图的绘制过程中,模型导出NC代码过程和套料过程都可能出现疏忽,从而导致图形尺寸错误。
等离子体切割作业温度
等离子体切割作业温度
等离子体切割是一种常用的金属加工方法,通过使用高能量
的等离子体束来切割和加工金属材料。
在进行等离子体切割时,温度是一个重要的参数,它会影响到切割质量和速度。
一般来说,等离子体切割的作业温度会受到以下几个因素的
影响:
1.等离子体的温度:等离子体的温度直接影响着切割的效果。
较高的等离子体温度可以提供更高的能量密度,使切割速度更快。
但过高的温度也可能会导致金属材料熔化或气化过多,从
而影响切割质量。
2.切割材料的熔点:不同的金属材料的熔点不同,对应的切
割温度也会有所差异。
一般而言,选择适当的切割温度,可以
实现材料的有效切割而不会使其熔化或气化。
3.切割速度:切割速度也会对切割温度产生影响。
较高的切
割速度可以减少热量在切割区域的积累时间,降低切割温度。
但是过快的切割速度可能会导致切割质量下降,需根据具体情
况进行调整。
根据不同的材料和切割要求,等离子体切割的作业温度在一
般情况下可以在2000°C到30000°C之间。
具体的切割温度
需根据材料的特性、加工要求和设备性能进行综合考虑和确定。
总之,等离子体切割作业温度是一个综合考虑多个因素得出
的结果,需要根据具体的切割材料和切割要求进行调整和优化,以实现高效、高质量的切割效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
影响等离子切割质量的五大因素
数控等离子切割机的加工质量对于企业生产具有十分重要的意义,在目前等离子切割所应用的众多领域里,对切割精度及坡口斜度的改进将为企业的二次加工带来巨大效益。
下面为大家详细介绍影响等离子切割质量的五项重要因素,掌握此部分知识,从此切割质量不用愁。
图1:数控等离子切割机现场应用
一、数控等离子切割机工作气体
数控等离子切割机工作气体与流量是影响切割质量效果的一项主要参数,目前所普遍
采用空气等离子切割仅为众多工作气体中的一类,概因使用成本相对较低而得到广泛普及,但从加工效果来说的确有所欠缺,我们所指的数控等离子切割机工作气体包括切割气体和辅助气体,有些设备还要求起弧气体,通常要根据切割材料的种类、厚度和切割方法来选择合适的工作气体。
切割气体既要保证等离子射流的形成,又要保证去除切口中的熔融金属和氧化物。
过大的气体流量会带走更多的电弧热量,使得射流的长度变短,导致切割能力下降和电弧不稳。
过小的气体流量则使等离子弧失去应有的挺直度而使切割的深度变浅,同时也容易产生挂渣。
因此,气体流量一定要与切割电流和速度配合的很好。
现在的等离子弧切割机大多靠气体压力来控制流量,因为当割炬孔径一定时,控制了气体压力也就控制了流量。
切割一定板厚材料所使用的气体压力通常要按照客户提供的数据选择,若有其它的特殊应用时,气体压力需要通过实际切割试验来确定。
最常用的工作气体有:空气、氧气、氮气、氩气以及H35、氩-氮混合气体等。
1.空气中含有体积分数约78%的氮气,所以利用空气切割所形成的挂渣情况与用氮气切割时很相像;空气中还含有体积分数约21%的氧气,因为氧的存在,用空气切割低碳钢材料的速度也很高;同时空气也是最经济的工作气体。
但单独使用空气切割时,会出现挂渣、切口氧化、增氮等问题,而且电极和喷嘴的寿命较低也会影响工作效率和切割成本。
2.氧气可以提高切割低碳钢材料的速度。
使用氧气进行切割时,切割模式与火焰切割很相像,高温高能的等离子弧使得切割速度更快,但是必须配合使用抗高温氧化的电极,同时对电极进行起弧时的防冲击保护,以此延长电极的寿命。
3.氢气通常是作为辅助气体与其它气体混和作用,如著名的气体H35(氢气的体积分数为35%,其余为氩气)是等离子弧切割能力最强的气体之一,这主要需利于氢气。
由于氢气能显著提高电弧电压,使氢等离子射流有很高的焓值,当与氩气混合使用时,其等离子射流的切割能力大大提高。
一般对厚度70mm以上的金属材料进行切割,常用氩和氢作为切割气体。
若使用水射流对氩+氢气等离子弧进一步压缩,还可获得更高的切割效率。
4.氮气是一种常用的工作气体,在有较高电源电压的条件下,氮气等离子弧有较好的稳定性和比氩气更高的射流能量,即使是切割液态金属粘度大的材料(如不锈钢、镍基合金)时,切口下缘的挂渣量也很少。
氮气可以单独使用,也可以同其它气体混和使用,如自动化切割时经常使用氮气或空气作为工作气体,这两种气体已经成为高速切割碳素钢的标准气体。
有时氮气还被用作氧等离子弧切割时的起弧气体。
5.氩气在高温时几乎不与任何金属发生反应,氩气等离子弧很稳定,而且所使用的喷嘴与电极有较高的使用寿命。
但氩气等离子弧的电压较低,焓值不高,切割能力有限,与空气切割相比其切割的厚度大约会降低25%。
另外,在氩气保护环境中,熔化金属的表面张力较大,要比在氮气环境下高出约30%,所以会有较多的挂渣问题。
即使使用氩和其它气体的混合气切割也会有粘渣倾向。
因此,现已很少单独使用纯氩气进行等离子切割。
二、数控等离子切割机切割速度
除了工作气体对切割质量有影响外,切割速度对数控等离子切割机的加工质量也有重要影响。
切割速度:最佳切割速度范围可按照设备说明选定或用试验来确定,由于材料的薄厚度、材质、熔点高低、热导率大小以及熔化后的表面张力等因素的影响,切割速度也会发生相应的变化。
其主要表现为:
1.切割速度适度地提高能改善切口质量,即切口略有变窄,切口表面更平整,同时可减小变形。
2.切割速度过快使得切割的线能量低于所需的量值,切缝中射流不能快速将熔化的切割熔体立即吹掉而形成较大的后拖量,伴随着切口挂渣,切口表面质量下降。
3.当切割速度太低时,由于切割处是等离子弧的阳极,为了维持电弧自身的稳定,阳极斑点或阳极区必然要在离电弧最近的切缝附近找到传导电流的地方,同时会向射流的径向传递更多的热量。
因此,会使切口变宽,切口两侧熔融的材料在底缘聚集并凝固,形成不易清理的挂渣,而且切口上缘因加热熔化过多而形成圆角。
4.当速度极低时,由于切口过宽,电弧甚至会熄灭。
由此可见,良好的切割质量与切割速度是分不开的。
三、数控等离子切割机切割电流
图2:数控等离子切割机切割电源
数控等离子切割机切割电流是重要的切割工艺参数,直接决定了切割的厚度和速度。
正确使用数控等离子机进行高质量的快速切割,必须对切割工艺参数进行深刻地理解和掌握。
1.切割电流增大,电弧能量增加,切割能力提高,切割速度随之增大。
2.切割电流增大,电弧直径增加,电弧变粗使得切口变宽。
3.切割电流过大使得喷嘴热负荷增大,喷嘴过早地损伤,切割质量自然也下降,甚至无法进行正常割。
在等离子切割前选用电源的时候,不能选择太大或太小的电源。
太大的电源,在切割成本上是一种浪费,因为根本就用不了那么大的电流。
但也不能为了节约切割成本预算,选用过小的电源,在实际切割时不能达到切割要求,这样对数控切割机本身是一种很大的伤害!因此,要根据材料的厚度正确选用切割电流和相应的喷嘴。
四、数控等离子切割机喷嘴高度
图3:数控等离子切割机喷嘴高度
数控等离子切割机喷嘴高度是指喷嘴端面与切割表面的距离,它构成了整个弧长的一部分。
由于等离子弧切割一般使用恒流或陡降外特征的电源,喷嘴高度增加后,电流变化很小,但会使弧长增加并导致电弧电压增大,从而使电弧功率提高;但同时也会使暴露在环境中的弧长增长,弧柱损失的能量增多。
在两个因素综合作用的情况下,前者的作用往往完全被后者所抵消,反而会使有效的切割能量减小,致使切割能力降低。
通常表现为切割射流的吹力减弱,切口下部残留的熔渣增多,上部边缘过熔而出现圆角等。
另外,从等离子射流的形态方面考虑,射流直径在离开割炬口后是向外膨胀的,喷嘴高度的增加必然引起切口宽度加大。
所以,选用尽量低的喷嘴高度对提高切割速度和切割质量都是有益的,但是,喷嘴高度过低时可能会引起双弧现象。
采用陶瓷外喷嘴可以将喷嘴高度设为零,即喷口端面直接接触被切割表面,可以获得很好的效果。
五、数控等离子切割机电弧功率
数控等离子切割机为了获得高压缩性的等离子弧切割电弧,切割喷嘴都采用了较小的喷嘴孔径、较长的孔道长度并加强了冷却效果,这样可以使得喷嘴有效断面内通过的电流增
加,即电弧的功率密度增大,但同时压缩也使得电弧的功率损失加大。
因此,实际用于切割的有效能量要比电源输出的功率小,其损失率一般在25%~50%之间,有些方法如水压缩等离子弧切割的能量损失率会更大,在进行切割工艺参数设计或切割成本的经济核算时应考虑这个问题。
在工业中使用的金属板厚大多是在50mm以下,在这个厚度范围内用常规的等离子弧切割往往会形成上大下小的割口,而且割口的上边缘还会导致切口尺寸精度下降并增加后续加工量。
当采用氧和氮气等离子弧切割碳钢、铝和不锈钢时,当板厚在10~25mm范围内时,通常是材料越厚,端边的垂直度越好,其切割棱边的角度误差在1度~4度。
当板厚小于1mm,随板厚的减小,切口角度误差从3°~4°增加到15°~25°。
一般认为,这种现象的产生原因是由于等离子射流在割口面上的热输入不平衡所致,即在割口的上部等离子弧能量的释放多于下部。
能量释放的不平衡,与很多工艺参数密切相关,如等离子弧压缩程度、切割速度及喷嘴到工件的距离等。
增加电弧的压缩程度可以使高温等离子射流延长,形成更为均匀的高温区域,同时加大射流的速度,可以减小切口上下的宽度差。
然而,常规喷嘴的过度压缩往往会引起双弧现象,双弧不但会损耗电极和喷嘴,使切割过程无法进行,而且也会导致切口质量的下降。
另外,过大的切割速度和过大的喷嘴高度都会引起切口上下宽度差的增加。
来源:内部稿件。