超声基础知识介绍

合集下载

超声的知识点

超声的知识点

超声的知识点超声波(Ultrasound)是一种高频声波,其频率超过了人类能听到的范围。

超声波在医学、工业、农业等领域都有广泛的应用。

本文将逐步介绍超声的基本原理、成像技术和应用领域。

1.超声的基本原理超声波是一种机械波,其频率通常大于20kHz。

超声波的产生与传播是通过压电晶体或磁致伸缩体的震动来实现的。

当这些物质受到电场或磁场的激励时,它们会以特定频率振动并产生超声波。

超声波在传播时会发生反射、折射和散射等现象。

这些现象被广泛应用于医学领域中的超声成像技术,以获取人体内部组织的影像。

2.超声的成像技术超声成像是利用超声波在不同组织中传播速度不同的特性来获取影像。

它通过探头发射超声波并记录超声波从不同组织反射回来的时间和强度差异来构建图像。

超声波在组织中传播的速度取决于组织的密度和弹性。

由于不同组织的密度和弹性差异,超声波在组织间的传播速度也不同,从而使得超声波在不同组织间发生反射。

通过测量反射的时间和强度,超声成像设备可以重建出组织的形状、结构和运动状态。

3.超声的应用领域超声技术在医学领域中有广泛的应用。

常见的应用包括:•超声检查:超声成像可用于检查内脏器官、肌肉骨骼系统和血管等,以帮助医生进行疾病诊断和治疗。

•超声治疗:超声波的热效应可以用于治疗肌肉疼痛、关节炎和肿瘤等疾病。

•超声聚焦:超声聚焦技术可以通过聚焦超声波的能量来精确破坏肿瘤细胞,达到治疗肿瘤的目的。

•超声清洗:超声波的辐射和震荡效应可以用于清洁和去除物体表面的污垢和杂质。

•工业应用:超声波可以用于测量距离、液位和材料的厚度等工业应用,如无损检测和材料研究。

总结:超声波是一种高频声波,由压电晶体或磁致伸缩体震动产生。

超声成像利用超声波在组织中传播速度不同的特性来获取影像。

超声技术在医学、工业和农业等领域有广泛的应用,包括超声检查、超声治疗、超声聚焦、超声清洗和工业应用等。

这些应用使得超声波成为一种重要的非侵入性检测和治疗工具。

超声科知识点总结

超声科知识点总结

超声科知识点总结超声科学是一门研究超声波的产生、传播、接收和应用的学科。

它主要应用于医学、工业、农业、海洋、石油等领域。

在医学领域,超声科学主要应用于医学影像学、心脏超声、血管超声、超声介入、超声治疗等方面。

本文将主要介绍医学超声科学的知识点。

一、超声波的产生超声波是指频率超过20kHz的机械波。

在医学超声领域,通常使用的超声波频率为1-20MHz。

超声波的产生主要依靠压电效应和热效应。

压电效应是指某些晶体在外加电场作用下会发生形变,反过来也会产生电荷。

这种效应被应用在超声探头中,在超声探头中发生了声波振动。

另外,热效应也能产生超声波,这种方法已经不常使用。

二、超声波的传播超声波在介质中传播时,会发生折射、反射、散射等现象。

折射是指超声波传播过程中,由于不同介质的声速不同,所以在两种介质交界处产生折射。

反射是指超声波遇到边界时,一部分能量会被反射回去。

散射是指超声波遇到介质中的不均匀结构而发生的波的方向改变。

三、超声波的接收超声波在接收机构中被转化为电信号。

在医学超声中,超声波探头中的压电陶瓷会将接收到的超声波转化为电信号,然后经过放大和滤波等处理,最终在显示器上形成影像。

四、超声波的应用在医学超声领域,超声波主要应用于医学影像学、心脏超声、血管超声、超声介入、超声治疗等方面。

1.医学影像学医学影像学是医学中的一个重要技术,其中超声影像学是其中的一个分支。

超声影像学是指利用超声波来成像人体器官和组织的技术。

超声波在人体组织中的传播速度与组织的密度和声阻抗有关,因此超声波可以成像不同密度和声阻抗的组织。

2.心脏超声心脏超声是指利用超声波来诊断心脏病变的技术。

心脏超声可以用于检测心脏的结构、功能和血流情况,对心脏病变的诊断和治疗起着重要的作用。

3.血管超声血管超声是指利用超声波来诊断血管病变的技术。

血管超声可以用于检测血管的结构、血流速度和血栓情况,对血管疾病的诊断和治疗起着重要的作用。

4.超声介入超声介入是指利用超声波来引导手术或治疗的技术。

超声基础知识介绍

超声基础知识介绍

频谱多普勒
多普勒波包括以下含义(数据) -速度 -速度范围(宽度) -血血流量大大小小 -血血流方方向
一一个心心跳周期
宽的速度范围
快 迎向 基准线 逆流 快 最高高峰 时间 慢 背向
收缩 舒张 舒张结束
脉冲波多普勒和连续多普勒
脉冲波多普勒(PW) Pulse Wave
Ø 发射和接收是同一一个晶片片 Ø 卓越的距离分辨率 (Range Resolution) Ø 流速测量上限值受奈奎斯特频率限制 Ø 脉冲重复频率(PRF)决定流速的测量 范围,极限约 5 ~ 7m/s
无无法显示示图像。您的计算机可能因内存不足足而而无无法打开图 像,或图像已遭损坏。请重新启动计算机,然后再次打开 该文文件。如果仍然显示示红色色 x ,则可能需要删除此图像, 然后重新插入入该图像。
潜艇
5. 超声诊断的优点
• 安全、无无辐射。适用用于胎儿儿诊断。 • 设备可移动,成本低。 • 实时成像 • 通过扫描角角度变化,获得更佳的图像。 • 多普勒-检测血血流量信息。
彩色色多普勒
受角角度影响、受其他运动影响、易混迭
能量多普勒及与彩色色多普勒的区别
能量多普勒基本原理:
是取其红细胞的能量总积分,配以红色色成为血血流 信息的图像显示示。彩色色亮度表示示多普勒信号能量的大大小小。 血血流信号显示示与血血流方方向无无关
二二者的区别:
• 彩色色多普勒—速度信息,能量多普勒—能量信息。 • 显示示与血血流方方向的关系: 彩色色多普勒—有关(红迎蓝离),能量多ቤተ መጻሕፍቲ ባይዱ勒—无无关 显示示与角角度及混叠的关系 彩色色多普勒—有关, 能量多普勒—无无关
超声原理
超声波仪器的成像原理
• 探头发射声波 • 不同组织界面面反射声波 • • • 探头接收声波 信号处理(主机) 显示示图像(显示示器)

超声基础知识

超声基础知识

超声基础知识超声技术是一种利用超声波在介质中传播的特性来获取信息的技术。

它广泛应用于医学诊断、工业检测、海洋探测等领域。

超声基础知识包括超声的产生、传播、接收和成像原理。

超声波是一种频率高于人耳可听范围(20kHz以上)的声波。

在医学领域,超声波被用来对人体内部结构进行无创性检查,如B超检查。

在工业领域,超声波被用于材料的无损检测,如检测金属内部的裂纹或空洞。

超声的产生通常通过压电效应实现。

压电材料在受到电场作用时会发生形变,产生超声波;反之,当超声波作用于压电材料时,也会产生电信号。

这种特性使得压电材料成为超声换能器的理想选择。

超声波在介质中的传播遵循声波的基本传播规律。

在均匀介质中,超声波以一定的速度传播,速度取决于介质的性质,如密度和弹性模量。

超声波在不同介质中的传播速度不同,这也是超声成像技术能够区分不同组织的基础。

当超声波遇到不同介质的界面时,会发生反射、折射和散射现象。

这些现象是超声成像技术中获取信息的关键。

例如,在医学超声检查中,超声波在遇到组织界面时会产生反射波,通过分析这些反射波的强度和时间,可以构建出内部结构的图像。

超声接收器的作用是将超声波转换成电信号。

在医学超声检查中,接收器通常与发射器集成在同一换能器中,这样可以同时进行发射和接收操作。

接收到的电信号经过放大、滤波和模数转换后,可以进行进一步的处理和分析。

超声成像技术包括A型、B型、M型和D型超声。

A型超声显示的是波形图,可以提供深度信息;B型超声显示的是二维图像,可以提供横截面信息;M型超声是B型超声的动态显示,可以观察组织的运动;D型超声则提供了多普勒效应的测量,可以评估血流速度和方向。

超声技术的优势在于无创、安全、快速和成本效益高。

它不使用辐射,对人体无害,且检查过程简便快捷。

此外,超声设备相对便宜,使得超声检查在医疗诊断中得到广泛应用。

总之,超声基础知识涵盖了超声的产生、传播、接收和成像原理,这些原理是理解和应用超声技术的基础。

公共基础知识超声波检测技术基础知识概述

公共基础知识超声波检测技术基础知识概述

《超声波检测技术基础知识概述》一、基本概念超声波检测技术是一种利用超声波在材料中传播的特性来检测材料内部缺陷、测量材料厚度、确定材料性质等的无损检测方法。

超声波是指频率高于 20kHz 的机械波,其在不同材料中的传播速度、衰减程度和反射特性各不相同,这些特性为超声波检测提供了基础。

超声波检测主要涉及到超声波的发射、传播和接收。

通常使用超声波探头作为发射和接收超声波的装置。

探头中的压电晶体在电信号的激励下产生超声波,并将接收到的超声波信号转换为电信号,以供后续分析处理。

二、核心理论1. 超声波的传播特性- 超声波在均匀介质中沿直线传播,其传播速度取决于介质的弹性模量和密度。

不同材料中的传播速度差异较大,例如在钢中的传播速度约为 5900m/s,在水中的传播速度约为 1480m/s。

- 超声波在传播过程中会发生衰减,衰减的原因主要包括散射、吸收和扩散等。

散射是由于材料中的不均匀性引起的,吸收是由于材料对超声波能量的吸收,扩散则是由于超声波在传播过程中的扩散效应。

- 当超声波遇到不同介质的界面时,会发生反射、折射和透射等现象。

反射波的强度取决于界面两侧介质的声阻抗差异,声阻抗差异越大,反射波越强。

2. 超声波检测原理- 脉冲反射法:通过发射短脉冲超声波,当超声波遇到缺陷或界面时,会产生反射波。

根据反射波的到达时间、幅度和波形等信息,可以确定缺陷的位置、大小和性质。

- 穿透法:将超声波发射探头和接收探头分别放置在被检测材料的两侧,通过检测透射超声波的强度和波形变化,来判断材料内部是否存在缺陷。

- 共振法:利用超声波在被检测材料中产生共振的原理,通过测量共振频率和共振幅度等参数,来确定材料的厚度、弹性模量等性质。

三、发展历程超声波检测技术的发展可以追溯到 19 世纪末期。

当时,人们开始研究超声波的特性和应用。

20 世纪初期,超声波检测技术开始应用于工业领域,主要用于检测金属材料的内部缺陷。

在第二次世界大战期间,超声波检测技术得到了快速发展,被广泛应用于军事工业中,如检测飞机、舰艇等装备的零部件。

21536_超声基础知识最新版本ppt课件

21536_超声基础知识最新版本ppt课件

术中超声
在手术过程中利用超声实 时监测,提高手术安全性 和准确性。
17
其他医学领域应用前景
超声治疗
利用超声波的能量进行无创或微创治疗,如超声消融、超声碎石等。
超声造影
利用超声造影剂提高图像对比度,辅助诊断微小病变。
超声弹性成像
通过测量组织硬度来评估病变性质,为临床提供更多信息。
超声分子成像
利用特异性分子探针进行超声成像,实现疾病的早期诊断和治疗监测。
超声原理
超声波的产生主要依赖于压电效应或磁致伸缩效应。通过特定频率的交变电压 或磁场作用于压电晶体或磁致伸缩材料,使其产生机械振动,从而发射出超声 波。
2024/1/25
4
超声发展历程
早期探索
19世纪末至20世纪初,科学家们 开始研究声波在固体中的传播特 性,为超声技术的发展奠定了基
础。
2024/1/25
根据图像特征提出初步诊断意见,并结合 临床病史和其他检查结果进行综合分析。
针对患者病情提出相应的治疗建议或随访 建议。
2024/1/25
14
04 超声在医学领域应用
2024/1/25
15
临床科室应用现状
心血管内科
超声心动图可评估心脏结构和功能,辅助诊 断心脏疾病。
妇产科
超声可观察胎儿生长发育情况,诊断妇科疾 病。
检查结束后,按照规范关机并 做好设备维护和保养。
10
03 超声诊断方法与技巧
2024/1/25
11
常见超声诊断方法
A型超声
一维超声,通过测量不同组织界面的 反射回声时间,得到组织界面的位置 和距离。
B型超声
二维超声,通过扫描人体组织,将回 声信号以光点的形式显示,构成切面 图像。

超声诊断基础必学知识点

超声诊断基础必学知识点

超声诊断基础必学知识点
超声诊断是一种以超声波为媒介进行诊断的医学技术。

以下是超声诊断的基础必学知识点:
1. 超声波产生和传播原理:超声波是指频率超过人耳能听到的20kHz 的声音波。

超声波通过超声发射器产生,并经过介质传播,最后通过超声接收器接收。

2. 超声图像的形成原理:超声波在体内遇到不同组织的界面时,会发生反射、散射和传播,形成声波回波。

通过接收和处理回波信号,可以生成超声图像。

3. 超声图像解剖学:了解人体常见的超声图像解剖结构,包括器官、血管、淋巴结等。

4. 超声诊断设备:了解超声诊断设备的基本组成,包括超声发射器、超声接收器、显示器等。

5. 超声检查技术:掌握超声检查的基本操作技术,如探头的选择、扫描方式、探头的移动和操作等。

6. 超声图像评估:学习如何评估超声图像的特征,包括组织的形态、内部结构、血流情况等。

7. 超声诊断常见病变:了解超声图像上常见的病变表现,如肿块、囊肿、结石等。

8. 超声引导下穿刺和介入治疗:了解超声引导下进行穿刺和介入治疗
的技术和步骤。

9. 超声检查的安全性和注意事项:了解超声检查的安全性和注意事项,如探头选择、扫描时间和强度等。

以上是超声诊断的基础必学知识点,通过学习和实践,医生可以进行
基本的超声检查和超声诊断。

超声基础知识ppt课件

超声基础知识ppt课件

18
2. 超声成像模式 – B模式 (亮度/辉度 brightness) 图像
B模式表现为亮度指示模式。B模式是一种组合成像模式,它可以把人体内不同的组织类型和界面在图像上显示出来。
19
2. 超声成像模式 – B模式
20
2. 超声成像模式 – B模式
21
2. 超声成像模式 – B模式
22
2. 超声成像模式 – B模式
23
2. 超声成像模式 – B模式
24
2. 超声成像模式 – B模式
25
当超声波遇到朝相同方向运动的目标时, 反射回波是以相对较低的频率返回的
当超声波遇到静止目标时,反射的回波是以相同的频率返回的
当超声波遇到朝相反方向运动的目标时, 反射回波是以相对较高的频率返回的
2. 超声成像模式 – 彩色多普勒效应
35
这幅图象是用彩色来表示平均速率。
通常情况下的超声波束
此区域为 红色, 所以流向超声波束的方向, 方向从左到右
此区域为 蓝色, 所以背向超声波束的方向, 方向从右到左
2. 超声成像模式 – 彩色多普勒效应
36
使用强度来代替速率标识血流的信息。我们称之为能量多普勒 (PDI)。彩色血流是没有角度依赖性的, 而且不会产生混叠。
吸收是声波在人体内传播或反射的过程中,由于体内组织的特性使声能耗失,耗失的能量转换为热能的现象。
1. 超声基础知识
12
频率与灵敏度和衰减性是相关的
能量/声强与灵敏度和衰减性是相关的
回声强度
cm深度
噪声
回声强度
cm深度
无TGC
有TGC
TGC
TGC - Time Gain Compensation 时间增益补偿

超声诊断基础知识

超声诊断基础知识
超声诊断基础知识
பைடு நூலகம் 第一节 超声诊疗基础知识
一、超声波定义 超声波是指频率超出2万赫兹(Hz),即超出人
耳听觉范围旳一种声波。一般诊疗用超声波频 率为2--10MHz,常用频率2.5--5MHz。
同频率旳超声波在不同介质中传播,声速不相 同,人体软组织中超声波速度总体差别约为5%。 利用超声措施进行测距旳误差也是5%左右。
骨(钙化)>肌腱(软骨)>肝脏>脂肪>血液>尿 液(胆汁)
胶原蛋白和钙质越多,声衰减越大,液体中含蛋 白旳衰减大。
*反射、折射和散射 超声在传播途径中,遇到界面则引起反射,
界面声阻抗差越大,则反射越强,其反射、 折射和散射规律与光学原理相同。
*吸收与衰减特征 *多普勒效应 当声源与接受器之间出现相对运动时,其
人体不同组织和体液回声强度分级:
强回声(常伴声影)胸膜-肺界面,胆结石,骨骼表 面,疤痕组织
高回声
肝脾脏包膜,血管瘤
中档水平回声
肝脾脏实质
低回声
皮下脂肪
无回声
胆汁,尿液,胸腹水(漏出液), 透明软骨
颈部淋巴结伴钙化
*M型超声(Motion mode) M型超声将某一断面旳组织回声光点以时
间横轴将其展开,构成该断面组织构造旳运 动曲线。其优点是:
声阻抗=密度x声速 声阻抗差只要不小于0.1%,就会产生回声反射 ,回声强度、大小与声阻抗差成正比。
超声波在介质中传播时,如遇声阻不同旳障碍 物(目旳点)则声阻方向和声强将发生变化, 其变化程度与障碍物之大小及声阻抗有关系。
障碍物直径>波长/2时,其表面产生回声反射。 障碍物直径<波长/2时,反射极少。 最大理论辨别力=波长/2 实际显示旳辨别力低于理论辨别力旳5--8倍。

超声基础知识入门超声基础知识总结

超声基础知识入门超声基础知识总结

超声基础知识入门超声基础知识总结
超声基础知识入门:
1. 超声波:超声波是一种频率高于人耳可听到的声音的声波。

在医学中,常用的超声
波频率范围是1~20兆赫(MHz)。

2. 超声传感器:超声传感器是将声波转化为电信号的装置。

它由发射器和接收器组成,发射器发出超声波,接收器接收到反射回来的超声波并转化为电信号。

3. 超声图像:超声波在人体组织内反射、折射和散射产生回波,这些回波可用来形成
超声图像。

超声图像显示了人体器官、血管、肿块等结构的形态和位置。

4. 超声成像模式:常见的超声成像模式包括B模式(二维图像)、M模式(时间-振幅图像)、Doppler模式(血流图像)等。

5. 超声引导下穿刺:超声引导下穿刺是一种常见的医疗技术,通过超声图像引导医生
准确定位并操作穿刺针,用于取样、注射药物等操作。

6. 超声检查:超声检查是一种无创、无辐射的影像学检查方法,广泛应用于临床诊断。

常见的超声检查包括腹部超声、妇科超声、心脏超声等。

7. 超声诊断:通过观察和分析超声图像,医生可以对疾病进行诊断。

超声诊断可以发
现各种器官的异常结构、肿块、囊肿、积液等。

8. 超声治疗:超声波的能量可以用于治疗某些疾病,如肌肉拉伤、骨折、肿瘤等。


声治疗可以促进组织修复,减轻疼痛和炎症。

以上是超声基础知识的简要总结,希望对您有帮助。

超声波基础必学知识点

超声波基础必学知识点

超声波基础必学知识点1. 声音的特性:声音是一种机械波,是由物体振动产生的。

它可以传播在气体、液体和固体中,并需要介质作为传播媒介。

2. 声波的频率和波长:声音的频率是指每秒钟振动的次数,单位是赫兹(Hz)。

声波的波长是指声波在介质中传播一个完整周期所需的距离。

3. 超声波的频率:超声波是指频率超过人类听觉范围(20 Hz至20 kHz)的声波。

一般认为超声波的频率范围在20 kHz到1 GHz之间。

4. 超声波的产生和检测:超声波的产生可以通过电压信号施加在压电材料上,使其振动产生超声波。

超声波的检测可以使用超声波传感器来接收和转换超声波成电信号。

5. 超声波的传播速度:超声波在空气中的传播速度约为343米/秒。

在其他介质中,传播速度会有所不同。

6. 超声波在医学中的应用:超声波在医学中应用广泛,如超声检查用于诊断疾病、超声治疗用于物理疗法等。

7. 超声波在工业中的应用:超声波被广泛应用于工业领域,如无损检测、清洗、焊接、切割、涂层、粉末冶金等。

8. 超声波的反射和折射:超声波在界面上会发生反射和折射。

反射是指超声波与物体界面相交时,部分能量被物体反射回来。

折射是指超声波在不同介质之间传播时,发生速度和方向的变化。

9. 超声波的干扰和衰减:超声波在传播过程中会受到杂波的干扰,干扰会对超声波的检测和测量造成影响。

此外,超声波在传播过程中也会受到介质的衰减,衰减会导致超声波的能量逐渐降低。

10. 超声波的成像原理:超声波成像通过对物体内部超声波的反射进行接收和处理,生成图像来显示物体的内部结构。

成像原理包括回波时间测量、超声波在不同介质中的传播速度、超声波的强度等。

超声知识归纳总结

超声知识归纳总结

超声知识归纳总结超声技术是一种基于声波传播和反射原理的医学成像方法,它可用于诊断、评估以及监测疾病的发展。

本文将对超声知识进行归纳总结,包括超声原理、超声检查、超声诊断以及超声应用的领域等内容。

一、超声原理超声波是一种频率大于20kHz的声波,其传播速度和方向可以通过声速和入射角度来测量。

超声波经过物体后发生折射、反射、散射等现象,这些现象可用于形成超声图像,并提供有关被检查组织或器官的信息。

二、超声检查超声检查可以分为二维超声和三维超声。

二维超声是通过探头在患者体表上移动,获取不同角度的断层图像,并以此来观察和评估被检查部位的结构和功能情况。

三维超声则是通过使用探头进行快速扫描,获得更多角度的图像信息,从而生成真实三维图像。

在超声检查中,探头是承载超声波源和接收器的关键部件,其频率和形状的选择会根据被检查对象的不同而有所变化。

同时,患者和操作者的位置和姿势也会对超声图像的质量产生影响,因此操作者需要在检查过程中注意调整和优化。

三、超声诊断超声诊断是基于超声图像来分析和评估疾病情况的过程。

医生通过观察超声图像上的结构形态、血流情况、组织回声等特征来判断是否存在异常。

一般来说,正常组织通常呈现高回声,异常组织则可能呈现低回声、无回声或混合回声等。

超声诊断在很多领域中具有广泛的应用,如妇产科、心脏病学、消化系统、泌尿系统、肝胆胰脾等。

例如,超声在妇产科中可以用于孕妇孕期检查、胎儿发育评估、宫颈、子宫和卵巢病变的检查等。

四、超声应用领域1. 妇产科:超声在妇产科中被广泛应用,如孕妇常规检查、卵巢与宫颈病变检查等。

2. 心脏病学:超声心动图可以通过超声波图像来评估心脏结构和功能,用于检测心脏瓣膜疾病等。

3. 消化系统:超声可用于胆囊、肝胆胰脾等器官的检查和评估,例如胆囊结石、肝动脉瘤等。

4. 泌尿系统:超声在泌尿系统疾病的诊断和评估中有重要作用,如肾结石、前列腺增生等。

5. 乳腺病学:超声在乳腺疾病的检查中被广泛使用,如乳腺肿块的鉴别、乳腺纤维腺瘤的诊断等。

超声基础知识及发展方向医学

超声基础知识及发展方向医学
CT提供高分辨率的解剖结构图像,与超声结合可实现互补。
超声与正电子发射断层扫描(PET)结合
PET提供功能代谢信息,与超声结合有助于肿瘤等疾病的早期诊断。
超声医学在远程医疗和移动医疗中的应用
远程超声诊断
通过互联网和通信技术,实现远程超声诊断 和会诊,提高医疗资源利用效率。
移动超声诊断
利用便携式超声设备,在现场进行快速、准确的诊 断,尤其在灾害救援、偏远地区医疗支援等方面具 有重要意义。
床医生提供更多维度的诊断信息。
远程医疗应用
借助互联网和通信技术,远程超声诊 断和治疗将成为可能,有助于解决城 乡医疗资源分布不均的问题。
人才培养与交流
加强超声医学领域的人才培养和国际 交流,促进技术创新和学术研究的发 展。
感谢您的观看
THANKS
超声波的物理性质
声压与声强
超声波在传播过程中产生的声压和声强是衡量其物理特性的重要参数,用于描述超声波的强度和能量 。
声阻抗与声衰减
声阻抗决定了超声波在介质中的传播速度和方向,而声衰减则描述了超声波在传播过程中的能量衰减 程度。
超声波的传播特性
反射与折射
当超声波遇到不同介质的界面时,会 发生反射和折射现象,导致声波的传 播方向发生改变。
三维和四维超声技术
能够提供立体、动态的图像,有助于医生更 全面地了解病变情况。
超声造影技术
利用超声波观察血流灌注情况,有助于血管 疾病的诊断和监测。
超声医学与其他医学影像技术的结合
超声与核磁共振成像(MRI)结合
通过MRI提供更深入的解剖结构信息,与超声结合可提高诊断精度。
超声与计算机断层扫描(CT)结合
实时动态监测
03
超声技术可以对患者进行实时动态监测,观察病变的发展和变

超声波检测基础知识

超声波检测基础知识

超声波检测基础知识超声场特征值与规则反射体的回波声压一、超声场的特征值充满超声波的空间或超声振动所涉及的部分介质, 叫超声场。

超声场具有一定的空间大小和形状, 只有当缺陷位于超声场内时, 才有可能被发现。

描述超声场的特征值(即物理量)主要有声压、声强和声阻抗。

1.1.声压P超声场中某一点在某一时刻所具有的压强P1与没有超声波存在时的静态压强P0之差, 称为该点的声压, 用P 表示。

01P P P -=声压单位: 帕斯卡(Pa )、微帕斯卡(μPa )超声检测仪器显示的信号幅度值的本质就是声压P, 示波屏上的波高与声压成正比。

在超声检测中, 就缺陷而论, 声压值反映缺陷的大小。

1.2.声阻抗Z超声场中任一点的声压与该处质点振动速度之比成为声阻抗, 常用Z 表示。

c u cu u P Z ρρ===//声阻抗的单位为克/厘米2·秒(g/cm 2·s )或千克/米2·秒(kg/m 2·s )1.3声强I单位时间内垂直通过单位面积的声能称为声强, 常用I 表示。

单位是瓦/厘米2(W/cm2)或焦耳/厘米2·秒(J/cm2·s )。

ZP Zu I 222121== 1.4分贝在生产和科学实验中, 所遇到的声强数量级往往相差悬殊, 如引起听觉的声强范围为10-16~10-4 W/cm2, 最大值与最小值相差12个数量级。

显然采用绝对值来度量是不方便的, 但如果对其比值(相对量)取对数来比较计算则可大大简化运算。

分贝就是两个同量纲的量之比取对数后的单位。

通常规定引起听觉的最弱声强为I1=10-16 W/cm2作为声强的标准, 另一声强I2与标准声强I1之比的常用对数成为声强级, 单位为贝(尔)(B )。

Δ=lg(I2/I1) (B)实际应用贝尔太大, 故长取其1/10即分贝(dB )来作单位:Δ=10lg(I2/I1)=20lg(P2/P1) (dB )二、通常说某处的噪声为多少多少分贝, 就是以10-16 W/cm2为标准利用上式计算得到的。

超声知识点总结归纳

超声知识点总结归纳

一、超声的原理1. 超声波的产生超声波是指频率超过20kHz以上的声波。

在超声检查中,超声波是由超声探头产生的,探头内装有压电晶体,当晶体受到外加电压时,会产生机械振动,从而产生超声波。

2. 超声波的传播超声波在人体内部传播时,会发生反射、散射、折射等现象。

不同组织和器官对超声波的反射程度不同,这就形成了超声图像上的对比度。

3. 超声图像的形成超声图像是通过记录超声波的发射和接收信号,然后通过计算机处理形成的。

超声图像可以显示组织和器官的形态、结构和血流情况,是超声检查的主要成果。

二、超声的应用1. 超声的临床诊断超声检查可以用于诊断各种器官和组织的病变,如心脏、肝脏、肾脏、乳腺、甲状腺等。

通过超声检查,可以观察器官的形态、大小、结构、血流情况等,从而帮助医生做出正确的诊断。

2. 超声在妇产科的应用超声在妇产科的应用非常广泛,可以用于检查怀孕、观察胎儿发育情况、诊断子宫肌瘤、卵巢囊肿等。

此外,超声还可以用于引导产前筛查和指导产科手术。

3. 超声在心脏病学的应用超声检查可以用于观察心脏的结构、功能和血流情况,对心脏瓣膜病、心肌病、心包疾病等疾病的诊断有很好的帮助。

4. 超声在肿瘤学的应用超声可以用于检测肿瘤的部位、大小、形态以及血流情况,对辅助诊断和术前评估具有重要意义。

5. 超声在其他领域的应用超声还可以用于检查血管、淋巴结、肌肉、关节等组织和器官,对各类疾病的诊断都有重要意义。

1. 安全性高超声检查不需要使用放射线,对人体无损害,适用于各个年龄段的患者,特别适用于孕妇和儿童的检查。

2. 易于操作超声检查仪器操作简单,探头直接接触患者身体部位即可进行检查,操作方便,适合用于门诊和急救情况。

3. 观察实时超声检查所得的图像是实时的,医生可以通过观察超声图像动态变化,帮助做出正确的诊断。

4. 无创性超声检查是一种非侵入性检查方法,不需要穿刺或开刀,对患者没有任何伤害。

四、超声的临床意义1. 早期诊断超声检查对一些隐性疾病的早期诊断非常重要,如肿瘤、结石等疾病,可以帮助医生及早发现病变,提高治疗成功率。

超声诊断基础知识

超声诊断基础知识

2 超声造影
将超声造影剂经末梢静脉注入,在超声检 测时,超声造影剂产生去强烈得反射(散射) 回声,可用于识别心内解剖结构、肿瘤得 血流灌注情况等,并用于疾病诊断。
右前叶见圆形强回声, 边缘清晰,病灶周边见 强回声光带,病灶内呈 筛网状改变。
造影后血管瘤能量再加上谐波显示:肝血 管瘤周围可见血管分布,注射造影剂后血 管瘤内பைடு நூலகம்见血流显像。
一、 A型诊断法(一维)——A超 二、 B型诊断法(二维显象)——B超 三 、 M型诊断法:(一维) 四、 D型诊断法:(Doppler)
1、频谱多普勒(一维) 2、多普勒彩色血流显象
A型(A-mode) 这就是一种幅度调制 (amplitude modulation)超声诊断仪,把接收 到得回声以波得振幅显示,振幅得高低代表回声 得强弱,以波型形式出现。
人体不同组织回声强度顺序
肾中央区(肾窦)>胰腺>肝、脾实质>肾皮质> 肾髓质(肾锥体)>血液>胆汁和尿液。 正常肺(胸膜--肺)、软组织--骨骼界面得回声最 强;软骨回声很低,甚至接近于无回声。 病理组织中,结石、钙化最强;纤维化、纤维平滑 肌脂肪瘤次之;典型得淋巴瘤回声最低,甚至接近 无回声。
第三节获得最佳超声信息得基本条件
相对运动得速度愈高,则收到得声波频率改
变愈大fd=f0vcosθ/c v =fd c / f0 cosθ
医学上利用这种超声多普勒效应,来测定人 体器官得运动状态,如心脏、血管和胎心等 得活动。
二、 超声诊断原理:
超声诊断仪组成: 1、主机 2、换能器(探头)——发出超声和接
收超声回波。
超声诊断仪基本原理
B型(B-mode)这就是辉度调制型(brightness modulation)超声诊断仪,把接收到得回声,以光 点显示,光点得灰度等级代表回声得强弱。

超声科普知识大全

超声科普知识大全

超声科普知识大全超声科普知识大全如下:1. 超声检查的原理:超声检查利用超声波在人体内部产生回声,根据回声形成图像,从而观察人体内部结构。

超声波是一种机械波,具有方向性和穿透性。

2. 二维超声:二维超声是利用探头扫描反复发射接收超声波,形成屏幕上显示的二维切面(平面、断层、薄片)图像。

二维超声可以显示脏器结构形态的灰阶切面图像,具有方位性,可以显示上下左右前后的XY轴切面灰阶图像,Z轴需要三维扫描。

3. 彩色多普勒超声:彩色多普勒超声是在二维超声的基础上,应用多普勒效应来反映血流流动信息。

它可以显示二维超声切面图像,同时显示出血流动力学的丰富信息,提高疾病的诊断率。

4. 超声检查的优点:超声检查具有无创、无辐射、方便、重复性强及为临床诊断和治疗提供准确信息和依据的优点。

5. 超声检查的适用范围:超声检查适用于全身脏器检查,尤其是心脏、血管、腹部、泌尿系、妇产、浅表器官等检查。

6. 检查前的准备:在进行腹部脏器检查时,如肝、胆、胰、脾、肾、腹部大血管、腹膜后等,需要空腹8小时以上。

因为进食后,胃肠道气体增加,会影响图像显示清晰度。

胆囊在进食后胆汁排空、胆囊体积缩小,也会导致胆囊病变显示不清,从而容易误诊和漏诊。

7. 超声检查的时间:超声检查时间因人而异,一般需要预约,约2至8周后才能进行检查。

8. 超声设备:彩超设备有腹部、心脏、三维为主等不同机型,功能和应用范围与仪器具体配置有关。

9. 灰阶图像:灰阶图像显示脏器或病变的物理特性变化,如液体包括血管内的血液、胆囊内的胆汁、膀胱内的尿液、胸腹水等均显示为黑色(无回声),胆结石、骨骼或气体显示为白色(强回声)。

10. 超声检查与临床诊断:超声检查为临床诊断和治疗提供准确的信息和依据,有助于医生了解病情,制定治疗方案。

通过了解以上超声科普知识,可以帮助大家更好地理解超声检查的作用、原理和应用,减轻检查过程中的疑虑和担忧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用用途: A型脉冲超声诊断仪现用用于颅脑和眼科检查。 特点: 方方便、快捷。
探头 ((
))
反射波
A型显示
2. B模式(Brightness):
是一一种亮度的模式。其图像由不同亮度的点所组成的直线构成。点的亮度代表接收
到回声的振幅。通过连续扫描,二二维的剖面面图像不断地被更新,这就是实时B模式。
换能器
M - Mode used to monitor the Ventricle Motion
多普勒(Doppler)原理
• 1. 多普勒效应:振动源和接收体有相对运动时,所接收到的声波频率不同于振源所发射

的声波频率,其差别与相对运动的速度有关,这就是多普勒效应。多普勒
效应是奥地利科学家多普勒于1842年首首先提出
-电子子相控阵: 相控阵方方式是通过连续变换延时线来得 到产生生超声波束的不同角角度。主要用用 于心心脏,颅脑。
-电子子微凸阵: 与电子子凸阵探头工工作原理相同. 主要用用于
腔内扫查.
不同探头的成像原理
线阵
微凸阵
凸阵
线阵/凸阵 探头的许多基元通过电子子控制产生生扫描高频衰减大大,低频衰减小小(穿透力力强)
超声系统的组成
超声系统
探头
主机
延时线路 脉冲发射/接收
处理
滤波器、对数放大大 器、时间增益控制
DSC
数字扫描转换器
存储
硬盘、磁光盘
监视器
记录设备
录像机
打印机
彩色色打印机
图象档案管理
主机
监视器
探头 操作面板
探头
探头
用用于超声的探头也称为换能器,是用用来产生生和检测超声波的部件,即换能器既是发射器, 也是接收器。它和主机构成超声设备最重要核心心。
三棱镜
折射 镜子子
反射
4.声学技术的应用用
海洋
无无法显示示图像。您的计算机可能因内存不足足而而无无法打开图像,或图像已遭损坏。请重新启动计算 机,然后再次打开该文文件。如果仍然显示示红色色 x ,则可能需要删除此图像,然后重新插入入该图 像。
5. 超声诊断的优点
• 安全、无无辐射。适用用于胎儿儿诊断。 • 设备可移动,成本低。 • 实时成像 • 通过扫描角角度变化,获得更佳的图像。 • 多普勒-检测血血流量信息。
二二、超声原理
1. 基本原理:
超声基本原理与回声原理相同。
2. 超声频率与波⻓长: λ=C / f
λ-超声波波⻓长;C-超声波声速 f -超声波频率。 波⻓长:一一个波的⻓长度。 频率:单位时间内的周数(重复次数)
分辨率 穿透力力
低频
更差
更强
高高频
更好
更弱
探 无无法
显示示 图 像。 您的 计算
头 机可
3. 超声的特性
• 超声的折射:超声从甲介质进入入乙乙介质时,传播方方向发生生偏离。 • 超声的反射:超声在遇到两种介质界面面时,传播方方向在一一种介
质中发生生偏转。 • 传播速度: 超声在水水中的传播速度-1540米米/秒( 20°C )
超声在空气气中传播速度-344米米/秒( 20°C )
相控阵
0 1 2
不同探头的成像原理
脉冲
31
0
63
n
Θ
成像模式
超声模式(A超、B超、M超)
在监视器上显示示的超声图像是二二维图像,这与CT和核磁共振所形成的图像相同。 超声图像有以下几几种模式:
1. A模式(A超):显示示界面面回声的幅度(Amplitude),称为振幅调制型。
A型是以脉冲波的幅度来显示示回声的高高低,可 用用于测量组织界面面的深度(距离)和反应界面面 的组织基本特性。
背衬材料 压电陶瓷(基元)
3. 工工作原理:
主机通过电缆在基元上施加电信号,使基元振动,发出 超声波,超声波经物体反射作用用在基元上,使基元两端 产生生电信号,通过电缆传送至至主机处理、显示示。
发射

反射

探头的种类
-电子子线阵:用用于小小器官、血血管及术中。 -电子子凸阵:也称弯曲线阵,与线阵的区别在于 基元是弯曲的。用用于腹部和妇产科。
能因 内存 不足足 而而无无 法打
远 近
无无法显示示图像。您的计算机可能 因内存不足足而而无无法打开图像,或 图像已遭损坏。请重新启动计算 机,然后再次打开该文文件。如果 仍然显示示红色色 x ,则可能需要 删除此图像,然后重新插入入该图 像。
3. 超声波的衰减:
超声波的衰减与传播距离成正比比;与频率的2/3方方成正比比。
声纳
无无法显示示图像。您的计算机可能因内存不足足而而无无法打开图 像,或图像已遭损坏。请重新启动计算机,然后再次打开
潜艇 该文文件。如果仍然显示示红色色 x ,则可能需要删除此图像,
然后重新插入入该图像。
超声原理
超声波仪器的成像原理
• 探头发射声波 • 不同组织界面面反射声波 • 探头接收声波 • 信号处理(主机) • 显示示图像(显示示器)
TXM
TXM
RCV
RCV
如果接收体向着振动源运动,则接收 到的频率将高高于发射频率。
如果接收体背着振动源运动,则接收 到的频率将低于发射频率。
多普勒技术在超声诊断中非非常有价值。主要用用于检测心心脏、血血管内血血液的流向, 流速及流量。 主要包括以下三种:-彩色色血血流成像(CF)
超声基础知识
声波
内容
• 声波 • 超声原理 • 超声系统组成 • 探头种类 • 成像模式 • 识图
一一、声波
1. 概念:声波是一一种机械振动,可以通过介质进行行传播。
2. 声音音频谱
0Hz
20Hz
20KHz
1MHz
30MHz
400MHz
次声频段 可听⻅见声音音
地震波
耳耳朵
超声频段 无无损探伤 图像诊断 声学显微镜
监视器
Line 1 Line 2 Line 3 Line 4 Line 5 Line 6 Line 7 Line 8
Line 1 2 3 4 5 6 7 8
3. M模式:
M模式中的M表示示运动,M模式通过B模式图象 来显示示一一个光标,然后在以时间为轴线的波形图 上表示示其运动状态。通常M模式用用于检测心心脏及 胎儿儿的心心率。
1. 结构:详⻅见右图所示示。
其中:压电陶瓷-发射/接收超声波;声透镜-轴向 聚焦;背衬材料-防止止产生生超声波反向振动;匹配层 --减少超声传播中的多重反射.
衬套
匹配层 声透镜
2. 压电效应:是指具有压电特性的材料(陶瓷、石石英)
在受到外界压力力后,在其受压端面面产生生电压;在其端面面 施加交变电信号时,其端面面会产生生机械振动,发出声波。 电缆
相关文档
最新文档