木质素改性及其对染料的吸附性能

木质素改性及其对染料的吸附性能
木质素改性及其对染料的吸附性能

木质素的性质及应用

木质素的性质及应用 张XX (北京联合大学生物化学工程学院,北京,100023) 摘要 随着人类对环境污染和资源危机等问题的认识不断深刻,天然高分子所具有的可再生、可降解等性质日益受到重视。在自然界中,木质素的储量仅次于纤维素,而且每年都以500亿吨的速度再生。增强其制浆造纸工业每年要从植物中分离出大约14亿吨纤维素,同时得到5000万吨左右的木质素副产品,截止到2002年时,超过95%的木质素仍直接排入江河或浓缩后烧掉,绝少得到高效利用[1]。被用于化工高分子材料却仅占 1%。所以对于木质素的研究、开发及应用等具有十分重要的意义。本文简单介绍木质素的结构、性质。主要介绍其在发泡塑料方面的应用。 关键词:木质素;树脂;改性;发泡; 木质素的结构 木质素,是聚酚类的三维网状高分子化合物,其基本结构单元为苯丙烷结构,共有三种基本结构(非缩合型结构),即愈创木基结构、紫丁香基结构和对羟基苯基结构。木质素是由松柏醇基、紫丁香基和香豆基三种单体以 C-C 键、醚键等形式连接而成的具有三维空间结构的天然高分子物质。[2] 木质素的化学性质 木质素的分子结构中存在着芳香基、酚羟基、醇羟基、羰基、甲氧基、共轭双键等活性基团,可以进行氧化、还原、水解、醇解、酸解、光解、酰化、磺化、烷基化、卤化、硝化、缩聚或接枝共聚等许多化学反应,从而奠定了木质素在多方面应用的基础。特别是在高分子材料方面,以木质素为原料可以合成酚醛树脂,既可以用作酚与甲醛反应,也可用作醛与苯酚反应[3];利用木质素所含的醇羟基,可与异氰酸酯类进行缩合反应,制得木质素聚氨酯;木质素与烯类单体在催化剂作用下能发生接枝共聚反应,如丙烯酰胺、丙烯酸、苯乙烯、甲基丙烯酸甲酯、丙烯腈等。 木质素的应用 脲醛树脂 木质素作为一种洁净资源,可制备合成树脂和胶黏剂、补强剂、油田化学品和各种助剂,在轻工业及农业中有广泛的应用。 脲醛树脂是目前市场上多用作粘合剂,作为塑料使用的很少,而且都是闭孔泡沫塑料,但脲醛树脂泡沫塑料由于其硬而脆的缺点,在应用上受到了限制。 采用加入木质素磺酸钠改性脲醛树脂,以降低游离甲醛含量及充分利用木质素资源;同时加入三聚氰胺和聚乙烯醇,以改变树脂的柔韧性。通过碳酸氢铵发泡法发泡制得开孔改性脲醛树脂泡沫塑料。实验结果表明:改性后游离甲醛含量明显降低,韧性有了较大的提高。[4]

(完整word版)木质素磺酸钠

木质素磺酸钠 木质素磺酸的钠盐即为木质素磺酸钠(sodium ligninsulfonate)是一种天然高分子聚合物,阴离子型表面活性剂。具有很强的分散能力,适于将固体分散在水介质中。由于分子量和官能团的不同而具有不同程度的分散性,能吸附在各种固体质点的表面上,可进行金属离子交换作用,也因为其组织结构上存在各种活性基,因而能产生缩合作用或与其他化合物发生氢键作用。在工业上,木质素磺酸钠广泛地用作分散剂和润湿剂。印染工业中使用的分散剂-NNO 即是以木质素磺酸钠为主要原料复配的。 质素磺酸钠是一种阴离子表面活性剂,是木浆与二氯化硫水溶液和亚硫酸盐反应产物,是生产纸浆的副产物,一般为4-羟基-3-甲氧基苯的多聚物。由于木材种类不同,磺化反应的差异,木质素磺酸盐的分子量由200到10000不等,化学结构尚未确定。一般说低分子木素质磺酸盐,多为直链,在溶液中缔合在一起;高分子木质素磺酸盐多为支链,在水介质中显示出聚合电介的行为。粗制的木质素磺酸盐大量用于在动物饲料的粒化,精制木质素磺酸盐用于石油钻井泥浆的分散剂;矿石浮选剂,矿泥、染料、农药的分散剂;对重金属,尤其是铁、铜、亚锡离子有较好的螯合能力,是有效的螯合剂。 中文名木质素磺酸钠 外文名 Sodium Ligninsulfonate 分子式 C 20H 24 Na 2 O 10 S 2 分子量 534.5 Cas 8061-51-6 彩色分子结构图:CAS NO.8061-51-6 中文别名分散剂CMN;改性木质素磺酸钠;木素磺酸钠;木素磺酸钠盐;分散剂M-9;木质磺素钠;木质磺酸钠 英文别名ahr2438b;banirexn;betz402;dispergatorreax;dispergatorufoxane;lignosite458 一、理化性质 1、有良好的扩散性能,能溶于任何硬度的水中,水溶液化学稳定性好,可生物降解。 2、木质素磺酸盐又称亚硫酸盐木质素,是相对分子质量不同,结构也不尽相同,即具有多分散性的不均匀阴离子聚电解质。固体产品为黄棕色自由流动的粉末,具有吸湿性。易溶于水,并不受PH值变化的影响,但不溶于乙醇、丙酮及其他普通的有机溶剂。水溶液为棕色至

染料及其性质

(1)直接染料直接染料大多数是芳香族化合物的磺酸钠盐,大多属于偶氮染料,为亲水性染料。芳香族的BOD/COD值为0.53—0.84。活性污泥对直接染料具有较高的吸附作用,属于亲水性染料的脱色效果好,脱色速度快。 (2)还原染料还原染料是疏水性染料。还原染料主要有蒽醌型和硫靛型两种结构。属于疏水性的染料,脱色速度慢,但活性硅藻土对其有较好的脱色效果(硫酸铝不能使蒽醌染料废水脱色)。还原染料的碱性很强,pH>10。 (3)纳夫妥染料为疏水性染料,活性硅藻土对这种染料有较好的脱色效果。 (4)硫化染料为疏水性染料。硫化染料含有硫化合物,生物处理对其废水中硫化物的允许浓度是10~15mg/L。对于硫化染料占比例较大的废水,可采取预曝气、预沉淀(或投加混凝剂)等方法先除去部分硫化物并使还原性物质预先氧化掉。活性硅藻土对硫化染料有较好的脱色效果。 (5)活性染料为亲水性染料。活性染料虽为亲水性染料,但活性污泥对其吸附作用很小,硅藻土对它的脱色效果亦差。 (6)酸性染料为亲水性染料。酸性染料溶解度大,导致活性污泥对它的吸附作用很低。 (7)酸性媒染染料具有酸性染料的基本结构,含磺酸基等水溶性基因,对羊毛有亲和力,同时还含有能和金属原子络合的羟基团,羟基团和金属媒染剂常用的有重铬酸钠和重铬酸钾(俗称红矾钠和红矾钾]生成色淀增强染色牢度。 (8)金属络合染料活性炭吸附法对金属络合染料废水无效。臭氧法不能用于处理含铬染料废水,否则反而生成六价铬离子,增加水的毒性。 (9)分散染料分散染料是一种不含水溶性磺酸基团的疏水性较强的非离子性染料。分散性染料废水采用混凝法效果较好。活性污泥对它有一定的吸附作用,但不宜采用单独臭氧法。

木质素

转载: 国内改性木质素类降粘剂研究进展 1 前言 水基钻井液一般由水、粘土、化学处理剂组成。它在钻井过程中起着重要作用,是适应各种复杂地质条件、提高钻井质量的重要因素。随着温度升高,体系中的化学处理剂及有机物成分会越来越活跃,促进了体系中SiO2的溶胶化(指SiO2在pH值大于9的环境中形成硅溶胶或称硅酸钠),结果使钻井液随环境温度的升高而逐渐增稠。如果钻井液粘度和切力过大,则使钻井液流动阻力过大、能耗过高,严重影响钻速,此外还会引起钻头泥包、卡钻、钻屑在地面不易除去和钻井液脱气困难等问题。 因此,降粘剂是钻井过程中不可缺少的钻井液处理剂,它对调节钻井液流变性起着非常重要的作用。虽然固控设备能有效清除钻井液中的各种固相,起调节钻井液流变性、减少降粘剂使用量的作用。但在现场固控设备的使用不理想,降粘剂的作用就更加重要。 木质素是一种复杂的芳香族天然高分子,由苯丙烷基以醚键(C-O-C)或碳-碳键(C-C)键结合形成杂支链的三维网状结构。它是植物纤维的主要组成部分之一,在自然界的分布极广,蕴藏量仅次于纤维素。目前用于燃料以外的工业木质素主要是木质素磺酸盐。木质素磺酸盐是木浆法造纸的副产品,价廉易得,分子上含有各种官能团,在一定条件下能与多种物质发生多种改性反应(主要有氧化剂氧化、金属离子络合、磺化剂磺化、甲醛缩合或接枝等),其进行化学改性后,是

良好的降粘剂。自20世纪50年代以来,铁铬木质素磺酸盐一直被广泛应用于钻井液中。 2 改性木质素类降粘剂的国内研究概况 2.1 木质素磺酸盐的接枝改性 根据接枝方法的不同,木质素磺酸盐的接枝改性目前主要分为3类:化学接枝、 生物化学接枝 和电化学接枝。 在合成降粘剂时,通常使用化学接枝。化学接枝分为一步法和二步法。一步法:先将木质素磺酸盐溶于水中,将引发剂、不饱和单体及还原剂一并加入反应瓶中,然后升温反应。这种方法的优点是反应速度快,工艺简单,生产效率高,但由于不饱和单体的一次加入,会由于竞聚率的不同,可能导致单体的部分自聚,而少量与木质素接枝反应,得不到高接枝化的产物,而且产品的粘度会较大,不宜获得高固体含量的产物。 二步法:先将木质素磺酸盐溶于水中,并加入还原剂,搅拌均匀,升温后,将不饱和单体及过氧化物并流滴加,两个滴加口离开一段距离,让单体有足够的时间与木质素磺酸盐混合后引发。其优点是共聚物粘度低,发硬易于控制,可制备高固体含量的接枝共聚物,但生产效率较一步法低。 2.2 近年国内已研制或应用的木质素类降粘剂 2.2.1 AMPS/AA/DMDAAC-木质素磺酸盐接枝共聚物降粘剂

木质素表面活性剂及木质素磺酸盐的化学改性方法

木质素表面活性剂及木质素磺酸盐的 化学改性方法 李凤起1 朱书全2 (1.太原理工大学矿业工程学院,030024; 2.中国矿业大学北京校区,100083) 摘要:介绍了利用造纸工业的主要副产品木质素制取表面活性剂以及对木质素磺酸盐的几种有效的化学改性方法与产品应用途径,给出了用木质素改性制备水煤浆添加剂的实例。 关键词:木质素 化学改性 表面活性剂 接枝共聚 应用 木质素(简称木素)是造纸工业的副产品,在化学制浆过程中,木素绝大部分溶解在废液中,是纸浆废液的主要成分。由于原料不同,制浆方法不同,所以木质素在纸浆废液中的存在形式也不同。 碱木素存在于碱法制浆废液中,是一种具有分散、粘合及表面活性等特殊性能的天然高分子化合物。目前对木质素的化学结构尚无统一认识,但公认木质素是以1丙烯基3甲氧基4氧苯为结构单元通过C—O键或C—C键连接而成的高分子化合物。碱木素上缺乏强亲水性官能团,同时可发生反应的位置较少,所以水溶性和化学反应性能都不好,特别是在中性及酸性条件下溶解度很低,这些缺陷大大限制了它的应用范围。木质素的化学改性是开拓产品利用价值的重要手段。 木质素磺酸盐是在亚硫酸盐制浆过程中产生的,也可以由木质素磺化制得。木质素磺酸盐因有磺酸基存在,具有较强的亲水性,所以它比碱木素的应用广泛得多。 作者在进行木质素改性制取水煤浆添加剂的研究过程中,分析了木质素的几种有效的改性方法和可能的利用途径,并对碱木素进行磺化改性和对木质素磺酸盐氧化改性制成水煤浆添加剂,分别用于义马、北宿和大同煤制浆,经Haake RV12型流变仪测定,浆的流变性好,且水煤浆的定粘浓度提高2%~3%[1]。 1 木质素表面活性剂 木质素具有含活泼氢的羟基和可以被加成的双键,可以引入各种亲水性基团,合成各种表面活性剂。1.1 合成阴离子表面活性剂 木质素的改性方法虽然很多,但最具实际应用价值的改性方法还是磺化改性。磺化改性包括高温磺化、氧化磺化和磺甲基化。 高温磺化是将碱木素与Na2SO3在180℃左右反应,在木素侧链上引进磺酸基,制得水溶性好的产品。 木质素为网状大分子结构,屏蔽效应比较明显,表面可以被磺化,但其网状内部由于磺酸基无法进入而不能磺化。可以先用氧化剂(如KM nO4, H2O2)等进行氧化,将其打断为小分子后再进行磺化,然后再用偶联剂进行偶联,这样就可以得到磺化度较高的木质素磺酸盐,相对分子质量可以控制,分散效果将会更好。 磺甲基化是将碱木素在碱性条件下于170℃与甲醛和Na2SO3反应,即一步法磺甲基化;或者是先羟甲基化,再在碱性条件下于170℃与Na2SO3反应,即两步法磺甲基化。据报道,磺甲基化反应主要发生在苯环上,也有少量发生在侧链上[2],见图1。 木质素经磺化和磺甲基化后,具有较好的分散性和表面活性,可降低界面张力,有广阔的应用前景。下面是作者利用碱木素磺化改性制备水煤浆添加剂的实例。 (a)原料来源。 工业碱木素,来源于某造纸厂的碱法草浆黑液,质量分数大于30%,未经提纯,直接进行磺 收稿日期:19991204修改稿收到日期:20001219。 作者简介:李凤起讲师,主要从事表面活性剂的合成与应用工作,已发表论文篇。 2001年3月 精 细 石 油 化 工 SPEC IALIT Y PET ROCHE M ICALS 第2期

吸附剂的应用研究现状和进展_杨国华

84 吸附剂的应用研究现状和进展 杨国华1,黄统琳1,姚忠亮3,刘明华1,2 (1.福州大学环境与资源学院,福建 福州 350108; 2.华南理工大学制浆造纸工程国家重点实验室,广东 广州510640; 3.福建师范大学福清分校生物与化学工程系,福建 福清350300) 摘 要:利用吸附法进行废水处理,具有适应范围广、处理效果好、可回收有用物料以及吸附剂可重复使用等优点,因此随着现有吸附剂性能的不断完善以及新型吸附剂的研制成功,吸附法在水处理中的应用前景将更加广阔。主要对活性炭、吸附树脂、改性淀粉类吸附剂、改性纤维素类吸附剂、改性木质素类吸附剂、改性壳聚糖类吸附剂以及其他可吸收污染物质的药剂、物料等吸附剂的应用研究现状和发展趋势进行综合概述。 关键词:吸附剂;吸附法;研究;综述 基金项目:中国博士后基金资助项目(20070410238)和中国博士后基金特别资助项目(200801239)。 吸附法是利用吸附剂吸附废水中某种或几种污染物,以便回收或去除它们,从而使废水得到净化的方法。利用吸附法进行物质分离已有漫长的历史,国内外的科研工作者在这方面作了大量的研究工作,目前吸附法已广泛应用于化工、环境保护、医药卫生和生物工程等领域。在化工和环境保护方面,吸附法主要用于净化废气、回收溶剂(特别适用于腐蚀性的氯化烃类化合物、反应性溶剂和低沸点溶剂)和脱除水中的微量污染物。后者的应用范围包括脱色、除臭味、脱除重金属、除去各种溶解性有机物和放射性元素等。在处理流程中,吸附法可作为离子交换、膜分离等方法的预处理,以去除有机物、胶体及余氯等,也可作为二级处理后的深度处理手段,以便保证回用水质量。利用吸附法进行水处理,具有适应范围广、处理效果好、可回收有用物料以及吸附剂可重复使用等优点,随着现有吸附剂性能的不断完善以及新型吸附剂的研制成功,吸附法在水处理中的应用前景将更加广阔。 吸附剂是决定高效能的吸附处理过程的关键因素,广义而言,一切固体都具有吸附能力,但是只有多孔物质或磨得极细的物质由于具有很大的表面积,才能作为吸附剂。工业吸附剂还必须满足下列要求: (1)吸附能力强; (2)吸附选择性好; (3)吸附平衡浓度低; (4)容易再生和再利用; (5)机械强度好; (6)化学性质稳定; (7)来源广; (8)价廉。 一般工业吸附剂很难同时满足这八个方面的要求,因此,在吸附处理过程中应根据不同的场合选用不同的吸附剂。目前,可用于水处理的吸附剂有活性炭、吸附树脂、改性淀粉类吸附剂、改性纤维素类吸附剂、改性木质素类吸附剂、改性壳聚糖类吸附剂以及其他可吸收污染物质的药剂、物料等[1] 。本文主要对上述吸附剂的应用研究现状和发展趋势进行综合概述。 1 活性炭 吸附剂中活性炭应用于水处理已有几十年的历史。60年代后有很大发展,国内外的科研工作者已在活性炭的研制以及应用研究方面作了大量的工作。制作活性炭的原料种类多、来源丰富,包括动植物 (如木材、锯木屑、木炭、谷壳、椰子壳、 2009年第6期 2009年6月 化学工程与装备 Chemical Engineering & Equipment

木质素化学改性及应用

木质素化学改性及应用 姓名:蒲黄彪学号:201106110007 摘要:本文综述了由制浆造纸回收黑液分离而得的木质素的磺化改性方法及其应用情况。分析表明,磺化改性后的木质素分子含量提高,水溶性、表面活性增强,其改性产物分别在混凝土减水剂、石油开采、聚氨酯合成等方面有良好的应用前景。木质素的化学改性拓宽了木质素的应用范围,也提高了其实用价值。加强木质素的改性与应用研究对保护生态环境,推动工业木质素应用的发展,促进制浆造纸废液污染治理,农林剩余生物质资源利用,开发可自然再生资源的综合利用具有重要意义。 关键词:木质素;磺化改性;综合利用 前言 木质素是木质化植物组织除去浸提成分(包括灰分)后的非碳水化合物部分,是具有芳香族特性的高分子无定形物质。主要存在于木质化植物细胞壁,起着将细胞连接起来强化植物细胞的作用。在化学上是苯基丙烷单元(C6-C3)主要通过C-C键或醚键结合起来的复杂化合物,甲氧基是其特征功能基[1]。 木质素是自然界中仅次于纤维素的第二大可再生资源。这种天然有机高分子化合物由于其结构的复杂性、大分子的多分散性以及物理化学性质的不均一性,至今尚未得到充分有效的利用[2]。目前可作为工业原料的木质素主要是造纸工业的副产品,主要分为木素磺酸盐和碱木素两大类,用于混凝土减水剂、分散剂、泥浆处理剂、土质稳定剂、表面活性剂、水处理剂、黏合剂等方面[3-6]。工业木质素实际上是木质素大分子降解形成的小的碎片和各种碎片缩合物的一种混合物,保留有原本木质素的大分子骨架和基本的功能基团。木质素分子结构中存在着芳香基、酚羟基、醇羟基、羰基、甲氧基、羧基、共轭双键等活性基团,可以进行氧化、还原、水解、醇解、酸解、光解、酰化、磺化、烷基化、卤化、硝化、缩聚或接枝共聚等许多化学反应[7],这些性质使得木质素在现代化学工业中拥有巨大的潜在应用价值。碱木质素不溶于酸性和中性试剂,仅可溶于碱性溶液和四氢呋喃、二氧六环、乙醇、甲醇等少量的有机溶剂。 木质素的结构比较复杂,一般公认木质素是由苯丙基(C9)单元通过C—O键或C—C键连接而成的交联网状的天然酚类高分子化合物。因为木质素分子中具有芳香基、酚羟基、醇羟基、羰基、羧基等多种活性基团,兼具可再生、可生物降解以及无毒等优点,所以被视为优良的绿色化工原料,其改性研究备受关注。木质素在化学上具有不稳定性,通过对木质素的化学改性研究(磺化、硫化、氧化、接枝共聚、缩合、交联)可极大地提高木质素的应用性能,并能拓展其应用领域。 1木质素的结构特点

各类吸附剂的机理及其研究进展

各类吸附剂的机理及其研究进展 叶鑫 华东交通大学 摘要:吸附法作为一种重要的处理废水的方法已经得到广泛应用。本文介绍了近年来利用吸附法处理废水的研究进展。根据吸附机理将吸附剂吸附重金属的方法分为化学吸附和物理吸附两大类,并对其研究现状进行了介绍。介绍了活性炭、沸石、壳聚糖、膨润土、生物吸附剂处理废水的研究进展,同时对吸附法处理重金属废水的发展方向进行了展望。利用吸附法进行废水处理,具有适应范围广、处理效果好、可回收有用物料以及吸附剂可重复使用等优点,因此随着现有吸附剂性能的不断完善以及新型吸附剂的研制成功,吸附法在水处理中的应用前景将更加广阔。 关键词:吸附剂;吸附法;研究 吸附剂是指能有效地从气体或液体中吸附其中某些成分的固体物质。常用的吸附剂有以碳质为原料的各种活性炭吸附剂和金属、非金属氧化物类吸附剂。最具代表性的吸附剂是活性炭,吸附性能相当好,但是成本比较高,曾应用在松花江事件中用来吸附水体中的甲苯。吸附法是利用吸附剂吸附废水中某种或几种污染物,以便回收或去除它们,从而使废水得到净化的方法。 利用吸附法进行物质分离已有漫长的历史,国内外的科研工作者在这方面作了大量的研究工作,目前吸附法已广泛应用于化工、环境保护、医药卫生和生物工程等领域。 在化工和环境保护方面,吸附法主要用于净化废气、回收溶剂(特别适用于腐蚀性的氯化烃类化合物、反应性溶剂和低沸点溶剂)和脱除水中的微量污染物。后者的应用范围包括脱色、除臭味、脱除重金属、除去各种溶解性有机物和放射性元素等。 在处理流程中,吸附法可作为离子交换、膜分离等方法的预处理,以去除有机物、胶体及余氯等,也可作为二级处理后的深度处理手段,以便保证回用水质量。利用吸附法进行水处理,具有适应范围广、处理效果好、可回收有用物料以及吸附剂可重复使用等优点,随着现有吸附剂性能的不断完善以及新型吸附剂的研制成功,吸附法在水处理中的应用前景将更加广阔。吸附剂是决定高效能的吸附处理过程的关键因素,广义而言,一切固体都具有吸附能力,但是只有多孔物质或磨得极细的物质由于具有很大的表面积,才能作为吸附剂。工业吸附剂还必须满足下列要求:(1)吸附能力强;(2)吸附选择性好;(3)吸附平衡浓度低;(4)容易再生和再利用;(5)机械强度好;(6)化学性质稳定;(7)来源广;(8)价廉。一般工业吸附剂很难同时满足这八个方面的要求,因此,在吸附处理过程中应根据不同的场合选用不同的吸附剂。目前,可用于水处理的吸附剂有活性炭、吸附树脂、改性淀粉类吸附剂、改性纤维素类吸附剂、改性木质素类吸附剂、改性壳聚糖类吸附剂以及其他可吸收污染物质的药剂、物料等[1]。本文主要对上述吸附剂的应用研究现状和发展。 1 活性炭 吸附剂中活性炭应用于水处理已有几十年的历史。60年代后有很大发展,国内外的科研工作者已在活性炭的研制以及应用研究方面作了大量的工作。制作活性炭的原料种类多、来源丰富,包括动植物(如木材、锯木屑、木炭、谷壳、椰子壳、稻麦杆、坚果壳、脱脂牛骨、鱼骨等)、煤(泥煤、褐煤、沥青煤、无烟煤等)、石油副产物(石油残渣、石油焦等)、纸浆废物、合成树脂以及其他有机物(如废轮胎)[2]等。但是,活性炭因生产工艺、原料的不同,性能悬殊非常大,用途也不一样,目前工业上使用的活性炭有粒状和粉状两种,其中以粒状为主。与其他吸附剂相比,活性炭具有巨大的比表面积以及微

木质素应用综述

表面活性剂碱木素性能及应用研究进展 作者:阳湘荣 碱木素是碱法制浆黑液(包括烧碱法和硫酸盐法)的主要成分。厂家对黑液治理一般有两种方法:一种是对黑液进行碱回收;另一种是开发黑液木素产品。前种方法黑液经浓缩燃烧,虽然能回收蒸煮液中的氢氧化钠和利用热值,但对木素来说却是一种低值利用方式,且设备投资大。后一种方法通过对碱木素进行改性,开发黑液木素产品,提高其应用附加值,是合理利用碱木素的好方法,同时也是大规模利用造纸黑液、缓解并最终根除造纸黑液污染的根本出路。 1碱木素的结构特性和反应性能 碱木素在结构特性方面有许多不同于原木素之处,如平均相对分子质量较低、有明显的相对分子质量多分散性、大量的紫丁香基和少量的愈创木基及羟苯基、含量较高的甲氧基、酚羟基和含量较低的醇羟基等。碱木素的结构特性与蒸煮所用原料及蒸煮工艺有关,每一个C9单位中含官能基分子数不同,典型的针叶木碱木素化学式为:C9H8.5O2.1S0.11(OCH3)0.8(CO2H)0.2。 碱木素相对分子质量小,其重均相对分子质量为2000~3000(木素磺酸盐一般为20000~50000)。由于木素本身的多分散性以及蒸煮过程中的木素分子降解方式和降解程度的差异,碱木素成分复杂,相对分子质量分布从几百到上百万,不同相对分子质量的碱木素在结构特性和反应性能上也有所不同,因此工业上常利用超滤设备按相对分子质量进行分级分离。随着碱木素级分相对分子质量的提高,甲氧基、酚羟基及多分散性依次降低,羰基随级分相对分子质量的提高而提高。为了使碱木素具有某些特定的物化性能,常对其进行化学改性。改性反应可以是亲电或亲核的,也可是自由基型的。常用的改性方法有磺化、胺基化、羟烷基化、烷基化、烷氧基化、接枝共聚等。文献报道:通过对分级后麦草碱木素的化学特性研究发现,碱木素分级改善了分子的均一性,但对反应性能的影响不大,必要时可对碱木素进行分级。 通过改性反应,在木素中接入亲水或亲油基团、改变相对分子质量大小,可提高其水溶性和表面活性,极大地拓宽了碱木素的应用范围。 2碱木素的应用 2.1作为表面活性剂 2.1.1减水剂 木素磺酸盐是建筑业中应用最广的混凝土普通减水剂。根据报道,木质素磺酸钙经过改性后,各项性能已接近现在广泛使用的萘系高效减水剂的水平,具有高效、缓凝、低塌落度损失、高强等优良的综合性能,为木素的高附加值利用提供了一条良好的途径。碱木素在中性条件下不溶于水,不是表面活性剂,但经磺化后可变成高分子表面活性剂木素磺酸盐,而目前磺化碱木素减水剂报道较少,其性能也有待进一步提高。人们通过对碱木素分级、交联反应、缩合反应等方法改变磺化碱木素空间结构、增大相对分子质量、引进官能团,极大地提高了木素减水剂的性能。胡企才等发现碱木素减水剂的减水机理与木素的极性吸附、引气性有关。近年报道的SQ引气减水剂是一种以麦草碱法黑液为原料,经过磺化并添加松香胺皂和水泥活化剂制成的液态产品,掺量为0.2%时砂浆减水率为19.9%,砂浆流动度为(190±5)mm。

木质素磺酸盐减水剂改性研究进展

2011年第30卷第5期CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·1039· 化工进 展 木质素磺酸盐减水剂改性研究进展 王万林1,王海滨2,霍冀川1,雷永林1,吕淑珍1 (1西南科技大学四川省非金属复合与功能材料重点实验室,四川绵阳 621010; 2绵阳师范学院材料科学与工程学院,四川绵阳 621000) 摘 要:简述了木质素磺酸盐减水剂的改性方法和性能研究的最新进展。物理改性方法包括木质素磺酸盐的分离提纯和对其分子量进行分级;化学改性方法主要有氧化、磺化、酚化、羟甲基化、曼尼希反应和接枝共聚等; 木质素磺酸盐减水剂对水泥凝结时间、强度、水化过程的影响以及在水泥颗粒表面吸附行为是其性能研究的主要方面。最后总结认为,进一步加强改性方法研究、优化改性工艺、在提高性能的基础上降低成本、结合现代分析测试手段进行改性产品应用性能基础研究是木质素磺酸盐这一绿色减水剂得到有效推广应用的研究方向。 关键词:木质素磺酸盐;减水剂;物理改性;化学改性 中图分类号:TQ 351.9 文献标志码:A 文章编号:1000–6613(2011)05–1039–06 Research progress of modification of lignosulfonate water-reducer WANG Wanlin1,WANG Haibin2,HUO Jichuan1,LEI Yonglin1,Lü Shuzhen1 (1Key Laboratory of Nonmetal Composite and Functional Materials of Sichuan Province,Southwest University of Science and Technology,Mianyang 621010,Sichuan,China;2School of Materials Science and Technology, Mianyang Normal University,Mianyang 621000,Sichuan,China) Abstract:The recent development in modification methods and performance studies of lignosulfonate, a type of water-reducers,is reviewed. Physical modification methods include separation,purification and molecular weight classification of lignosulfonate. Chemical modification methods include oxidation,sulfonation,phenolation,hydroxymethylation,Mannich reaction and graft copolymerization. The main aspects of performance studies of lignosulfonate are its influences on setting time,strength,hydration process of cement and adsorption behavior on cement particles. Further studies and optimization of modification methods to lower cost on the basis of performance enhancement,along with basic studies of application of modified products through modern analysis methods are research directions for this green water-reducer. Key words:lignosulfonate;water-reducer;physical modification;chemical modification 木质素磺酸盐是最早作为混凝土减水剂用于建筑领域的材料,19世纪30年代即在美国取得成功研制和应用[1]。木质素磺酸盐减水剂的出现极大地推动了混凝土行业和技术的发展。随着应用和研究的日益深入,人们发现木质素磺酸盐减水剂具有减水率低、缓凝性大等缺陷,因而逐渐被后续开发成功的减水率更高、性能更好的第二代和第三代减水剂代替[2]。随着全球气候变暖的加剧,人们的环保意识越来越强,同时由于石化资源的枯竭以及其带来的巨大环境压力,可持续发展已成为人类的共识,人们更加注重发展绿色能源和可再生资源以降低对石化资源的依赖[3]。第二代和第三代减水剂原材料都来自于石化产品,合成成本逐渐提高,并且 收稿日期:2010-11-09;修改稿日期:2010-11-24。 第一作者:王万林(1987—),男,硕士研究生。联系人:王海滨,教授。E-mail whb@https://www.360docs.net/doc/7910258147.html,。

离子交换树脂对染料的吸附解析

离子交换树脂对染料的吸附 学学校校::安安徽徽工工程程大大学学 学学院院::生生物物与与化化学学工工程程学学院院 班班级级::化化学学工工程程与与工工艺艺110011 参参赛赛人人员员::孙孙书书政政、、刘刘仪仪 林林鹏鹏雄雄、、胡胡伟伟、、沈沈杜杜君君

一、前言------------------------------------------------3 二、团队简介------------------------------------------4-5 三、拟采取的研究方法和进度安排-------------------------6 四、基础阶段 1、离子交换树脂的结构及基本交换原理--------------7-13 2、染料的基本知识-------------------------------14-19 五、试验阶段----------------------------------------20-26 1、仪器与试剂 2、树脂合成 3、静态吸附实验 4、树脂对阳离子艳红的吸附动力学性能 5、染料含量的测定 6、染料浓度对树脂吸附量的影响 7、温度对树脂吸附效果的影响 8、酸度对树脂吸附效果的影响 9、原始浓度对树脂吸附效果的影响 六、结论---------------------------------------------27 七、总结------------------------------------------28-29

本次试验的研究主要目的就是关于染料吸附,由于染料废水具有成分复杂"毒性强"色度深"有机物和无机盐的浓度高" 难以生化降解等特点!一直是废水处理的难点!所以染料废水的治理是化工环保行业关注的焦点。目前比较成熟的处理方法中以生化法最为常见! 也有一些方法采取物化处理"化学处理或多种处理方法的组合工艺,这里就不多做介绍了。我们这次主要研究的就是吸附法,吸附法以其能够选择性地富集某些化合物的特性在废水处理领域有着特殊的地位,我们常用的吸附剂有活性炭、树脂和其他一些吸附材料。其实这次科研的课题是“离子交换树脂对染料的吸附”,这个课题是老师当时想出来给我们的,他对我们说树脂对染料的吸附这个课题不知道有没有人做,就算有人做也只有少数人做。其实他的原理还是比较简单的,这里做个简单的介绍,木质素磺酸盐主要源于亚硫酸盐制浆的蒸煮废液, 部分保留原本木质素的大分子骨架和基本的功能基团。结构中的磺酸基具有很强的离子交换能力, 酚羟基、醇羟基、羧基、磺酸基等则为弱酸性离子交换基团, 羰基等均有一定的螯合能力, 因而木质素磺酸盐具有一定的离子交换与吸附能力,通过交联反应可得到既有高分子结构, 又有可电离的磺酸基、羟基和羧基等多种交换基团的离子交换树脂。而且该树脂合成工艺简单, 成本较低, 对阳离子染料的吸附性能优良, 因而具有很好的应用前景。我们团队在老师的指导开始我们课题的专项研究,希望能对大家带来影响。

吸附剂性能

吸附剂的吸湿性能评价 摘要 吸附剂的吸湿性能直接影响空调系统的运行情况。在现代建筑中,暖通空调系统是耗能大户。当今,资源和能源极度紧缺,改良传统的吸附剂,开发高效、高性能的复合吸附剂成为一大研究课题。 关键词:吸附剂除湿性能 在现代建筑中,暖通空调系统是耗能大户。除湿空调系统主要存在投资高、设备体积大和制冷功率低等问题。除湿空调技术的研究主要集中在除湿器种类、除湿器结构和除湿系统运行模式3个方面,而这些研究则依赖于除湿吸附剂种类和性能。因而,开发用于除湿空调系统的高效吸附剂,提高除湿空调系统制冷能力,减小设备体积,降低系统投资,已成为加速除湿空调商品化进程的关键。 在空气调节中,吸附剂类型包括固体吸附剂和液体除湿剂,下面将对其除湿性能作出具体评价。 1 固体吸附剂 常用的固体吸附剂可分为“极性吸附剂”和“非极性吸附剂”。极性吸附剂具有亲水性,主要有硅胶、多孔活性铝、沸石等铝硅酸盐类吸附剂。非极性吸附剂具有憎水性,主要有活性炭等。还有许多高分子材料对水蒸气具有良好的吸附性,通常称为“高分子胶”。 1.1 硅胶 硅胶是一种性能良好的除湿剂,但当其吸附大量水分后易破裂,且不耐高温,严重影响除湿效果。经专家研究,经金属离子掺杂改性,可以使硅胶BET比表面积、孔容、平均孔径明显增大,吸附性能明显增强。这是因为对于中孔结构,孔径越大,水蒸气分子的扩散阻力就越小,吸附速率就越快,同时大孔径也有利于吸附放出的热量扩散到环境中,从而有利于吸附过程的进行。 1.2 高分子胶 有机高分子吸湿材料是新型的功能高分子材料,它最初是由高吸水性树脂发展而产生的。它具有优异的吸湿、保湿性能,是一种经过化学与物理方法改性的水性树脂,以分子中的亲水基团来吸收水分。丙烯酸和丙烯酰胺的共聚物是一类用途广泛的多功能高分子化合物,因各自含羧酸基(-COOH)和酰胺基(-CONH)这样的强吸湿基团,多种亲水基的协同作用,使得吸湿性能优于其相应的均聚物和传统的无机吸湿材料硅胶和分子筛,添加的部分尿素起到“致孔剂”作用,使得材料表面出现孔洞,增加了有效吸湿比表面积,故被作为有机高分子吸湿材料的重要一类。 2 液体除湿剂 液体除湿剂对水蒸气有很强的吸湿能力,可当做单纯的物理过程。利用液体除湿剂除湿,是空气处理过程中常用的方法之一。在空气调节过程中,常用的液体除湿剂有溴化锂溶液、氯化锂溶液、氯化钙溶液、乙二醇、三甘醇等。

木质素磺酸盐

木质素磺盐液体: 一、木质素磺盐液体(粘合剂)主要特点 1、利用阔叶木、荻苇和芦苇蒸煮浆滤液,经沉降、分离提取、化学改性、蒸发等工序加工制成。 2、红褐色液体(俗称红液),其颜色的深浅与生产方式有关; 3、主要成分为木质素磺酸盐,含量25~30.5%。基本结构是苯基丙烷的衍生物; 4、水溶性好,可配制成1%至51%浓度的水溶液; 5、粘结力强,浓度在45~51%时黏度最大; 6、物理化学化性质稳定; 7、属阴离子表面活性剂。 二、木质素磺盐液体(黏合剂)质量标准: 固形物含量%>45 比重g/cm3 >1.2 水不溶物含量%<0.5 PH值 5.0~7.0 氯离子含量%<0.2 还原物含量%<2.5

三、用途: 广泛用作粘合(结)剂、鏊合剂、减水剂和分散剂。 1、用作冶炼矿粉的团球、耐火材料的分散、粘合剂。 2、用作建筑混凝土的减水剂:可以减少混凝土搅拌时的用水量,降低水灰比,能改善混凝土和易性,提高混凝土强度和密实性,具有缓凝效应。 3、用于油田钻井泥浆添加剂、三次采油表面活性剂、牺牲剂。 4、水煤浆填加剂。 5、用作沥青乳化剂,用于路面施工,安全快捷,且节省沥青。 6、用作工业容器和管道防垢剂。 7、用作农药分散覆着剂,炭黑原料及吸附剂等。 8、可用于生产精细化工产品的原料,等。 木质素是由四种醇单体(对香豆醇、松柏醇、5-羟基松柏醇、芥子醇)形成的一种复杂酚类聚合物。木质素是构成植物细胞壁的成分之一,具有使细胞相连的作用。 因单体不同,可将木质素分为3种类型:由紫丁香基丙烷结构单体聚合而成的紫丁香基木质素(SYRINGYL LIGNIN,S-木质素),由愈创木基丙烷结构单体聚合而成的愈创木基木质素(GUAJACYL LIGNIN,G-木质素)和由对-羟基苯基丙烷结构单体聚合而成的对-羟基苯基木质素(HYDROXY-PHENYL LIGNIN,H-木质素);

染料的基本性质

第三章染料的基本性质 第一节物理性能 1953年英国染色工作者协会(S.D.C)提出分散染料的定义是:一种不溶于水的染料,最初推广应用于醋酯纤维,在应用时通常采用细粒的悬浮体水溶液.这个定义对今天的分散染料来说已不适用.现在的分散染料.虽不含水溶性的磺酸基团,但具有适量的低度水溶性,约为直接染料的0.01%.在染色时依靠分散剂才能均匀分散在染浴中.从实用意义来说,人们通常是结合分散剂来看待染料水溶性的.所以当染料粒子的在溶液中消失光散射现象时,即认为这些染料已达到溶解程度.这些溶解的染料粒子以单分子体、低分子联合体或被分散剂所溶解了的染料等不同形式的存在。 提高染料溶解度最简捷的方法就是增加温度,但各种染料之间差异较大,如图1-33。 分散剂与染料溶解度有十分密切的关系。一般阴离子型的表面活性剂可以提高溶解度好几倍,有些非离子型表面活性剂对分散染料的溶解度提高很多,但是它们对温度十分敏感,那就是提高的程度随着温度升高而下降。 根据染色要求,分散染料原则上也应象酸性染料一样,必须处在一种分子分散体系才能进入纤维内部,因此对采用吸尽法染色来说,染料的溶解度对于染色性能有决定性的影响。 染料在水中的溶解程度,会影响纤维内部的浓度平衡。在这一点上,对于染色的匀染度和染料的吸尽作用是很重要的。根据能斯特分布定律,溶解在纤维内部染料的浓度C F和溶解在染浴中染料浓度C1之间的关系是不变的。因此在温度不变的情况下,由于分散剂的作用,使染浴中的染料溶解度提高,必然含有更多的染料被纤维所吸收。 如是提高C1,K(能斯特平衡常数)保持不变,结果是C1必然提高,假如分散剂对染料起抑制作用,那么这种情况就要出现偏差,结果K值不变。 染料在水中的溶解度不仅关系到染色热力学平衡常数K,并且也在动力学上影响染色。 分散染料在水中的分散状态,由于时间、温度及染浴中其它物质的影响而发生变化。一种重要的现象是结晶。染料制造工厂虽然设法使染料粒子大小均匀,但实际上很困难。当分散染料颗粒在1um 时,肯定存在差大于1um和小于1um的染料粒子。在溶解时,优先得到溶解的是颗粒较小的染料,而大颗粒的染料却吸附从过饱和溶液中结晶出来的染料,结果是晶体逐渐增加。通过周期性的升温和冷却,这种现象不仅加速而且更为剧烈,如图1-34所示。采用液流式染色时,必须注意这种现象。 在实际染色过程中,由于染浴中的染料不断为涤纶染着而减少,所以晶体增长情况并没有这样严重。但在染深色时,染浴中存在着相当数量的染料,如果染浴温度不是逐渐下降而突然冷却,那么在饱和染浴中已溶解的染料就会在少量尚未溶解的染料粒子周围结晶出来。从实践中发现,染浴中的分散剂能起到稳定作用,并能抑制染料粒子的增长。 除了染料晶体增长的现象外,还有一种晶体的变异作用十分有害。比德曼(Biedermann)发现了这种晶体变异的现象。 分散染料在合成过程中,许多染料会结成亚稳态(metastable)的变异晶体,这种晶体不稳定,具有向比较稳定状态的晶体变化的倾向。 化学结构为同一物质的变异晶体,不仅X射线衍射光谱不同,而且熔点和溶解度也各不相同。没同的变异晶体表现不同的染色性质,这是因为对纤维的亲合力,即纤维内部的饱和点,取决于染液内晶体的溶解情况。 染料的基本粒子,即在显微镜下能观察到的单个粒子,可以集合而成为凝聚体(aggregates)、集聚体(agglomerates)和絮聚体(flocculates)等。 凝聚体是一种基于粒的结合体,其表面已结合在一起。集聚体是基本粒子或凝聚体的一种松弛的集合体,相互之间在角上或边上相连,但不是结合的。絮聚体也是一种集聚体,但用很小的切变力就能分离开来。 染料分散体系中最常见的染料粒子最集聚体。形成集聚体的一个必要条件是基本粒子之间的吸引力要大于相互之间的排斥力。 阴离子型分散剂的吸附作用使染料粒子带有负电荷,溶剂中的正电荷成为这种粒子表面负电荷的对应离子。在贴近粒子周围形成一双电层,称斯特恩(Stern)双层效应,其中同时包括正电荷与负电荷。在这外面,有一层散乱电层带有“”电势。当两个粒子的散乱双电层相互渗入时,就会产生

改性木质素磺酸盐系列减水剂

改性木质素磺酸盐系列减水剂 1、成果水平及专利情况 本科研成果处于国内先进水平,已获国家发明专利1项,已申报国家专利2项。 2、项目内容 本项目目前已成功开发氧化磺化改性木质素磺酸钙减水剂,氧化丙烯酰胺改性木质素磺酸钙减水剂,丙烯酸、马来酸酐改性木质素磺酸钙减水剂,丙烯酸和甲基丙烯酸等聚羧酸共聚改性木质素磺酸钙减水剂。 3、成果技术特点(含主要技术指标) 氧化磺化改性木质素磺酸钙减水剂掺量0.5%,减水率达到18%;氧化丙烯酰胺改性木质素磺酸钙减水剂掺量0.5%减水率达到23%,综合性能优于萘系减水剂;丙烯酸、马来酸酐改性木质素磺酸钙减水剂掺量0.5%减水率达到22%,综合性能优于萘系减水剂;丙烯酸和甲基丙烯酸等聚羧酸共聚改性木质素磺酸钙减水剂减水率掺量分别为:0.3%、25%、28%,其早期强度优于聚羧酸系减水剂。 4、应用范围 混凝土外加剂领域。 5、技术成熟度 技术已成熟。 6、市场前景及经济效益分析 改性木质素磺酸钙减水剂具有静电斥力强的分散特点,可在许多领域通过复配的方式将这一可再生、环保、价格低廉的改性木质素磺酸盐减水剂加入。其现

阶段应用需求较为巨大。另外,随着全球变暖的加剧,石化资源的枯竭以及其带来的巨大环境压力,可持续发展已成为人类的共识,使得人们更加注重发展绿色能源和可再生资源来降低对石化资源的依赖。木质素磺酸盐来源于纸浆废液的浓缩和提取,本身就是一种环保产品,木质素又是第二大天然物质,木质素磺酸盐改性产品应用成本相对较低,因此,对木质素磺酸盐的改性和应用研究具有良好的环境效益和经济效益,其发展前景巨大。 7、合作方式 技术转让或技术入股。

木质素磺酸钙在混凝土中的作用与加入量

混凝土减水剂: 木质素磺酸钙在混凝土中的作用与加入量—金石耐材 金石耐材今日为您分享“混凝土减水剂:木质素磺酸钙在混凝土中的作用与加入量” ? 一、木素磺酸钙在混凝土中减水增强的作用 木素磺酸钙和木素磺酸钠减水剂是一种表面活性剂,加入混凝土中后,由于憎水基团定向吸附于水泥颗粒表面,这样使水泥带有负电荷。具有相同电荷的水泥颗粒在电荷斥力的作用下相互斥离分散,水泥在加水初期形成的絮状结构变成分散结构,絮凝状凝聚体内的游离水被释放出来,从而达到减水剂的目的。观测表明,木质素加入混凝土后,混合5分钟已有80%以上的减水剂被吸附,在电子显微镜下清晰可见的水化点中心明显增加,水化物分布均匀,水化晶体纤维较长的各种微观特征。 可见加入木质素磺酸钙,游离水蒸发留下的毛细孔就少,内部结构密实,也就是说,气孔率的降低显然有利于混凝土强度的提高,改善了水泥的孔隙结构的大小及其分布状况,使结晶生长速度延缓,晶体生长更充分,因而得到更多的纤维状晶体相互穿插,形成坚强的网络结构,从而使混凝土强度显著提高。 因此,在混凝土中掺用木质素减水剂,可减少混凝土拌和物的用水量,降低水灰比,改善和易性,有利于泵送,提高混凝土强度、密

实性和耐久性。 ? ? 二、木质素减水剂在混凝土中的加入量与主要性能指标 1、改善混凝土性能:当水泥用量相同,坍落度与空白混凝土相近,可减少用水量10—15%,28天强度提高10—20%,1年强度提高10%左右。 2、节约水泥用量:当混凝土的强度和坍落度相近时,可节省水泥10%左右,使用1吨减水剂可节省30—40吨水泥。 3、改善混凝土和易性:当混凝土的水泥用量和用水量不变,低塑性混凝土的坍落度可增大两倍左右,(由3-5cm提高到8-18cm),早期强度与未掺者基本接近。 4、木质素有缓凝作用:掺入0.25%的木质素减水剂后,在保持混凝土坍落度基本一致时,初凝时间普通水泥延缓1-2小时,矿渣水泥2-4小时,终凝时间普通水泥2小时,矿渣水泥2-3小时,若不减少用水量而增大坍落度时,或保持相同坍落度而用以节省水泥用量时,则凝结时间延缓程度比减水的更大。 5、能降低水泥早期水化热:放热峰出现时间比未掺都有所推迟,普通水泥约3小时,矿渣水泥约8小时,大坝水泥在11小时以上,放热峰最高温度与未惨者比较,普通水泥略低,矿渣水泥及大坝水泥均低于3℃ 6、混凝土含气量有所增加:空白混凝土的含气量为1%左右,掺0.25%木质素的混凝土含气量为2.3%左右。 7、泌水率减少:在混凝土的坍落度基本一致情况下,掺木质素的泌水

相关文档
最新文档