待定系数法求一次函数解析式 课件

合集下载

19.2.2待定系数法求一次函数的解析式(公开课)ppt课件

19.2.2待定系数法求一次函数的解析式(公开课)ppt课件
y=-4x+2
待定系数法求一次函数解析式所蕴含规律: 确定一个待定系数需要一个条件, 确定两个待定系数需要两个条件。
8
一次函数与面积问题:
例 4、 已 知 一 次 函 数 ykxb(k0)的 图 象 经 过 点
A3,0与 y轴 交 于 点 B,若 AOB的 面 积 为 6, 试 求
一 次 函 数 的 y解 析 式 .
解:设一次函数的解析式为y=kx+b。
因为图象过点(3,5)与(-4,-9),
所以 5 3k b 9 4k b
解得
k 2
b
1
∴这个一次函数的解析式为y=2x-1.




3
像这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而得 出函数解析式的方法,叫做待定系数法.
待定系数法的一般步骤:
ADkx+4过点A(x1,y1)、B (x2,y2) (1)试用x1、 x2 、y1、y2来表示k; (2)若x1-x2 =1,y1-y2 =2,求一次函数的解析式; (3)根据(1)(2),谈谈你对K的理解。
13
1、待定系数法:像这样先设出函数解析式,再根据条件确定解析式中未知的 系数,从而得出函数解析式的方法.
2、待定系数法的一般步骤:
一设;
二列;
三解;
四答;
14
B
y4x4或 y4x4.
3
3
o
x
A
B'
9
1、已知直线y=kx-4与两坐标轴所围成的 三角形面积等于4,求直线的解析式? y=2x-4或y=-2x-4
10
2、已知直线y=2x+b与两坐标轴所围成的 三角形面积等于4,求直线的解析式?

人教初中数学八下 利用待定系数法求一次函数的解析式课件 【经典初中数学课件汇编】

人教初中数学八下 利用待定系数法求一次函数的解析式课件 【经典初中数学课件汇编】

(1) 代数式 a 是二次根式吗?
(2) 2 2 是二次根式吗?
(3) 代数式 a2(a2), 1(x0)
根式吗?
x
是二次
(4) a 1 (a≥0)是二次根式吗?
知识运用:
下列代数式中哪些是二次根式?
⑴1
2

⑶ a2 2a 2 ⑷
⑸ m 32 ⑹
16
x (x 0)
a9
a1 (a3)
x
课外选作
已知直线y=kx+b,经过点A(0,6),B(1,4) (1)写出表示这条直线的函数解析式。 (2)如果这条直线经过点P(m,2), 求m的值。 (3)求这条直线与x 轴,y 轴所围成的图形的面积 。
y
2
-2 -2 0 2
x
拓展:
1、正比例函数y=k1x与一次函数y=k2x+b的 图象如图所示,它们的交点A的坐标为(
(1)这个一次函数的解析式; (2)直线与两坐标轴围成的面积;
(0,4)
解:(1)把点(1,2)和点(-1,6)代入 y=kx+b得:
2=k+ b 解得 k= -2
6= -k+b
b=4
∴一次函数的解析式:y= -2x+4
(2)如图,直线y=-2x+4与y轴的交点A(0,4),
与x轴的交点B(2,0)
巩固提高1:
1.分别求下列二次根式中的字母的取值范围
(1)( 3 2x )2 (2) (1 x ) 2 (3) x 3
x2
(1)3.2x0x3 (2).x为全体实数
2 ( 3 )x .3 0 且 x 2 x 3 且 x 2
2.当x_=_0___时, 3x 3x 有意义.

沪科版数学八年级上册12.2.3用待定系数法求函数解析式课件(共19张PPT)

沪科版数学八年级上册12.2.3用待定系数法求函数解析式课件(共19张PPT)
D
解析:把x=1代入y=2x,求得B点坐标为(1,2),再由A(0,3),B(1,2),求得一次函数解析式为y=-x+3.
仿例3
直线y=(m+1)x+m2 +1与y轴的交点坐标是(0,5),且直线经过第一、二、四象限,则直线的解析式为 .
第十二章 一次函数
12.2 一次函数12.2.3 用待定系数法求函数解析式
学习目标
学习重难点
重点
难点
1.理解待定系数法,并会用待定系数法求一次函数的解析式;2.结合一次函数的图象和性质,确定一次函数的表达式.
用待定系数法求一次函数的解析式.
结合一次函数的性质,用待定系数法确定一次函数的解析式.
∴2=-2×0+b,
∴b=2,
∴直线l的表达式为y=-2x+2.
∴k= -2.
练习4
归纳小结
用待定系数法求一次函数的解析式
2. 根据已知条件列出关于k、b的方程组;
1. 设所求的一次函数表达式为y=kx+b;
3. 解方程,求出k、b;
4. 把求出的k,b代回表达式即可.
同学们再见!
授课老师:
时间:2024年9月1日
知识点 用待定系数法求一次函数解析式
利用二元一次方程组求一次函数表达式的一般步骤:
1.用含字母的系数设出一次函数的表达式:y=kx+b.
2.将已知条件代入上述表达式中得k,b的二元一次方程组.
3.解这个二元一次方程组得k,b.
4.进而求出一次函数的表达式.
范例
已知一次函数y=kx+b的图象经过点(-1,1)和点(1,-5),求当x=5时,函数y的值.
解析:由题意得m2+1=5,m=4,m=±2.∵直线过一、二、四象限,∴m+1<0,m<-1,故m=-2,直线解析式为y=-x+5.

人教版初中数学《一次函数》_课件-完美版

人教版初中数学《一次函数》_课件-完美版

C.y=2x-3 D.y=-x+3
4.根据表中一次函数的自变量x与函数y的对应值,可得p的值为
(A ) A.1 B.-1 C.3 D.-3
x -2 0 1 y 3 p0
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载
第11题图
第12题图轴交于点B, 若AB= ,则5 函数的解析式为_____y_=__-__2_x_+__2____.
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载
5.(练习 1 变式)设一次函数 y=kx+b(k≠0)的图象经过点 A(1,3), B(0,-2)两点,试求 k,b 的值.
解:把 A,B 的坐标代入 y=kx+b 得kb+=b-=23,,解得kb==5-,2,即 k,b 的值分别为 5,-2
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载
10.(2016·温州)如图,一直线与两坐标轴的正半轴分别交于A,B 两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂 线与两坐标轴围成的矩形的周长为10,则该直线的函数解析式是 ( C)
【获奖课件ppt】人教版初中数学《一 次函数 》_课 件-完美 版1-课 件分析 下载

8 用待定系数法求一次函数解析式--经典

8   用待定系数法求一次函数解析式--经典
∵当x=1000时 y = 800;当x=2000时y = 700

1 k = 10
{ 2000k + b = 700
1000k + b = 800
解这个方程组得{ :
1 = 10
b =900 x + 900
因此,购买量y与单价x的函数解析式为 y
当y=
400时得
1 10
x + 900 =400
例3.已知一次函数的图象如下图,写 出它的关系式.
解 :设y=kx+b(k≠0). 由直线经过点(2,0),(0,-3)得
3 函数关系式是 y x 3 2
2k b 0 b 3
3 k , 2 解得 b 3.
变式6:已知一次函数y=kx+b 的图象 过点A(3,0).与y轴交于点B,若△AOB 的面积为6,求这个一次函数的解析 y 式.

判断三点A(3,1),B(0,-2),C(4,2) 是否在 同一条直线上. [分析] 由于两点确定一条直线,故选取其中两点, 求经过这两点的函数表达式,再把第三个点的坐标 代入表达式中,若成立,说明在此直线上;若不成 立,说明不在此直线上.
k 1, ∴ 1 3k b, b 2. 2 0 b , ∴过A,B两点的直线的表达式为y=x-2. ∵当x=4时,y=4-2=2. ∴点C(4,2)在直线y=x-2上. ∴三点A(3,1), B(0,-2),C(4,2) 在同一条直线上.
反思总结
求一次函数关系式常见题型: 1.利用点的坐标求函数关系式 2. 利用图像求函数关系式 3.利用表格信息确定函数关系式 4.根据实际情况收集信息求函数关系式
5.其它

一次函数的应用(第1课时)北师大数学八年级上册PPT课件

一次函数的应用(第1课时)北师大数学八年级上册PPT课件
你能归纳出待定系数法求函数解析式的基本步骤吗?
探究新知
归纳总结
求一次函数解析式的步骤: (1)设:设一次函数的一般形式 y=kx+b(k≠0)
(2)列:把图象上的点 x1, y1 ,x2 , y2 代入一次
函数的解析式,组成几个__一__次_____方程; (3)解:解几个一次方程得k,b; (4)还原:把k,b的值代入一次函数的解析式.
解:设这个一次函数的解析式为y=kx+b. 把点(2,0)与(0,6)分别代入y=kx+b,得:
0 2k b 6 b
解得:bk
3 6
这个一次函数的解析式为y=-3x+6.
巩固练习
变式训练
已知一次函数的图象过点(3,5)与(0,-4),求这个 一次函数的解析式.
解:设这个一次函数的解析式为y=kx+b. 把点(3,5)与(0,-4)分别代入,得:
5 3k b 4 b
解得
k 3 b 4
,
所以这个一次函数的解析式为 y=3x-4.
探究新知 素养考点 2 已知一点利用待定系数法求一次函数的解析式
例2 若一次函数的图象经过点 A(2,0)且与直线y=-x+3平行,
求其解析式.
解:设这个一次函数的解析式为y=kx+b.
因为一次函数图象与直线y= -x+3平行,所以k= -1.
解:(1)设v=kt, 因为(2,5)在图象上, 所以5=2k, k=2.5,即v=2.5t.
(2) v=7.5 米/秒
(2,5)
(2,5)
t/秒
探究新知
例 在弹性限度内,弹簧的长度y(厘米)是所挂物体质量 x(千克)的一次函数.一根弹簧不挂物体时长14.5厘米;当 所挂物体的质量为3千克时,弹簧长16厘米.请写出y与x之 间的关系式,并求当所挂物体的质量为4千克时弹簧的长度.

待定系数法求一次函数解析

待定系数法求一次函数解析

感谢您的观看
THANKS
未知参数较多或未知参数之间的关系不明确
待定系数法更为适用,可以通过设立方程组求解。
与其他方法的结合使用
• 在某些情况下,可能需要结合待定系数法和点斜式或两点式来 求解一次函数的解析式。例如,已知一点和斜率,同时还需要 确定其他参数时,可以先使用点斜式得到初步的函数解析式, 再结合待定系数法求解其他参数。
实例二:已知与x轴交点求一次函数解析式
总结词
利用与x轴交点坐标求一次函数解析式
VS
详细描述
给定一次函数与x轴的交点$(x_0, 0)$,通 过待定系数法可以求出一次函数$y = kx + b$的解析式。首先,根据交点坐标计算斜 率$k = frac{0 - b}{x_0 - 0} = frac{b}{x_0}$,然后代入交点坐标$(x_0, 0)$求出截距$b = 0 - kx_0$,最终得到一 次函数解析式。
实例三:已知与y轴交点求一次函数解析式
总结词
利用与y轴交点坐标求一次函数解析式
详细描述
给定一次函数与y轴的交点$(0, y_0)$,通过 待定系数法可以求出一次函数$y = kx + b$ 的解析式。首先,根据交点坐标计算截距 $b = y_0$,然后根据斜率$k$和截距$b$ 的关系计算斜率$k = frac{y_0 - b}{0 - 0} = frac{y_0 - y_0}{0} = 0$,最终得到一次函 数解析式。
03
待定系数பைடு நூலகம்求一次函数解析 步骤
设定一次函数形式
一次函数的一般形式为 $y = kx + b$,其中 $k$ 和 $b$ 是待 求的系数。
根据题目条件,设定一次函数的具体形式,例如 $y = kx + b$。

14.2.2待定系数法求一次函数解析式(3)

14.2.2待定系数法求一次函数解析式(3)

提出问题形成思路
1.求下图中直线的函数表达式 1.求下图中直线的函数表达式
y=2x
2 2 o 1 3
3 y=- 2
x+3
o
2.反思小结:确定正比例函数的表达式需要1个条 反思小结:确定正比例函数的表达式需要1 确定一次函数的表达式需要2个条件. 件,确定一次函数的表达式需要2个条件.
(1)已知一次函数y=kx+2,当x=5时y的值为4, 已知一次函数y=kx+2,当x=5时 的值为4 y=kx+2, 的值. 求k的值. (2)小明根据某个一次函数关系式填写了下 ) 表: x -2 -1 0 1 y 3 1 0 其中有一格不慎被墨汁遮住了,想想看, 其中有一格不慎被墨汁遮住了 想想看,该 想想看 空格里原来填的数是多少? 空格里原来填的数是多少?
例题2: 例题 :一个一次函数的图像平行 于直线y=-2x,且过点 (-4,2),求这 ),求这 于直线 ,且过点A( ), 个函数解析式。 个函数解析式。
解:设这个函数的解析式为y=kx+b(k,b 设这个函数的解析式为 ( , 是常数, 不为 不为0) 是常数,k不为 ) 因为所求直线平行于直线y=-2x,所以 所以k=-2 因为所求直线平行于直线 所以 将(-4,2)代入,得b=-6, )代入, , 所以函数解析式为y=-2x-6 所以函数解析式为
画函数y= 画函数y=x+3的图象
(3,6) ,
(0,3) ,
x
0
1 2 3
4
5
6 7 8
y
8 7 6 5 4 3 2 1
大家能否通过取直线上 的这两个点 两个点来求这条直线 的这两个点来求这条直线 的解析式呢? 的解析式呢 (4,6) ,

用待定系数法求一次函数解析式精品课件ppt

用待定系数法求一次函数解析式精品课件ppt

从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
2、已知直线y=kx+b经过点 (2.5,0),且与坐标轴所围 成的三角形的面积为6.25,求 该直线的解析式。 3、判断点A(3,2)、B(-3,1)、 C(1,1)是否在一直线上?
Page 1
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
例1:已知正比例函数 y= kx,(k≠0) 的图象经过点(-2,4).
求这个正比例函数的解析式.
解:设这个一次函数的解析式为y=kx.
变式3:已知一次函数y=2x+b 的 图象过点(2,-1).求这个一次函数 的解析式.
解:
∵ y=2x+b 的图象过点(2,-1).
∴ -1=2×2 + b 解得 b=-5 ∴这个一次函数的解析式为y=2x-5
从使用情况来看,闭胸式的使用比较 广泛。 敞开式 盾构之 中有挤 压式盾 构、全 部敞开 式盾构 ,但在 近些年 的城市 地下工 程施工 中已很 少使用 ,在此 不再说 明。
变式7:一次函数y=kx+b(k≠0)的自 变量的取值范围是-3≤x≤6,相应函 数值的范围是-5≤y≤-2,求这个函数的 解析式.
2.分段函数 从使用情况来看,闭胸式的使用比较广泛。敞开式盾构之中有挤压式盾构、全部敞开式盾构,但在近些年的城市地下工程施工中已很少使用,在此不再说明。 在一个变化过程中,函数 y 随自变量 x 变化的函数解析式

八年级数学一次函数课件-求一次函数的解析式

八年级数学一次函数课件-求一次函数的解析式

数学
(2)∵△ABC的面积为4,
∴4=12BC×OA,即4=12BC×2. ∴BC=4. ∴OC=BC-OB=4-3=1. ∴C(0,-1). 设直线l2的解析式为y=kx+b. ቊ2kb+ =b-=10. ,解得ቐbk==-121,.
∴直线l2的解析式为y=12x-1.
八年级 下册
人教版
第4课时求一次函数的解析式
知识点1 待定系数法求一次函数的解析式 类型一 已知直线的解析式和图象上一点的坐标 【例题1】若函数y=3x+b的图象经过点(2,-6),求函数的 解析式. y=3x-12.
数学
八年级 下册
人教版
第4课时求一次函数的解析式
【变式1】若一次函数y=kx-3的图象经过点M(-2,1),求 这个一次函数的解析式. 解:∵一次函数y=kx-3的图象经过点 M(-2,1). ∴-2k-3=1.解得k=-2. ∴这个一次函数的解析式为y=-2x-3.
数学 人教版 八年级 下册
目 录
CONTENTS
数学
八年级 下册
人教版
第4课时求一次函数的解析式
第十九章 一次函数
19.2 一次函数 第4课时求一次函数的解析式
01 课标要求
02 基础梳理
03 典例探究
04 课时训练
数学
八年级 下册
人教版
第4课时求一次函数的解析式
了解待定系数法的含义;能根据已知条件确定一次函数 的表达式;会用待定系数法确定一次函数的表达式.
数学
八年级 下册
人教版
第4课时求一次函数的解析式
类型二 已知直线经过两个点的坐标 【例题2】一次函数y=kx+b的图象经过点(3,2)和点 (1,-2). (1)求这个函数的解析式; (2)判断(-5,3)是否在此函数的图象上.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. y=-x+3 B. y=-2x+3 C. y=x+3 D. y=2x+3
【跟踪训练】
4、若一次函数y=2x+b(b为常数)的图象经过点(1,-5),
则b的值为( -7 )
y
【想一想】
8 7 6 5
大家能否求出条直线的解析式呢? (4,6)
4 3
(0,3) 2
1
0 123 4 5 678 x
所以b=-2
所以直线的解析式为y=x-2。
.
【跟踪训练】
8、声音在空气中传播的速度y(m/s)是气温x(。 c )的一次
函数,下表列出了一组不同气温的音速:
.
气温x(。 c )0 5
10
15
20
速度y(m/s) 331 334
337
340
343
求y与x之间的函数关系式。
.
整理归纳:例3与例4从两方面说明:
函数解析 式y=kx+b
从数到形
画出 选取 满足条件的两定点
(x1, y1)与(x2 , y2 )
解出
选取
从形到数
一次函数的
l 图象直线
数学的基本思想方法: 数形结合
【拓广探索】
近年以来,塔城地区电力公司为倡导能源节约、鼓励市民 节约用电,采取按月用电量分段收费的方法:若某户居民 每月应缴电费y(元)与用电量x(千瓦时)的函数图像是一 条折线(如图所示),根据图像解下列问题:
y/元
89 65
0
100 130
x/千瓦时
1、分别写出当0≤x≤100和x≥100时,y与x 的函数解析式; 2、利用函数解析式,说明电力公司采取的收费标准; 3、若该用户某月用电62千瓦时,则应缴费多少元?若该用 户某月缴费105元时,则该用户该月用了多少千瓦时电?
作业
必做题:必做题:同步练习册45页第二课时 7、8、9、10、11
k
任务一:探究待定系数法的概念
【问题】某物体沿一个斜坡下滑, 它的速度v(米/秒)与其下滑时间 t(秒)的关系如图: 请写出v与t之间的解析式;
v (米/秒)
6 5 4 3
2 11
0 1 23
t (秒)
像这样先设出 函数解析式 , 再根据条件确定 解析式中未知
的系数 ,从而得出函数解析式
的方法,叫做待定系数法.
任务二:探究待定系数法求一次函数解析式的方法
【例4】已知一次函数的图象经过点(3,5)与(-4,-9), 求出一次函数的解析式.
【归纳】
求一次函数解析式解题的步骤: 1.设一次函数的一般形式y=kx+b(k≠0). 2.根据已知条件列出关于k,b的二元一次方程组. 3.解这个方程组,求出k,b. 4.将已经求出的k,b的值代入所设解析式.
选做题:同步练习册45页第二课时12、13 、14
敬请指导
谢谢大家! 谢谢同学们,你们真 棒,加油!
人民教育出版社八年级下册
19.2.2 一次函数(3)
待定系数法
1、 一般地,形如y=kx+b(k,b是常数,k≠0)的函数,叫 做一次函数.当b=0时,y=kx+b就变成了y=kx(k≠0),也就 是正比例函数。
2、 一次函数y=kx+b(k≠0)的图象是一条直线,因为两 点确定一条直线,所以画一次函数的图象时,只要描出 两点即可画出一条直线 .一般选直线与两坐标轴的两交 点,即(0,b)和( b ,0)
【跟踪训练】
6、已知某个一次函数的图象如图所示,则该函 数的解析式为 y=-2x+2 。
y 4
3
2
1
0 1 23
x
【跟踪训练】
7、若直线y=-kx+b与直线y=-x平行,且与y轴交点的纵坐
标为-2;求直线的解析式。
.
分析:因为直线y=-kx+b与直线y=-x平行
所以k=1
又因为直线与y轴交点的纵坐标为-2;
【巩固练习】
1、已知一次函数的图象经过点(9,0)与(24,20), 求出 一次函数的解析式.
【跟踪训练】
2、已知y是x的一次函数,当x=2时y=4,当x=-2时y=-2,求 y与x的一次函数解析式.
【跟踪训练】
3、已知一次函数y=kx+3的图象经过点A(1,4),则这个
一次函数的解析式为( C)
相关文档
最新文档