光纤熔接实习报告

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光纤熔接实习报告

一、工程概述

光纤

光纤是一种将讯息从一端传送到另一端的媒介.是一条玻璃或塑胶纤维,作为让讯息通过的传输媒介。光纤和同轴电缆相似,只是没有网状屏蔽层。中心是光传播的玻璃芯。在多模光纤中,芯的直径是15μm~50μm,大致与人的头发的粗细相当。而单模光纤芯的直径为8μm~10μm。芯外面包围着一层折射率比芯低的玻璃封套,以使光纤保持在芯内。再外面的是一层薄的塑料外套,用来保护封套。光纤通常被扎成束,外面有外壳保护。纤芯通常是由石英玻璃制成的横截面积很小的双层同心圆柱体,它质地脆,易断裂,因此需要外加一保护层。

光纤与光缆的区别

通常光纤与光缆两个名词会被混淆。多数光纤在使用前必须由几层保护结构包覆,包覆后的缆线即被称为光缆,光纤外层的保护结构可防止周遭环境对光纤的伤害,如水,火,电击等。光缆分为:光纤,缓冲层及披覆。

特点

损耗低

损耗是传输介质的重要特性,它只决定了传输信号所需中继的距离。光纤作为光信号的传输介质具有低损耗的特

点。如使用http://μm的多模光纤,850nm波长的衰减约为http://、1300nm波长更低,约为http://。如果使用9/25μm 单模光纤,1300nm波长的衰减仅为http://、1550nm波长衰减为http://,所以一般的LD光源可传输15至20km。目前已经出现传输100公里的产品。

带宽高

光纤的频宽可达1GHz以上。一般图像的带宽为6MHz左右,所以用一芯光纤传输一个通道的图像绰绰有余。光纤高频宽的好处不仅仅可以同时传输多通道图像,还可以传输语音、控制信号或接点信号,有的甚至可以用一芯光纤通过特殊的光纤被动元件达到双向传输功能。

抗干扰

光纤传输中的载波是光波,它是频率极高的电磁波,远远高于一般电波通讯所使用的频率,所以不受干扰,尤其是强电干扰。同时由于光波受束于光纤之内,因此无辐射、对环境无污染,传送信号无泄露,保密性强。

安全高

光纤采用的玻璃材质,不导电,防雷击;光纤传输不像传统电路因短路或接触不良而产生火花,因此在易燃易爆场合下特别适用。光纤无法像电缆一样进行窃-听,一旦光缆遭到破坏马上就会发现,因此安全性更强。

性能强

光纤细小如丝,重量相当轻,即使是多芯光缆,重量也不会因为芯数增加而成倍增长,而电缆的重量一般都与外径成正比。

1

《光纤熔接工程技术》实训报告

分类

(1)按光在光纤中的传输模式可分为:单模光纤和多模光纤。

多模光纤:中心玻璃芯较粗(50或μm),可传多种模式的光。但其模间色散较大,

这就限制了传输数字信号的频率,而且随距离的增加会更加严重。例如:600MB/KM的光纤在2KM时则只有300MB的带宽了。因此,多模光纤传输的距离就比较近,一般只有几公里。单模光纤:中心玻璃芯较细(芯径一般为9或10μm),只能传一种模式的光。因此,其模间色散很小,适用于远程通讯,但其色度色散起主要作用,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。单模光纤(Single-mode Fiber):一般光纤跳纤用黄色表示,接头和保护套为蓝色;传输距离较长。多模光纤(Multi-mode Fiber):一般光纤跳纤用橙色表示,也有的用灰色表示,接头和保护套用米色或者黑色;传输距离较短。

(2)按最佳传输频率窗口分:常规型单模光纤和色散

位移型单模光纤。

常规型:光纤生产厂家将光纤传输频率最佳化在单一波长的光上,如1300nm。色散位

移型:光纤生产长家将光纤传输频率最佳化在两个波长的光上,如:1300nm和1550nm。

(3)按折射率分布情况分:突变型和渐变型光纤。

突变型:光纤中心芯到玻璃包层的折射率是突变的。其成本低,模间色散高。适用于

短途低速通讯,如:工控。但单模光纤由于模间色散很小,所以单模光纤都采用突变型。渐变型光纤:光纤中心芯到玻璃包层的折射率是逐渐变小,可使高模光按正弦形式传播,这能减少模间色散,提高光纤带宽,增加传输距离,但成本较高,现在的多模光纤多为渐变型光纤。

二.、原理与工作过程

光纤原理

光波在光纤中的传播过程是一个复杂的电磁场的边界问题,一般来说,光纤芯子的直

径要比传播光的波长高几十倍以上,因此利用几何光学的方法定性分析是足够的,而且对问题的理解也很简明、直观。

当一束光纤投射到两个不同折射率的介质交界面上时,发生折射和反射现象。对于多

层介质形成的一系列界面,若折射率n1>n2>n3?>nm,则入射光线在每个界面的入射角逐渐加大,直到形成全反射。由于折射率的变化,入射光线受到偏转的作用,传播方向改变。

光纤由芯子、包层和套层组成。套层的作用是保护光纤,对光的传播没有什么作用。

芯子和包层的折射率不同,岂折射率的分布主要有两种形式:连续分布型(又称梯度分布型)和间断分布型(又称阶跃分布型)。

当入射光经过光纤端面的折射后进入光纤,除了与轴向方向一致的光沿直线传播外,

其余的光线则投射到芯子和包层的交界面:一种在界面形成全反射,这些光线将与光轴保持不变的夹角,呈锯齿状无损耗地在光纤芯子内向前传播,称之为传播光;另外一种在界面处只有一部分形成反射,还有一部分折射进入包层,最后被套层吸收,反射的光线再次

2

《光纤熔接工程技术》实训报告

到达界面时又会有一部分损耗,因而不能传播,称为非传播光。

实际上进入光线的大部分不是上面所将的轴面光,因此还有一种称为泄漏光,如果芯子和包层的界面十分平坦,这

些光线将形成全反射而得到传播,但事实上仅部分反射,尽管损耗比非传播光小还是不能很好地传播。对于长距离传输来说只有传播光是有意义的。

进入光纤的光线在向芯子包层界面传播时,由于芯子折射率逐渐减小,受到一个向心偏转的作用,与轴线夹角θ小于一定值的光纤不能到达界面或到达界面形成全反射,因而受束于芯子内、呈波浪状无损耗地向前传播,成为传播光。其余的光由于有一部分在界面处折射进入包层,逐渐被吸收掉而不能传播。

因此,光纤芯子和包层的折射率及折射率的分布与光纤的转播特性有密切关系。

过程

由发光二极管LED或注入型激光二极管ILD发出光信号沿光媒体传播,在另一端则有PIN或APD光电二极管作为检波器接收信号。对光载波的调制为移幅键控法,又称亮度调制(IntensityModulation)。典型的做法是在给定的频率下,以光的出现和消失来表示两个二进制数字。发光二极管LED 和注入型激光二极管ILD的信号都可以用这种方法调制,PIN 和ILD检波器直接响应亮度调制。功率放大是指将光放大器置于光发送端之前,以提高入纤的光功率。使整个线路系统的光功率得到提高。在线中继放大是指建筑群较大或楼间距离较远时,可起中继放大作用,提高光功率。前置放大是

相关文档
最新文档