航空火力指挥控制系统的分析论文(最新篇)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
航空火力指挥控制系统的分析论文
航空火力指挥控制系统的分析论文
航空火力指挥控制系统的分析全文如下:
1 引言
信息技术的发展推动现代战争正在由以平台为中心的机械化战争向以网络为中心的信息化战争转变。网络中心战的核心是整合资源,实现信息共享、统一指挥、联合作战。当前,综合航电火控系统可以解决单架飞机内部信息流通互联,无法实现飞机之间的信息共享,难以充分发挥整体作战、编队作战效能。为适应网络中心战要求,提升空中作战能力,必须将火力控制与指挥控制融为一体,研发适应网络信息环境的航空火力指挥控制系统。
航空火力指挥控制系统是在包含了飞机的本机参数、武器系统、目标传感系统和态势传感系统在内的机内网络系统基础之上,增加了和飞机外的信息网的连接,可进一步提高信息共享水平,增强态势感知能力,加快指挥决策速度,加强作战协同程度,增强响应能力、杀伤能力和生存能力。基于航空火力指挥控制系统的概念,进行系统需求分析,研究了系统结构以及系统作战和指挥流程,指出了系统实现所需的关键技术。
2 系统需求
航空火力指挥控制系统定义如下:
根据作战任务、敌我态势及载机武器配置,辅助制定作战方案,将载机引导至作战空域,探测、识别、截获、跟踪目标,引导载机以一定方向、时机、密度和持续时间控制武器弹药投射并完成制导弹药
中末制导交班,判定作战效果,在作战过程中产生、传输、处理、显示、控制、记录载机火力控制与指挥控制信息的设备或装置。
信息化战争中,编队战斗指挥随着战斗环境的变化而瞬息万变,战斗行动指挥最大的特点是实时性,需要将武器火力的控制与制导和指导战斗行动及协调战斗组合并与控制飞行机动能力融合一体。只有使系统具备强大的信息处理能力、辅助决策能力和协调控制能力,才能更有利于多机协同作战,实现整体作战的目标,才能发挥机载武器的最佳作战效能,保障网络中心战条件下空战体系作战指挥的高效和稳定。航空火力指挥控制系统的作战能力需求有以下几方面。
1 信息处理能力
网络中心战环境下,战场空间向多领域延伸,呈现立体化、多层次化,是陆、海、空、天、电磁高度一体化的多维综合战场。航空火力指挥控制系统将从三方面获取信息:
1)接收来自广域网的指挥部和预警机所传达的上级命令与战场态势数据;
2)接收来自局域网的机间数据链相互传来的目标与威胁数据及战斗预案;
3)接收本机雷达、红外等传感系统所获取的目标与威胁数据以及本机电子战设备侦察监视的威胁定位数据和告警级别。
航空火力指挥控制系统作为飞行员与作战环境发生联系的中介和桥梁,必须具备全维信息融合处理能力,最大限度地减小情报信息的复杂性,放大决策信息对指挥对象的控制力,使决策这一作战指挥的核心职能达到科学、高效。
2 辅助决策能力
当今信息化战争,作战发起突然、阶段转化迅速、样式更迭频繁、战场节奏加快,作战双方都将力求速战速决。对飞行员能力提出了极为苛刻的要求:
1)海量的传感与通信信息虽带来眼观四处,耳听八方的效益,但信息爆炸的灾难使飞行员往往无从下手。
2)超视距作战中机载传感器所体现的目标相对本机的作战意图与特征不明显,使飞行员很难做出敌我战术态势与攻击决策的判定;
3)在超视距多目标攻击时,要求飞行员在瞬息万变的空战中准确完成武器对目标的匹配,又要确保飞机的安全和武器的引导。为减轻飞行员消化数据的工作负担,集中注意力处理关键任务,及时掌握战斗态势变化,就要解决航空火力指挥控制系统中闭合控制回路的飞行员环节,这样一种随机、非线性、不确定性的决策与控制问题。因此,航空火力指挥控制系统必须具备辅助决策能力。
3 动态构建能力
空战中,飞行编队的战斗环境和战斗条件与战斗力在不断改变,在战斗现场需要适时更新组织框架与指挥方式,进行指挥权限转移,发挥该飞行编队的潜力与优势。航空火力指挥控制系统不再是飞机的简单组合,而是在作战区域内每架飞机所组成的网络体系,系统在作战过程中并非每时每刻所有飞机都参与作战,而是根据作战任务的需要以及各节点的状态临时组成有效集合体,称其为虚拟组织。系统中的任意一架飞机都能够根据作战需要和战场态势的变化,随时加入退出VO,并且当VO中的节点失效时,能够自动重建。因此每架飞机必须具有战斗编队的指挥及综合能力,适应长机与僚机和指挥与被指挥的角色转换。
3 系统体系结构
体系结构是一个系统的基本框架,它规定了系统的组成原则、组成部分以及各部分之间的关系和实现这些关系的方式。体系结构支持系统全生命周期内的活动,有助于系统从最初的概念直到最后退役的开发、运用和维护,是复杂大系统设计中不可缺少的下面对航空火力指挥控制系统的功能结构和物理结构进行设计。
3.1 功能结构
根据网络中心战原理,航空火力指挥控制系统体系结构按照功能分为三层逻辑网结构:
信息获取网、指挥控制网和火力控制网。三层逻辑网建立在数据链网络基础之上。
3.
1.1 信息获取网
3.
1.4 高速通信网
高速通信网包括广域网局域网内的数据链和飞机内部的总线通信。其功能是在各功能节点之间提供高速率、低延时和低误码率的通信链路,实现了系统各个功能节点之间的互连通性,为系统各功能节点之间信息的交互提供了可靠保障。
3.2 组成结构
基于航空火力指挥控制系统的作战方式,将传统作战中物理、地理上紧密耦合的各个功能系统分解为独立的作战节点,利用高速通信网络将作战区域的作战节点连接成一个有机的整体。
显控处理机主要任务是进行信息融合,评估战场态势,进行威胁排序,辅助生成作战预案,完成目标分配和火力分配,通过飞行员控制操作,产生显示、控制、告警,实现人机交互。
任务计算机主要功能是解算系统的任务数据,进行导航计算,并计算编队内导弹航路、发射时间和控制武器发射。
数据链设备完成飞机与外界的通信,主要接收上级作战指令和友机状态等信息,向编队内友机发送目标分配和火力分配结果,以及导弹航路数据等信息。
外挂物管理分系统主要功能是管理外挂物配置,管理和存储武器投放程序,激活武器,控制制导信号等。
雷达分系统主要完成目标的探测与跟踪任务。吊舱设备完成对导弹的制导和引导。
4 系统指挥层次、指挥体制和指挥方式
4.1 指挥层次
航空火力指挥控制一般有三种指挥层次。
1)联合编队。联合编队指挥员下辖三个以内编队指挥员以及本编队内三架僚机,每个编队指挥员还下辖三架僚机。即大队级。
2)独立编队。编队指挥员指挥本编队内的三架僚机。即中队级。
3)双机编队。即长僚机编队。
以常见的独立编队为例分析长僚机各自承担的任务。长机指挥员在飞行作战中要对从自身飞机和僚机那里获取态势信息进行分析,并在长僚机间进行目标分配和火力分配,确定联合攻击与协同作战方法,其显示器上有编队内所有飞机及携带武器的信息。僚机将自动在本编队内交换所有的态势信息和指挥指令,其显示器上均有编队飞机